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Abstract

Because the COVID-19 virus is highly transmis-
sible, leading to a worldwide increment of new
infections and deaths daily, the development of
an automated tool to identify COVID-19 using
CT images has attracted much attention. Signif-
icantly, deep metric learning can be deployed to
cluster and classify the fine-grained CT images,
which aims to learn a mapping from the origi-
nal objects to a discriminative feature embedding
space. Previous deep metric learning works have
been proposed to construct various structures of
loss, mine hard samples, or introduce regulariza-
tion constraints, efc. In general, traditional loss
functions of deep metric learning methods are
based on constraining the distance of the triplet
embeddings in the feature space. Instead of fo-
cusing on the previous research directions, in this
work, we pay attention to exploring confusing
triplet embeddings, for the reason that confus-
ing triplet embeddings perform a side effect on
the majority of deep triplet-based metric learn-
ing methods. By considering the spatial relation
of triplet embedding, and conducting theoretical
analysis in the feature space, we propose an ap-
proach to recognize the confusing triplet embed-
dings and construct a Confusing Triplet Embed-
ding Learning (CTEL) method by adding a hard
constraint on the confusing triplet embeddings.
The extensive experiments indicate that our pro-
posed CTEL method achieves more excellent per-
formance on two medical CT image datasets and
two fine-grained standard image datasets com-
pared with many state-of-the-art methods.
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1. Introduction

The COVID-19 pandemic continues to spread around the
world, and has not only led to a global public health crisis
but has also affected the world’s economy. With the increas-
ing number of new infections, the development of automated
tools to identify COVID-19 using CT images is essential,
and it has been playing an important role in clinical di-
agnosis and monitoring of those infected with the disease
(Mei et al., 2020). To fight against this pandemic, some
works (Javaheri et al., 2020; Zhang et al., 2020; Fan et al.,
2020) have shown collecting large-scale training database
can improve the recognition accuracy, but it is difficult to be
individually executed in practice. However, researchers can
aggregate the CT imaging data from different hospitals and
build a cross-site learning scheme to alleviate the problem of
insufficient data volume at a single site. For instance, Wang
et al.(Wang et al., 2020b) proposed a novel joint learning
framework to improve the diagnosis of COVID-19 by learn-
ing of heterogeneous datasets, taking into account those
issues such as data heterogeneity and different imaging con-
ditions in different clinical centers. Regardless of which
method is used, the indispensable procedure is to extract
distinguishable features from the original image.
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Figure 1: Problem of Metric Learning Optimization. “A”
represents the anchor sample feature, “P” represents the
positive sample feature in the same class as the anchor, and
“N” represents the negative samples feature in a different
class from the anchor. The typical triplet loss in satisfying
the distance Day than the distance Dap is greater than a
certain margin. There are two cases of a triplet: P and N in
the same direction or in opposite direction.

Significantly, deep metric learning(Yuan et al., 2019) can
make the learned feature distinguishable by keeping feature
vectors of the same class close to each other and feature
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vectors of different classes away from each other. However,
there still exist some confusing cases in the learning space
even when the distance relations between positive and neg-
ative pairs satisfy the above conditions. These confusing
triplet cases can be recognized by the same direction or
opposite direction of the positive sample and the negative
sample compared to an anchor. As shown in Figure 1, the
feature distance of the negative pair has been larger than
of the positive pair by a certain threshold, where the triplet
embeddings have satisfied the basic constraint, thus pushing
the negative sample or pulling the positive sample will not
be continued. However, when the negative sample (N) is in
the same direction as the positive sample (P) compared to
the anchor (A) in feature spaces (as shown in Figure 1(a)),
there will exist unreasonable distance relation in the triplet
embeddings: i.e., the distance Dpy is smaller than the dis-
tance Dap. While the negative sample (N) is in the opposite
direction as the positive sample (P) compared to the anchor
(A) in feature spaces (as shown in Figure 1(b)), the distance
relations of similar/dissimilar pairs are reasonable. Conse-
quently, the same direction of the positive sample P and the
negative sample N compared to the anchor A in Figure 1 (a)
leads to inducing confusing triplet embedding, which will
perform a side effect on the majority of deep triplet-based
metric learning procedures.

