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Abstract
We analyze architectural features of Deep Neural Networks (DNNs) using the so-called Neural
Tangent Kernel (NTK), which describes the training and generalization of DNNs in the infinite-
width setting. In this setting, we show that for fully-connected DNNs, as the depth grows, two
regimes appear: freeze (or order), where the (scaled) NTK converges to a constant, and chaos,
where it converges to a Kronecker delta. Extreme freeze slows down training while extreme chaos
hinders generalization. Using the scaled ReLU as a nonlinearity, we end up in the frozen regime.
In contrast, Layer Normalization brings the network into the chaotic regime. We observe a similar
effect for Batch Normalization (BN) applied after the last nonlinearity. We uncover the same
freeze and chaos modes in Deep Deconvolutional Networks (DC-NNs). Our analysis explains the
appearance of so-called checkerboard patterns and border artifacts. Moving the network into the
chaotic regime prevents checkerboard patterns; we propose a graph-based parametrization which
eliminates border artifacts; finally, we introduce a new layer-dependent learning rate to improve
the convergence of DC-NNs. We illustrate our findings on DCGANs: the frozen regime leads to a
collapse of the generator to a checkerboard mode, which can be avoided by tuning the nonlinearity
to reach the chaotic regime. As a result, we are able to obtain good quality samples for DCGANs
without BN.
Keywords: NTK, Freeze, Order, Chaos, Checkerboard patterns, GANs

1. Introduction

The training of Deep Neural Networks (DNN) involves a great variety of architecture choices. It is
therefore crucial to find tools to understand their effects and to compare them. For example, Batch
Normalization (BN) Ioffe and Szegedy (2015) has proven to be crucial in the training of DNNs
but remains ill-understood. While BN was initially introduced to solve the problem of “covariate
shift”, recent results Santurkar et al. (2018) suggest an effect on the smoothness of the loss surface.
Some alternatives to BN have been proposed Lei Ba et al. (2016); Salimans and Kingma (2016);
Klambauer et al. (2017), yet it remains difficult to compare them theoretically. Recent theoretical
results Yang et al. (2019) suggest some relation to the transition from “order” (freeze) to “chaos”
observed as the depth of the NN goes to infinity Poole et al. (2016); Daniely et al. (2016); Yang and
Schoenholz (2017); Schoenholz et al. (2017); Hayou et al. (2019a).

The impact of architecture is very apparent in GANs Goodfellow et al. (2014): their results are
heavily affected by the architecture of the generator and discriminator Radford et al. (2015); Zhang
et al. (2018); Brock et al. (2018); Karras et al. (2018) and the training may fail without BN Arpit
et al. (2016); Xiang and Li (2017).
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Recently, there has been important advances Jacot et al. (2018); Du et al. (2019); Allen-Zhu
et al. (2018); Chizat and Bach (2018b); Lee et al. (2019) in the understanding of the training of
DNNs when the number of neurons in each hidden layer is very large. These results give new
tools to study the asymptotic effect of BN. In particular, the Neural Tangent Kernel (NTK) Jacot
et al. (2018) illustrates the effect of architecture on the training of DNNs and also describes their loss
surface Karakida et al. (2018); Jacot et al. (2020). The NTK can easily be extended to Convolutional
Neural Networks (CNNs) and other architectures Yang (2019); Arora et al. (2019), hence allowing
comparison. Since the first apparition of this work on arxiv, the freeze/chaos regimes for the NTK
has been further observed or studied in Hayou et al. (2019c,b); Xiao et al. (2020); Huang et al.
(2020); Buchanan et al. (2021); Wang et al. (2021). To stay consistent with the literature, we will
henceforth use the term order in place of freeze.

1.1. Our Contributions

In Section 3, we study fully-connected deep neural networks of infinite width as the depth L
increases. Using a characteristic value rσ,β (for the non-linearity σ and the amount of bias β),
we identify two regimes:

• In the Ordered regime (when rσ,β < 1) the NTK approaches a constant kernel, leading to
an ill-conditioned kernel Gram matrix and a very narrow valley around the global minimum,
hence hurting convergence of the network.

