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Abstract
We propose a generic variance-reduced algorithm, which we call MUltiple RANdomized Algo-
rithm (MURANA), for minimizing a sum of several smooth functions plus a regularizer, in a se-
quential or distributed manner. Our method is formulated with general stochastic operators, which
allow us to model various strategies for reducing the computational complexity. For example, MU-
RANA supports sparse activation of the gradients, and also reduction of the communication load
via compression of the update vectors. This versatility allows MURANA to cover many existing
randomization mechanisms within a unified framework, which also makes it possible to design new
methods as special cases.
Keywords: convex optimization, distributed optimization, randomized algorithm, stochastic gra-
dient, variance reduction, communication, sampling, compression

1. Introduction

We consider the estimation of the model x⋆ ∈ Rd, for some d ≥ 1, arising as the solution of the
optimization problem

minimize
x∈Rd

(
R(x) +

1

M

M∑
m=1

Fm(x)

)
, (1)

for some M ≥ 1, where each convex function Fm is L-smooth, for some L > 0, i.e. 1
L∇Fm

is nonexpansive, and R : Rd → R ∪ {+∞} is a proper, closed, convex function (Bauschke and
Combettes, 2017), whose proximity operator

proxγR : w 7→ argmin
x∈Rd

(
γR(x) +

1

2
∥x− w∥2

)
is easy to compute, for any γ > 0 (Parikh and Boyd, 2014; Condat et al., 2022a). We introduce

F :=
1

M

M∑
m=1

Fm

and we suppose that F is µ-strongly convex, for some µ > 0, i.e. F − µ
2 ∥·∥

2 is convex. Since the
problem (1) is strongly convex, x⋆ exists and is unique.

In a distributed client-server setting, M is the number of parallel computing nodes, with an
additional master node communicating with these M nodes. Communication between the master
and nodes is often the bottleneck, so that it is desirable to reduce the amount of communicated
information, in comparison with the baseline approach, where vectors of Rd are sent back and forth
at every iteration.

In a non-distributed setting, M is, for instance, the number of data points contributing to some
training task; it is then desirable to avoid scanning the entire dataset at every iteration.

© 2022 L. Condat & P. Richtárik.
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1.1. Randomized optimization algorithms

To formulate our algorithms, we will make use of several sources of randomness of the form

dk = Ck
(
∇F (xk)− hk

)
, (2)

where k is the iteration counter, xk ∈ Rd is the model estimate converging to the desired solution
x⋆, hk is a control variate converging to ∇F (x⋆), and Ck(v) is a shorthand notation to denote a
random realization of a stochastic process with expectation v, so that Ck(v) is a random unbiased
estimate of the vector v ∈ Rd. Although we adopt this notation as if Ck were a random operator, its
argument v does not always have to be known or computed. For instance, if

Ck(v) =

{
1
pv with probability p

0 with probability 1− p
,

v is not needed when the output is 0. This means that in (2), ∇F (xk) is not computed in that
case; this is the key reason why randomness makes it possible to decrease the overall complexity.
The distribution of the random variable is not needed, and that is why we lighten the notations
by omitting to write the underlying probability space structure. Indeed, we only need to know a
constant ωC ≥ 0 such that, for every v ∈ Rd,

E
[∥∥Ck(v)− v

∥∥2] ≤ ωC∥v∥2, (3)

where the norm is the 2-norm and E[·] denotes the expectation. Thus, if v tends to 0, not only does
Ck(v) tend to 0, but the variance tends to 0 as well. Hence, in a step like in (2), dk will converge to
0 and everything will work out so that the algorithm converges to the exact solution x⋆.

That is, the proposed algorithm will be variance reduced (Gower et al., 2020). In recent years,
variance-reduced algorithms like SAGA (Defazio et al., 2014) or SVRG (Johnson and Zhang, 2013;
Zhang et al., 2013; Xiao and Zhang, 2014) have become the reference for finite-sum problems of the
form (1) since they converge to the exact solution but can be M times faster than standard proximal
gradient descent, which is typically a huge improvement. Variance reduction with the control variate
hk is akin to an error-feedback mechanism, see Condat et al. (2022c) for a recent discussion on this
relationship.

1.2. Communication bottleneck in distributed and federated learning

In the age of big data, there has been a shift towards distributed computations, and modern hard-
ware increasingly relies on the power of uniting many parallel units into a single system. Training
large machine learning models critically relies on distributed architectures. Typically, the training
data is distributed across several workers, which compute, in parallel, local updates of the model.
These updates are then sent to a central server, which performs aggregation and then broadcasts
the updated model back to the workers, to proceed with the next iteration. But communication
of vectors between machines is typically much slower than computation, so communication is the
bottleneck. This is even more true in the modern machine learning paradigm of federated learning
(Konečný et al., 2016; McMahan et al., 2017; Kairouz et al., 2021; Li et al., 2020), in which a global
model is trained in a massively distributed manner over a network of heterogeneous devices, with a
huge number of users involved in the learning task in a collaborative way. Communication can be
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costly, slow, intermittent and unreliable, and for that reason the users ideally want to communicate
the minimum amount of information. Moreover, they also do not want to share their data for privacy
reasons.

Therefore, compression of the communicated vectors, using various sketching, sparsification,
or quantization techniques (Alistarh et al., 2017; Wen et al., 2017; Wangni et al., 2018; Albasyoni
et al., 2020; Basu et al., 2020; Dutta et al., 2020; Sattler et al., 2020; Xu et al., 2021), has become the
approach of choice. In recent works (Tang et al., 2019; Liu et al., 2020; Philippenko and Dieuleveut,
2020; Gorbunov et al., 2020b), double, or bidirectional, compression is considered; that is, not only
the vectors sent by the workers to the server, but also the model updates broadcast by the server to
all workers, are compressed.

Our proposed algorithm MURANA accommodates for model or bidirectional compression us-
ing the operators Rk; see Section 2.1.

1.3. A generic framework

Unbiased stochastic operators with conic variance, like in (3), allow to model a wide range of
strategies: they can be used

(i) for sampling, i.e. to select a subset of functions whose gradient is computed at every iteration,
like in SAGA or SVRG, as mentioned above;

(ii) for compression; in addition to the idea of communicating each vector only with some small
probability, we can mention as example the rand-k operator, which sends k out of d ele-
ments, chosen at random and scaled by d

k , of its argument vector;

(iii) to model partial participation in federated learning, with each user participating in a fraction
of the communication rounds only.

That is why we formulate MURANA with this type of operators, which have all these applications,
and many more.

