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Abstract

Computer-assisted imagery analysis based on

chest X-ray images plays a crucial role in the

clinical diagnosis and screening of COVID-19.

However, the radiographic features of chest X-

rays are highly complex and irregular in shape.

Moreover, the size and location of the lesion re-

gions vary greatly with infection stages and pa-

tients, thus dramatically increasing the difficulty

of COVID-19 identification. A lightweight adap-

tive self-attention network is developed to address

this problem, namely ASA-CoroNet. It firstly

extracts underlying features using a depthwise

separable convolution-based backbone, then fur-

ther identifies lesion regions through an adaptive

self-attentive module, and finally utilizes a homo-

geneous vector capsule layer to map the obtained

features into capsule vectors to instantiate detec-

tion objects accurately. Extensive experimental

results demonstrate that the proposed model out-

performs the state-of-the-art methods and obtains

competitive results on limited datasets. More im-

portantly, the trainable params of the proposed

model are reduced by 7x compared to the state-

of-the-art capsule network. In addition, we also

interpret the proposed model using different class

activation techniques and confirm the validity of

the three components through numerous ablation

studies.

1. Introduction

Coronavirus disease (COVID-19) has rapidly spread across

the globe since December 2019, and the repeated epidemics

still severely influence people’s work, study, and life. It is

urgent to develop new detection technologies. For a long

time, reverse transcription-polymerase chain reaction (RT-
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PCR) has been considered the gold standard for COVID-19

detection (Huang et al., 2020). However, its detection cy-

cle is long, and its sensitivity is low (Kovács et al., 2021).

Therefore, computer-assisted imagery analysis becomes the

key to solving this problem, such as computed tomographic

(CT) scans and chest X-rays (CXR). Compared with CT

imaging, CXR has a shorter diagnostic time and lower cost.

Therefore, more and more researchers attempt to introduce

deep learning (DL), especially convolutional neural network

(CNN), to improve COVID-19 detection efficiency and ac-

curacy on CXR images (Öksüz et al., 2021; Abraham &

Nair, 2020; Khan et al., 2020).

1.1. Literature Review

As in other healthcare, to escape the dilemma of data

scarcity, some research uses the transfer learning (TL) strat-

egy, that is, fine-tunes models trained on large-scale data

using COVID-19 datasets. (Loey et al., 2020) introduced

generative adversarial network (GAN) based on AlexNet

(Krizhevsky et al., 2012) to solve the problem of insuf-

ficient COVID-19 samples, the effect of which is better

than single transfer learning methods, such as GoogleNet

(Szegedy et al., 2015) and ResNet18 (He et al., 2016). In

addition, (Apostolopoulos & Mpesiana, 2020) combined

CNN and TL to detect CXR images. (Abbas et al., 2021)

adopted VGGNet to design a decomposition, transfer, and

synthesis method for classifying CXR images into three

categories: normal, COVID-19, and SARS. Its performance

outperformed the traditional VGG19 pre-trained model. Fur-

thermore, (Wang et al., 2021b) combined ResNet with the

feature pyramid network to improve ResNet to obtain better

performance. Unlike this, (Serte & Demirel, 2021) used

multiple image levels to diagnose COVID-19 at the 3D CT

volume level. Its detection effect outperformed a single

3D-Resnet. Other transfer methods include InceptionV3

(Szegedy et al., 2016), DenseNet (Huang et al., 2017),

etc. Transfer learning has achieved satisfactory results in

COVID-19 identification, but with its complex model and

high computational overhead. Therefore, DL frameworks

specifically for COVID-19 were proposed, such as COVID-

net (Wang et al., 2020b), (Ozturk et al., 2020), etc. Neverthe-

less, the performance of such models on multi-classification

needs to be further improved.
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Additionally, since CNN has some potential defects, espe-

cially it cannot capture the relative positional relationship

between features. So, (Hinton et al., 2011) exploited a new

architecture, referred to as a capsule network, as a powerful

alternative to CNN. This structure uses capsules (vectors

containing feature information) to effectively avoid the loss

of high-level feature information through routing mecha-

nisms, demonstrating certain advantages in medical image

processing (Mobiny & Nguyen, 2018; Adu et al., 2019).

