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Abstract
Modern deep learning models are often trained in parallel over a collection of distributed machines
to reduce training time. In such settings, communication of model updates among machines becomes
a significant performance bottleneck, and various lossy update compression techniques have been
proposed to alleviate this problem. In this work, we introduce a new, simple yet theoretically and
practically effective compression technique: natural compression (Cnat). Our technique is applied
individually to all entries of the to-be-compressed update vector. It works by randomized rounding
to the nearest (negative or positive) power of two, which can be computed in a “natural” way by
ignoring the mantissa. We show that compared to no compression, Cnat increases the second moment
of the compressed vector by not more than the tiny factor 9/8, which means that the effect of Cnat
on the convergence speed of popular training algorithms, such as distributed SGD, is negligible.
However, the communications savings enabled by Cnat are substantial, leading to 3-4× improvement
in overall theoretical running time. For applications requiring more aggressive compression, we
generalize Cnat to natural dithering, which we prove is exponentially better than the common
random dithering technique. Our compression operators can be used on their own or in combination
with existing operators for a more aggressive combined effect while offering new state-of-the-art
theoretical and practical performance.
Keywords: Distibuted Optimization, Stochastic Optimization, Non-convex Optimization, Gradient
Compression
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1. Introduction

Modern deep learning models (He et al., 2016) are almost invariably trained in parallel or distributed
environments, which is necessitated by the enormous size of the data sets and the dimension and
complexity of the models required to obtain state-of-the-art performance. Our work focuses on the
data-parallel paradigm, in which the training data is split across several workers capable of operating
in parallel (Bekkerman et al., 2011; Recht et al., 2011). Formally, we consider optimization problems
of the form

min
x∈Rd

f(x) := 1
n

n∑
i=1

fi(x) , (1)

where x ∈ Rd represents the parameters of the model, n is the number of workers, and fi : Rd → R
is a loss function composed of data stored on worker i. Typically, fi is modelled as a function
of the form fi(x) := Eζ∼Di

[fζ(x)], where Di is the distribution of data stored on worker i, and
fζ : Rd → R is the loss of model x on data point ζ . The distributions D1, . . . ,Dn can be different on
every node, which means that the functions f1, . . . , fn may have different minimizers. This frame-
work covers i) stochastic optimization when either n = 1 or all Di are identical, and ii) empirical
risk minimization when fi(x) can be expressed as a finite average, i.e, 1

mi

∑mi
i=1 fij(x) for some

fij : Rd → R.
Distributed Learning. Typically, problem (1) is solved by distributed stochastic gradient descent
(SGD) (Robbins and Monro, 1951), which works as follows: stochastic gradients gi(x

k)’s are
computed locally and sent to a master node, which performs update aggregation gk =

∑
i gi(x

k).
The aggregated gradient gk is sent back to the workers and each performs a single step of SGD:
xk+1 = xk − ηk

n gk, where ηk > 0 is a step size.
A key bottleneck of the above algorithm, and its many variants (e.g., variants utilizing mini-
batching (Goyal et al., 2017), importance sampling (Horváth and Richtárik, 2019), momentum
(Nesterov, 2013), or variance reduction (Johnson and Zhang, 2013)), is the cost of communication of
the typically dense gradient vector gi(xk), and in a parameter-sever implementation with a master
node, also the cost of broadcasting the aggregated gradient gk. These are d dimensional vectors of
floats, with d being very large in modern deep learning. It is well-known (Seide et al., 2014; Alistarh
et al., 2017; Zhang et al., 2017; Lin et al., 2018; Lim et al., 2018) that in many practical applications
with common computing architectures, communication takes much more time than computation,
creating a bottleneck in the entire training system.
Communication Reduction. Several solutions were suggested in the literature as a remedy to
this problem. In one strain of work, the issue is addressed by giving each worker “more work”
to do, which results in a better communication-to-computation ratio. For example, one may use
mini-batching to construct more powerful gradient estimators (Goyal et al., 2017), define local
problems for each worker to be solved by a more advanced local solver (Shamir et al., 2014) Or
reduce communication frequency (e.g., by communicating only once (McDonald et al., 2009) or
once every few iterations (Stich, 2018)). An orthogonal approach to the above efforts aims to reduce
the size of the communicated vectors instead (Seide et al., 2014; Alistarh et al., 2017; Wen et al.,
2017) using various lossy (and often randomized) compression mechanisms, commonly known in
the literature as quantization techniques. In their most basic form, these schemes decrease the # bits
used to represent floating point numbers forming the communicated d-dimensional vectors (Gupta
et al., 2015; Na et al., 2017), thus reducing the size of the communicated message by a constant
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Figure 1: Communication (in bits) vs. the second moment
ω+1 (see Equation (3)) for several state-of-the-art compres-
sors applied to a gradient of size d = 106. Our methods
(Cnat and Dp,s

nat) are depicted with a square marker. For any
fixed communication budget, natural dithering offers an ex-
ponential improvement on standard dithering, and when used
in composition with sparsification, it offers an order of mag-
nitude improvement.

Figure 2: An illustration of nat.
compression applied to t = 2.5:
Cnat(2.5) = 2 with probability
4−2.5

2 = 0.75, and Cnat(2.5) = 4
with prob. 2.5−2

2 = 0.25. This choice
of probabilities ensures that the com-
pression operator is unbiased, i.e.,
E [Cnat(t)] ≡ t.

factor. Another possibility is to apply randomized sparsification masks to the gradients (Suresh et al.,
2017; Konečný and Richtárik, 2018), or to rely on coordinate/block descent updates rules, which are
sparse by design (Fercoq et al., 2014).
One of the most critical considerations in the area of compression operators is the compression-
variance trade-off (Konečný and Richtárik, 2018; Alistarh et al., 2017). For instance, while random
dithering approaches attain up to O(d1/2) compression (Seide et al., 2014; Alistarh et al., 2017; Wen
et al., 2017), the most aggressive schemes reach O(d) compression by sending a constant number
of bits per iteration only (Suresh et al., 2017; Konečný and Richtárik, 2018). However, the more
compression is applied, the more information is lost, and the more will the quantized vector differ
from the original vector we want to communicate, increasing its statistical variance. Higher variance
implies slower convergence (Alistarh et al., 2017), i.e., more communication rounds. So, ultimately,
compression approaches offer a trade-off between the communication cost per iteration and the
number of communication rounds.
Outside of the optimization for machine learning, compression operators are very relevant to optimal
quantization theory and control theory (Elia and Mitter, 2001; Sun and Goyal, 2011; Sun et al., 2012).

Summary of Contributions. The key contributions of this work are following:
• New compression operators. We construct a new “natural compression” operator (Cnat; see
Sec. 2) based on a randomized rounding scheme in which each float of the compressed vector is
rounded to a (positive or negative) power of 2. This compression has a provably small variance, at
most 1/8 (see Theorem 3), which implies that theoretical convergence results of SGD-type methods
are essentially unaffected (see Theorem 9). At the same time, substantial savings are obtained in the
amount of communicated bits per iteration (3.56× less for float32 and 5.82× less for float64). In
addition, we utilize these insights and develop a new random dithering operator—natural dithering
(Dp,s

nat; see Sec. 3)—which is exponentially better than the very popular “standard” random dithering
operator (see Theorem 8). We remark that Cnat and the identity operator arise as limits of Dp,s

nat and
Dp,s

sta as s → ∞, respectively. Importantly, our new compression techniques can be combined with
existing quantization and sparsification operators for a more dramatic effect as we argued before.
• State-of-the-art compression. When compared to previous state-of-the-art compressors such as
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(any variant of) sparsification and dithering—techniques used in methods such as Deep Gradient
Compression (Lin et al., 2018), QSGD (Alistarh et al., 2017) and TernGrad (Wen et al., 2017)—our
compression operators offer provable and often large improvements in practice, thus leading to new
state-of-the-art. In particular, given a budget on the second moment ω + 1 (see Equation (3)) of a
compression operator, which is the main factor influencing the increase in the number of communica-
tions when communication compression is applied compared to no compression, our compression
operators offer the largest compression factor, resulting in fewest bits transmitted (see Figure 1).
• Lightweight & simple low-level implementation. We show that apart from a randomization pro-
cedure (which is inherent in all unbiased compression operators), natural compression is computation-
free. Indeed, natural compression essentially amounts to the trimming of the mantissa and possibly
increasing the exponent by one. This is the first compression mechanism with such a “natural”
compatibility with binary floating point types.
• Proof-of-concept system with in-network aggregation (INA). The recently proposed SwitchML (Sa-
pio et al., 2021) system alleviates the communication bottleneck via in-network aggregation (INA)
of gradients. Since current programmable network switches are only capable of adding integers, new
update compression methods are needed which can supply outputs in an integer format. Our natural
compression mechanism is the first that is provably able to operate in the SwitchML framework as
it communicates integers only: the sign, plus the bits forming the exponent of a float. Moreover,
having bounded (and small) variance, it is compatible with existing distributed training methods.
• Bidirectional compression for SGD. We provide convergence theory for distributed SGD which
allows for compression both at the worker and master side (see Algorithm 1). The compression
operators compatible with our theory form a large family (operators C ∈ B(ω) for some finite ω ≥ 0;
see Definition 2). This enables safe experimentation with existing and facilitates the development of
new compression operators fine-tuned to specific deep learning model architectures. Our convergence
result (Theorem 1) applies to smooth and non-convex functions, and our rates predict linear speed-up
with respect to the number of machines.
• Better total complexity. Most importantly, we are the first to prove that the increase in the number
of iterations caused by (a carefully designed) compression is more than compensated by the savings
in communication, which leads to an overall provable speedup in training time. Read Theorem 9, the
discussion following the theorem and Table 1 for more details. To the best of our knowledge, standard
dithering (QSGD (Alistarh et al., 2017)) is the only previously known compression technique able
to achieve this with our distributed SGD with bi-directional compression. Importantly, our natural
dithering is exponentially better than standard dithering, and hence provides for state-of-the -art
performance in connection with Algorithm 1.
• Experiments. We show that Cnat significantly reduces the training time compared to no compres-
sion. We provide empirical evidence in the form of scaling experiments, showing that Cnat does not
hurt convergence when the number of workers is growing. We also show that popular compression
methods such as random sparsification and random dithering are enhanced by combination with
natural compression or natural dithering (see Appendix A). The combined compression technique re-
duces the number of communication rounds without any noticeable impact on convergence providing
the same quality solution.
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Figure 3: Randomized rounding for natural (left) and standard (right) dithering (s = 3 levels).

Figure 4: IEEE 754 single-precision binary floating-point format: binary32.