1.4. Contributions

We propose MUltiple RANdomized Algorithm (MURANA) – a generic template algorithm with
several several sources of randomness that can model a wide range of computation, communication
reduction strategies, or both at the same time (e.g. by composition, see Proposition 2). MURANA is
variance reduced: it converges to the exact solution whatever the variance, which can be arbitrarily
large. MURANA generalizes DIANA (Mishchenko et al., 2019; Horváth et al., 2019) in several
ways and encompasses SAGA (Defazio et al., 2014) and loopless SVRG (Hofmann et al., 2015;
Kovalev et al., 2020) as particular cases; we also give minibatch versions for them. Thus, our main
contribution is to present these different algorithms within a unified framework, which allows us to
derive convergence guarantees with weakened assumptions.

2. Proposed framework: MURANA

2.1. Three sources of randomness

We define [M ] := {1, . . . ,M}. We first introduce the first set of stochastic operators, Ck
m, for

every k ≥ 0 and m ∈ [M ]. In particular, we assume that there is a constant ωC ≥ 0 such that for
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every v ∈ Rd,

E
[
Ck
m(v)

]
= v and E

[∥∥∥Ck
m(v)− v

∥∥∥2] ≤ ωC∥v∥2. (4)

For every (v, v′) ∈ (Rd)2 and (m,m′) ∈ [M ]2, Ck
m(v) and Ck′

m′(v′) at two different iteration indexes
k ̸= k′ are independent random variables. However, they can have different laws since only their
first and second order statistics matter, as expressed in (4). Note that Ck

m(v) and Ck
m′(v′) with

m ̸= m′ can be dependent, so
(
Ck
1 (v1), . . . , Ck

M (vM )
)

should be viewed as a whole joint random
process; this is needed for sampling or partial participation, for instance, where N < M indexes in
[M ] are chosen at random; see Proposition 1 below.

Next, we introduce the second set of stochastic operators, Uk
m, with same properties: for every

k ≥ 0, m ∈ [M ], v ∈ Rd,

E
[
Uk
m(v)

]
= v and E

[∥∥∥Uk
m(v)− v

∥∥∥2] ≤ ωU∥v∥2, (5)

for some constant ωU ≥ 0, and same dependence properties with respect to m and k as the Ck
m. Ck

m

and Uk
m′ can be dependent, and we will see this in the particular case of DIANA, where Uk

m = Ck
m.

Finally, we introduce the third set of stochastic operators, Rk, which will be applied to the
model updates. For every k ≥ 0 and v ∈ Rd,

E
[
Rk(v)

]
= v and E

[∥∥∥Rk(v)− v
∥∥∥2] ≤ ωR∥v∥2, (6)

for some constant ωR ≥ 0. The operators (Rk)k≥0 are mutually independent and independent from
all operators Ck′

m and Uk′
m .

To analyze MURANA, we need to be more precise than just specifying the marginal gain ωC .
So, we introduce the average gain ωav ≥ 0 and the offset ζ ∈ [0, ωav], such that, for every k ≥ 0
and vm ∈ Rd, m = 1, . . . ,M ,

E

∥∥∥∥∥ 1

M

M∑
m=1

(
Ck
m(vm)− vm

)∥∥∥∥∥
2
 ≤ ωav

M

M∑
m=1

∥vm∥2 − ζ

∥∥∥∥∥ 1

M

M∑
m=1

vm

∥∥∥∥∥
2

. (7)

We can assume that ωav ≤ ωC , since (7) is satisfied with ωav replaced by ωC and ζ by 0, by convexity
of the squared norm. In other words, without further knowledge, one can set ωav = ωC and ζ = 0.
But the convergence rate will depend on ωav, not ωC , and the smaller ωav, the better. Thus, whenever
ωav is much smaller than ωC , it is important to exploit this knowledge. In addition, having ζ > 0
allows to take larger stepsizes and have better constants in the convergence rates of the algorithms.

In particular, if the operators (Ck
m)Mm=1 are mutually independent, the variance of the sum is the

sum of the variances, and we can set ωav = ωC/M and ζ = 0. Another case of interest is the
sampling setting:

Proposition 1 (Marginal and average gains of sampling) Let N ∈ [M ]. Consider that at every
iteration k, a random subset Ωk ⊂ [M ] of size N is chosen uniformly at random, and Ck

m is defined
via

Ck
m(vm) :=

{
M
N vm if m ∈ Ωk

0 otherwise
.
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This is sometimes called N -nice sampling (Richtárik and Takáč, 2016; Gower et al., 2021). Then
(4) is satisfied with ωC = M−N

N and (7) is satisfied with

ωav = ζ =
M −N

N(M − 1)
(8)

(with ωav = ζ = 0 if M = N = 1).

This property was proved in Qian et al. (2019), but with different notations, so we give a new
proof in Appendix A, for sake of completeness.

Thus, in Proposition 1, ωC can be as large as M − 1, but we always have ωav ≤ 1.

Furthermore, the stochastic operators can be composed, which makes it possible to combine
random activation with respect to m and compression of the vectors themselves, for instance:

Proposition 2 (Marginal and average gains of composition) Let Cm and C′
m be stochastic oper-

ators such that, for every m ∈ [M ] and vm ∈ Rd,

E[Cm(vm)] = vm, E
[
∥Cm(vm)− vm∥2

]
≤ ωC ∥vm∥2 ,

E
[
C′
m(vm)

]
= vm, E

[∥∥C′
m(vm)− vm

∥∥2] ≤ ω′
C ∥vm∥2 ,

E

∥∥∥∥∥ 1

M

M∑
m=1

(
C′
m(vm)− vm

)∥∥∥∥∥
2
 ≤ ω′

av

M

M∑
m=1

∥vm∥2 − ζ ′

∥∥∥∥∥ 1

M

M∑
m=1

vm

∥∥∥∥∥
2

,

for some ωC ≥ 0, ω′
C ≥ 0, ω′

av ≥ 0, ζ ′ ≥ 0. Then for every m ∈ [M ] and vm ∈ Rd,

E
[
C′
m(Cm(vm))

]
= vm, (9)

E
[∥∥C′

m(Cm(vm))− vm
∥∥2] ≤ (ωC + ω′

C + ωCω
′
C) ∥vm∥2 . (10)

Thus, the marginal gain of C′
m ◦ Cm is ωC + ω′

C + ωCω
′
C .

If, in addition, the operators (Cm)Mm=1 are mutually independent, then for every vm ∈ Rd,
m = 1, . . . ,M , we get

E

∥∥∥∥∥ 1

M

M∑
m=1

(
C′
m

(
Cm(vm)

)
− vm

)∥∥∥∥∥
2
 ≤

(ωC
M

(1− ζ ′) + ω′
av(1 + ωC)

) 1

M

M∑
m=1

∥vm∥2

− ζ ′

∥∥∥∥∥ 1

M

M∑
m=1

vm

∥∥∥∥∥
2

. (11)

Thus, the average gain of the C′
m ◦Cm in that case is ωC

M (1− ζ ′)+ω′
av(1+ωC) and their offset is ζ ′.