• In the Chaotic regime (when rσ,β > 1) the NTK approaches a Kronecker delta kernel,
leading to an identity kernel Gram matrix and wide valley around the global minimum,
leading to fast convergence but conversely hurting generalization.

For very large depths only critical networks (rσ,β = 1) can be trained successfully Hayou et al.
(2019c,b); Xiao et al. (2020). Outside of this large depth regime, the characteristic value plays a
similar role to the lengthscale parameters in traditional kernel methods, depending on the application
different values of rσ,β may be optimal. Therefore we discuss in Section 4 how rσ,β can be
changed. A network can be pushed towards the ordered regime by increasing the amount of bias β.
Unfortunately even for β = 0 the network can remain in the ordered regime: to move to the chaotic
regime, we show that one can use normalization. We study three types of normalizations and show
their ’chaotic’ properties:

• We introduce Nonlinearity Normalization, which modifies the non-linearity σ(x) 7→ σ(x)−b
v

to normalize it over random Gaussian inputs. With a normalized nonlinearity, the characteristic
value rσ,β can always reach the chaotic region for small enough β.

• We show that in the infinite width limit, Layer Normalization has no effect on training when
applied before the nonlinearity and is equivalent to Nonlinearity Normalization when applied
after the nonlinearity: in the latter case, the network can therefore reach the chaotic regime.

• We show that Batch Normalization at the last layer of the network controls the intensity
of the constant mode of the kernel Gram matrix which otherwise dominates in the ordered
regime, hence avoiding the slow convergence related to the ordered phase.

2



FREEZE AND CHAOS: DNN NORMALIZATION, CHECKERBOARD AND BOUNDARY ARTIFACTS

Finally in Section 5.2, we conduct a similar analysis on deconvolutional networks, to understand
problems of mode collapse in Generative Adversarial Networks (GANs). Mode collapse occurs
when a GAN only generates the same image for all inputs. Typically the generated image features
checkerboard patterns (high values on regularly spaced pixels) and border artifacts (low intensity
pixels close to the border). We show that these problems can be mitigated by modifying the
generator:

• To avoid border artifacts, we propose a Graph-based parameterization of deconvolutional
networks which ensures that the intensity of the NTK is constant over the whole image,
preventing the dip in intensity on the border with the traditional parametrization.

• To circumvent the collapse and the checkerboard patterns we show that one needs to avoid
the ordered regime, where the dominating eigenvectors of the NTK Gram matrix are constant
over the inputs of the generator and feature checkerboard patterns. This may explain why
normalization is so crucial in practice for the training of GANs, to avoid the ordered regime
in the generator.

The traditional technique to avoid Mode Collapse is to use Batch Normalization. Based on our
results, we are able to train a simple DC-GAN without Batch Normalization, using a Graph-based
parameterization and Nonlinearity Normalization.

1.2. Related Works

The order/chaos transition was first observed for the covariance of the activations in neural networks
at initialization Poole et al. (2016); Daniely et al. (2016); Yang and Schoenholz (2017); Schoenholz
et al. (2017); Hayou et al. (2019a). The frontier between the two regimes is the same as for the NTK,
however the NTK analysis allows one to describe the behavior of the network during training.

Since and simultaneously with the original release of this paper on arxiv, there has been numerous
works studying the order/chaos transition for the NTK: the edge of chaos (rσ,β = 1) is studied in
more details for both fully-connected and convolutional networks in Hayou et al. (2019c,b); Xiao
et al. (2020) and the effect of resnet architecture in Hayou et al. (2019c,b); Huang et al. (2020).
To our knowledge, only our paper shows the chaotic effect of normalization and the order/chaos
transition in deconvolutional networks leading to checkerboard patterns. Furthermore, while the
aforementioned works conclude that only the edge of chaos is viable for training of very deep
networks, we show that for reasonable depths the characteristic value plays a similar role to the
lengthscale parameters in traditional kernel methods, and we show that for GANs it is advantageous
to have a generator in the chaotic regime.