2. Natural Compression

We define a new (randomized) compression technique, which we call natural compression. This
is fundamentally a function mapping t ∈ R to a random variable Cnat(t) ∈ R. In case of vectors
x = (x1, . . . , xd) ∈ Rd we apply it in an element-wise fashion: (Cnat(x))i = Cnat(xi). Natural
compression Cnat performs a randomized logarithmic rounding of its input t ∈ R. Given non-zero t,
let α ∈ R be such that |t| = 2α (i.e., α = log2 |t|). Then 2⌊α⌋ ≤ |t| = 2α ≤ 2⌈α⌉ and we round t to
either sign(t)2⌊α⌋, or to sign(t)2⌈α⌉. When t = 0, we set Cnat(0) = 0. The probabilities are chosen
so that Cnat(t) is an unbiased estimator of t, i.e., E [Cnat(t)] = t for all t. For instance, t = −2.75
will be rounded to either −4 or −2 (since −22 ≤ −2.75 ≤ −21), and t = 0.75 will be rounded to
either 1/2 or 1 (since 2−1 ≤ 0.75 ≤ 20). As a consequence, if t is an integer power of 2, then Cnat
will leave t unchanged, see Figure 2.

Definition 1 (Natural compression) Natural compression is a random function Cnat : R 7→ R
defined as follows. We set Cnat(0) = 0. If t ̸= 0, we let

Cnat(t) :=

{
sign(t) · 2⌊log2 |t|⌋, with p(t),

sign(t) · 2⌈log2 |t|⌉, with 1− p(t),
(2)

where probability p(t) := 2⌈log2 |t|⌉−|t|
2⌊log2 |t|⌋ .

Alternatively, (2) can be written as Cnat(t) = sign(t)·2⌊log2 |t|⌋(1+λ(t)), where λ(t) ∼ Bernoulli(1−
p(t)); that is, λ(t) = 1 with prob. 1− p(t) and λ(t) = 0 with prob. p(t). The key properties of any
(unbiased) compression operator are variance, ease of implementation, and compression level. We
characterize the remarkably low variance of Cnat and describe an (almost) effortless and natural
implementation, and the compression it offers in rest of this section.
Cnat has a negligible variance: ω = 1/8. We identify natural compression as belonging to a large
class of unbiased compression operators with bounded second moment (Jiang and Agrawal, 2018;
Khirirat et al., 2018; Horváth et al., 2019), defined below.

Definition 2 (Compression operators) A function C : Rd → Rd mapping a deterministic input
to a random vector is called a compression operator (on Rd). We say that C is unbiased and has
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bounded second moment (ω ≥ 0) if

E [C(x)] = x, E ∥C(x)∥2 ≤ (ω + 1) ∥x∥2 ∀x ∈ Rd. (3)

If C satisfies (3), we will write C ∈ B(ω).

Note that ω = 0 implies C(x) = x almost surely. It is easy to see that the variance of
C(x) ∈ B(ω) is bounded as: E ∥C(x)− x∥2 ≤ ω ∥x∥2 . If this holds, we say that “C has variance ω”.
The importance of B(ω) stems from two observations. First, operators from this class are known
to be compatible with several optimization algorithms (Khirirat et al., 2018; Horváth et al., 2019).
Second, this class includes most compression operators used in practice (Alistarh et al., 2017; Wen
et al., 2017; Wangni et al., 2018; Mishchenko et al., 2019). In general, the larger ω is, the higher
compression level might be achievable, and the worse impact compression has on the convergence
speed.
The main result of this section says that the natural compression operator Cnat has variance 1/8.

Theorem 3 Cnat ∈ B(1/8).

Consider now a similar unbiased randomized rounding operator to Cnat; but one that rounds to
one of the nearest integers (as opposed to integer powers of 2). We call it Cint. At first sight, this
may seem like a reasonable alternative to Cnat. However, as we show next, Cint does not have a finite
second moment and is hence incompatible with existing optimization methods.

Theorem 4 There is no ω ≥ 0 such that Cint ∈ B(ω).

From 32 to 9 bits, with lightning speed. We now explain that performing natural compression of
a real number in a binary floating point format is computationally cheap. In particular, excluding the
randomization step, Cnat amounts to simply dispensing off the mantissa in the binary representation.
The most common computer format for real numbers, binary32 (resp. binary64) of the IEEE 754
standard, represents each number with 32 (resp. 64) bits, where the first bit represents the sign,
8 (resp. 11) bits are used for the exponent, and the remaining 23 (resp. 52) bits are used for the
mantissa. A scalar t ∈ R is represented in the form (s, e7, e6, . . . , e0,m1,m2, . . . ,m23), where

s, ei,mj ∈ {0, 1} are bits, via the relationship t = (−1)s × 2e−127 × (1 +m), e =
7∑

i=0
ei2

i, m =

23∑
j=1

mj2
−j , where s is the sign, e is the exponent and m is the mantissa. A binary32 representation

of t = −2.75 is visualized in Figure 4. In this case, s = 1, e7 = 1, m2 = m3 = 1 and hence
t = (−1)s × 2e−127 × (1 +m) = −1× 2× (1 + 2−2 + 2−3) = −2.75.

It is clear that 0 ≤ m < 1, and hence 2e−127 ≤ |t| < 2e−126. Moreover, p(t) = 2e−126−|t|
2e−127 =

2− |t|2127−e = 1−m. Hence, natural compression of t represented as binary32 is given as follows:

Cnat(t) =

{
(−1)s × 2e−127, with probability 1−m,

(−1)s × 2e−126, with probability m.

Observe that (−1)s × 2e−127 is obtained from t by setting the mantissa m to zero, and keeping both
the sign s and exponent e unchanged. Similarly, (−1)s × 2e−126 is obtained from t by setting the
mantissa m to zero, keeping the sign s, and increasing the exponent by one. Hence, both values can
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Approach CWi No. iterations Bits per 1 Iter. Speedup
T ′(ωW ) = O((ωW + 1)θ) Wi 7→ M Factor

Baseline identity 1 32d 1
New Cnat (9/8)θ 9d 3.2×–3.6×

Sparsification Sq (d/q)θ (33 + log2 d)q 0.6×–6.0×
New Cnat ◦ Sq (9d/8q)θ (10 + log2 d)q 1.0×–10.7×

Dithering Dp,2s−1

sta (1 + κd1/r21−s)θ 31 + d(2 + s) 1.8×–15.9×
New Dp,s

nat (9/8 + κd
1
r 21−s)θ 31 + d(2 + log2 s) 4.1×–16.0×

Table 1: The overall speedup of distributed SGD with compression on nodes via CWi compared to the baseline
variant without compression. Speed is measured by multiplying the # of communication rounds (i.e., iterations
T (ωW )) by the bits sent from worker i to master (Wi 7→ M ) per single iteration. We neglect M 7→ Wi

communication as in practice this is often much faster (see, e.g., (Mishchenko et al., 2019), for other cost/speed
models; see Appendix D.7). We assume binary 32 bits representation. The relative # of iterations sufficient to
guarantee ε optimality is T ′(ωW ) := (ωW + 1)θ, where θ ∈ (0, 1] (see Theorem 9). Note that in the big n
regime the iteration bound T (ωW ) is better due to θ ≈ 0 (however, this is not very practical as n is usually
small), while for small n we have θ ≈ 1. For dithering, r = min{p, 2}, κ = min{1,

√
d21−s}. The lower

bound for the speedup factor is obtained for θ = 1, and the upper bound for θ = 0. The speedup factor(
T (ωW )·# Bits
T (0)·32d

)
was calculated for d = 106, q = 0.1d (10% sparsity), p = 2 and the optimal choice of s with

respect to the speedup.

be computed from t essentially without any computation.
Communication savings. In summary, in case of binary32, the output Cnat(t) of natural compression
is encoded using 8 bits in the exponent and an extra bit for the sign. This is 3.56× less communication.
In case of binary64, we only need 11 bits for the exponent and 1 bit for the sign, and this is 5.82×
less communication.
Compatibility with other compression techniques We start with a simple but useful observation
about composition of compression operators.

Theorem 5 If C1 ∈ B(ω1) and C2 ∈ B(ω2), then C1 ◦ C2 ∈ B(ω12), where ω12 = ω1ω2 + ω1 + ω2,
and C1 ◦ C2 is the composition defined by (C1 ◦ C2)(x) = C1(C2(x)).

Combining this result with Theorem. 3, we observe that for any C ∈ B(ω), we have Cnat ◦ C ∈
B(9ω/8 + 1/8). Since Cnat offers substantial communication savings with only a negligible effect on
the variance of C, a key use for natural compression beyond applying it as the sole compression
strategy is to deploy it with other effective techniques as a final compression mechanism (e.g., with
sparsifiers (Stich et al., 2018)), boosting the performance of the system even further. However, our
technique will be useful also as a post-compression mechanism for compressions that do not belong
to B(ω) (e.g., TopK sparsifier (Alistarh et al., 2018)). The same comments apply to the natural
dithering operator Dp,s

nat, defined in the next section.

3. Natural Dithering

Motivated by the natural compression introduced in Sec 2, here we propose a new random dithering
operator which we call natural dithering. However, it will be useful to introduce a more general
dithering operator, one generalizing both the natural and the standard dithering operators. For
1 ≤ p ≤ +∞, let ∥x∥p be p-norm: ∥x∥p := (

∑
i |xi|p)

1/p.
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Figure 5: Train Loss and Test Accuracy of ResNet110 and Alexnet on CIFAR10. Speed-up is
displayed with respect to time to execute fixed number of epochs, 320 and 200, respectively.

Definition 6 (General dithering) The general dithering operator with respect to the p norm and
with s levels 0 = ls < ls−1 < ls−2 < · · · < l1 < l0 = 1, denoted DC,p,s

gen , is defined as follows. Let
x ∈ Rd. If x = 0, we let DC,p,s

gen (x) = 0. If x ̸= 0, we let yi := |xi|/∥x∥p for all i ∈ [d]. Assuming

lu+1 ≤ yi ≤ lu for some u ∈ {0, 1, . . . , s−1}, we let
(
DC,p,s

gen (x)
)
i
= C(∥x∥p)× sign(xi)×ξ(yi) ,

where C ∈ B(ω) for some ω ≥ 0 and ξ(yi) is a random variable equal to lu with probability yi−lu+1

lu−lu+1
,

and to lu+1 with probability lu−yi
lu−lu+1

. Note that E [ξ(yi)] = yi.