Inspired by this, (Afshar et al., 2020) proposed a capsule

network for detecting COVID-19 using CXR images, named

COVID-CAPS, and achieved an accuracy of 95.7%. Sim-

ilarly, (Toraman et al., 2020) proposed an artificial neural

network approach to detect COVID-19 disease. Recently,

(Li et al., 2022) designed a new capsule network using multi-

head attention routing and obtained the optimal effect on

COVID-19 CXR image classification. However, the rout-

ing follows vast computation overhead and is limited to a

certain extent by the entanglement of capsule dimensions

(Byerly et al., 2021). Inspired by this, in the transition

from the lower-layer capsule to the upper-layer capsule, we

abandon the routing method and only rely on the weights

learned between capsule layers in the process of backprop-

agation. This makes the realizable precision of the model

less dependent on the fine-tuned hyperparameters.

1.2. Contributions

Current research has made significant progress in the identi-

fication accuracy of COVID-19. However, these methods

still face tough challenges in clinical application. 1) Most

studies directly extract features from CXR images, only

considering image-level features. This easily makes the im-

portant information in the infection site neglected and may

also make the network learn more redundant information,

such as background and noise. 2) It is challenging to learn

radiographic features from COVID-19 robustly. Firstly, the

CXR has diverse COVID-19 radiographic features, such

as lung consolidation, ground glass opacities, lung opaci-

ties, and peripheral lung involvement (Jacobi et al., 2020).

Secondly, COVID-19 lesion shapes are complex, such as

diffuse, reticular nodular (Stogiannos et al., 2020). More-

over, the size and location vary greatly with infection stages

and patients. 3) The mainstream methods also have some

problems. DL transfer learning models are highly complex.

Capsule networks rely on expensive routing calculations

and will follow a capsule shedding problem with training

samples increases. In view of the above analysis, we pro-

pose a novel adaptive self-attention network, namely ASA-

CoroNet, to realize the automatic diagnosis of COVID-19.

It first constructs a lightweight CNN feature extraction back-

bone and further adaptively captures the infected regions.

Finally, the extracted features are mapped into capsules to

instantiate the classification object. The main contributions

are summarized as follows:

1) This paper develops a novel adaptive self-attention net-

work. The network subtly incorporates the advantages of

CNN and the capsule network. It not only achieves the

adaptive learning of COVID-19 complex infection regions

and global contextual information interaction of COVID-19

pathological features, but also fully considers the relative

position information of COVID-19 radiographic features.

2) The adaptive self-attention module is proposed, which

can adaptively adjust the receptive field according to the

complex and diverse COVID-19 CXR images while non-

locally interacting with the global context information. The

aim is to assist the model in perceiving infected regions.

3) Homogeneous vector capsules are designed as the classi-

fication layer. It tactfully avoids traditional matrix multipli-

cation between capsule layers or expensive routing compu-

tation to deal with the entanglement of capsule dimensions.

Compared to fully connected layers, the design can map the

extracted features more comprehensively and effectively to

improve the discriminative ability of the model.

4) The proposed model obtains excellent performance on

a limited training dataset and does not require pre-training.

Moreover, experimental results demonstrate that our model

outperforms the state-of-the-art transfer learning models and

capsule networks. Notably, its trainable params are reduced

by 7x compared with the state-of-the-art capsule network.

In addition, we perform model interpretation and ablation

studies to confirm the feasibility of our method.

The remainder of this paper is as follows. In the section

2, we expound the proposed network architecture in detail.

Experimental results and analysis are in section 3. The

conclusions are in section 4.

2. Proposed Model

As shown in Figure 1, the proposed model contains three

main components. Firstly, the backbone extracts underlying

features. On this basis, the adaptive self-attention (ASA)

module further captures complex and diverse lesion sites.

Finally, the homogeneous vector capsule layer combines

valuable features from the ASA module to instantiate nor-

mal, pneumonia, and COVID-19 CXR image objects. The

framework fully considers the COVID-19 feature distribu-

tion, shape, infected regions, and relative location informa-

tion.