Our work (as well as the aforementioned order/chaos literature) studies infinitely wide DNNs in
the linear or lazy regime, characterized by the NTK staying constant during training, by changing
the initialization and/or parametrization of DNNs, one can instead reach the so-called mean-field
regime where the NTK evolves in time Rotskoff and Vanden-Eijnden (2018); Chizat and Bach
(2018a); Mei et al. (2019); Yang and Hu (2020). To our knowledge, the order/chaos transition in
the mean-field regime has not yet been studied.

Finally note that as described in Hanin (2018); Hanin and Nica (2019), the limiting behavior of
the NTK can be very different in the limit when both width and depth go to infinity simultaneously
than in the finite depth, infinite width limit of Jacot et al. (2018); Du et al. (2019); Allen-Zhu et al.
(2018); Lee et al. (2019). This work (and other order/chaos literature) gives finite depth bounds for
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the infinite width limit, roughly speaking, our work applies to large depths and widths but with a
width significantly larger than the depth, while in Hanin (2018); Hanin and Nica (2019) the depth
and width are of the same order.

2. Fully-Connected Neural Networks

The first type of architecture we consider are deep Fully-Connected Neural Networks (FC-NNs).
An FC-NN Rn0 → RnL with nonlinearity σ : R → R consists of L + 1 layers (L − 1 hidden
layers), respectively containing n0, n1, . . . , nL neurons. The parameters are the connection weight
matrices W (`) ∈ Rn`+1×n` and bias vectors b(`) ∈ Rn`+1 for ` = 0, 1, . . . , L − 1. Following Jacot
et al. (2018), the network parameters are aggregated into a single vector θ ∈ RP and initialized
using iid standard Gaussians N (0, 1). For θ ∈ RP , the DNN network function fθ : Rn0 → RnL
is defined as fθ (x) = α̃(L) (x), where the activations and preactivations α(`), α̃(`) are recursively
constructed using the NTK parametrization: we set α(0) (x) = x and, for ` = 0, . . . , L− 1,

α̃(`+1) (x) =

√
1− β2

√
n`

W (`)α(`) (x) + βb(`)

α(`+1) (x) = σ
(
α̃(`+1) (x)

)
,

where σ is applied entry-wise and β ≥ 0.

Remark 1
The hyperparameter β allows one to balance the relative contributions of the connection weights

and of the biases during training; in our numerical experiments, we set β = 0.1. Note that the
variance of the normalized bias βb(`) at initialization can be tuned by β.

2.1. Neural Tangent Kernel

The NTK Jacot et al. (2018) describes the evolution of (fθt)t≥0 in function space during training.

In the FC-NN case, the NTK Θ
(L)
θ : Rn0 × Rn0 → RnL×nL is defined by

Θ
(L)
θ,kk′

(
x, x′

)
=

P∑
p=1

∂θpfθ,k (x) ∂θpfθ,k′
(
x′
)
.

For a dataset x1, . . . , xN ∈ Rn0 , we define the output vector Yθ = (fθ,k (xi))ik ∈ RNnL . The
DNN is trained by optimizing a cost C : RnLN → R through gradient descent, defining a flow
∂tθt = −∇θC (Yθ)

∣∣
θt

. The evolution of the output vector Yθ can be expressed in terms of the NTK

Gram Matrix Θ̃
(L)
θ =

(
Θ

(L)
θ,km (xi, xj)

)
ik,jm

∈ RnLN×nLN and gradient∇Y C(Yθt) ∈ RnLN :

∂tYθt = −Θ̃
(L)
θt
∇Y C(Yθt).

2.2. Infinite-Width Limit

Following Neal (1996); Cho and Saul (2009); Lee et al. (2018), in the overparametrized regime at
initialization, the preactivations

(
α̃

(`)
i

)
i=1,...,n`

are described by iid centered Gaussian processes
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with covariance kernels Σ(`) constructed as follows. For a kernel K, set

LgK (z0, z1) = E(y0,y1)∼N(0,(K(zi,zj))i,j=0,1)
[g (y0) g (y1)] .