Standard (random) dithering, Dp,s
sta, (Goodall, 1951; Roberts, 1962) is obtained as a special case of

general dithering (which is also novel) for a linear partition of the unit interval, ls−1 = 1/s, ls−2 = 2/s,
. . . , l1 = (s−1)/s and C equal to the identity operator. D2,s

sta operator was used in QSGD (Alistarh et al.,
2017) and D∞,1

sta in Terngrad (Wen et al., 2017). Natural dithering—a novel compression operator
introduced in this paper—arises as a special case of general dithering for C being an identity operator
and a binary geometric partition of the unit interval: ls−1 = 21−s, ls−2 = 22−s, . . . , l1 = 2−1.
For the INA application, we apply C = Cnat to have output always in powers of 2, which would
introduce extra factor of 9/8 in the second moment. A comparison of the ξ operators for the standard
and natural dithering with s = 3 levels applied to t = 3/8 can be found in Figure 3. When DC,p,s

gen

is used to compress gradients, each worker communicates the norm (1 float), vector of signs (d
bits) and efficient encoding of the effective levels for each entry i = 1, 2, . . . , d. Note that Dp,s

nat is
essentially an application of Cnat to all normalized entries of x, with two differences: i) we can also
communicate the compressed norm ∥x∥p, ii) in Cnat the interval [0, 21−s] is subdivided further, to
machine precision, and in this sense Dp,s

nat can be seen as a limited precision variant of Cnat. As
is the case with Cnat, the mantissa is ignored, and one communicates exponents only. The norm
compression is particularly useful on the master side since multiplication by a naturally compressed
norm is just summation of the exponents.
The main result of this section establishes natural dithering as belonging to the class B(ω):

Theorem 7 Dp,s
nat ∈ B(ω), where ω = 1/8 + d1/r21−smin

{
1, d1/r21−s

}
, and r = min{p, 2}.

To illustrate the strength of this result, we now compare natural dithering Dp,s
nat to standard

dithering Dp,s
sta and show that natural dithering is exponentially better than standard dithering. In
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Figure 6: Training throughput speedup. Cnat deterministic rounds numbers to the nearest power of 2.

particular, for the same level of variance, Dp,s
nat uses only s levels while Dp,u

sta uses u = 2s−1 levels.
Note also that the levels used by Dp,s

nat form a subset of the levels used by Dp,s
sta (see Figure 22). We

also confirm this empirically (see Appendix A.2).

Theorem 8 Fixing s, natural dithering Dp,s
nat has O(2s−1/s) times smaller variance than standard

dithering Dp,s
sta. Fixing ω, if u = 2s−1, then Dp,u

sta ∈ B(ω) implies that Dp,s
nat ∈ B(9/8(ω + 1)− 1).

4. Distributed SGD

There are several stochastic gradient-type methods (Robbins and Monro, 1951; Bubeck et al.,
2015; Ghadimi and Lan, 2013; Mishchenko et al., 2019) for solving (1) that are compatible with
compression operators C ∈ B(ω), and hence also with our natural compression (Cnat) and natural
dithering (Dp,s

nat) techniques. However, as none of them support compression at the master node
we propose a distributed SGD algorithm that allows for bidirectional compression (Algorithm 1 in
Appendix D.1). We note that there are two concurrent papers to ours (all appeared online in the same
month and year) proposing the use of bidirectional compression, albeit in conjunction with different
underlying algorithms, such as SGD with error feedback or local updates (Tang et al., 2019; Zheng
et al., 2019). Since we instead focus on vanilla distributed SGD with bidirectional compression, the
algorithmic part of our paper is complementary to theirs. Moreover, our key contribution—the highly
efficient natural compression and dithering compressors—can be used within their algorithms as
well, which expands their impact further.
We assume repeated access to unbiased stochastic gradients gi(xk) with bounded variance σ2

i for
every worker i. We also assume node similarity represented by constant ζ2i , and that f is L-smooth
(gradient is L-Lipschitz). Formal definitions as well as detailed explanation of Algorithm 1 can be
found in Appendix D. We denote ζ2 = 1

n

∑n
i=1 ζ

2
i , σ2 = 1

n

∑n
i=1 σ

2
i and

α = (ωM+1)(ωW+1)
n σ2 + (ωM+1)ωW

n ζ2, β = 1 + ωM + (ωM+1)ωW

n , (4)

where CM ∈ B(ωM ) is the compression operator used by the master node, CWi ∈ B(ωWi) are the
compression operators used by the workers and ωW := maxi∈[n] ωWi .

Theorem 9 Let CM ∈ B(ωM ), CWi ∈ B(ωWi) and ηk ≡ η ∈ (0, 2/βL), where α, β are as in (4). If
a is picked uniformly at random from {0, 1, · · · , T − 1}, then

E
[
∥∇f(xa)∥2

]
≤ 2(f(x0)−f(x⋆))

η(2−βLη)T + αLη
2−βLη , (5)

9
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where x⋆ is an opt. solution of (1). In particular, if we fix any ε > 0 and choose η = ε
L(α+εβ) and

T ≥ 2L(f(x0)−f(x⋆))(α+εβ)/ε2, then E
[
∥∇f(xa)∥2

]
≤ ε .

The above theorem has some interesting consequences. First, notice that (5) posits a O(1/T)
convergence of the gradient norm to the value αLη

2−βLη , which depends linearly on α. In view of (4), the
more compression we perform, the larger this value becomes. More interestingly, assume now that the
same compression operator is used at each worker: CW = CWi . Let CW ∈ B(ωW ) and CM ∈ B(ωM )
be the compression on master side. Then, T (ωM , ωW ) := 2L(f(x0) − f(x⋆))ε−2(α + εβ) is
its iteration complexity. In the special case of equal data on all nodes, i.e., ζ = 0, we get α =
(ωM+1)(ωW+1)σ2/n and β = (ωM + 1) (1 + ωW/n). If no compression is used, then ωW = ωM = 0
and α+ εβ = σ2/n + ε. So, the relative slowdown of Algorithm 1 used with compression compared
to Algorithm 1 used without compression is given by

T (ωM ,ωW )
T (0,0) = (ωM + 1)

(
(ωW+1)σ2

n +(1+ωW/n)ε

)
/(σ2/n+ε) ∈ (ωM + 1, (ωM + 1)(ωW + 1)] .

The upper bound is achieved for n = 1 (or for any n and ε → 0), and the lower bound is achieved
in the limit as n → ∞. So, the slowdown caused by compression on worker side decreases with
n. More importantly, the savings in communication due to compression can outweigh the iteration
slowdown, which leads to an overall speedup! See Table 1 for the computation of the overall worker
to master speedup achieved by our compression techniques (also see Appendix D.7 for additional
similar comparisons under different cost/speed models). Notice that, however, standard sparsification
does not necessarily improve the overall running time — it can make it worse. Our methods have the
desirable property of significantly uplifting the minimal speedup comparing to their “non-natural”
version. The minimal speedup is more important as usually the number of nodes n is not large.

10
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Table 2: TopK and TopK-Cnat comparison. The first column displays the level of sparsity K and for
the other columns, we report (the relative # of comm. bits comparing to no compression, the final
test accuracy).

K w/o Cnat w/ Cnat
0.39% (0.78%, 93.72± 0.07%) (0.48%,93.93± 0.26%)
1.56% (3.12%, 94.21± 0.06%) (1.95%,94.47± 0.13%)
6.25% (12.5%, 93.93± 0.53%) (7.81%,94.13± 0.26%)

5. Experiments

To showcase properties of our approach in practice, we built a proof-of-concept system and provide
evaluation results. We illustrate convergence behavior, training throughput speedup, and transmitted
data reduction. Experimental setup and implementation details are presented in Appendix B.
Results. We first elaborate the microbenchmark experiments of aggregated tensor elements (ATE)
per second. We collect time measurements for aggregating 200 tensors with the size of 100MB,
and present violin plots which show the median, min, and max values among workers. Figure 8
shows the result where we vary the number of workers between 4 and 8. The performance difference
observed for the case of Cnat, along with the similar performance for Cnat deterministic indicate that
the overhead of doing stochastic rounding at the aggregator is a bottleneck.
We then illustrate the convergence behavior by training ResNet110 and AlexNet models on CIFAR10.
Figure 5 shows the train loss and test accuracy over time. We note that natural compression lowers
training time by ∼ 26% for ResNet110 (2.89× more comparing to only 9% decrease for QSGD for
the same setup, see (Alistarh et al., 2017) (Table 1)) and 66% for AlexNet, compared to using no
compression, while the accuracy matches the results in (He et al., 2016) without any loss of final
accuracy using the same hyperparameters setting, and training loss is not affected by compression.
In addition, combining Cnat with other compression operators, we can see no effect in convergence,
but significant reduction in communication, e.g., 16× fewer levels for Dp,s

nat w.r.t. Dp,s
sta; see Figure 7

and for other compressions see Figure 19 and 20 in Appendix.
To further demonstrate the convergence behavior of Cnat, we run experiments which conform to the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC).

We also train Neural Collaborative Filtering (NCF) (He et al., 2017) on MovieLens-20M Dataset
using Cnat and compare its convergence to no compression. We follow publicly available benchmark1

and apply Cnat on it without modifying any hyperparameter (detailed in Appendix B.1.4 and B.1.5).

1. https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/
Classification/RN50v1.5 and https://github.com/NVIDIA/DeepLearningExamples/
tree/master/PyTorch/Recommendation/NCF
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Table 3: TopK-Cnat vs. several state-of-the-art (SOTA) compressors. The first column lists SOTA
methods, the second relative number of comm. bits comparing to no compression (SGD), the fourth
displays the level of sparsity K for which the number of comm. bits matches SOTA method for the
given row and the third and fifth display the final test accuracy for SOTA and TopK-Cnat, respectively.