2.2. Proposed algorithms: MURANA and MURANA-D

We propose the MUltiple RANdomized Algorithm (MURANA), described in Algorithm 1, as an
abstract mathematical algorithm without regard to the execution architecture, or equivalently, as a
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sequential algorithm. We also explicitly write MURANA as a distributed algorithm in a client-server
architecture, with explicit communication steps, as Algorithm 2, and call it MURANA-D.

If Uk
m = Ck

m = Rk = Id, where Id denotes the identity, and ωC = ωU = ωav = ωR = 0,
MURANA with λ = ρ = 1 reverts to standard proximal gradient descent, which iterates:

xk+1 := proxγR

(
xk − γ∇F (xk)

)
.

This baseline algorithm evaluates the full gradient ∇F (xk) = 1
M

∑M
m=1∇Fm(xk) at every it-

eration, which requires M gradient calls. If every gradient call has linear complexity O(d), the
complexity is O(Md) per iteration, which is typically much too large.

Thus, the three sources of randomness in MURANA are typically used as follows: the oper-
ators Ck

m are used to save computation, by using much less than M , possibly even only 1, gradient
calls per iteration, and/or decreasing the communication load by compressing the vectors sent by
the nodes to the master for aggregation. The operators Uk

m control the variance-reduction process,
during which each variable hkm learns the optimal gradient ∇Fm(x⋆) along the iterations, using the
available computed information. In a distributed setting, the operators Rk are used for compres-
sion during broadcast, in which the server communicates the model estimate to all nodes, at the
beginning of every iteration.

When Uk
m = Ck

m for every m ∈ [M ] and k ≥ 0, we recover the recently proposed DIANA
method of Mishchenko et al. (2019); Horváth et al. (2019) as a particular case of MURANA-D, but
generalized here in several ways, see in Section 3. In MURANA, we have more degrees of freedom
than in DIANA: the stochastic gradient dk+1+hk, which is an unbiased estimate of ∇F (xk) and is
used to update the model xk, is obtained from the output of the operators Ck

m, whereas the control
variates hkm learn the optimal gradients ∇Fm(x⋆) using the output of the operators Uk

m. We can think
of L-SVRG, see below in Section 5, which has these two, different and decoupled, mechanisms: the
random choice of the activated gradient at every iteration and the random decision of taking a full
gradient pass. Thus, MURANA is a versatile template algorithm, which covers many diverse tools
spread across the literature of randomized optimization algorithms in a single umbrella.

2.3. Convergence results

We define h⋆m := ∇Fm(x⋆), m = 1, . . . ,M , and we denote by κ := L/µ the conditioning of F .

Theorem 3 (Linear convergence of MURANA) In MURANA, suppose that 0 < λ ≤ 1
1+ωU

and
0 < ρ ≤ 1

1+ωR
, and set ω′

U := 1
λ − 1 ≥ ωU and ω′

R := 1
ρ − 1 ≥ ωR. Choose b > 1. Set

a := max
(
1− (1 + b)ζ, 0

)
. Suppose that

0 < γ <
2

L

1

a+ (1 + b)2ωav
. (12)

Set η := 1− γ
(

2
L

1
a+(1+b)2ωav

)−1
∈ (0, 1). Define the Lyapunov function, for every k ≥ 0,

Ψk :=
∥∥xk − x⋆

∥∥2 + (b2 + b)γ2ωav
1 + ω′

U
1 + ω′

R

1

M

M∑
m=1

∥∥∥hkm − h⋆m

∥∥∥2 . (13)
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Algorithm 1 MURANA (new)
1: input: parameters γ > 0, λ > 0, ρ > 0,

initial vectors x0 ∈ Rd and h0m ∈ Rd, m =
1, . . . ,M

2: h0 := 1
M

∑M
m=1 h

0
m

3: for k = 0, 1, . . . do
4: for m ∈ [M ] do
5: dk+1

m := Ck
m

(
∇Fm(xk)− hkm

)
6: uk+1

m := Uk
m

(
∇Fm(xk)− hkm

)
7: hk+1

m := hkm + λuk+1
m

8: end for
9: dk+1 := 1

M

∑M
m=1 d

k+1
m

10: x̃k+1 := proxγR
(
xk − γ(hk + dk+1)

)
11: xk+1 := xk + ρRk(x̃k+1 − xk)
12: hk+1 := hk + λ

M

∑M
m=1 u

k+1
m

13: end for

Algorithm 2 MURANA-D (new)
1: input: parameters γ > 0, λ > 0, ρ > 0,

initial vectors x0 ∈ Rd and h0m ∈ Rd, m =
1, . . . ,M

2: h0 := 1
M

∑M
m=1 h

0
m, r0 := 0, x−1 = x0

3: for k = 0, 1, . . . do
4: at master: broadcast rk to all nodes
5: for m ∈ [M ], at nodes in parallel, do
6: xk := xk−1 + ρrk

7: dk+1
m := Ck

m

(
∇Fm(xk)− hkm

)
8: uk+1

m := Uk
m

(
∇Fm(xk)− hkm

)
9: hk+1

m := hkm + λuk+1
m

10: convey dk+1
m and uk+1

m to master
11: end for
12: at master:
13: hk+1 := hk + λ

M

∑M
m=1 u

k+1
m

14: dk+1 := 1
M

∑M
m=1 d

k+1
m

15: x̃k+1 := proxγR
(
xk − γ(hk + dk+1)

)
16: rk+1 := Rk(x̃k+1 − xk)
17: xk+1 := xk + ρrk+1

18: end for

Then, for every k ≥ 0, we have E
[
Ψk
]
≤ ckΨ0, where

c := 1−min

{
2γηµ

1 + ω′
R
,
1− b−2

1 + ω′
U

}
< 1. (14)

Thus, MURANA converges linearly with rate c, in expectation; in particular, for every k ≥ 0,
E
[∥∥xk − x⋆

∥∥2] ≤ ckΨ0. In addition, if MURANA is initialized with h0m = ∇Fm(x0), for every
m ∈ [M ], we have

Ψ0 ≤
(
1 + (b2 + b)γ2ωav

1 + ω′
U

1 + ω′
R
L2

)∥∥x0 − x⋆
∥∥2. (15)

The proof of Theorem 3 is deferred to Section C, for ease of reading.

In Theorem 3, we have

γ =
2(1− η)

L

1

a+ (1 + b)2ωav
,

so that

2γηµ = 4(1− η)η
µ

L

1

a+ (1 + b)2ωav
.

7
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Maximizing this term, which appears in the rate c, with respect to η yields η = 1
2 , so that the best

choice for γ is

γ =
1

L

1

a+ (1 + b)2ωav
.