2.1. Feature Extraction Backbone

This paper adopts depthwise separable convolution (Chollet,

2017) (DSC) to design a lightweight feature extraction back-

bone. It first uses depthwise convolution to extract different

channel features of the input chest X-ray image, then uti-
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Figure 1. The architecture of the ASA-CoroNet. BN and HVCs denote batch normalization and homogeneous vector capsules, respectively.

lizes point convolution to weight and combine the obtained

features. Compared with standard convolution, the DSC can

realize the separation of feature map channels and regions,

thus accelerating model training. Assuming the width and

height of the convolution kernel are Kw and Kh, respec-

tively. Besides, Cin and Cout represent input channels and

output channels, respectively, then for standard convolution,

its parameters are:

Pst = Kw ×Kh × Cin × Cout. (1)

For the DSC, parameters can be calculated as:

Pds = Kw ×Kh × Cin + 1× 1× Cin × Cout. (2)

So,

Pds/Pst = 1/Cout + 1/(Kh ×Kw) < 1. (3)

According to (3), the DSC can effectively reduce the param-

eters of the model compared to standard convolution. To

conclude, the lightweight feature extraction framework is

beneficial in reducing computational overhead, thus making

it easier to deploy on COVID-19 detection equipment. Fur-

ther, we combine the DSC, batch normalization (BN), and

LeakyReLU activation function to design 4 sets of feature

extractors. The first and second extractors are followed by

the MaxPooling. The pooling unit is 2 × 2. Convolution

kernel sizes are all set to 5× 5. In addition, all strides are

set to 1. After each extractor operates, the channels of the

obtained feature maps are 16, 32, 64, and 128 in turn.

2.2. Adaptive Self-attention Module

To enable the network to further adaptively detect the geo-

metrical changes of COVID-19 abnormal regions and effec-

tively distinguish COVID-19 from other pneumonia symp-

toms, we exploit an adaptive self-attention module. It first

captures the shape changes of the input features using de-

formable convolutions (Dai et al., 2017), and then realizes

non-locally interaction of the global context information of

COVID-19 through a self-attention mechanism to further

capture infected regions. This operation can further enhance

the features of important regions while suppressing irrel-

evant information such as background and noise, thereby

assisting the homogeneous vector capsule layer to instanti-

ate objects. Unlike standard convolutions, which can only

sample fixed-position features, deformable convolution can

learn the offset of the sampling position from the target task,

thus dynamically adjusting the receptive field to control the

spatial support region. Specifically, assuming that the po-

sition of the input feature x ∈ R
C×W×H is p, the output

feature y is:

y(p) =
∑

pk∈R

wk · x (p+ pk +∆pk) , (4)

where the sampling grid R with learnable offsets

{∆pk}
N=|R|
k=1

, and wk, and pk describe the weights of the

kth positions and prespecified offsets, respectively. In par-

ticular, the learnable spatial offset ∆pk contains the offsets

in the horizontal and vertical directions and are learned by
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additional convolutional layers, with the corresponding ker-

nel size set to 3. In addition, global contextual information

is critical as COVID-19 pathological features tend to be dif-

fuse or localized (Jacobi et al., 2020), and the diffuse trend

is strengthened with an increasing degree of infection. We

further design the self-attention mechanism. Specifically,

x from deformable conv is mapped to spaces K(x), Q(x),
V (x) ∈ R

C×N . The attention map is computed by K(x)
and Q(x):

β = softmax(K(x)⊤ ×Q(x)). (5)

Note that, ∑

i

βi,j = 1. (6)

Finally, V (x) is updated using β to obtain the output feature

map Fout, which is expressed as follows.

Fout =

N∑

i=1

V (x)βj,i. (7)

In summary, the ASA module further adaptively samples

the lesion region from the feature map, thus effectively cap-

turing its contour information. Further, it enhances the ab-

normal region features from the global context information

while suppressing the background and irrelevant features to

capture useful features, aiming to facilitate the discrimina-

tion of COVID-19 by the capsule layer.

2.3. Homogeneous Vector Capsules

The classification layer is constructed with homogeneous

vector capsules. It first uses each different x and y coordi-

nate of the feature maps to construct capsule vectors, which

effectively combines meaningful features to instantiate the

capsules. After this operation, the primary capsule layer

Pn,d is created, where n = 3600 and d = 8 denote its

amount and dimension, respectively. Secondly, we utilize

element-wise multiplication to map primary capsules to

class capsules, that is:

Wi ⊙ Pi = Cj , (8)

where Wi denotes the learnable weight corresponding to the

primary capsule Pi, and i = 0, ..., 3600. Cj (j = 1, 2, 3)

represents the class capsule. The primary capsule and the

class capsule layers have the same dimensions through the

formula (8), so they are called homogeneous vector cap-

sules, and their visualization form can be referred to as the

HVCs in Figure 1. This method has two advantages. The

first is in comparison with the routing process. The training

weight parameters are few. The training weight parame-

ters of each capsule are equal to the dimensionality of the

capsule. However, they are the square of capsule dimen-

sion for the dynamic routing method proposed by Sabour

et al. (Sabour et al., 2017). Furthermore, this method can

model feature vectors flexibly. While the vector dimension

must meet the perfect square in the paper (Hinton et al.,

2018), which dramatically limits its application in COVID-

19 detection. Secondly, compared with the fully connected

layer mapping method, it contains richer feature represen-

tations, such as a specific entity type and how the entity is

instantiated.

After homogeneous operations, the class capsule layer C3,8

is obtained with 3 capsules with 8 dimensions. Moreover,

class capsules also contain instantiated parameters for nor-

mal, pneumonia, and COVID-19 objects. In order to make

the length of the activity vector corresponding to each cap-

sule represents the probability that each class exists, the

class capsules are activated by a non-linear ”squashing”

function. It is expressed as follows:

squash(Cn) = (1−
1

e||Cn||
)

Cn

||Cn||
. (9)

A single capsule is defined as Cn ∈ R
8 in the proposed

model. After the squash activation function operates, the

obtained class capsules have a length ”squashed” between

zero and one.

2.4. Margin Loss

We adopt the margin loss Lc in capsnet as the loss function.

It is calculated as follows:

Lc =
∑

k∈CNum

Tkmax(0,m+ − ||uk||)
2

+ λ(1− Tk)max(0, ||uk|| −m−)2.

(10)

where Tk is the sample class label. If k class exists, Tk = 1.

λ = 0.6 is the balance coefficient, which lowers the weights

of the loss for non-existing classes. The two parameters

are used to prevent the initial learning from shrinking the

length of the activity vector of all class capsules. CNum

and k represent the number of classes in the dataset and the

sequence number of classes, respectively. m+ = 0.9 and

m− = 0.2 are class prediction thresholds used to control

the class response value of the actual computed output. In

particular, Lc = 0 when the prediction vector uk of the

class capsule layer is consistent with Tk.

Table 1. Chest X-ray image’s distribution for Normal, Pneumonia,

and COVID-19

Dataset Normal Pneumonia COVID-19 Total

dataset-1 350 350 294 994
dataset-2 1341 1345 1200 3886
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(a) Normal (b) Pneumonia (c) COVID-19

Figure 2. Example images from dataset-2 with three categories: (a)

Normal, (b) Pneumonia, and (c) COVID-19.

3. Experiments and Analysis

3.1. Experimental Preparation

Datasets: Table 1 shows two datasets containing normal,

pneumonia, and COVID-19 labeled CXR images. Their

examples are displayed in Figure 2. COVID-19 images in

dataset-1 came from different patients and were created by

Dr. Joseph Cohen (Cohen, 2020). In addition, the 350 nor-

mal and non-COVID-19 pneumonia CXR images are pro-

vided by Kaggle (Mooney, 2020). Dataset-2 contains 1200
COVID-19 positive images, 1341 normal images, and 1345
viral pneumonia images, which come from the COVID-19

radiography database (Chowdhury et al., 2020). These orig-

inal labeled CXR images have varying lengths and width

sizes, so we rescale them to 128×128 pixels. Moreover, we

also normalize the pixel values of the images from [0, 255]
to [0, 1] with the Min-Max scaling method.

Model Training and Testing: Firstly, experiments are per-

formed in the Google Colab cloud experimental environ-

ment with Python 3.7, Keras 2.4.3, and TensorFlow-GPU

2.8.0. Secondly, we train all models using the graphical

processing unit (GPU) Tesla T4 with 16 GB. In addition,

the optimization uses the Adam with an initial learning rate

of 0.001, and it is lowered with a 0.5 decay rate and a 15
decay step. Finally, we set the batch size and epoch to 16
and 100. The training and test sets are divided by 3:1 for a.