SOTA Relat. Comm. SOTA Perf. K TopK-Cnat Perf.
SGD 100% 93.69± 0.32% N/A N/A

SignSGD 3.12% 93.47± 0.29% 2.5% 94.28 ± 0.12%

EF-SignSGD 3.12% 93.81± 0.06% 2.5% 94.28 ± 0.12%

PowerSGD-Rank2 0.74% 94.26 ± 0.22% 0.6% 94.23± 0.01%

PowerSDG-Rank7 2.36% 94.24± 0.09% 1.9% 94.25 ± 0.10%

As shown in Figure 10 and 11, Cnat does not incur any accuracy loss even if applied on 16-worker
distributed tasks. Next, we report the speedup measured in average training throughput while
training benchmark CNN models on Imagenet dataset for one epoch. The throughput is calculated
as the total number of images processed divided by the time elapsed. Figure 6 shows the speedup
normalized by the training throughput of the baseline, that is, TensorFlow + Horovod using the NCCL
communication library. We further break down the speedup by showing the relative speedup of
In-Network Aggregation, which performs no compression but reduces the volume of data transferred
(shown in Figure9). We also show the effects of deterministic rounding on throughput. Because
deterministic rounding does not generate random numbers, it provides some additional speedups.
However, it may affect convergence. These results represent potential speedups in case the overheads
of randomization were low, for instance, when using pre-computed random numbers. We observe that
the communication-intensive models (VGG, AlexNet) benefit more from quantization as compared to
the computation-intensive models (GoogleNet, Inception, ResNet). These observations are consistent
with prior work (Alistarh et al., 2017). To quantify the data reduction benefits of natural compression,
we measure the total volume of data transferred during training. Figure 9 shows that data transferred
grows linearly over time, as expected. Natural compression saves 84% of data, which greatly
reduces communication time. Figure 10 also shows weak scaling for training ResNet50 on ImageNet,
indicating that Cnat in itself does not have a negative effect on weak scaling. Further details are
presented in Appendix A.
Next, we show that Cnat can be composed with other compression operators and hence can further
reduce the communicated data volume without a drop in model performance. We compose Cnat
with TopK (Alistarh et al., 2018), meaning that we apply Cnat to the gradients whose absolute
values are among the largest K% ones. Note that, we need to send gradient values along with
their indices, and we cannot apply Cnat on the indices. Thus, the TopK-Cnat compressor achieves
K/4 + K = 0.625 ∗ (2K) communicated data ratio — a 37.5% saving compared to the original
TopK compressor. We evaluate TopK-Cnat following Table 4 in (Vogels et al., 2019). We modify
the official repo2 to use TopK-Cnat and train small cifar version of ResNet18 model on the CIFAR10
dataset, all hyperparameters are kept the same as in the repo. In Table 2, we compare several levels
of plain TopK compressions with TopK-Cnat and we show that TopK-Cnat achieves better testing
accuracy compared to the baseline with the same sparsity K while communicating significantly less
bits. With the ability to tune K, we concluded an experiment where we compare TopK-Cnat with

2. https://github.com/epfml/powersgd
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several state-of-the-art compressors (Karimireddy et al., 2019; Zheng et al., 2019; Bernstein et al.,
2018; Vogels et al., 2019) by setting K so that the transmission amount are the same. In Table 3,
we show that with the same communication budget, TopK-Cnat performs better than sign based
methods and equally well compared to PowerSGD. It’s important to mention that we simply use
the same hyperparameter settings as SGD, while both sign based methods require extra tuning to
converge. Finally, we note that improvement of TopK-Cnat with respect to plain TopK is limited to
37.5% because of sending indices that can’t be compressed. To alleviate this, we exploit recently
proposed OmniReduce (Fei et al., 2020). It partitions data into blocks and only sends non-zero data
blocks while it greatly reduces the overhead of transmitting indices and works well especially with
block-based compression methods. We integrate Cnat into OmniReduce and run microbenchmark
experiments on 8 machines. Figure 12 shows Cnat further improves Omnireduce and achieves 30x
speedup compared to NCCL when the tensor has 1% of non-zero elements.

6. Conclusions and Future Work

We have propose two new compression operators: natural compression Cnat and natural dithering
Dp,s

nat. Moreover, we have developed a general theory for SGD with arbitrary bi-directional com-
pression, which allowed us to show that our new compression operators bring substantial savings
in the amount of communication per iteration with minimal or unnoticeable increase in the number
of communications when compared to their “non-natural” variants, e.g., Dp,s

nat vs. Dp,u
sta , resulting

in a faster overall running time. Moreover, our compression techniques are compatible with other
compression techniques, and this combination leads to a theoretically superior method. Our exper-
iments corroborate these theoretical predictions and we indeed observe speedups on a variety of
tasks. Lastly, there are a number of directions which we did not explore, including very large scale
experiments, different usage of our compression techniques beyond centralized parallel optimization
and beyond SGD. We plan to examine these in future work.
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with compressed gradient differences. arXiv preprint arXiv:1901.09269, 2019.

T. Na, J. H. Ko, J. Kung, and S. Mukhopadhyay. On-chip training of recurrent neural networks with
limited numerical precision. In 2017 International Joint Conference on Neural Networks (IJCNN),
2017.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course. 2013.

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A lock-free approach to
parallelizing stochastic gradient descent. In Advances in Neural Information Processing Systems,
2011.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of Mathematical
Statistics, 1951.

L. Roberts. Picture coding using pseudo-random noise. IRE Transactions on Information Theory,
1962.

Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis, Changhoon Kim, Arvind
Krishnamurthy, Masoud Moshref, Dan R. K. Ports, and Peter Richtárik. Scaling Distributed
Machine Learning with In-Network Aggregation. In NSDI, 2021.

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent and
application to data-parallel distributed training of speech dnns. In Interspeech 2014, 2014.

Ohad Shamir, Nati Srebro, and Tong Zhang. Communication-efficient distributed optimization using
an approximate Newton-type method. In Proceedings of the 31st International Conference on
Machine Learning, 2014.

Sebastian U. Stich. Local SGD converges fast and communicates little. CoRR, abs/1805.09767,
2018.

Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified SGD with memory. In
Advances in Neural Information Processing Systems 31. 2018.

John Z Sun and Vivek K Goyal. Scalar quantization for relative error. In 2011 Data Compression
Conference. IEEE, 2011.

John Z Sun, Grace I Wang, Vivek K Goyal, and Lav R Varshney. A framework for bayesian optimality
of psychophysical laws. Journal of Mathematical Psychology, 2012.

Ananda Theertha Suresh, Felix X. Yu, Sanjiv Kumar, and H. Brendan McMahan. Distributed mean
estimation with limited communication. In Proceedings of the 34th International Conference on
Machine Learning, 2017.

Hanlin Tang, Chen Yu, Xiangru Lian, Tong Zhang, and Ji Liu. DoubleSqueeze: Parallel stochastic
gradient descent with double-pass error-compensated compression. In Proceedings of the 36th
International Conference on Machine Learning, Long Beach, California, USA, 2019. PMLR.

16



NATURAL COMPRESSION FOR DISTRIBUTED DEEP LEARNING

Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. Powersgd: Practical low-rank gradient
compression for distributed optimization. In Advances in Neural Information Processing Systems,
2019.

Jianqiao Wangni, Jialei Wang, Ji Liu, and Tong Zhang. Gradient sparsification for communication-
efficient distributed optimization. In Advances in Neural Information Processing Systems, pages
1306–1316, 2018.

Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Terngrad:
Ternary gradients to reduce communication in distributed deep learning. In Advances in Neural
Information Processing Systems, 2017.

Hantian Zhang, Jerry Li, Kaan Kara, Dan Alistarh, Ji Liu, and Ce Zhang. ZipML: Training linear
models with end-to-end low precision, and a little bit of deep learning. In Proceedings of the 34th
International Conference on Machine Learning, 2017.

Shuai Zheng, Ziyue Huang, and James Kwok. Communication-efficient distributed blockwise
momentum sgd with error-feedback. In Advances in Neural Information Processing Systems,
2019.

17



HORVÁTH HO HORVÁTH SAHU CANINI RICHTÁRIK

Appendix
For easy navigation through the Paper and the Appendices, we provide a table of contents.

Contents

1 Introduction 2

2 Natural Compression 5

3 Natural Dithering 7

4 Distributed SGD 9

5 Experiments 11

6 Conclusions and Future Work 13

A Extra Experiments 20
A.1 Convergence Tests on CIFAR 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
A.2 Dp,s

nat vs. Dp,u
sta : Empirical Variance . . . . . . . . . . . . . . . . . . . . . . . . . . 21

A.2.1 Dp,s
nat has exponentially better variance . . . . . . . . . . . . . . . . . . . . 21

A.2.2 Dp,s
nat needs exponentially less levels to achieve the same variance . . . . . 21

A.2.3 Dp,s
sta can outperform Dp,s

nat in the big s regime . . . . . . . . . . . . . . . . 22
A.2.4 Compressing gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

A.3 Different Compression Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

B Experimental setup 25
B.1 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

B.1.1 DenseNet Hyperparameters: . . . . . . . . . . . . . . . . . . . . . . . . . 26
B.1.2 AlexNet Hyperparameters: . . . . . . . . . . . . . . . . . . . . . . . . . . 27
B.1.3 ResNet Hyperparameters for CIFAR10: . . . . . . . . . . . . . . . . . . . 27
B.1.4 ResNet Hyperparameters for ImageNet: . . . . . . . . . . . . . . . . . . . 27
B.1.5 NCF Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

C Details and Proofs for Sections 2 and 3 28
C.1 Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
C.2 Proof of Theorem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
C.3 Proof of Theorem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
C.4 Proof of Theorem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
C.5 Proof of Theorem 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
C.6 Natural Compression and Dithering Allow for Fast Aggregation . . . . . . . . . . 31

18



NATURAL COMPRESSION FOR DISTRIBUTED DEEP LEARNING

D Details and Proofs for Section 4 31
D.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
D.2 Assumptions and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
D.3 Description of Algorithm 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
D.4 Three Lemmas Needed for the Proof of Theorem 9 . . . . . . . . . . . . . . . . . 33
D.5 Proof of Theorem 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
D.6 A Different Stepsize Rule for Theorem 9 . . . . . . . . . . . . . . . . . . . . . . . 35
D.7 SGD with Bidirectional Compression: Four Models . . . . . . . . . . . . . . . . . 36

D.7.1 Model 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
D.7.2 Model 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
D.7.3 Model 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
D.7.4 Model 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
D.7.5 Communication strategies used in Tables 1, 5, 7, 8 . . . . . . . . . . . . . 38

D.8 Sparsification - Formal Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 39

E Limitations and Extensions 39

19



HORVÁTH HO HORVÁTH SAHU CANINI RICHTÁRIK

0 40 80 120 160 200 240 280
Epochs

0.5

1.0

1.5

2.0
Tr

ai
ni

ng
 lo

ss
Cnat
No Compression

0 35 70 105 140 175 210
Time(s)

0.5

1.0

1.5

2.0

Tr
ai

ni
ng

 lo
ss

1.26x faster

Cnat
No Compression

0 35 70 105 140 175 210
Time(min)

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

1.26x faster

Cnat
No Compression

Figure 13: DenseNet40 (k = 12)
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Figure 14: AlexNet (Batch size: 256, 512 and 1024)

Appendix A. Extra Experiments

A.1. Convergence Tests on CIFAR 10

In order to validate that Cnat does not incur any loss in performance, we trained various DNNs on
the Tensorflow CNN Benchmark3 on the CIFAR 10 dataset with and without Cnat for the same
number of epochs, and compared the test set accuracy, and training loss. As mentioned earlier, the
baseline for comparison is the default NCCL setting. We didn’t tune the hyperparameters. In all of
the experiments, we used Batch Normalization, but no Dropout was used.

Looking into Figures 13, 14 and 15, one can see that Cnat achieves significant speed-up without
incurring any accuracy loss. As expected, the communication intensive AlexNet (62.5 M parameters)
benefits more from the compression than the computation intensive ResNets (< 1.7 M parameters)
and DenseNet40 (1 M parameters).