Thus, we can provide a simplified version of Theorem 3 as follows:

Corollary 4 In MURANA, suppose that λ = 1
1+ωU

and ρ = 1
1+ωR

. Choose b > 1. Set a :=

max
(
1− (1 + b)ζ, 0

)
. Suppose that

0 < γ ≤ 1

L

1

a+ (1 + b)2ωav
. (16)

Then, using Ψk defined in (13), with ω′
U = ωU and ω′

R = ωR, we have, for every k ≥ 0,
E
[
Ψk
]
≤ ckΨ0, where

c := 1−min

{
γµ

1 + ωR
,
1− b−2

1 + ωU

}
< 1. (17)

Therefore, if b is fixed and γ = Θ
(
1
L

1
a+(1+b)2ωav

)
, the asymptotic complexity of MURANA to achieve

ϵ-accuracy is

O

((
κ(1 + ωav)(1 + ωR) + ωU

)
log

(
1

ϵ

))
(18)

iterations.

Proof The statements follow directly from the observation that, in the notations of Theorem 3, the
condition (16) implies that η ≥ 1

2 , so that 2γηµ ≥ γµ.

In the conditions of Corollary 4, if we set γ = 1
L

1
a+(1+b)2ωav

, we have:

c = 1−min

{
1

κ

1

1 + ωR

1

a+ (1 + b)2ωav
,
1− b−2

1 + ωU

}
.

Thus, to balance the two constants (1 + b)2 and 1− b−2, we can choose b =
√
5− 1, so that

c ≤ 1−min

{
1

κ

1

1 + ωR

1

a+ 5ωav
,
1

3

1

1 + ωU

}
.

Another choice is b =
√
6− 1, so that

c ≤ 1−min

{
1

κ

1

1 + ωR

1

a+ 6ωav
,
1

2

1

1 + ωU

}
.

3. Particular case: DIANA

When Uk
m = Ck

m, for every k ≥ 0 and m ∈ [M ], and Rk = Id, MURANA-D reverts to DIANA,
shown as Algorithm 3 (in the case N = M , i.e. full participation). DIANA was proposed by
Mishchenko et al. (2019) and generalized (with R = 0) by Horváth et al. (2019). It was then further
extended (still with R = 0) to the case of compression of the model during broadcast by Gorbunov
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et al. (2020b), where it is called ‘DIANA with bi-directional quantization’; this corresponds to
Rk ̸= Id here, and we still call the algorithm DIANA in this case. An extension to R ̸= 0 was made
by Gorbunov et al. (2020a), who performed a unified analysis of a large class of non-variance-
reduced and variance-reduced SGD-type methods under strong quasi-convexity. An analysis in the
convex regime was performed by Khaled et al. (2020).

However, to date, DIANA was studied for independent operators Ck
m only. Even in this case,

our following results are more general than existing ones. For instance, in Theorem 1 of Horváth
et al. (2019), all functions Fm are supposed to be strongly convex, whereas we only require their
average F to be strongly convex; this is a significantly weaker assumption.

Thus, we generalize DIANA to arbitrary operators Ck
m, to the presence of a regularizer R, and to

possible randomization, or compression, of the model updates. As a direct application of Corollary 4
with ωU = ωC , we have:

Theorem 5 (Linear convergence of DIANA) In DIANA, suppose that λ = 1
1+ωC

and ρ = 1
1+ωR

.
Choose b > 1. Set a := max

(
1− (1 + b)ζ, 0

)
. Suppose that

0 < γ ≤ 1

L

1

a+ (1 + b)2ωav
.

Define the Lyapunov function, for every k ≥ 0,

Ψk :=
∥∥xk − x⋆

∥∥2 + (b2 + b)γ2ωav
1 + ωC
1 + ωR

1

M

M∑
m=1

∥∥∥hkm − h⋆m

∥∥∥2 . (19)

Then, for every k ≥ 0, we have E
[
Ψk
]
≤ ckΨ0, where

c := 1−min

{
γµ

1 + ωR
,
1− b−2

1 + ωC

}
< 1. (20)

Therefore, if b is fixed and γ = Θ( 1L
1

a+(1+b)2ωav
), the complexity of DIANA to achieve ϵ-accuracy

is

O

((
κ(1 + ωav)(1 + ωR) + ωC

)
log

(
1

ϵ

))
(21)

iterations.

3.1. Partial participation in DIANA

We make use of the possibility of having dependent stochastic operators and we use the composition
of operators C′k

m ◦ Ck
m, like in Proposition 2, with the C′k

m being sampling operators like in Propo-
sition 1. This yields DIANA-PP, shown as Algorithm 3. Since DIANA-PP is a particular case of
DIANA with such composed operators, we can apply Theorem 5, with ωC , the marginal gain of the
composed operators here, equal to ωC+

M−N
N (1+ωC), ωav = ωC

M + M−N
N(M−1)(1+ωC), ζ = M−N

N(M−1) :

9
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Algorithm 3 DIANA-PP (new) (reverts to DIANA if N = M)

1: input: parameters γ > 0, λ > 0, ρ > 0, participation level N ∈ [M ], initial vectors x0 ∈ Rd

and h0m ∈ Rd, m = 1, . . . ,M
2: h0 := 1

M

∑M
m=1 h

0
m, r0 := 0, x−1 = x0

3: for k = 0, 1, . . . do
4: pick Ωk ⊂ [M ] of size N uniformly at random
5: at master: broadcast rk to all nodes
6: for m ∈ Ωk, at nodes in parallel, do
7: xk := xk−1 + ρrk

8: dk+1
m := Ck

m

(
∇Fm(xk)− hkm

)
9: hk+1

m := hkm + λdk+1
m

10: convey dk+1
m to master

11: end for
12: for m /∈ Ωk, at nodes in parallel, do
13: xk := xk−1 + ρrk

14: hk+1
m := hkm

15: end for
16: at master:
17: dk+1 := 1

M

∑
m∈Ωk

dk+1
m

18: hk+1 := hk + λdk+1

19: x̃k+1 := proxγR
(
xk − γ(hk + dk+1)

)
20: rk+1 := Rk(x̃k+1 − xk)
21: xk+1 := xk + ρrk+1

22: end for

Theorem 6 (Linear convergence of DIANA-PP) In DIANA-PP, suppose that the (Ck
m)Mm=1 are

mutually independent and set ωav := ωC
M + M−N

N(M−1)(1 + ωC). Suppose that λ = N
M

1
1+ωC

and

ρ = 1
1+ωR

. Choose b > 1. Set a := max
(
1− (1 + b) M−N

N(M−1) , 0
)

. Suppose that

0 < γ ≤ 1

L

1

a+ (1 + b)2ωav
.