Model Evaluation: The accuracy, precision, recall, and F-

measure are used as evaluation indicators. They are defined

as follows. 1) Accuracy (Acc.) = (TP + TN)/(TP + FP + TN

+ FN). 2) Precision (Pre.) = TP/(TP + FP). 3) Recall (Rec.)

= TP/(TP + FN). 4) F-measure = 2TP/(2TP + FP + FN).

where TP, FP, TN, and FN respectively denote true positive,

false positive, true negative, and false negative. In addition,

we also use AUC, macro average, and weighted average.

3.2. Comparison with the State-of-the-art Models

To verify the performance of the proposed model, we

compare it with the current state-of-the-art capsule net-

works and transfer learning models, both of which have

achieved competitive results for COVID-19 detection. Cap-

sule networks include convolutional capsnet (Toraman et al.,

2020), COVID-CAPS (Afshar et al., 2020), and MHA-

CoroCapsule (Li et al., 2022). Transfer learning meth-

ods use VGG16 (Al-Bawi et al., 2020), ResNet50 (Mishra

et al., 2021), DenseNet121 (Ezzat et al., 2021), InceptionV3

(Wang et al., 2021a), and MobileNet (Gupta et al., 2021).

The results are shown in Table 2. Our model both out-

performs other methods on both dataset-1 and dataset-2.

For dataset-1, compared with the suboptimal model MHA-

CoroCapsule, the acc, pre, rec, F-measure, and AUC of

the ASA-CoroNet are improved by 1.2%, 1.19%, 1.14%,

1.14%, and 0.13%, respectively. It is emphasized that the

proposed model has the lowest trainable params, reduced

by 7x compared to MHA-CoroCapsule. Further analysis

demonstrates that the transfer learning methods involved in

the experiments are all pre-trained on ImageNet and then

fine-tuned on dataset-1 and dataset-2, respectively. More-

over, the source and target tasks are both classification. The-

oretically, they have robust performance, but they do not

escape from sample dependence with the high complexness

of the model. Different from this, the effect of the convo-

lutional capsnet rises a substantial decrease on dataset-2,

which could be attributed to the increase in training samples

leading to capsule shedding. In contrast, our model also has

better generalization even under limited training samples.

In addition, we visualize ROC for each class in Figure 3 and

the training procedure in Figure 4 of the proposed model.

According to Figure 3, the proposed network has an excel-

lent generalization for normal, pneumonia, and COVID-19

objects, among which the AUC of COVID-19 is as high

as 0.9955. Simultaneously, Figure 4 indicates that it also

has good convergence and stability, and the training can be

accomplished in 20 epochs iterations.

There are some similarities between the CXR medical image

features of COVID-19 and other pneumonia. Consequently,

the discriminative ability for COVID-19 and pneumonia is

an essential indicator in assessing the performance of the

model. Therefore, we implement comparison experiments.

The results are reflected in Figure 5. The proposed model

still obtains the best effects, which demonstrates its robust

discriminative ability for COVID-19 and other pneumonia.

3.3. Model Interpretation and Robustness Analysis

When samples are small, K-fold cross-validation is a crucial

method to evaluate the robustness of the model. The method

can effectively reduce the dependence between the accu-

racy estimates, thereby ensuring the reliability of the results.

In the current related COVID-19 identification research,

only a few apply this strategy (Aggarwal et al., 2022). The

dataset-1 has only 994 CXR cases, so on which we deploy

4-fold cross-validation to test the robustness of the proposed

model. As shown in Table 3, our model achieves the best

performance on fold-1, and the corresponding means of
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Table 2. Performance among our model, capsule networks, and pre-trained models for dataset-1 and dataset-2 (In percentage %).

Dataset-1 Dataset-2
Trainable params

Acc. Pre. Rec. F-measure AUC Acc. Pre. Rec. F-measure AUC

Convolutional Capsnet 91.97 92.27 92.09 92.10 97.27 78.19 83.12 78.44 78.50 93.87 57,002,160
COVID-CAPS 95.18 95.30 95.35 95.29 98.35 95.67 95.81 95.76 95.77 98.79 295,488
MHA-CoroCapsule 96.39 96.61 96.43 96.52 99.52 97.02 97.07 97.08 97.07 99.00 329,232