3. https://github.com/tensorflow/benchmarks
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Figure 15: ResNet (#layers: 20, 44 and 56)

A.2. Dp,s
nat vs. Dp,u

sta : Empirical Variance

In this section, we perform experiments to confirm that Dp,s
nat level selection brings not just theoretical

but also practical performance speedup in comparison to Dp,u
sta . We measure the empirical variance of

Dp,u
sta and Dp,s

nat. For Dp,s
nat, we do not compress the norm, so we can compare just variance introduced

by level selection. Our experimental setup is the following. We first generate a random vector x of
size d = 105, with independent entries with Gaussian distribution of zero mean and unit variance (we
tried other distributions, the results were similar, thus we report just this one) and then we measure
normalized empirical variance

ω(x) :=
∥C(x)− x∥2

∥x∥2
.

We provide boxplots, each for 100 randomly generated vectors x using the above procedure. We
perform this for p = 1, p = 2 and p = ∞. We report our findings in Figure 16, Figure 17 and
Figure 18. These experimental results support our theoretical findings.

A.2.1. Dp,s
nat HAS EXPONENTIALLY BETTER VARIANCE

In Figure 16, we compare Dp,s
nat and Dp,u

sta for u = s, i.e., we use the same number of levels for both
compression strategies. In each of the three plots we generated vectors x with a different norm. We
find that natural dithering has dramatically smaller variance, as predicted by Theorem 8.

A.2.2. Dp,s
nat NEEDS EXPONENTIALLY LESS LEVELS TO ACHIEVE THE SAME VARIANCE

In Figure 17, we set the number of levels for Dp,u
sta to u = 2s−1. That is, we give standard dithering

an exponential advantage in terms of the number of levels (which also means that it will need more
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Figure 16: Dp,s
nat vs. Dp,u

sta with u = s.

bits for communication). We now study the effect of this change on the variance. We observe that
the empirical variance is essentially the same for both, as predicted by Theorem 8.
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Figure 17: Dp,s
nat vs. Dp,u

sta with u = 2s−1.

A.2.3. Dp,s
sta CAN OUTPERFORM Dp,s

nat IN THE BIG s REGIME

We now remark on the situation when the number of levels s is chosen to be very large (see Figure 18).
While this is not a practical setting as it does not provide sufficient compression, it will serve as
an illustration of a fundamental theoretical difference between Dp,s

sta and Dp,s
nat in the s → ∞ limit

which we want to highlight. Note that while Dp,s
sta converges to the identity operator as s → ∞,

which enjoys zero variance, Dp,s
nat converges to Cnat instead, with variance that can’t reduce below

ω = 1/8. Hence, for large enough s, one would expect, based on our theory, the variance of Dp,s
nat to

be around 1/8, while the variance of Dp,s
sta to be closer to zero. In particular, this means that Dp,s

sta can,
in a practically meaningless regime, outperform Dp,s

nat. In Figure 18 we choose p = ∞ and s = 32
(this is large). Note that, as expected, the empirical variance of both compression techniques is small,
and that, indeed, Dp,s

sta outperforms Dp,s
nat.
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Figure 18: When p = ∞ and s is very large, the empirical variance of Dp,s
sta can be smaller than that

of Dp,s
nat. However, in this case, the variance of Dp,s

nat is already negligible.
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A.2.4. COMPRESSING GRADIENTS

We also performed identical to those reported above, but with a different generation technique of the
vectors x. In particular, instead of a synthetic Gaussian generation, we used gradients generated by
our optimization procedure as applied to the problem of training several deep learning models. Our
results were essentially the same as the ones reported above, and hence we do not include them.

A.3. Different Compression Operators

We report additional experiments where we compare our compression operator to previously proposed
ones. These results are based on a Python implementation of our methods running in PyTorch as this
enabled a rapid direct comparisons against the prior methods. We compare against no compression,
random sparsification, and random dithering methods. We compare on MNIST and CIFAR10 datasets.
For MNIST, we use a two-layer fully connected neural network with RELU activation function. For
CIFAR10, we use VGG11 with one fully connected layer as the classifier. We run these experiments
with 4 workers and batch size 32 for MNIST and 64 for CIFAR10. The results are averages over 3
runs.

We tune the step size for SGD for a given “non-natural” compression. Then we use the same
step size for the “natural” method. Step sizes and parameters are listed alongside the results.

Figures 19 and 20 illustrate the results. Each row contains four plots that illustrate, left to right,
(1) the test accuracy vs. the volume of data transmitted from workers to master (measured in bits),
(2) the test accuracy over training epochs, (3) the training loss vs. the volume of data transmitted,
and (4) the training loss over training epochs.

One can see that in terms of epochs, we obtain almost the same result in terms of training loss
and test accuracy, sometimes even better. On the other hand, our approach has a huge impact on
the number of bits transmitted from workers to master, which is the main speedup factor together
with the speedup in aggregation if we use In-Network Aggregation (INA). Moreover, with INA we
compress updates also from master to nodes, hence we send also fewer bits. These factors together
bring significant speedup improvements, as illustrated in Figure 6, which strongly suggests similar
speed-up in training time as observed for Cnat, see e.g. Section 5.
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(a) No Additional compression, step size 0.1.
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(b) Random sparsification, step size 0.04, sparsity 10%.
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(c) Random sparsification with non-uniform probabilities (Wangni et al., 2018), step size 0.04, sparsity
10%.
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Figure 19: CIFAR10 with VGG11.
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(b) Random sparsification, step size 0.04, sparsity 10%.
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(c) Random sparsification with non-uniform probabilities (Wangni et al., 2018), step size 0.04, sparsity
10%.

0.00 0.25 0.50 0.75 1.00 1.25 1.50
bits 1e11

92

94

96

98

te
st

 a
cc

ur
ac

y

2, 27
sta  + None
2, 8
nat + nat 

5 10 15 20
epochs

92

94

96

98

te
st

 a
cc

ur
ac

y

2, 27
sta  + None
2, 8
nat + nat 

0.00 0.25 0.50 0.75 1.00 1.25 1.50
bits 1e11

0.2

0.4

0.6

tra
in

in
g 

lo
ss

2, 27
sta  + None
2, 8
nat + nat 

5 10 15 20
epochs

0.2

0.4

0.6

tra
in

in
g 

lo
ss

2, 27
sta  + None
2, 8
nat + nat 

(d) Random dithering, step size 0.01, s = 8, u = 27, second norm.

Figure 20: MNIST with 2 fully conected layers.

Appendix B. Experimental setup

Our experiments execute the standard CNN benchmark4. We summarize the hyperparameters setting
in Appendix B.1.2. We further present results for two more variations of our implementation: one
without compression (providing the baseline for In-Network Aggregation (Sapio et al., 2021)), and
the other with deterministic rounding to the nearest power of 2 to emphasize that there exists a
performance overhead of sampling in natural compression.

We implement the natural compression operator within the Gloo communication library5, as a
drop-in replacement for the ring all-reduce routine. Our implementation is in C++. We integrate
our communication library with Horovod and, in turn, with TensorFlow. We follow the same
communication strategy introduced in SwitchML (Sapio et al., 2021), which aggregates the deep
learning model’s gradients using In-Network Aggregation on programmable network switches. We
choose this strategy because natural compression is a good fit for the capabilities of this class of

4. https://github.com/tensorflow/benchmarks
5. https://github.com/facebookincubator/gloo
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modern hardware, which only supports basic integer arithmetic, simple logical operations and limited
storage.

A worker applies the natural compression operator to quantize gradient values and sends them to
the aggregator component. As in SwitchML, an aggregator is capable of aggregating a fixed-length
array of gradient values at a time. Thus, the worker sends a stream of network packets, each carrying
a chunk of compressed values. For a given chunk, the aggregator awaits all values from every worker;
then, it restores the compressed values as integers, aggregates them and applies compression to
quantize the aggregated values. Finally, the aggregator multicasts back to the workers a packet of
aggregated values.

For implementation expedience, we prototype the In-Network Aggregation as a server-based
program implemented atop DPDK6 for fast I/O performance. We leave to future work a complete P4
implementation for programmable switches; however, we note that all operations (bit shifting, mask-
ing, and random bits generation) needed for our compression operator are available on programmable
switches.

Implementation optimization. We carefully optimize our implementation using modern x86
vector instructions (AVX2) to minimize the overheads in doing compression. To fit the byte length
and access memory more efficiently, we compress a 32-bit floating point numbers to an 8-bit
representation, where 1 bit is for the sign and 7 bits are for the exponent. The aggregator uses
64-bit integers to store the intermediate results, and we choose to clip the exponents in the range of
−50 ∼ 10. As a result, we only use 6 bits for exponents. The remaining one bit is used to represent
zeros. Note that it is possible to implement 128-bit integers using two 64-bit integers, but we found
that, in practice, the exponent values never exceed the range of −50 ∼ 10 (Figure 21).

Despite the optimization effort, we identify non-negligible 10 ∼ 15% overheads in doing random
number generation used in stochastic rounding, which was also reported in (Hubara et al., 2017).
We include the experimental results of our compression operator without stochastic rounding as
a reference. There could be more efficient ways to deal with stochastic rounding, but we observe
that doing deterministic rounding gives nearly the same training curve in practice meaning that
computational speed up is neutralized by slower convergence due to biased compression operator.

Hardware setup. We run the workers on 8 machines configured with 1 NVIDIA P100 GPU,
dual CPU Intel Xeon E5-2630 v4 at 2.20GHz, and 128 GB of RAM. The machines run Ubuntu
(Linux kernel 4.4.0-122) and CUDA 9.0. Following (Sapio et al., 2021), we balance the workers
with 8 aggregators (4 aggregators in the case of 4 workers) running on machines configured with
dual Intel Xeon Silver 4108 CPU at 1.80 GHz. Each machine uses a 10 GbE network interface
and has CPU frequency scaling disabled. The chunks of compressed gradients sent by workers are
uniformly distributed across all aggregators. This setup ensures that workers can fully utilize their
network bandwidth and match the performance of a programmable switch. We leave the switch-based
implementation for future work.

B.1. Hyperparameters

B.1.1. DENSENET HYPERPARAMETERS:

We trained DenseNet40 (k = 12) and followed the same training procedure as described in (Huang
et al., 2017). We used a weight decay of 10−4 and the optimizer as vanilla SGD. We trained for a

6. https://www.dpdk.org
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Figure 21: Histogram of exponents of gradients exchanged during the entire training process for
ResNet110 (left) and Alexnet (right). Red lines denote the minimum and maximum exponent values
of all gradients.

total of 300 epochs. The initial learning rate was 0.1, which was decreased by a factor of 10 at 150
and 225 epoch.

B.1.2. ALEXNET HYPERPARAMETERS:

For AlexNet, we chose the optimizer as SGD with momentum, with a momentum of 0.9. We trained
on three minibatch sizes: 256, 512 and 1024 for 200 epochs. The learning rate was initially set to be
0.001, which was decreased by a factor of 10 after every 30 epoch.