Therefore, to improve the efficiency of deep triplet-based
metric learning methods, we propose a deep metric learning
method by exploring confusing triplet embeddings. This
method is named Confusing Triplet Embedding Learning
(CTEL). More specifically, we firstly propose a strategy to
recognize the confusing triplet embeddings by distinguish-
ing the corresponding directions in triplets. Then a hard
constraint is established on the confusing triplet embed-
dings by introducing an auxiliary penalty factor to penalize
the distance of negative pairs in the same direction. As a
result, even when the distance of the negative pairs is greater
than the distance of the positive pairs by a given margin,
we can still enable the network to continue to push away
negative samples and pull in positive samples in this case,
thus making the data more distinguishable in the feature
space. In this paper, we select four previous metric learning
works, including contrastive loss (Hadsell et al., 2006a),
triplet loss (Hadsell et al., 2006b), quadruplet loss (Law
et al., 2013) and Multi-Similarity Loss (Wang et al., 2019a)
as the partial baselines of our proposed method. We select
two public available COVID-19 CT image datasets and two
fine-grained image datasets to compare our method with
state-of-the-art methods. Extensive experiments indicate
that our CTEL method performs well on these four datasets,
in terms of classification accuracy, recall rate of retrieval,
and F1-Score of clustering. Our main contributions can be
summarized below:

e We propose a new deep metric learning method by

exploring the confusing triplet embedding during the
training procedure in the feature space and conducting
a theoretical analysis of the recognition of confusing
triplet embeddings.

* Our proposed CTEL method incorporates a redesigned
COVID-Net (Wang et al., 2020a) (originally developed
for X-ray) network to improve the prediction accuracy
of COVID-19 CT images, which is important for pro-
moting the development of COVID-19 medical images
diagnosis.

* We also evaluate the image retrieval and clustering per-
formance of our proposed method on two standard fine-
grained datasets: CUB-200-2011 and Cars-196. And
the results demonstrate that our method outperforms
previous methods in image retrieval and clustering per-
formance.

2. Related Work

Deep learning has shown its effectiveness and importance
on several computer vision tasks (Xu et al., 2018; 2022).
In response to the COVID-19 global pandemic, many re-
searches are being conducted intensively and rapidly to
develop artificial intelligence methods (Shi et al., 2020).
In the following, we briefly review the deep learning ap-
proaches for image-level classification tasks for diagnosis
and deep metric learning methods for clustering fine-grained
datatsets.

In the area of network architecture, (Xu et al., 2020) aimed
to develop a screening model to distinguish COVID-19
pneumonia from those with influenza viral pneumonia and
healthy cases through chest CT images, using the positional
attention mechanism of ResNet18. Other works have de-
ployed other popular networks, such as VGG (Hall et al.,
2020), Inception (Szegedy et al., 2015), ResNet (Narin et al.,
2021; Abbas et al., 2021; Farooq and Hafeez, 2020), and
DenseNet (Li et al., 2020). Subsequently, new network struc-
tures have emerged, which have been carefully designed and
validated. A representative one is the COVID-Net (Wang
et al., 2020a), which is customized for the identification
of COVID-19 and has achieved high accuracy in image
level diagnosis based on chest X-ray (CXR for short). In
addition, (Wang et al., 2020b) built a powerful backbone
in aspects of network architecture and learning strategy by
redesigning the recently proposed COVID-Net to improve
the accuracy of prediction and learning efficiency. However,
except considering the network architecture, the objective
function should be reformulated to distinguish the features
of the fine-grained CT images.

In the field of metric learning, deep metric learning meth-
ods can be optimized by computing the pair-wise similar-
ities between instances in the embedding space. (Hadsell
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et al., 2006a) proposed one kind of pair-based loss named
“contrastive loss”, which learns a discriminative metric via
Siamese networks. In this way, positive pairs are encour-
aged to be closer but negative pairs are forced to be more
distant with a fixed threshold. Triplet loss (Hadsell et al.,
2006b) was proposed to further constrain the distances of
dissimilar pairs. Each triplet consists of a positive pair and
a negative pair by sharing the same anchor. Triplet loss
aims to learn an embedding space where the similarity of
a negative pair is lower than that of a positive pair by a
given margin. But it still suffers from a weak generalization
capability from the training set to the testing set, thus re-
sulting in inferior performance. Quadruplet loss (Law et al.,
2013) is an enhanced version of triplet loss, which leads to a
larger inter-class variation and a smaller intra-class variation
compared to the triplet loss. Inspired by contrastive loss
and triplet loss, a number of pair-based deep metric learning
algorithms have been developed. For example, N-pair loss
(Sohn, 2016) and multi-similarity (MS) loss (Wang et al.,
2019a) sampled negative pairs in uniform and constructed
a log-exp formulation based on pair-wise distance. These
methods demonstrate that using General Pair Weighting
(GPW) framework with a unified weighting formulation is
a universal approach in pair-based methods. However, these
methods do not consider the relative position relations of the
positive and negative samples during the training process,
which influences the deep metric learning methods.