MobileNet 90.76 90.78 91.03 90.87 98.21 95.37 95.51 95.47 95.47 99.29 3,210,051
ResNet50 90.36 90.77 90.60 90.60 96.65 95.47 95.55 95.58 95.56 99.46 23,540,739
DenseNet121 91.16 91.33 91.41 91.37 97.87 96.91 97.00 96.98 96.98 99.60 6,956,931
VGG16 91.16 91.42 91.64 91.33 98.28 93.00 93.30 93.18 93.11 98.93 50,352,131
InceptionV3 91.96 92.99 91.75 92.13 98.79 95.58 95.57 95.69 95.61 98.30 21,774,499

Ours 97.59 97.80 97.57 97.66 99.65 97.53 97.54 97.56 97.55 99.49 38,024

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

micro-average ROC curve (area = 0.9949)
macro-average ROC curve (area = 0.9949)
ROC curve of class Normal (area = 0.9943)
ROC curve of class Pneumonia (area = 0.9947)
ROC curve of class COVID-19 (area = 0.9955)

Figure 3. ROC of the proposed model on dataset-2.
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Figure 4. Visualization of the training process for the proposed

model on dataset-2.

Table 3. The stability test results using the 4-fold cross-validation

method on our model (In percentage %).

Folds Acc. Pre. Rec. F-measure AUC

Fold-1 97.59 97.75 97.56 97.65 99.60
Fold-2 97.19 97.28 97.20 97.23 99.20
Fold-3 96.37 96.46 96.42 98.04 99.38
Fold-4 96.77 96.87 96.95 96.90 99.48

Mean 96.98 97.09 97.03 97.05 99.48
Std 0.46 0.48 0.42 0.45 0.20

acc, pre, rec, F-measure, and AUC on all folds are 96.98%,

97.09%, 97.03%, 97.05%, and 99.48%, respectively. More

importantly, the std of each indicator is less than 0.5, further

illustrating the strong performance of the proposed model

on limited samples, which is particularly important in the

data-poor medical field. In addition, we also show the con-

fusion matrix on each fold in Figure 6. To further prove

this conclusion, this paper implements a transfer application

study by training all networks on dataset-1 and then deploy-

ing them directly on dataset-2 for classification. According

to Table 4, our method still obtains the optimal results, and

each evaluation index exceeds 95.19%. This result is up-

lifting. Firstly, the model is learned the feature space from

limited samples and then transfers it to larger samples. Sec-

ondly, the datasets are from different patients and databases,

and there is wide heterogeneity in image quality. Both of

these aspects greatly increase the difficulty of the model

prediction.

Model transparency is essential when DL models are used

for life-threatening COVID-19 disease detection. This pa-

per adopts three class activation techniques to achieve the

interpretation and behavioral understanding of the ASA-

CoroNet, including GradCAM++ (Chattopadhay et al.,

2018), LayerCAM (Jiang et al., 2021), and ScoreCAM

(Wang et al., 2020a). According to Figure 7, even though the
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Figure 5. The recall for COVID-19 and pneumonia CXR images on dataset-1 and dataset-2.
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Figure 6. 4-fold confusion matrices of our model on dataset-1. From left to right are fold-1, fold-2, fold-3, and fold-4.

Table 4. Generalization performance comparison between the pro-

posed network and pre-trained models (In percentage %).

Methods Acc. Pre. Rec. F-measure AUC

Convolutional Capsnet 90.81 91.07 91.00 91.00 96.66
COVID-CAPS 93.62 93.75 93.71 93.71 97.94
MHA-CoroCapsule 94.67 95.00 94.79 94.77 98.96

MobileNet 90.12 90.22 90.31 90.23 97.51
ResNet50 90.02 90.43 90.03 90.13 97.55
DenseNet121 91.92 92.04 92.02 92.02 98.25
VGG16 90.07 91.03 90.37 90.14 98.29
InceptionV3 92.25 92.72 92.16 92.34 98.67

Ours 95.19 95.23 95.26 95.23 99.14

proposed model only obtains image-level labels, it can de-

tect COVID-19 lesions even their shape, which can greatly

assist doctors in fast screening and diagnosing COVID-19.

In conclusion, the COVID-19 solution based on the ASA-

CoroNet is acceptable and effective.