The activation kernels Σ(`) are defined recursively by

Σ(0) (z0, z1) = β2 +

(
1− β2

)
n0

zT0 z1

Σ(`+1) (z0, z1) = β2 +
(
1− β2

)
Lσ

Σ(`) (z0, z1) .

While random at initialization, in the infinite-width-limit, the NTK converges to a deterministic
limit, which is moreover constant during training:

Theorem 2 As n1, . . . , nL−1 → ∞, for any z0, z1 ∈ Rn0 and any t ≥ 0, the kernel Θ
(L)
θt

(z0, z1)

converges to Θ
(L)
∞ (z0, z1)⊗ IdnL , where

Θ(L)
∞ (z0, z1) =

L∑
`=1

Σ(`) (z0, z)

L∏
l=`+1

Σ̇(l) (z0, z1)

and Σ̇(l) = (1− β2)Lσ̇
Σ(l−1) with σ̇ denoting the derivative of σ.

We refer to Jacot et al. (2018) for a proof for the sequential limit n1 → ∞, . . . , nL−1 → ∞
and Yang (2019); Arora et al. (2019) for the simultaneous limit min (n1, . . . , nL−1) → ∞. As a
consequence, in the infinite-width limit, the dynamics of the labels Yθt,k ∈ RN for each outputs k
acquires a simple form in terms of the limiting NTK Gram matrix Θ̃

(L)
∞ ∈ RN×N

∂tYθt,k = −Θ̃(L)
∞ ∇YkC(Yθt),

where the Gram matrix is now fixed.

3. Order and Chaos in FC-NNs

We now investigate the large L behavior of the NTK (in the infinite-width limit), revealing a
transition between two phases: “order” and “chaos”. To ensure that the variance of the neurons
is constant for all depths (Σ(`)(x, x) = 1) we consider standardized nonlinearity, i.e. such that

Ex∼N (0,1)

[
σ2 (x)

]
= 1

and inputs on the standard
√
n0-sphere1

Sn0 = {x ∈ Rn0 : ‖x‖ =
√
n0} .

For a standardized σ, the large-depth behavior of the normalized NTK

ϑ(L) (x, y) :=
Θ

(L)
∞ (x, y)√

Θ
(L)
∞ (x, x) Θ

(L)
∞ (y, y)

1. Note that high dimensional datasets tend to concentrate on hyperspheres: for example in GANs Goodfellow et al.
(2014) the inputs of a generator are vectors of iid N (0, 1) entries which concentrate around Sn0 for large dimensions.
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Figure 1: The NTK on the unit circle for four architectures with depth L = 5 (top) and L = 25
(bottom) are plotted: vanilla ReLU network with β = 1.0 (blue) and β = 0.1 (orange),
with a normalized ReLU / Layer norm. (green) and with Batch Norm (red). Both
networks have width 3000, but the deeper network is further from convergence, leading
to more noise.

is determined by the characteristic value

rσ,β = (1− β2)Ex∼N (0,1)

[
σ̇2 (x)

]
. (1)

Theorem 3 Suppose that σ is twice differentiable and standardized.
Order: If rσ,β < 1, there exists C1 > 0 such that for x, y ∈ Sn0 ,

1− C1Lr
L
σ,β ≤ ϑ(L) (x, y) ≤ 1.

Chaos: If rσ,β > 1, for x 6= ±y in Sn0 , there exist h < 1 and C2 > 0, such that∣∣∣ϑ(L) (x, y)
∣∣∣ ≤ C2h

L.

Theorem 3 shows that in the ordered regime, the normalized NTK ϑ(L) converges to a constant
as L → ∞, whereas in the chaotic regime, it converges to a Kronecker δ (taking value 1 on the
diagonal, 0 elsewhere). This suggests that the training of deep FC-NN is heavily influenced by
the characteristic value: when rσ,β < 1, Θ(L) becomes constant, thus slowing down the training,
whereas when rσ,β > 1, Θ(L) is concentrates on the diagonal, ensuring fast training, but limiting
generalization. To train very deep FC-NNs, it is necessary to lie “on the edge of chaos” rσ,β = 1
Poole et al. (2016); Yang and Schoenholz (2017).