By exploring confusing triplet embeddings, our work will
provide a new deep metric learning method to distinguish
the COVID-19 CT images, for improving the effectiveness
of artificial intelligent models on COVID-19 CT images
recognition. Besides, we also make some comparisons with
other methods on standard fine-grained image datasets.

3. Our Proposed Method

As shown in Figure 2, deep metric learning aims to improve
the discriminative power of feature vectors generated by
CNN. In this section, Section 3.1 details the motivation and
design of our new proposed deep metric learning method. In
Section 3.2 we revisit the relative metric learning approaches
and apply the CTEL method to the classical loss function.
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Figure 2: Feature extraction of images. The images are
fed into the CNN to generate n-dimensional feature vectors,
which contain color, texture, and other features.

3.1. Exploring Confusing Triplet Embeddings

In general, most losses are considered to be well trained
when the feature distance of the negative sample pair is
at least greater than that of the positive sample pair by a
fixed margin. However, there still exists some confusing
cases during training as the distance relation of positive and
negative pairs satisfies the above condition, which influences
the performance of deep metric learning methods.

Firstly, taking triplet loss as an example, when anchor A,
the positive sample P and the negative sample N satisfy:

Dax —Dap=m+e (e2>0), (1)

the relative positions of these triplet embeddings have two
following cases: N and P are in the same direction, or N and
P are in the opposite direction.

When the distance of AN is greater than that of AP by a
certain margin m, the network model will not be able to
push N further or pull P closer. However, as shown in Figure
3, when N and P are in the same direction, the distance Dap
might be larger than Dpy;, resulting in this triplet embedding
will be confusing triplet embedding. In this case, the positive
sample P should be further pulled and the negative sample
N should be further pushed away in these confusing triplets.

Therefore, we can derive the concept of confusing triplet
embedding: if anchor A, positive sample P and negative
sample N satisfy Daxy — Dap = m + €(e > 0) and N and P
are in the same direction, these three points will be regarded
as confusing triplet embedding.
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Figure 3: Illustration of triplets in the same Direction and
opposite direction. As shown in the left figure, N and P
are in the same direction, the distance Dpy is smaller than
Dap, which is a confusing distance relation. While in the
right part, N and P are in the opposite direction, where the
distance relations are obviously more reasonable.

In order to achieve the purpose, we introduce a penalty
factor ;. The factor 7; < 1 when the negative sample N
is in the same direction as the positive sample P, otherwise
n; = 1. Eq. 1 becomes

NiDan — Dap =m —¢ (¢ > 0). 2)

By Eq. 2, the confusing triplet embeddings will be con-
strained more rigorously. However, how to judge the confus-
ing triplet embeddings is still pending to be solved. There-
fore, we further conduct theoretical analysis on exploring
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confusing triplet embeddings, including theorems, proofs,
and corollaries. The relative analysis is as follows:

Definition 1 (Hyperspere). Given an n-dimensional (n >
2) sphere with a center at the original point and the length

of radius being unit length, it is called an n-dimensional
hypersphere, denoted as S. The hypersphere S is

S* ={zx e R"™ :|z| = 1}. 3)

S is the surface or boundary of an n-dimensional sphere
(n > 2) and is a type of n-dimensional manifold.

Theorem 1. The normalized feature vector is all on the
hypersphere.

Proof of theorem 1. As shown in Figure 2, the vec-
tor feature obtained after feature extraction of a pic-
ture is A (x1,x9,x3,...,o,) and its mode is |A] =
(X #2)Y2(i = 1,2,...,n). Then the normalized vec-
toris A , where

L1,T2,...,Tn
) 1/2

and the mode of vector A’ is ’A/‘ = (XL, )Y =

A =A/A = = (Y1, y2, - Yn), @)

i
1,(i = 1,2,...,n). Thus, the normalized feature vector is
all on the n-dimensional hypersphere.