Define the Lyapunov function, for every k ≥ 0,

Ψk :=
∥∥xk − x⋆

∥∥2 + (b2 + b)γ2ωav
1 + ωC
1 + ωR

1

N

M∑
m=1

∥∥∥hkm − h⋆m

∥∥∥2 . (22)

Then, for every k ≥ 0, we have E
[
Ψk
]
≤ ckΨ0, where

c := 1−min

{
γµ

1 + ωR
,
N

M

1− b−2

1 + ωC

}
. (23)

Therefore, if b is fixed and γ = Θ( 1L
1

a+(1+b)2ωav
), the asymptotic complexity of DIANA-PP to

achieve ϵ-accuracy is

O

((
κ
(
1 +

ωC
N

)
(1 + ωR) +

M

N
(1 + ωC)

)
log

(
1

ϵ

))
(24)

10
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Algorithm 4 Minibatch-SAGA (reverts to SAGA if N = 1)

1: input: stepsize γ > 0, sampling size N ∈ [M ], initial vectors x0 ∈ Rd and h0m ∈ Rd,
m = 1, . . . ,M

2: h0 := 1
M

∑M
m=1 h

0
m

3: for k = 0, 1, . . . do
4: pick Ωk ⊂ [M ] of size N uniformly at random
5: for m ∈ Ωk do
6: hk+1

m := ∇Fm(xk)
7: end for
8: for m ∈ [M ]\Ωk do
9: hk+1

m := hkm
10: end for
11: dk+1 := 1

N

∑
m∈Ωk(hk+1

m − hkm)
12: xk+1 := proxγR

(
xk − γ(hk + dk+1)

)
13: hk+1 := hk + N

M dk+1

14: end for

iterations.

To summarize, DIANA is the particular case of DIANA-PP with full participation, i.e. N =
M . Its convergence with general, possibly dependent, operators Ck

m, is established in Theorem 5.
DIANA-PP is more general than DIANA, since it allows for partial participation, but its convergence
is established in Theorem 6 only when the operators (Ck

m)Mm=1 are mutually independent.

4. Particular case: SAGA

When Uk
m = Ck

m, for every k ≥ 0 and m ∈ [M ], and these operators are set as dependent
sampling operators like in Proposition 1, and Rk = Id, MURANA becomes Minibatch-SAGA,
shown as Algorithm 4. We have 1+ωC = M

N , ωav = ζ = M−N
N(M−1) , and we set λ = 1

1+ωC
= N

M and
ρ = 1. Minibatch-SAGA is SAGA (Defazio et al., 2014) if N = 1 and proximal gradient descent
if N = M , so Minibatch-SAGA interpolates between these two regimes for 1 < N < M . This
algorithm was called ‘minibatch SAGA with τ -nice sampling’ by Gower et al. (2021), with their τ
being our N , but studied only with R = 0. It was called ‘q-SAGA’ by Hofmann et al. (2015) with
their q being our N , but studied only with all functions Fm strongly convex. Thus, the following
convergence results are new, to the best of our knowledge.

As an application of Corollary 4, we have:

Theorem 7 (Linear convergence of Minibatch-SAGA) Set ωav := M−N
N(M−1) and choose b > 1.

Set a := max
(
1− (1 + b) M−N

N(M−1) , 0
)

. In Minibatch-SAGA, suppose that

0 < γ ≤ 1

L

1

a+ (1 + b)2ωav
.

11
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Define the Lyapunov function, for every k ≥ 0,

Ψk :=
∥∥xk − x⋆

∥∥2 + (b2 + b)γ2ωav
1

N

M∑
m=1

∥∥∥hkm − h⋆m

∥∥∥2 . (25)

Then, for every k ≥ 0, we have E
[
Ψk
]
≤ ckΨ0, where

c := 1−min

{
γµ,

N(1− b−2)

M

}
< 1. (26)

Therefore, if γ = Θ( 1L), the asymptotic complexity of Minibatch-SAGA to achieve ϵ-accuracy is
O
(
(κ+ M

N ) log(1/ϵ)
)

iterations and O
(
(Nκ + M) log(1/ϵ)

)
gradient calls, since there are N

gradient calls per iteration.

On a sequential machine without any memory access concern, N = 1 is the best choice, but a
larger N might be better on more complex architectures with memory caching strategies, or under
more specific assumptions on the functions (Gazagnadou et al., 2019; Gower et al., 2019).

Let us state the convergence result for SAGA, as the particular case N = 1 in Theorem 7:

Corollary 8 (linear convergence of SAGA) Choose b > 1. In SAGA, suppose that

0 < γ ≤ 1

L

1

(1 + b)2
.

Define the Lyapunov function, for every k ≥ 0,

Ψk :=
∥∥xk − x⋆

∥∥2 + (b2 + b)γ2
M∑

m=1

∥∥∥hkm − h⋆m

∥∥∥2 . (27)

Then, for every k ≥ 0, we have E
[
Ψk
]
≤ ckΨ0, where

c := 1−min

{
γµ,

1− b−2

M

}
< 1. (28)

Therefore, if γ = Θ( 1L), the asymptotic complexity of SAGA to achieve ϵ-accuracy is
O
(
(κ+M) log(1/ϵ)

)
iterations or gradient calls, since there is 1 gradient call per iteration.

In this result (and in the other ones as well), instead of first choosing b, one can choose γ directly
and set b accordingly, such that γ = 1

L
1

(1+b)2
. This yields:

Corollary 9 (linear convergence of SAGA) In SAGA, suppose that

0 < γ <
1

4L
.

Set b := 1√
γL

− 1. Define the Lyapunov function, for every k ≥ 0,

Ψk :=
∥∥xk − x⋆

∥∥2 + (b2 + b)γ2
M∑

m=1

∥∥∥hkm − h⋆m

∥∥∥2 .
12
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Algorithm 5 Minibatch-L-SVRG (reverts to L-SVRG if N = 1)

1: input: parameter γ > 0, sampling size N ∈ [M ], probability p ∈ (0, 1], initial vector x0 ∈ Rd

2: h0 := 1
M

∑M
m=1∇Fm(x0), y0 := x0

3: for k = 0, 1, . . . do
4: Pick Ωk ⊂ [M ] of size N , uniformly at random
5: dk+1 := 1

N

∑
m∈Ωk

(
∇Fm(xk)−∇Fm(yk)

)
6: xk+1 := proxγR

(
xk − γ(hk + dk+1)

)
7: Pick randomly sk :=

{
1 with probability p

0 with probability 1− p

8: if sk = 1 then
9: hk+1 := 1

M

∑M
m=1∇Fm(xk)

10: yk+1 := xk

11: else
12: hk+1 := hk, yk+1 := yk

13: end if
14: end for

Then, for every k ≥ 0, we have E
[
Ψk
]
≤ ckΨ0, where

c := 1−min

{
γµ,

1− b−2

M

}
< 1.