Additionally, we further explore the decision-making effect

of the proposed model through misclassification images

and their prediction scores, as displayed in Figure 8. The

fully connected layer maps the extracted features to neuron

scalars and then obtains the class probabilities by softmax

operations. Conversely, the ASA-CoroNet constructs cap-

sule vectors to instantiate class objects and then predicts the

class scores through the length of class capsules. According

to the blue bars, for COVID-19 misclassified images, the

ASA-CoroNet can still learn the most instantiated features

even though their symptoms are vague.

3.4. Ablation Study

In this section, we perform ablation studies on the three key

components of the proposed model, aiming to analyze the

role of each component in COVID-19 recognition. Results

are recorded in Table 5. Moreover, the experiments utilize

the backbone constructed by standard convolutional and

the fully connected layer as a baseline. Its performance is

shown in No.1 of Table 5, and the relevant settings of the

backbone except the convolution method remain the same

as the proposed model.

Effects of the depthwise separable convolution: To inves-

tigate the positive impact of depthwise separable convolu-

tion on COVID-19 identification, we replace the standard

convolution of No.1 with depthwise separable convolution.

According to No.2, the performance of the transformed

baseline is improved on both dataset-1 and dataset-2. For

example, acc, pre, rec, F-measure, and AUC on dataset-1

are improved by 2.41%, 2.61%, 2.47%, 2.46%, and 1.56%,

respectively. Moreover, trainable params are reduced by

nearly 12x. Results indicate that DSC plays a key role in

reducing model complexity while extracting useful features.
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Table 5. Ablation studies for the three key modules involved in the proposed model (In percentage %). SC and FC denote standard

convolution and fully connected layer, respectively. No. 1 is used as the baseline.

No. SC DSC ASA FC HVCs
Dataset-1 Dataset-2

Trainable params

Acc. Pre. Rec. F-measure AUC Acc. Pre. Rec. F-measure AUC

1
√ √

89.96 90.36 90.07 90.19 97.18 93.21 93.29 93.33 93.30 98.73 271,107
2

√ √

92.37 92.97 92.54 92.65 98.74 94.03 94.10 94.16 94.11 99.04 20,785
3

√ √ √

95.18 95.25 95.37 95.28 99.47 95.68 95.76 95.79 95.77 99.38 291,861
4

√ √

96.79 96.83 96.81 96.82 99.08 96.50 96.64 96.59 96.58 99.37 270,720
5

√ √ √

97.59 97.80 97.57 97.66 99.65 97.53 97.54 97.56 97.55 99.49 38,024

COVID-19 GradCAM++ LayerCAM ScoreCAM

Figure 7. Interpretation of the proposed model for four COVID-19

cases using different class activation maps. Pneumonia sites have

been identified in the arrow and box sections.

Effects of the ASA module: Furthermore, we introduce the

ASA module into the baseline to further explore its effec-

tiveness. It can be seen from No. 3 that the performance is

greatly improved on both datasets compared to the baseline.

The reason is that the ASA module can adaptively adjust

the receptive field and simultaneously realize the non-local

interaction of context information, thus accurately locating

the infected region. In this way, the network can better learn

COVID-19 radiographic features to facilitate its diagnosis.

Effects of the HVCs: Further, we compare the effect of

fully connected and HVCs at the classification layer. Results

of No.4 confirm that the classification layer design of HVCs

can promote the discrimination of the model compared to

the fully connected method. This is because HVCs map

the captured features into vectors and instantiate objects
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Figure 8. Examples of the ASA-CoroNet misclassified images.

Blue bars represent correct labels and their corresponding cap-

sule length.

in the form of capsules, which subtly consider the relative

positional relationship and obtain a richer representation of

entity features.

4. Conclusions

This paper constructs a lightweight and efficient detection

framework, namely ASA-CoroNet, which concludes three

components: a depthwise separable convolution-based back-

bone, an adaptive self-attention module, and a homogeneous

vector capsule layer, subtly incorporating the advantage of

CNN and the capsule network. Extensive experimental re-

sults confirm the superiority and feasibility of the proposed

model. In summary, our method has excellent generalizabil-

ity in COVID-19 scenarios. Firstly, it greatly reduces com-

putational overhead with a lightweight architecture. Sec-

ondly, it can adaptively capture lesion areas to better as-

sist doctors in diagnosis and decision-making. Finally, the

proposed model can be deployed on limited datasets, thus

making it more suitable for epidemic screening needs. Our

work is to promote automated diagnosis of COVID-19.
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