Corollary 1. Given an n-dimensional (n > 2) hy-
persphere S, and any three points on this hypersphere

A(xlax27"'7xn)» B(ylay2a"'7yn)a 0(21,227...72’”)
must not be co-linear.

Proof of corollary 1. For three points A, B and C on the n-
dimensional (n > 2) hypersphere S, and the angle between

vector ﬁ and the vector 1@ is 6. Then the dot product of
two vectors is

ﬁ'ﬁ:‘E’X‘ﬁ‘XCOSQ. [®)]

Assuming that three points A, B and C are co-linear, then
the following three conditions must be satisfied:

() x; —y; = a(x; — #), where a # £1 and a # 0.

(2) Vector ﬁ and vector ﬁ are co-linear, and the angle
is @ = 0° or = 180°, so the cosine value is cos ) = 1
orcosf = —1.

(3) According to condition (1), (2) and Eq. 5, Eq.6 is

followed:
ﬂ%.@zi‘ﬁ‘x’ﬁ‘. ©)

Then, in the case where condition (1) and (2) hold, condi-
tion (3) is correct. The left side of Eq. 6 is

AL - AC = Z(-Ti —yi)(wi — 2i)
1:1 (7)
= Z [mf —xi(yi + 21) + yizi] -

Since point A is on the hypersphere, ", 27 = 1. Thus,
Eq. 7 becomes

ﬁ~ﬁ:1—2xi(yi+zz’)+2yizi~ (3
=1 =1

According to condition (1), it is known that y; = —a(x; —
z;) — x;. Therefore,

f@uél—(}:Qa(lZmizi). ©)
i=1

The right side of Eq. 6 is

‘E‘ X ’B‘ = \jzn:(acl — ;)% % \jzn:(:m —zi)?. (10)

i=1

Since points A, B and C are on the hypersphere, Eq. 10 becomes
‘ﬁ)x‘@‘zz\/&<1—zmzi>. (11)
i=1

If condition (3) holds, then a = 0 or 1 will contradict con-
dition (1). Therefore, the assumption that the three points
are co-linear does not hold.

Theorem 1 shows that the features of the anchor point A,
positive sample P and negative sample N in triplet loss are
normalized by the network into three n-dimensional feature
vectors with a second normal form value of 1. All three
points are on the hyperplane where these three points must
not be co-linear. Due to this situation, these three points can
determine a unique plane and the only triangle. Any triangle
has only one external circle. Then, we can conduct further
analysis based on the determined triangle and external circle.
The relevant methods used to distinguish the directions of
the negative sample and the positive sample are described
below.

When AN is at the diameter of circle S, the negative sample
N remains neutral with respect to P at this time. In other
words, if N is a little further to the left, it is in the same
direction as the positive sample P. Conversely, it is in the
opposite direction from the positive sample P.

Let the angle of ZAPN be . According to the theorem
that the angle of circumference opposite the diameter is a
right angle, when AN is the diameter of a circle, « is a
right angle. If the negative sample N is a little further to
the left, then ZAON > 180° and o > 90°; Conversely,
ZAON < 180° and o < 90°.

Since the angle of a can not be measured directly, the di-
rection could be determined by calculating the cosine of a.
The cosine of « in the triangle APN is

cosa = Die + Din = Diy (12)
2 * DAP * DPN ’
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where the angle range of « in the triangle is 0° < o < 180°.
According to the basic properties of the cosine function, the
same direction and opposite direction between P and N
satisfy the following conditions:

a < 90°

0<cosa<l1
— b 13
{ > 90° (13)

—1 <cosa <0,

Whether AN is in the same direction or not could be deter-
mined by calculating the cosine value, i.e., opposite direc-
tion for cos o > 0 and same direction for cos o < 0. Due
to Dap * Dpy > 0, Eq.14 is followed as :

D%, + D3y — D3y > 0, when o < 90° (14)
Dip+ Dy — Diy < 0, when a > 90°°

Then, the penaty factor 7, is written as a formulation form:

Yi [*Dip — Dy + DiN] L= [D?AP + Dix — DiN] i
D+ Dix — Din ’
1s)
where ; < 1, and [|+ is the hinge function: [z]; =
max (0, x). By the above equation, when the positive sam-
ple P is in the same direction as the negative sample N, the
angle « between AP and AN is greater than 90°. cos v < 0
means that D%, + D3y — D3y < 0. Then, the ; = ;, or
n; = 1.

m= -

3.2. Adapting Metric Learning Losses with Confusing
Triplet Embeddings Learning

In the previous section, the principle of confusing triplet
embeddings learning(CTEL) and the penalty factor 7; as
shown in Eq. 15 have been explained. In the following,
CTEL methods will be applied to the some deep metric
learning functions, named as a series of CTEL losses.