In Theorem 5.6 of Bach (2021), Bach gives a rate for SAGA with γ = 1
4L of c = 1 −

min
( 3µ
16L ,

1
3M

)
. Let us see how our results with the flexible constant b make it possible to un-

derstand these constants and improve upon them. γ = 1
4L is not allowed in Corollaries 8 and 9.

So, let us invoke Theorem 3, which is more general than Corollary 4, with ωC = ωU = M − 1,
λ = 1

M , ωR = 0, ρ = 1, ωav = ζ = 1, a = 0. We choose b =
√
5− 1 and γ = 1

4L , so that η = 3
8 .

Then we get a rate c = 1−min
( 3µ
16L ,

1−b−2

M

)
, which is slightly better but almost the same as above,

since 1 − b−2 ≈ 0.345 ≈ 1
3 . Now, keeping the same value of b and choosing γ = 1

L(1+b)2
= 1

5L ,

Corollary 8 yields a rate c = 1 − min
( µ
5L ,

1−b−2

M

)
, which is better, since 1

5 > 3
16 . On the other

hand, choosing γ = 3
16L in Corollary 9 yields b = 4√

3
−1, so that c = 1−min

( 3µ
16L ,

1−b−2

M

)
, which

is again better, since 1− b−2 ≈ 0.41 > 1
3 . Thus, γ = 3

16L and γ = 1
5L , and every value in between,

are uniformly better choices in SAGA than γ = 1
4L , according to our analysis.

5. Particular case: L-SVRG

Like SAGA, SVRG (Johnson and Zhang, 2013; Zhang et al., 2013) (sometimes called prox-SVRG
(Xiao and Zhang, 2014) if R ̸= 0) is a variance-reduced randomized algorithm, well suited to solve
(1), since it can be up to M times faster than proximal gradient descent.

Recently, the loopless-SVRG (L-SVRG) algorithm was proposed by Hofmann et al. (2015)
and later rediscovered by Kovalev et al. (2020). L-SVRG is similar to SVRG, but with the outer
loop of epochs replaced by a coin flip performed in each iteration, designed to trigger with a small
probability, e.g. 1/M , the computation of the full gradient of F . In comparison with SVRG, the

13
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analysis of L-SVRG is simpler and L-SVRG is more flexible; for instance, there is no need to know
µ to achieve the O

(
(κ + M) log(1/ϵ)

)
complexity. In SVRG and L-SVRG, in addition to the

full gradient passes computed once in a while, two gradients are computed at every iteration. A
minibatch version of L-SVRG, with N instead of 1 gradients picked at every iteration, was called
“L-SVRG with τ -nice sampling” by Qian et al. (2021), see also Sebbouh et al. (2019); we call it
Minibatch-L-SVRG, shown as Algorithm 5.

Minibatch-L-SVRG is a particular case of MURANA, with the Ck
m, m ∈ [M ], set as dependent

sampling operators like in Proposition 1, and Rk = Id, ρ = 1. Thus, like for Minibatch-SAGA, we
have 1 + ωC = M

N and ωav = ζ = M−N
N(M−1) . Let p ∈ (0, 1]. The mappings Uk

m are all copies of the
same random operator Uk, defined by

Uk(x) =

{
1
px with probability p

0 with probability 1− p
.

We have ωU = 1−p
p and we set λ = 1

1+ωU
= p. We also set hkm = ∇Fm(yk); these variables

are not stored in Minibatch-L-SVRG, but are computed upon request. Hence, as an application of
Corollary 4, we get:

Theorem 10 (Linear convergence of Minibatch-L-SVRG) Set ωav := M−N
N(M−1) and choose b >

1. Set a := max
(
1− (1 + b) M−N

N(M−1) , 0
)

. In Minibtach-L-SVRG, suppose that

0 < γ ≤ 1

L

1

a+ (1 + b)2ωav
.

Define the Lyapunov function, for every k ≥ 0,

Ψk :=
∥∥xk − x⋆

∥∥2 + (b2 + b)γ2ωav
1

pM

M∑
m=1

∥∥∥hkm − h⋆m

∥∥∥2 . (29)

Then, for every k ≥ 0, we have E
[
Ψk
]
≤ ckΨ0, where

c := 1−min
{
γµ, p(1− b−2)

}
. (30)

For instance, with N = 1, b =
√
6 − 1, so that a = 0, and γ = 1

6L , we have c ≤ 1 −
min

(
1
6κ , p(1 − b−2)

)
; since 1 − b−2 ≈ 0.52 > 1

2 , this is slightly better but very similar to the rate
1−min( 1

6κ ,
p
2) given in Theorem 5 of Kovalev et al. (2020).

Therefore, if γ = Θ( 1L), the asymptotic complexity of Minibatch-L-SVRG to achieve ϵ-accuracy

is O
(
(κ+ 1

p) log(1/ϵ)
)

iterations and O
(
(Nκ+ pMκ+ N

p +M) log(1/ϵ)
)

gradient calls, since
there are 2N +pM gradient calls per iteration in expectation. This is the same as Minibatch-SAGA
if p = Θ(NM ).

6. Particular case: ELVIRA (new)

It is a pity not to use the full gradient in L-SVRG to update xk, when it is computed. And even
with p = 1, which means the full gradient computed at every iteration, L-SVRG does not revert

14
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Algorithm 6 ELVIRA (new)

1: input: stepsize γ > 0, sampling size N ∈ [M ], probability p ∈ (0, 1], initial vector x0 ∈ Rd

2: h0 := 1
M

∑M
m=1∇Fm(x0), y0 := x0

3: for k = 0, 1, . . . do

4: Pick randomly sk :=

{
1 with probability p

0 with probability 1− p

5: if sk = 1 then
6: hk+1 := 1

M

∑M
m=1∇Fm(xk)

7: xk+1 := proxγR
(
xk − γhk+1

)
8: yk+1 := xk

9: else
10: Pick Ωk ⊂ [M ] of size N , uniformly at random
11: dk+1 := 1

N

∑
m∈Ωk

(
∇Fm(xk)−∇Fm(yk)

)
12: xk+1 := proxγR

(
xk − γ(hk + dk+1)

)
13: hk+1 := hk, yk+1 := yk

14: end if
15: end for

to proximal gradient descent. We correct these drawbacks by proposing a new algorithm, called
ELVIRA, shown as Algorithm 6. The novelty is that whenever a full gradient pass is computed, it
is used just after to update the estimate xk+1 of the solution.

ELVIRA is a particular case of MURANA as follows: Rk = Id, ρ = 1, and the Uk
m are set

like in Minibatch-L-SVRG. The Ck
m depend on the Uk

m and are set as follows: if the full gradient is
not computed, Ck

m are sampling operators like in Proposition 1, Minibatch-L-SVRG and Minibatch-
SAGA. Otherwise, the Ck

m are set to the identity.
We have ωU = 1−p

p and we set λ = 1
1+ωU

= p. Moreover, ωav = ζ = M−N
N(M−1)(1 − p). For

instance, if N = 1 and p = 1
M , we have ωav = ζ = M−1

M , instead of ωav = ζ = 1 with L-SVRG.
Like in L-SVRG, we set hkm = ∇Fm(yk); these variables are not stored and are computed upon
request.