The order/chaos transition can also be related to the “roughness” of the loss around a global
minimum. As observed in Jacot et al. (2020) the eigenvalues of the Hessian at convergence are
the same as those of the NTK Gram matrix. In the chaotic regime all eigenvalues are close to
each other, leading to a “wide valley” around the minimum, on the other hand in the ordered
regime, the dominating eigenvalue (corresponding to the constant mode) is much larger than the
other eigenvalues, leading to a very “narrow valley”.
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3.1. Order and Chaos for ReLU networks

Theorem 3 does not apply directly to the standardized ReLU σ (x) =
√

2 max (x, 0), because it is
not differentiable in 0. The characteristic value for the standardized ReLU is rσ,β = 1 − β2 which
lies in the ordered regime for β > 0:

Theorem 4 With the same notation as in Theorem 3, taking σ to be the standardized ReLU and β >
0, the NTK is in the ordered regime: there exists a constantC such that 1−CrL/2σ,β ≤ ϑ

(L) (x, y) ≤ 1.

We observe two interesting (and potentially beneficial) properties of the standardized ReLU:

1. Its characteristic value rσ,β = 1 − β2 is very close to the ‘edge of chaos’ for small β and
typically with LeCun initialization the variance of the bias at initialization is 1

w for w the
width, which roughly corresponds to a choice of β = 1√

w
.

2. The rate of convergence to the limiting kernel is smaller (rL/2σ,β ) for the ReLU than for differentiable
nonlinearities (rLσ,β)2.

These observations suggest that an advantage of the ReLU is that the NTK of ReLU networks
converges to its constant limit at a slower rate and may naturally offer a good tradeoff between
generalization and training speed.

4. Chaotic effect of normalization

Figure 1 shows that even on the edge of chaos, the NTK may exhibit a strong constant component
(i.e. ϑ(x, y) > 0.2 for all x, y) which can lead to a bad conditioning of the Gram matrix governing
the infinite-width training behavior. It may be helpful to slightly ’move’ the network towards the
chaotic regime to reduce this effect. In Figure 1, rσ,β plays a similar role to that of the lengthscale
parameter in classical kernel methods: increasing rσ,β makes the NTK ’narrower’, reducing the
correlation length.

From the definition (1) of the characteristic value, we see that increasing the bias pushes the
network towards the ordered regime, whereas rσ,β reaches its highest value E

[
σ̇2 (x)

]
when the

bias is 0, which may still be in the ordered regime (or on the edge with the ReLU). We are therefore
interested in ways to push the network further towards the chaotic regime.

In this section, we show that Layer Normalization is asymptotically equivalent to Nonlinearity
Normalization which entails rσ,β > 1 for β small enough. While Batch normalization cannot be
directly interpreted in terms of rσ,β , it is easy to show that it directly controls the constant component
of the NTK, which is characteristic of the ordered regime.

4.1. Nonlinearity Normalization

Intuitively, the dominating constant component in ReLU networks is partly a consequence of the
ReLU being non-negative: after the first hidden layer, all negative correlations become positive (i.e.
Σ(1)(x, y) ≥ β for all x, y, even x = −y). One can address this issue thanks to the following. We

2. Of course the rates of Theorems 3 and 4 may not be tight, but from the proofs in Appendix B.1 one can observe that
the rate of rL/2σ,β appears as a result of the non-differentiability of the ReLU.
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shall write Z for a random variable with standard normal distribution. We say that σ is normalized
if E[σ(Z)] = 0 and E[σ(Z)2] = 1. In particular, if σ 6= id, then

σ(·) :=
σ(·)− E[σ(Z)]√

E[(σ(Z)− E[σ(Z)])2]

is normalized. By Poincaré Inequality, after nonlinearity normalization, one can always reach the
chaotic regime:

Proposition 5 If σ 6= id is normalized, then E
[
σ̇2 (Z)

]
> 1 and rσ,β > 1 for β > 0 small enough.