3.2.1. CONTRASTIVE LOSS

Contrastive loss (Hadsell et al., 2006a) is the simplest and
intuitive type of metric learning based on sample pairs, the
loss is defined as below:

L:ZDij+Z[meij}+. (16)

Yij=1 Yij =0

In the above equation, m is a fixed threshold value. D;;
represents the distance between the samples i and j. y;; = 1
means that these two samples belong to the same category;
yi; = 0 means that these two samples belong to different
categories.

By introducing our CTEL, the CTEL-Constrastive loss is:

L= Dij+ Y [m—mni*Dil,. (7

Yij=1 Yi; =0

3.2.2. TRIPLET LOSS

Hadsell et al.(Hadsell et al., 2006b) proposed a triplet loss as
an augmentation over contrastive loss (Hadsell et al., 2006a).
Triplet loss selects a pair of positive and negative samples
at the same time during the training process. The loss is
defined as below:

L:Z[DAP_DAN+Q]+7 (18)

where « is a fixed threshold value, Dap is the distance of
positive sample pairs and D 4 is the distance of negative
sample pairs. [| is the hinge function: [z]; = maxz(0, z).

From Eq. 18, the CTEL-Triplet loss is obtained by introduc-
ing the penalty factor on confusing triplet embeddings as
follows:

L= [Dap—ni*Dax+al,. (19)

3.2.3. QUADRUPLET LOSS.

Quadruplet loss (Law et al., 2013) is an extension of triplet
loss, which consists of two parts: one part is the normal
triplet loss, and the loss term in this part enables the model
to distinguish the relative distance between positive and
negative sample pairs; the other part is the relative distance
between positive sample pairs and any other negative sample
pairs, and the loss term in this part can be interpreted as
the relative distance between positive sample pairs and any
other negative sample pairs regardless of whether these pairs
have the same anchor, the minimum inter-class distance
is greater than the intra-class distance. The constraint of
quadruplet loss is Dap < Dan, and Dap < Dn,N,»
where D denotes the distance, A is the anchor point, P is
the positive sample, and N7 and N, are negative samples
with different classes from each other. Thus, the quadruplet
loss is defined as follows.

L= Z ([DAP — Dan, +aa], + [Dap — Dy, + a2]+) ,

(20)
where a1 and o are manually set parameters, and usually,
) > Qo.

As shown in Eq. 20, the CTEL-Quadruplet loss is obtained
as follows:

L= Z ([DAP —1ni * Dan, + CM1]+ + [Dap — Dyyny + a2]+) .
2D

3.2.4. MULTI-SIMILARITY LOSS.

Multi-Similarity(MS) loss (Wang et al., 2019a) is imple-
mented by two iterative steps of sampling and weighting
which only assigns a weight with an integer value. In this
loss, it takes into account the self-similarity and relative
similarity where the model is allowed to collect and focus
on more useful pairs to improve the model performance.
Thus, the loss is defined as below:

L= %i {;log [1 +> e‘““w‘”]

i=1 pPEPR;

(22)

1 )
4+ Zlog |1+ A L
3% [ 2

neN;
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The first part of the log function deals with positive samples.
P; is the set of all positive samples relative to the anchor
point i. S;;, is the similarity of the positive sample pairs;
the remaining part of the log function deals with negative
samples. N, is the set of all negative samples relative to
the anchor point 7, and S;,, is the similarity of the negative
sample pairs. «, 5 and A in Eq. 22 are hyperparameters.