B.1.3. RESNET HYPERPARAMETERS FOR CIFAR10:

All the ResNets followed the training procedure as described in (He et al., 2016). We used a weight
decay of 10−4 and the optimizer was chosen to be vanilla SGD. The minibatch size was fixed to be
128 for ResNet 20, and 256 for all the others. We train for a total of 64K iterations. We start with an
initial learning rate of 0.1, and multiply it by 0.1 at 32K and 48K iterations.

B.1.4. RESNET HYPERPARAMETERS FOR IMAGENET:

The model trains for 50 epochs on 8 and 16 workers, with default ResNet50 setup: SGD optimizer
with 0.875 momentum, cosine learning rate schedule with 0.256 initial learning rate and linear
warmup during the first 8 epochs. The weight decay is set to 1/32768 and is not applied on Batch
Norm trainable parameters. Furthermore, 0.1 label smoothing is used.

B.1.5. NCF HYPERPARAMETERS

Neural Collaborative Filtering is a big recommendation model with ∼32 million parameters. The
model trains for 20 epochs on 8 workers with ADAM optimizer (Kingma and Ba, 2015) (lr=
4.5× 10−3, β1 = 0.25, β2 = 0.5), a global batch-size of 220, and a dropout ratio of 0.5. No weigt
decay is applied.
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Appendix C. Details and Proofs for Sections 2 and 3

C.1. Proof of Theorem 3

By linearity of expectation, the unbiasedness condition and the second moment condition (3) have
the form

E [(C(x))i] = xi, ∀x ∈ Rd, ∀i ∈ [d] (6)

and
d∑

i=1

E
[
(C(x))2i

]
≤ (ω + 1)

d∑
i=1

x2i , ∀x ∈ Rd. (7)

Recall that Cnat(t) can be written in the form

Cnat(t) = sign(t) · 2⌊log2 |t|⌋(1 + λ(t)). (8)

where the last step follows since p(t) = 2⌈log2 |t|⌉−|t|
2⌊log2 |t|⌋ . Hence,

E [Cnat(t)]
(8)
= E

[
sign(t) · 2⌊log2 |t|⌋(1 + λ(t))

]
= sign(t) · 2⌊log2 |t|⌋ (1 + E [λ(t)])

= sign(t) · 2⌊log2 |t|⌋ (1 + 1− p(t)) = t,

This establishes unbiasedness (6).
In order to establish (7), it suffices to show that E

[
(Cnat(x))2i

]
≤ (ω + 1)x2i for all xi ∈ R.

Since by definition (Cnat(x))i = Cnat(xi) for all i ∈ [d], it suffices to show that

E
[
(Cnat(t))2

]
≤ (ω + 1)t2, ∀t ∈ R. (9)

If t = 0 or t = sign(t)2α with α being an integer, then Cnat(t) = t, and (9) holds as an identity with
ω = 0, and hence inequality (9) holds for ω = 1/8. Otherwise t = sign(t)2α where a := ⌊α⌋ < α <
⌈α⌉ = a+ 1. With this notation, we can write

E
[
(Cnat(t))2

]
= 22a

2a+1 − |t|
2a

+ 22(a+1) |t| − 2a

2a
= 2a(3|t| − 2a+1).

So,

E
[
(Cnat(t))2

]
t2

=
2a(3|t| − 2a+1)

t2
≤ sup

2a<t<2a+1

2a(3|t| − 2a+1)

t2

= sup
1<θ<2

2a(3 · 2aθ − 2a+1)

(2aθ)2
= sup

1<θ<2

3θ − 2

θ2
.

The optimal solution of the last maximization problem is θ = 4
3 , with optimal objective value 9

8 . This
implies that (9) holds with ω = 1

8 .
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C.2. Proof of Theorem 4

Let assume that there exists some ω < ∞ for which Cint is the ω quantization. Unbiased rounding to
the nearest integer can be defined in the following way

Cint(xi) :=

{
⌊xi⌋, with probability p(xi),

⌈xi⌉, with probability 1− p(xi),

where p(xi) = ⌈xi⌉ − xi. Let’s take 1-D example, where x ∈ (0, 1), then

E
[
Cint(x2)

]
= (1− x)02 + x12 = x ≤ ωx2,

which implies ω ≥ 1/x, thus taking x → 0+, one obtains ω → ∞, which contradicts the existence
of finite ω.

C.3. Proof of Theorem 5

The main building block of the proof is the tower property of mathematical expectation. The tower
property says: If X and Y are random variables, then E [X] = E [E [X | Y ]] . Applying it to the
composite compression operator C1 ◦ C2, we get

E [(C1 ◦ C2) (x)] = E [E [C1(C2(x)) | C2(x)]]
(3)
= E [C2(x)]

(3)
= x .

For the second moment, we have

E
[
∥(C1 ◦ C2) (x)∥2

]
= E

[
E
[
∥C1(C2(x))∥2 | C2(x)

]]
(3)
≤ (ω2 + 1)E

[
∥C1(x)∥2

]
(3)
≤ (ω1 + 1)(ω2 + 1) ∥x∥2 ,

which concludes the proof.

C.4. Proof of Theorem 7

Unbiasedness of Dp,s
nat is a direct consequence of unbiasedness of DC,p,s

gen .
For the second part, we first establish a bound on the second moment of ξ:

E

ξ( xi
∥x∥p

)2
 ≤ 1

(
|xi|
∥x∥p

≥ 21−s

)
9

8

|xi|2

∥x∥2p
+ 1

(
|xi|
∥x∥p

< 21−s

)
|xi|
∥x∥p

21−s

≤ 9

8

|xi|2

∥x∥2p
+ 1

(
|xi|
∥x∥p

< 21−s

)
|xi|
∥x∥p

21−s .
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Figure 22: 1D visualization of the workings of natural dithering Dp,s
nat and standard dither-

ing Dp,u
sta with u = 2s−1, with s = 4. Notice that the numbers standard dithering rounds

to, i.e., 0, 1/8, 2/8, . . . , 7/8, 1, form a superset of the numbers natural dithering rounds to, i.e.,
0, 2−3, 2−2, 2−1, 1. Importantly, while standard dithering uses u = 24−1 = 8 levels (i.e., inter-
vals) to achieve a certain fixed variance, natural dithering only needs s = 4 levels to achieve the
same variance. This is an exponential improvement in compression (see Theorem 8 for the formal
statement).

Using this bound, we have

E
[
∥Dp,s

nat(x)∥
2
]

= E
[
∥x∥2p

] d∑
i=1

E

ξ( xi
∥x∥p

)2


(10)
≤ ∥x∥2p

(
9 ∥x∥2

8 ∥x∥2p
+

d∑
i=1

1

(
|xi|
∥x∥p

< 21−s

)
|xi|
∥x∥p

21−s

)

≤ 9

8
∥x∥2 +min

{
21−s ∥x∥p ∥x∥1 , 2

2−2sd ∥x∥2p
}

≤ 9

8
∥x∥2 +min

{
d1/221−s ∥x∥p ∥x∥ , 2

2−2sd ∥x∥2p
}

≤
(
9

8
+ d1/min{p,2}21−smin

{
1, d1/min{p,2}21−s

})
∥x∥2 ,

where the second inequality follows from
∑

min{ai, bi} ≤ min{
∑

ai,
∑

bi} and the last two
inequalities follow from the following consequence of Hölder’s inequality ∥x∥p ≤ d1/p−1/2 ∥x∥ for
1 ≤ p < 2 and from the fact that ∥x∥p ≤ ∥x∥ for p ≥ 2. This concludes the proof.

C.5. Proof of Theorem 8

The main building block of the proof is useful connection between Dp,s
nat and Dp,2s−1

sta , which can be
formally written as

Dp,s
nat(x)

D
= ∥x∥p · sign(x) · Cnat(ξ(x)) , (10)

where (ξ(x))i = ξ(xi/∥x∥p) with levels 0, 1/2s−1, 2/2s−1, · · · , 1 . Graphical visualization can be found
in Figure 22.

Equipped with this, we can proceed with
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E
[∥∥ξ(xi/∥x∥p)

∥∥2] (10)
= E

[∥∥∥∥x∥p · sign(x) · Cnat(ξ(x))∥∥∥2]
= E

[
∥x∥2p

]
· E
[
∥Cnat(ξ(x))∥2

]
Theorem. 3

≤ 9

8
E

[∥∥∥∥x∥p sign(x)ξ(x)∥∥∥2]
=

9

8
E

[∥∥∥Dp,2s−1

sta

∥∥∥2 (x)]
≤ 9

8
(ω + 1),

which concludes the proof.

C.6. Natural Compression and Dithering Allow for Fast Aggregation

Besides communication savings, our new compression operators Cnat (natural compression) and Dp,s
nat

(natural dithering) bring another advantage, which is ease of aggregation. Firstly, our updates allow
in-network aggregation on a primitive switch, which can speed up training by up to 300% (Sapio
et al., 2021) itself. Moreover, our updates are so simple that if one uses integer format on the master
side for update aggregation, then our updates have just one non-zero bit, which leads to additional
speed up. For this reason, one needs to operate with at least 64 bits during the aggregation step, which
is the reason why we also do Cnat compression on the master side; and hence we need to transmit just
exponent to workers. Moreover, the translation from floats to integers and back is computation-free
due to structure of our updates. Lastly, for Dp,s

nat compression we obtain additional speed up with
respect to standard randomized dithering Dp,s

sta as our levels are computationally less expensive due
to their natural compatibility with floating points. In addition, for effective communication one needs
to communicate signs, norm and levels as a tuple for both Dp,s

nat and Dp,s
sta, which needs to be then

multiplied back on the master side. For Dp,s
nat, this is just the summation of exponents rather than

actual multiplication as is the case for Dp,s
sta.

Appendix D. Details and Proofs for Section 4

D.1. Algorithm

D.2. Assumptions and Definitions

Formal definitions of some concepts used in Section follows:

Definition 10 Let fi : Rd → R be fixed function. A stochastic gradient for fi is a random function
gi(x) so that E [gi(x)] = ∇fi(x).

In order to obtain the rate, we introduce additional assumptions on gi(x) and ∇fi(x).

Assumption 1 (Bounded Variance) We say the stochastic gradient has variance at most σ2
i if

E
[
∥gi(x)−∇fi(x)∥2

]
≤ σ2

i for all x ∈ Rd. Moreover, let σ2 = 1
n

∑n
i=1 σ

2
i .
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Algorithm 1 Distributed SGD with bidirectional compression
Input: learning rates {ηk}Tk=0 > 0, initial vector x0

for k = 0, 1, . . . T do
Parallel: Worker side
for i = 1, . . . , n do

compute a stochastic gradient gi(xk) (of fi at xk)
compress it ∆k

i = CWi(gi(x
k))

end for
Master side
aggregate ∆k =

∑n
i=1∆

k
i

compress gk = CM (∆k) and broadcast to each worker
Parallel: Worker side
for i = 1, . . . , n do

xk+1 = xk − ηk

n gk

end for
end for

Assumption 2 (Similarity) We say the variance of gradient among nodes is at most ζ2i if

∥∇fi(x)−∇f(x)∥2 ≤ ζ2i

for all x ∈ Rd. Moreover, let ζ2 = 1
n

∑n
i=1 ζ

2
i .