Hence, as an application of Corollary 4, we get:

Theorem 11 (Linear convergence of ELVIRA) Set ωav := M−N
N(M−1)(1 − p) and choose b > 1.

Set a := max
(
1− (1 + b)(1− p) M−N

N(M−1) , 0
)

. In ELVIRA, suppose that

0 < γ ≤ 1

L

1

a+ (1 + b)2ωav
.

Define the Lyapunov function, for every k ≥ 0,

Ψk :=
∥∥xk − x⋆

∥∥2 + (b2 + b)γ2ωav
1

pM

M∑
m=1

∥∥∥hkm − h⋆m

∥∥∥2 . (31)

Then, for every k ≥ 0, we have E
[
Ψk
]
≤ ckΨ0, where

c := 1−min
{
γµ, p(1− b−2)

}
. (32)
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For instance, with N = 1, b =
√
6 − 1 and γ = 1

6L , we have c ≤ 1 − min( 1
6κ ,

p
2), like for

L-SVRG. But for N = 1 and a given b > 1, the interval for γ is slightly larger in ELVIRA than in
L-SVRG. In other words, for a given γ < 1

4L , one can choose a larger value of b, yielding a smaller
rate c.

Therefore, if γ = Θ( 1L), the complexity of ELVIRA is O
(
(κ+ 1

p) log(1/ϵ)
)

iterations and

O
(
(Nκ+ pMκ+ N

p +M) log(1/ϵ)
)

gradient calls, since there are 2N(1−p)+pM gradient calls

per iteration in expectation. If in addition p = Θ(NM ), the complexity becomes O
(
(κ+ M

N ) log(1/ϵ)
)

iterations and O
(
(Nκ+M) log(1/ϵ)

)
gradient calls.

So, the asymptotic complexity of ELVIRA is the same as that of Minibatch-L-SVRG, and it
has the same low-memory requirements. But in practice, one can expect ELVIRA to be a bit faster,
because its variance is strictly lower. This is illustrated by experiments in Appendix D. ELVIRA
reverts to proximal gradient descent if p = 1 or N = M .

7. Conclusion

We have proposed a general framework for iterative algorithms minimizing a sum of functions by
making calls to unbiased stochastic estimates of their gradients, and featuring variance-reduction
mechanisms learning the optimal gradients. Our generic template algorithm MURANA allows us
to study existing algorithms and design new ones within a unified analysis. Sampling among func-
tions, compression of the vectors sent in both directions in distributed settings, e.g. by sparsification
or quantization, as well as partial participation of the workers, which are of utmost importance in
modern distributed and federated learning settings, are all features covered by our framework. In fu-
ture work, we plan to exploit our findings to design new algorithms tailored to specific applications,
and to investigate the following questions:

1. Can we relax the strong convexity assumption and still guarantee linear convergence of
MURANA? For instance, in Condat et al. (2022c), linear convergence of DIANA under a
Kurdyka–Łojasiewicz assumption has been proved.

2. Can we relax the unbiasedness assumption of the stochastic estimation processes? In Condat
et al. (2022c), a new class of possibly biased and random compressors is introduced, and
linear convergence of DIANA with them is proved.

3. Can we prove last-iterate convergence as well as a sublinear rate for MURANA when the
problem is convex but not strongly convex? And in the nonconvex setting?

4. Can we extend the setting of stochastic gradients with variance-reduction mechanisms to
other algorithms than proximal gradient descent, like primal–dual algorithms for optimization
problems involving several nonsmooth terms (Combettes and Pesquet, 2021; Condat et al.,
2022a,b)? An approach of this type has been proposed in Salim et al. (2022), based on
another proof technique with the Lagrangian gap, and it would be interesting to combine the
two approaches. For instance, can we derive an algorithm like MURANA-D for decentralized
optimization, and not only for the client-server setting, similar to the DESTROY algorithm in
Salim et al. (2022)?
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S. Horváth, D. Kovalev, K. Mishchenko, S. Stich, and P. Richtárik. Stochastic distributed learning
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Appendix A. Proof of Proposition 1

The first statement with the value of ωC follows from

E
[∥∥∥Ck

m(v)− v
∥∥∥2] = N

M

(
M

N
− 1

)2
∥vm∥2 + M −N

M
∥vm∥2 = M −N

N
∥vm∥2 .

Let us establish the second statement with the values of ωav and ζ. We start with the identity, where
EΩk denotes expectation with respect to the random set Ωk:

E

∥∥∥∥∥
M∑

m=1

(
Ck
m(vm)− vm

)∥∥∥∥∥
2
 = EΩk

∥∥∥∥∥∥
∑

m∈Ωk

M

N
vm −

M∑
m=1

vm

∥∥∥∥∥∥
2

=
M2

N2
EΩk

∥∥∥∥∥∥
∑

m∈Ωk

vm

∥∥∥∥∥∥
2+

∥∥∥∥∥
M∑

m=1

vm

∥∥∥∥∥
2

− 2M

N
EΩk

〈 ∑
m∈Ωk

vm,

M∑
m=1

vm

〉
=

M2

N2
EΩk

 ∑
m∈Ωk

∥vm∥2
+

M2

N2
EΩk

 ∑
m∈Ωk

∑
m′∈Ωk,̸=m

⟨vm, vm′⟩


−

∥∥∥∥∥
M∑

m=1

vm

∥∥∥∥∥
2

.

By computing the expectations on the right hand side, we finally get:

E

∥∥∥∥∥
M∑

m=1

(
Ck
m(vm)− vm

)∥∥∥∥∥
2
 =

M

N

M∑
m=1

∥vm∥2 + M(N − 1)

N(M − 1)

M∑
m=1

M∑
m′=1,̸=m

⟨vm, vm′⟩ −

∥∥∥∥∥
M∑

m=1

vm

∥∥∥∥∥
2

=
M

N

(
1− N − 1

M − 1

) M∑
m=1

∥vm∥2 +
(
M(N − 1)

N(M − 1)
− 1

)∥∥∥∥∥
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2

=
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M − 1
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∥vm∥2 − M −N

N(M − 1)
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∥∥∥∥∥
2

.