As shown in Eq. 22, the CTEL-MS loss is obtained as
follows:

L= %i {;log [1 + Z ea(si"A)]

i=1 peEP;

(23)

1 i %Sin—A)
+ *lOg 1+ 65(’% in .
! [ >

nenN;

4. Experiments
4.1. Datasets

We employ two public medical CT datasets(SARS-CoV-2
(Soares et al., 2020) and COVID-CT (Zhao et al., 2020)
datasets) and two standard datasets(CUB-200-2011 (Welin-
der et al., 2010) and Cars-196 (Kingma and Ba, 2014)
datasets) for evaluation.

For medical CT datasets, SARS-CoV-2 (Soares et al., 2020)
includes 2482 CT images from 120 patients, of which 1252
are positive for COVID-19 and 1230 are non-COVID but
have other types of lung disease manifestations. The spatial
size of these images ranged from 119 x 104 to 416 x 512.
And The COVID-CT dataset (Zhao et al., 2020) includes
349 CT images from 216 patients containing clinical find-
ings of COVID-19 and 397 CT images from 171 patients
without COVID-19. The resolution of these images ranges
from 102 x 137 to 1853 x 1485.

For fine-grained datasets, CUB-200-2011 dataset is com-
posed of 11,788 images of birds from 200 subclasses. The
images selected from 100 classes (5,864 images in total) are
used for training, while the last 100 classes (5,924 images
in total) are used for testing. Cars-196 dataset is composed
of 16,185 images of cars from 196 classes. The images
selected from 98 classes are employed for training, with the
rest for testing.

4.2. Implementation Details

Embedding network: For the classification task on
COVID-CT, the network in (Wang et al., 2020b) is used
as our backbone network and the extracted features are nor-
malized (Ioffe and Normalization, 2014). Our CTEL-MS
or CTEL-Triplet losses consist of cross-entropy loss and
CTEL-based loss, which is similar to the setting of the clas-
sification loss in (Wang et al., 2020b) . For image retrieval

tasks on standard fine-grained images, our backbone net-
work is a pre-trained Inception (Szegedy et al., 2015) on
ILSVRC 2012-CLS (Russakovsky et al., 2015), and the ex-
tracted features are normalized (Ioffe and Normalization,
2014).

Image setting: All images were cropped to 224 x 224 and
standard preprocessing techniques are applied. Our exper-
iment conducts four-fold cross-validation on COVID-CT
datasets according to the method in (Wang et al., 2020b).
Besides, for fine-grained standard image datasets, the train-
ing set is used with a horizontal flip technique but the test
set is employed with a central crop technique. Regarding
the sampling procedure used in triplet loss and quadruplet
loss, a certain number of classes is randomly selected from
each mini-batch, and then 5 images are randomly selected
from each class.

Training: For image classification tasks, 60 epochs are cho-
sen for training with batchsize of 32, containing 16 images
from each dataset. For all classification tasks, our model
is trained for 60 epochs with batchsize of 180. Besides, all
experiments are optimized using the Adam (Kingma and
Ba, 2014) optimizer.

Hyperparameter setting: The Hyperparametes of the deep
metric learning functions including four basic losses and
four CTEL-based losses, have the following settings: m in
Eq.16 and Eq.17 is set as 1.0. o in Eq.18 and Eq.19 is set
as 0.2. oy and a in Eq.20 and Eq.21 are set to 0.2 and 0.1,
and «, 3, and ) are set as 2, 50 and 1 in Eq.22 and Eq.23,
respectively. The parameter -; is set to 0.8.

4.3. Comparisons on COVID-19 CT datasets

For a fair comparison with other methods, we follow the
literature on COVID-19 diagnostics (Soares et al., 2020),
we use three metrics for the comprehensive evaluation of
the model: Accuracy, F1-Score (Sohn, 2016) and Recall
(Jegou et al., 2010).

We further compare the performance of our approach with
state-of-the-art techniques on image classification tasks.
Results on the SARS-CoV-2 and COVID-CT datasets are
summarized in Table 1. Our model outperforms the previ-
ous methods, and the CTEL-Triplet method is employed in
Distance-Weighted Tuple Mining (Wu et al., 2017) (denoted
as CTEL-Triplet(D)).

For all COVID-19 datasets, our CTEL method performs
well on both Triplet loss and MS loss. In addition, our
CTEL outperforms the original method on other losses,
which indicates that CTEL not only works with these basic
methods but also improves the classification and retrieval
performance of the original deep metric learning methods,
as shown in Figure 4.
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Table 1: Results of Different Methods on the Two Datasets for COVID-19 CT Image Classification. CTEL denotes our

Confusing Triplet Embedding Learning.