Moreover, we assume that f is L-smooth (gradient is L-Lipschitz). These are classical as-
sumptions for non-convex SGD (Ghadimi and Lan, 2013; Jiang and Agrawal, 2018; Mishchenko
et al., 2019) and comparing to some previous works (Alistarh et al., 2017), our analysis does not
require bounded iterates and bounded the second moment of the stochastic gradient. Assumption 2
is automatically satisfied with ζ2 = 0 if every worker has access to the whole dataset. If one does
not like Assumption 2 one can use the DIANA algorithm (Horváth et al., 2019) as a base algorithm
instead of SGD, then there is no need for this assumption. For simplicity, we decide to pursue just
SGD analysis and we keep Assumption 2.

D.3. Description of Algorithm 1

Let us describe Algorithm 1. First, each worker computes its own stochastic gradient gi(xk), this
is then compressed using a compression operator CWi (this can be different for every node, for
simplicity, one can assume that they are all the same) and send to the master node. The master node
then aggregates the updates from all the workers, compress with its own operator CM and broadcasts
update back to the workers, which update their local copy of the solution parameter x.

Note that the communication of the updates can be also done in all-to-all fashion, which implicitly
results in CM being the identity operator. Another application, which is one of the key motivations
of our natural compression and natural dithering operators, is in-network aggregation (Sapio et al.,
2021). In this setup, the master node is a network switch. However, current network switches can
only perform addition (not even average) of integers.
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D.4. Three Lemmas Needed for the Proof of Theorem 9

Before we proceed with the theoretical guarantees for Algorithm 1 in smooth non-convex setting,
we first state three lemmas which are used to bound the variance of gk as a stochastic estimator of
the true gradient ∇f(xk). In this sense compression at the master-node has the effect of injecting
additional variance into the gradient estimator. Unlike in SGD, where stochasticity is used to speed
up computation, here we use it to reduce communication.

Lemma 11 (Tower property + Compression) If C ∈ B(ω) and z is a random vector independent
of C, then

E
[
∥C(z)− z∥2

]
≤ ωE

[
∥z∥2

]
; E

[
∥C(z)∥2

]
≤ (ω + 1)E

[
∥z∥2

]
. (11)

Proof Recall from the discussion following Definition 2 that the variance of a compression operator
C ∈ B(ω) can be bounded as

E
[
∥C(x)− x∥2

]
≤ ω ∥x∥2 , ∀x ∈ Rd.

Using this with z = x, this can be written in the form

E
[
∥C(z)− z∥2 | z

]
≤ ω ∥z∥2 , ∀x ∈ Rd , (12)

which we can use in our argument:

E
[
∥C(z)− z∥2

]
= E

[
E
[
∥C(z)− z∥2 | z

]]
(12)
≤ E

[
ω ∥z∥2

]
= ωE

[
∥z∥2

]
.

The second inequality can be proved exactly same way.

Lemma 12 (Local compression variance) Suppose x is fixed, C ∈ B(ω), and gi(x) is an unbiased
estimator of ∇fi(x). Then

E
[
∥C(gi(x))−∇fi(x)∥2

]
≤ (ω + 1)σ2

i + ω ∥∇fi(x)∥2 . (13)

Proof

E
[
∥C(gi(x))−∇fi(x)∥2

]
Def. 10+(3)

= E
[
∥C(gi(x))− gi(x)∥2

]
+ E

[
∥gi(x)−∇fi(x)∥2

]
(11)
≤ ωE

[
∥gi(x)∥2

]
+ E

[
∥gi(x)−∇fi(x)∥2

]
Def. 10+(3)

= (ω + 1)E
[
∥gi(x)−∇fi(x)∥2

]
+ ω ∥∇fi(x)∥2

Assum. 1
≤ (ω + 1)σ2

i + ω ∥∇fi(x)∥2 .
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Lemma 13 (Global compression variance) Suppose x is fixed, CWi ∈ B(ωWi) for all i, CM ∈
B(ωM ), and gi(x) is an unbiased estimator of ∇fi(x) for all i. Then

E

∥∥∥∥∥ 1nCM
(

n∑
i=1

CWi(gi(x))

)∥∥∥∥∥
2
 ≤ α+ β ∥∇f(x)∥2 , (14)

where ωW = maxi∈[n] ωWi and

α =
(ωM + 1)(ωW + 1)

n
σ2 +

(ωM + 1)ωW

n
ζ2 , β = 1 + ωM +

(ωM + 1)ωW

n
. (15)

Proof For added clarity, let us denote

∆ =

n∑
i=1

CWi(gi(x)).

Using this notation, the proof proceeds as follows:

E

[∥∥∥∥ 1nCM (∆)

∥∥∥∥2
]

Def. 10+(3)
= E

[∥∥∥∥ 1nCM (∆)−∇f(x)

∥∥∥∥2
]
+ ∥∇f(x)∥2

Def. 10+(3)
=

1

n2
E
[
∥CM (∆)−∆∥2

]
+ E

[∥∥∥∥ 1n∆−∇f(x)

∥∥∥∥2
]
+ ∥∇f(x)∥2

(11)
≤ ωM

n2
E
[
∥∆∥2

]
+ E

[∥∥∥∥ 1n∆−∇f(x)

∥∥∥∥2
]
+ ∥∇f(x)∥2

Def. 10+(3)
= (ωM + 1)E

[∥∥∥∥ 1n∆−∇f(x)

∥∥∥∥2
]
+ (ωM + 1) ∥∇f(x)∥2

=
ωM + 1

n2

n∑
i=1

E
[
∥CWi(gi(x))−∇fi(x)∥2

]
+ (ωM + 1) ∥∇f(x)∥2

(13)
≤ (ωM + 1)(ωW + 1)

n
σ2 +

(ωM + 1)ωW

n

1

n

n∑
i=1

∥∇fi(x)∥2

+(ωM + 1) ∥∇f(x)∥2

=
(ωM + 1)(ωW + 1)

n
σ2 +

(ωM + 1)ωW

n

1

n

n∑
i=1

∥∇fi(x)−∇f(x)∥2

+

(
1 + ωM +

(ωM + 1)ωW

n

)
∥∇f(x)∥2

Assum. 2
≤ (ωM + 1)(ωW + 1)

n
σ2 +

(ωM + 1)ωW

n
ζ2

+

(
1 + ωM +

(ωM + 1)ωW

n

)
∥∇f(x)∥2 .
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D.5. Proof of Theorem 9

Using L-smoothness of f and then applying Lemma 13, we get

E
[
f(xk+1)

]
≤ E

[
f(xk)

]
+ E

[〈
∇f(xk), xk+1 − xk

〉]
+

L

2
E

[∥∥∥xk+1 − xk
∥∥∥2]

≤ E
[
f(xk)

]
− ηkE

[∥∥∥∇f(xk)
∥∥∥2]+ L

2
η2kE

[∥∥∥∥gkn
∥∥∥∥2
]

(14)
≤ E

[
f(xk)

]
−
(
ηk −

L

2
βη2k

)
E

[∥∥∥∇f(xk)
∥∥∥2]+ L

2
αη2k .

Summing these inequalities for k = 0, ..., T − 1, we obtain

T−1∑
k=0

(
ηk −

L

2
βη2k

)
E

[∥∥∥∇f(xk)
∥∥∥2] ≤ f(x0)− f(x⋆) +

TLαη2k
2

.

Taking ηk = η and assuming

η <
2

Lβ
, (16)

one obtains

E
[
∥∇f(xa)∥2

]
≤ 1

T

T−1∑
k=0

E

[∥∥∥∇f(xk)
∥∥∥2] ≤ 2(f(x0)− f(x⋆))

Tη (2− Lβη)
+

Lαη

2− Lβη
:= δ(η, T ) .

It is easy to check that if we choose η = ε
L(α+εβ) (which satisfies (16) for every ε > 0), then for any

T ≥ 2L(f(x0)−f(x⋆))(α+ϵβ)
ϵ2

we have δ(η, T ) ≤ ε, concluding the proof.

D.6. A Different Stepsize Rule for Theorem 9

Looking at Theorem 9, one can see that setting step size

ηk = η =

√
2(f(x0)− f(x⋆))

LTα

with

T ≥ Lβ2(f(x0)− f(x⋆))

α

(number of iterations), we have iteration complexity

O

(√
(ωW + 1)(ωM + 1)

Tn

)
,

which will be essentially same as doing no compression on master and using CW ◦CM or CW ◦CM on
the workers’ side. Our rate generalizes to the rate in (Ghadimi and Lan, 2013) without compression
and dependency on the compression operator is better comparing to the linear one in (Jiang and
Agrawal, 2018)7. Moreover, our rate enjoys linear speed-up in the number of workers n, the same as

7. (Jiang and Agrawal, 2018) allows compression on the worker side only.

35



HORVÁTH HO HORVÁTH SAHU CANINI RICHTÁRIK

Master can aggregate
real numbers

(e.g., a workstation)

Master can aggregate
integers only

(e.g., SwitchML (Sapio et al., 2021))
Same communication speed both ways MODEL 1 MODEL 3

Master communicates infinitely fast MODEL 2 MODEL 4

Table 4: Four theoretical models.

in (Ghadimi and Lan, 2013). In addition, if one introduces mini-batching on each worker of size b
and assuming each worker has access to the whole data, then σ2 → σ2/b and ζ2 → 0, which implies

O

(√
(ωW + 1)(ωM + 1)

Tn

)
→ O

(√
(ωW + 1)(ωM + 1)

Tbn

)
,

and hence one can also obtain linear speed-up in terms of mini-batch size, which matches with the
results in (Jiang and Agrawal, 2018).

D.7. SGD with Bidirectional Compression: Four Models

It is possible to consider several different regimes for our distributed optimization/training setup,
depending on factors such as:

• The relative speed of communication (per bit) from workers to the master and from the master
to the workers,

• The intelligence of the master, i.e., its ability or the lack thereof of the master to perform
aggregation of real numbers (e.g., a switch can only perform integer aggregation),

• Variability of various resources (speed, memory, etc) among the workers.