□

Appendix B. Proof of Proposition 2

We have, for every m ∈ [M ] and vm ∈ Rd,

E
[
C′
m(Cm(vm)) | Cm(vm)

]
= Cm(vm),

where the bar denotes conditional expectation, so that E[C′
m(Cm(vm))] = vm, and

E
[∥∥C′

m(Cm(vm))
∥∥2 | Cm(vm)

]
≤ (1 + ω′

C) ∥Cm(vm)∥2 ,
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so that E
[
∥C′

m(Cm(vm))∥2
]
≤ (1 + ω′

C)E
[
∥Cm(vm)∥2

]
≤ (1 + ω′

C)(1 + ωC) ∥vm∥2 . Hence,

E
[∥∥C′

m(Cm(vm))− vm
∥∥2] ≤ ((1 + ω′

C)(1 + ωC)− 1
)
∥vm∥2 .

Moreover, for every vm ∈ Rd, m = 1, . . . ,M ,

E

∥∥∥∥∥ 1

M

M∑
m=1

C′
m

(
Cm(vm)

)∥∥∥∥∥
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M
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so that
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Thus, if the (Cm)Mm=1 are mutually independent,
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□

Appendix C. Proof of Theorem 3

Let us place ourselves in the conditions of Theorem 3. We define h⋆ := ∇F (x⋆) and w⋆ :=
x⋆ − γh⋆. We have x⋆ = proxγR(w

⋆).
Let k ∈ N. We have, conditionally on xk, hk and (hkm)Mm=1: E[Rk(x̃k+1 − xk)] = x̃k+1 − xk.

Thus, using also (6) and the fact that ωR ≤ ω′
R,

E
[∥∥∥xk+1 − x⋆

∥∥∥2] ≤ ∥∥∥(1− ρ)(xk − x⋆) + ρ(x̃k+1 − x⋆)
∥∥∥2 + ρ2ω′
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≤
(
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∥∥∥2 + ρ2(1 + ω′
R)
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∥∥∥2
+ 2ρ

(
1− ρ(1 + ω′

R)
) 〈

xk − x⋆, x̃k+1 − x⋆
〉
.
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Thus, with ρ = 1/(1 + ω′
R),

E
[∥∥∥xk+1 − x⋆

∥∥∥2] ≤ ω′
R

1 + ω′
R

∥∥∥xk − x⋆
∥∥∥2 + 1

1 + ω′
R

∥∥∥x̃k+1 − x⋆
∥∥∥2 . (33)

Moreover, using nonexpansiveness of the proximity operator and the fact that E[dk+1] = ∇F (xk)−
hk,

E
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We have dk+1 = 1
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m

(
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)
. So, using (7),

E
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where we used the fact that for every vectors vm, m = 1, . . . ,M , 1
M

∑M
m=1 ∥vm∥2 = 1

M

∑M
m=1 ∥vm−

v∥2+∥v∥2, where v = 1
M
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m=1 vm. Now, we will use the fact that ωav−ζ ≥ 0 and the Peter–Paul

inequality, according to which, for every v ∈ Rd and v′ ∈ Rd, ∥v + v′∥2 ≤
(
1 + 1

b

)
∥v∥2 + (1 +

b) ∥v′∥2. Thus,
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E
[∥∥∥x̃k+1 − x⋆
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〉
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1

M
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≤
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1
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γ2ωav
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∥∥∥hkm − h⋆m

∥∥∥2
+ γ2

(
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+ (1 + b)ωav

) 1

M
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∥∥∥∇Fm(xk)− h⋆m

∥∥∥2 ,
where we used the fact that if the constant in front of ∥∇F (xk) − ∇F (x⋆)∥2 is negative, we can
ignore this term, whereas if it positive, we have to upper bound it.

In addition,

⟨xk − x⋆,∇F (xk)−∇F (x⋆)⟩ = η⟨xk − x⋆,∇F (xk)−∇F (x⋆)⟩

+ (1− η)
1

M

M∑
m=1

⟨xk − x⋆,∇Fm(xk)−∇Fm(x⋆)⟩.

By µ-strong convexity of F , ∇F − µId is monotone, so that ⟨xk − x⋆,∇F (xk) − ∇F (x⋆)⟩ ≥
µ∥xk − x⋆∥2. Also, by cocoercivity of the gradient, for every m ∈ [M ], ⟨xk − x⋆,∇Fm(xk) −
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∇Fm(x⋆)⟩ ≥ 1
L∥∇Fm(xk)−∇Fm(x⋆)∥2. So,
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Hence, using the definition of a,

E
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and, by combination with (33),
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∥∥∥2 .
On the other hand, conditionally on xk, hk, and (hkm)Mm=1, we have, for every m ∈ [M ],

E
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Thus, conditionally on xk, hk, and (hkm)Mm=1,
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By definition of η, γ = 2(1−η)

L
1

a+(1+b)2ωav
, so that the last term above is zero and
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Figure 1: Convergence plots for a synthetic experiment with quadratic functions, with 15 different
runs for each stochastic algorithm.

where

c = max

{
1− 2γηµ

1 + ω′
R
,
b−2 + ω′

U
1 + ω′

U

}
.

Since b > 1, we have c < 1.
Finally, iterating the tower rule on the conditional expectations, we have, for every k ≥ 0,

E
[
Ψk
]
≤ ckΨ0.

□

Appendix D. Experiments

We compare SAGA, L-SVRG and ELVIRA on the same synthetic problem of minimizing over Rd

the average of M = 1000 functions Fm, with d = 100; that is, Problem (1) with R = 0. Every
function Fm is quadratic: Fm : x 7→ 1

2∥Amx− bm∥2 for some matrix Am of size d′ × d and vector
bm ∈ Rd′ , all made of independent random values drawn from the uniform distribution in [0, 1],
with d′ = 5. Since d′ < d, none of the Fm is strongly convex, but their average F is µ-strongly
convex, with µ ≈ 0.3. Every Fm is L-smooth, with L = maxm=1,...,M ∥A∗

mAm∥ ≈ 153. We
choose b = 1.4 so that the 2 terms in the rate c are equal and ≈ 0.9996 and we set γ = 1

L(1+b)2
in

the 3 algorithms. In L-SVRG and ELVIRA, N = 1 and p = 1
M . Then the Lyapunov function Ψk

is the same for the 3 algorithms, as well as the rate c ≈ 0.9996. We show the upper bound ckΨ0 in
black in Figure 1. The solutions x⋆ and h⋆m were computed to machine precision by running SAGA
with 106 iterations. The value of Ψk with respect to k is shown in Figure 1 for the 3 algorithms, for
15 different runs of each algorithm. We can observe that the algorithms converge linearly, as proved
by our convergence results, with an empirical convergence rate better than the upper bound. The
3 algorithms have rather similar convergence profiles, with convergence slightly slower for SAGA,
ELVIRA performing best, with less choppy curves, and L-SVRG in between. The convergence is
shown with respect to the iteration index k, but we should keep in mind that SAGA has 1 gradient
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evaluation per iteration, whereas in average L-SVRG and ELVIRA have 3. But SAGA needs to
store all the vectors hm, while L-SVRG and ELVIRA do not need such memory occupation.
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