SARS-CoV-2 COVID-CT
Methods Accuracy(%) F1-Score(%) Recall(%) | Accuracy(%) FI1-Score(%) Recall(%)
Single(COVID-NET(Wang et al., 2020b;a)) | 77.12 76.03 70.97 63.12 61.09 57.73
Single(Redesign)(Wang et al., 2020b) 89.09 88.97 83.78 77.07 77.04 74.69
Joint(COVID-NET(Wang et al., 2020b;a)) 68.72 69.17 69.41 63.27 59.78 54.19
Joint(Redesign)(Wang et al., 2020b) 78.42 77.86 74.07 69.67 66.89 66.94
Series Adapter(Rebuffi et al., 2017) 85.73 86.19 81.91 70.01 67.08 7491
Parallel Adapter(Rebulffi et al., 2018) 82.13 82.39 80.02 74.93 73.46 71.81
MS-Net(Hall et al., 2020) 87.98 88.73 84.91 76.23 76.54 74.07
+Contrastive (Wang et al., 2020b) 90.83 90.87 85.89 78.69 78.83 79.71
CTEL-MS(Ours) 90.97 90.94 89.78 80.30 81.13 87.76
CTEL-Triplet(D)(Ours) 92.74 92.59 89.78 81.28 79.79 76.53
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Figure 4: Comparisons with the original deep metric learning methods on the two public COVID-19 CT Datasets. CTEL
denotes Confusing Triplet Embedding Learning. The pink bar represents the original loss, and the blue bar represents

CTEL-based loss.

4.4. Comparisons on standard image datasets

In addition, we apply the CTEL method to standard fine-
grained image retrieval tasks. We conduct experiments
on two standard datasets: CUB-200-2011 (Welinder et al.,
2010) and Cars-196 (Kingma and Ba, 2014). Recall@K
(Jegou et al., 2010)is employed as a standard performance
metric to evaluate our methods.

We obtain nearly a 4.9% increase in Recall@1 compared
to MS Loss and a 13.1% increase in Recall@1 compared
to Proxy-NCA with 64 embedding dimensions. Besides,
we experiment with a higher embedding dimension of 512.
The result demonstrates that our CTEL-MS obtains nearly
a 0.6% improvement in Recall@1 over the state-of-the-art
MS loss. Compared with DR-MS employing an embedding
size of 512 and attention modules, our CTEL-MS achieves
a higher Recall@1 by 0.2% improvement at the same di-
mension.

In Table 2, our CTEL-MS scales well to datasets with 198
classes. In the case of 64 dimensions, CTEL-MS outper-
forms SoftTriple on Recall@1 by 0.2%. In the case of 512
dimensions, DR-MS, based on MS loss with the direction

regularized version, performs better than our CTEL-MS by
0.2% on Recall@1, but worse than our CTEL-MS by 0.2%),
0.3% and 0.3% on Recall@2, Recall@4 and Recall @8,
respectively. Our CTEL-MS achieves outstanding results
and outperforms others(expect ABE on Recall@1 with 512-
dimensional embedding on Cars-196 dataset). On average,
CTEL-MS possesses the better performance on CUB-200-
2011 and Cars-196 datasets for different embedding on
standard metric Recall@K.

4.5. Ablation Study

To further demonstrate the effectiveness of our proposed
CTEL method, we compare the basic triplet-based methods
with our proposed corresponding CTEL methods on CUB-
200-2011 dataset. Triplet Loss and quadruplet loss are
employed in Distance-Weighted Tuple Mining (Wu et al.,
2017). The dimension of embedding features is set to 512,
and the batch size is set to 80. Besides, we use Recall@K
as an evaluation metric.

From Table 3, these comparisons illustrate that deep met-
ric learning approaches can generate more discriminative
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Table 2: Evaluation on CUB-200-2011 and Cars-196 Datasets. Backbone networks of the models are denoted by abbrevia-
tions: G-GoogleNet, BN-Inception with batch normalization, R50-ResNet50.