For simplicity, we will consider four situations/regimes only, summarized in Table 4.
Direct consequences of Theorem 9: Notice that (5) posits a O(1/T) convergence of the gradient

norm to the value αLη
2−βLη , which depends linearly on α. In view of (4), the more compression we

perform, the larger this value. More interestingly, assume now that the same compression operator
is used at each worker: CW = CWi . Let CW ∈ B(ωW ) and CM ∈ B(ωM ) be the compression
on master side. Then, T (ωM , ωW ) := 2L(f(x0) − f(x⋆))ε−2(α + εβ) is its iteration complexity.
In the special case of equal data on all nodes, i.e., ζ = 0, we get α = (ωM+1)(ωW+1)σ2/n and
β = (ωM + 1) (1 + ωW/n). If no compression is used, then ωW = ωM = 0 and α+ εβ = σ2/n + ε.
So, the relative slowdown of Algorithm 1 used with compression compared to Algorithm 1 used
without compression is given by

T (ωM ,ωW )
T (0,0) =

((ωW+1)σ2/n + (1 + ωW/n)ε)
σ2/n + ε

(ωM + 1) ∈ (ωM + 1, (ωM + 1)(ωW + 1)] . (17)

The upper bound is achieved for n = 1 (or for any n and ε → 0), and the lower bound is achieved
in the limit as n → ∞. So, the slowdown caused by compression on worker side decreases with
n. More importantly, the savings in communication due to compression can outweigh the iteration
slowdown, which leads to an overall speedup!
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D.7.1. MODEL 1

First, we start with the comparison, where we assume that transmitting one bit from worker to node
takes the same amount of time as from master to worker.

Compression
C ∈ B(ω)

No. iterations
T (ω) = O((ω + 1)1+θ)

Bits per iteration
Wi 7→ M +M 7→ Wi

Speedup
T (0)B(0)
T (ω)B(ω)

None 1 2 · 32d 1

Cnat ( 9
8
)1+θ 2 · 9d 2.81×–3.16×

Sq ( d
q
)1+θ 2 · (33 + log2 d)q 0.06×–0.60×

Sq ◦ Cnat ( 9d
8q
)1+θ 2 · (10 + log2 d)q 0.09×–0.98×

Dp,2s−1

sta

(
1 +

√
d21−sκ

)1+θ

2 · (32 + d(s+ 2)) 1.67×–1.78×

Dp,s
nat

(
81
64

+ 9
8

√
d21−sκ

)1+θ

2 · (8 + d(log2 s+ 2)) 3.19×–4.10×

Table 5: Our compression techniques can speed up the overall runtime (number of iterations T (ω)
times the bits sent per iteration) of distributed SGD. We assume binary 32 floating point repre-
sentation, bi-directional compression using C, and the same speed of communication from worker
to master (Wi 7→ M ) and back (M 7→ Wi). The relative number of iterations (communications)
sufficient to guarantee ε optimality is T ′(ω) := (ω+1)θ, where θ ∈ (1, 2] (see Theorem 9). Note that
big n regime leads to a better iteration bound T (ω) since for big n we have θ ≈ 1, while for small
n we have θ ≈ 2. For dithering, κ = min{1,

√
d21−s}. The 2.81× speedup for Cnat is obtained

for θ = 1, and the 3.16× speedup for θ = 0. The speedup was calculated for d = 106, p = 2
(dithering),optimal choice of s (dithering), and q = 0.1d (sparsification).

D.7.2. MODEL 2

For the second model, we assume that the master communicates much faster than workers thus com-
munication from workers is the bottleneck and we don’t need to compress updates after aggregation,
thus CM is identity operator with ωM = 0. This is the case we mention in the main paper. For
completeness, we provide the same table here.

D.7.3. MODEL 3

Similarly to previous sections, we also do the comparison for methods that might be used for In-
Network Aggregation. Note that for INA, it is useful to do compression also from master back to
workers as the master works just with integers, hence in order to be compatible with floats, it needs
to use bigger integers format. Moreover, Cnat compression guarantees free translation to floats. For
the third model, we assume we have the same assumptions on communication as for Model 1. As a
baseline, we take SGD with Cnat as this is the most simple analyzable method, which supports INA.

D.7.4. MODEL 4

Here, we do the same comparison as for Model 3. In contrast, for communication we use the same
assumptions as for Model 2.
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Approach CWi No. iterations Bits per 1 iter. Speedup
T ′(ωW ) = O((ωW + 1)θ) Wi 7→ M Factor

Baseline identity 1 32d 1
New Cnat (9/8)θ 9d 3.2×–3.6×

Sparsification Sq (d/q)θ (33 + log2 d)q 0.6×–6.0×
New Cnat ◦ Sq (9d/8q)θ (10 + log2 d)q 1.0×–10.7×

Dithering Dp,2s−1

sta (1 + κd
1/r21−s)θ 31 + d(2 + s) 1.8×–15.9×

New Dp,s
nat (9/8 + κd

1
r 21−s)θ 31 + d(2 + log2 s) 4.1×–16.0×

Table 6: The overall speedup of distributed SGD with compression on nodes via CWi compared to the
baseline variant without compression. Speed is measured by multiplying the # communication rounds
(i.e., iterations T (ωW )) by the bits sent from worker to master (Wi 7→ M ) per 1 iteration. We neglect
M 7→ Wi communication as this is much faster in practice. We assume binary 32 floating point
representation. The relative # iterations sufficient to guarantee ε optimality is T ′(ωW ) := (ωW +1)θ,
where θ ∈ (0, 1] (see Theorem 9). Note that in the big n regime, the iteration bound T (ωW ) is better
due to θ ≈ 0 (however, this is not very practical as n is usually relatively small), while for small n we
have θ ≈ 1. For dithering, r = min{p, 2}, κ = min{1,

√
d21−s}. The lower bound for the speedup

factor is obtained for θ = 1, and the upper bound for θ = 0. The speedup factor
(
T (ωW )·# Bits
T (0)·32d

)
was

calculated for d = 106, q = 0.1d, p = 2 and the optimal choice of s with respect to speedup.

Approach C Slowdown Bits per iter. Speedup
(iters / baseline) Wi 7→ M +M 7→ Wi factor

Baseline Cnat 1 2 · 9d 1

Sparsification Sq ◦ Cnat (d/q)1+θ 2 · (10 + log2 d)q 0.03×–0.30×
Dithering Dp,s

nat (9/8 + κd
1
r 21−s)1+θ 2 · (8 + d(2 + log2 s)) 1.14×–1.30×

Table 7: Overall speedup (number of iterations T times the bits sent per iteration (Wi 7→ M +
M 7→ Wi) of distributed SGD. We assume binary 32 floating point representation, bi-directional
compression using the same compression C. The relative number of iterations (communications)
sufficient to guarantee ε optimality is displayed in the third column, where θ ∈ (0, 1] (see Theorem 9).
Note that the big n regime leads to a smaller slowdown since we have θ ≈ 0, while for small n,
we have θ ≈ 1. For dithering, we chose p = 2 and κ = min{1,

√
d21−s}. The speedup factor

was calculated for d = 106, p = 2 (dithering), the optimal choice of s (dithering), and q = 0.1d
(sparsification).

D.7.5. COMMUNICATION STRATEGIES USED IN TABLES 1, 5, 7, 8

No Compression or Cnat. Each worker has to communicate a (possibly dense) d dimensional vector
of scalars, each represented by 32 or 9 bits, respectively.

Sparsification Sq with or without Cnat. Each worker has to communicate a sparse vector of q
entries with full 32 or limited 9 bit precision. We assume that q is small, hence one would prefer to
transmit positions of non-zeros, which takes q(log2(d) + 1) additional bits for each worker.

Dithering (Dp,s
sta or Dp,s

nat). Each worker has to communicate 31(8 – Dp,s
nat) bits (sign is always

positive, so does not need to be communicated) for the norm, and log2(s)+1 bits for every coordinate
for level encoding (assuming uniform encoding) and 1 bit for the sign.
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Approach CWi CM Slowdown Wi 7→ M commun. Speedup
(iters / baseline) (bits / iteration) factor

Baseline Cnat Cnat 1 9d 1

Sparsification Sq ◦ Cnat Cnat (d/q)θ (10 + log2 d)q 0.30×–3.00×
Dithering Dp,s

nat Cnat (9/8 + κd
1
r 21−s)θ (8 + d(2 + log2 s)) 1.3×–4.5×

Table 8: Overall speedup (number of iterations T times the bits sent per iteration (Wi 7→ M ) of
distributed SGD. We assume binary 32 floating point representation, bi-directional compression using
CWi , CM . The relative number of iterations (communications) sufficient to guarantee ε optimality is
displayed in the third column, where θ ∈ (0, 1] (see Theorem 9). Note that the big n regime leads to
a smaller slowdown since we have θ ≈ 0, while for small n, we have θ ≈ 1. For dithering, we chose
p = 2 and κ = min{1,

√
d21−s}. The speedup factor was calculated for d = 106, p = 2 (dithering),

the optimal choice of s (dithering), and q = 0.1d (sparsification).

D.8. Sparsification - Formal Definition

Here we give a formal definition of the sparsification operator Sq used in Tables 1, 5,7,8.

Definition 14 (Random sparsification) Let 1 ≤ q ≤ d be an integer, and let ◦ denote the Hadamard
(element-wise) product. The random sparsification operator Sq : Rd → Rd is defined as follows:

Sq(x) =
d

q
· ξ ◦ x,

where ξ ∈ Rd is a random vector chosen uniformly from the collection of all binary vectors
y ∈ {0, 1}d with exactly q nonzero entries (i.e., ∥y∥0 = q}).

The next result describes the variance of Sq:

Theorem 15 Sq ∈ B(d/q − 1).

Notice that in the special case q = d, Sq reduces to the identity operator (i.e., no compression is
applied), and Theorem 15 yields a tight variance estimate: d/d − 1 = 0.
Proof See e.g. (Stich et al., 2018)(Lemma A.1).

Let us now compute the variance of the composition Cnat ◦ Sq. Since Cnat ∈ B(1/8) (Theorem 3)
and Sq ∈ B(d/q − 1) (Theorem 15), in view of the our composition result (Theorem 5) we have

CW = Cnat ◦ Sq ∈ B(ωW ), where ωW =
1

8

(
d

q
− 1

)
+

1

8
+

d

q
− 1 =

9d

8q
− 1. (18)

Appendix E. Limitations and Extensions

Quantization techniques can be divided into two categories: biased (Alistarh et al., 2018; Stich et al.,
2018) and unbiased (Alistarh et al., 2017; Wen et al., 2017; Wangni et al., 2018). While the focus of
this paper was mainly on unbiased quantizations, it is possible to combine our natural quantization
mechanisms in conjunction with biased techniques, such as the TopK sparsifier proposed in (Dryden
et al., 2016; Aji and Heafield, 2017) and recently analyzed in (Alistarh et al., 2018; Stich et al.,
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2018), and still obtain convergence guarantees. We showcase that this combination leads to superior
practical performance in our experiments.
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