CUB-200-2011 Cars-196

Recall @K (%) 1 2 4 8 1 2 4 8

Clustering®(Oh Song et al., 2017) BN | 482 614 718 819 |58.1 70.6 803 87.8
Proxy NCA%Y(Movshovitz-Attias et al., 2017) | BN | 49.2 61.9 679 724|732 824 864 87.8
Smart Mining®4(Harwood et al., 2017) BN | 498 623 741 833|647 762 842 90.2
MS%4(Wang et al., 2019a) BN | 574 69.8 80.0 87.8 | 77.3 853 905 87.8
SoftTriple®*(Sohn, 2016) BN | 60.1 719 812 885 | 78.6 86.6 91.8 954
CTEL-MS®%4(Ours) BN | 623 733 823 895|788 867 91.8 952
Margin'?®(Wu et al., 2017) R50 | 63.6 744 83.1 900 | 79.6 86.5 919 95.1
HDC?#*(Oh Song et al., 2017) G 53.6 657 770 856 | 737 832 89.5 938
ABIER®'?(Opitz et al., 2018) G 57.5 687 783 862|820 89.0 932 96.1
ABE®'2(Kim et al., 2018) G 60.6 715 798 874|852 905 940 96.1
HTL5'%(Ge, 2018) BN | 57.1 68.8 787 865|814 88.0 927 957
HDML5'?(Zheng et al., 2019) G 53.7 657 76.7 857 | 79.1 87.1 92.1 955
RLL5'2(Wang et al., 2019b) BN | 574 69.7 79.2 869 | 74.0 83.6 90.1 94.1
MS512(Wang et al., 2019a) Bn | 657 77.0 863 912|841 904 940 96.5
DR-MS®!?(Mohan et al., 2020) G 66.1 77.0 851 91.1 | 84.1 904 940 96.5
CTEL-MS®'2(Ours) BN | 663 78.2 862 91.8 | 843 90.6 943 96.8

features by exploring confusing triplet embeddings. For
instance, using the confusing triplets trends to be pushed
farther in the feature space, even when the positive and
negative sample pairs have reached a certain margin there.

Table 3: Ablation study to show the effectiveness of our
proposed Confusing Triplet Embeddings Learning method
when applied to standard metric learning methods on the
CUB-200-2011 dataset. CTEL” denotes Confusing Triplet
Embedding Learning. ‘*’ indicates a re-implementation
of the original version. Backbone networks of the models
are denoted by abbreviations: BN-Inception with batch
normalization.

Recall @K (%) 1 2 4 8

Contrastive Loss * BN | 63.8 747 842 903
CTEL-Contrastive Loss | BN | 64.5 75.7 84.6 91.1
Triplet Loss * BN | 650 765 84.8 91.0
CTEL-Triplet Loss BN | 65.5 76.7 853 912
Quadruplet Loss * BN | 648 76.1 84.7 90.9
CTEL-Quadruplet Loss | BN | 65.0 76.3 85.0 91.2
MS Loss BN | 65.7 77.0 86.3 0912
CTEL-MS Loss BN | 66.2 77.8 86.2 91.6

4.6. Analysis

In summary, our approach achieves good performance on
both medical CT datasets (SARS-CoV-2 and COVID-CT
datasets) and standard fine-grained datasets (CUB-200-2011
and Cars-196 datasets). The performance of CTEL is based
on exploring confusing triplet embeddings in the feature
space and establishing more rigorous constraints on the
confusing triplet embeddings. Compared with the state-of-

the-art methods, our CTEL methods have shown better per-
formance on different metrics, which indicates our method
is an effective deep metric learning method for learning
discriminative features for image classification and retrieval.
Compared with these basic deep metric learning methods,
our CTEL as a strategy can not only work together with
these basic methods but also improve the retrieval or clus-
tering performance of the original methods. Notably, these
experimental results demonstrate the generality and effec-
tiveness of our CTEL.

5. Conclusions

In this work, we propose a new deep metric learning method
named CTEL that takes into account the fact that different
solutions are determined by the relative positions of the pos-
itive and negative samples. That is, in the feature space, the
confusing triplet embeddings can influence the performance
of models. Therefore, we proposed a method to explore the
confusing triplet embeddings and construct a penalty factor
on these embeddings, which can continue to push the nega-
tive pairs in the same direction farther and make the learned
features more discriminative. Our CTEL can perform well
as a deep metric learning method, and its strategy can also
work together with the basic deep metric learning methods.
Experiments on two public medical CT datasets and two
standard fine-grained datasets demonstrate the effectiveness
of our approach.
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