4.2. Layer Normalization

Nonlinearity Normalization is closely related to Layer Normalization (LN). We define a normalization
layer on any vector v ∈ Rd as

LN(v) =
√
d
v − v̄
‖v − v̄‖

.

for v̄ = 1
d

∑
i vi. We consider two types of Layer normalization depending on whether we apply

the normalization layer before or after the nonlinearity: pre-nonlinearity LN where the activations
are changed to α(`)(x) = σ(LN(α̃(`)(x))) and post-nonlinearity LN where they are changed to
α(`)(x) = LN(σ(α̃(`)(x))). Depending on whether Layer Normalization is applied before or after
the nonlinearity it has either no effect or is equivalent to Nonlinearity Normalization:

Proposition 6 Suppose that the inputs belong to Sn0 and that σ is standardized. In the infinite
width limit, the network function is the same at initialization and during training:

• with or without pre-nonlinearity LN,

• with Post-nonlinearity LN or with Nonlinearity Normalization.

Proof (sketch) At initialization, the normalization parameters v̄ and ‖v − v̄‖/
√
d respectively

converge to 0 and 1 for pre-nonlinearity LN, and to E[σ(Z)] and
√

E[(σ(Z)− E[σ(Z)])2] for
post-nonlinearity LN. These values stay asymptotically constant during training because the rate
of change of the (pre-)activations is sufficiently small in the linear/lazy regime.

4.3. Batch Normalization

For any N × d matrix of features X leading to a N ×N Gram matrix K = 1
dXX

T , the Rayleigh
quotient 1

N 1TK1 of the constant vector 1 measures how big the constant component is. Applying

Batch Normalization (BN) at a layer ` centers (and standardizes) the activations3 α
(`)
j (xi) over a

batch x1, ..., xN , thus zeroing the constant Rayleigh quotient of the N ×N features Gram matrices
Σ̃(`) with entries Σ̃

(`)
ij = 1

n`

∑n`
k=1 α

(`)
k (xi)α

(`)
k (xj). Adding a single BN layer after the last hidden

layer controls the constant Rayleigh quotient of the NTK Gram matrix Θ̃(L):

Lemma 7 Consider FC-NN with L layers, with a post-nonlinearity-BN after the last nonlinearity.
Then 1

N 1T Θ̃(L)1 = β2.

3. We consider here post-nonlinearity BN, it is common to normalize the pre-activations α̃(`) instead.
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In contrast, for a network in the extreme ordered regime, i.e. such that Θ(L)(x, y) ≈ c for some
constant c > 0, the constant Rayleigh quotient scales as 1

N 1T Θ̃(L)1 ≈ cN . The analysis of BN
presented in Karakida et al. (2019) is also closely related to this phenomenon.

The chaotic effect of Batch Normalization can also be observed in Figure 1 where the NTK with
Nonlinearity and Batch Normalization have a similar behavior.

5. Graph-based Neural Networks and Generative Adversarial Networks

As for FC-NNs, we will show in this section that deconvolutional networks (defined below) exhibit
a similar order/chaos transition. Thanks to this analysis, we will see how border artifacts and
checkerboard patterns can be avoided by adapting the parametrization and the learning rates of
generative adversarial networks (GANs). We first introduce a slightly more general formalism in
Section 5.1 and then state our results in Section 5.2.

5.1. Graph-based Neural Networks

In this section, we introduce Graph-based neural networks (GB-NNs) and write deconvolutional
networks as a special case. We then describe the infinite width limit of the NTK of GB-NNs.

5.1.1. DEFINITION

In GB-NNs, as in a convolutional neural network, each neuron is indexed by its layer `, its channel
i ∈ {1, ..., n`} and its location (e.g. the pixel on the image). The position p of a neuron determines
its connections with the neurons of the previous and subsequent layers. Furthermore certain connections
are shared, i.e. they evolve together. We abstract these concepts in the following manner:

For each layer ` = 0, ..., L, the neurons are indexed by a position p ∈ I` and a channel i =
1, ..., n`. The sets of positions I` can be any set, in particular any subset of ZD. Each position
p ∈ I`+1 has a set of parents P (p) ⊂ I` which are neurons of the previous layer connected to
p. The connections from the parent (q, `) to the position (p, `+ 1) are encoded in an n` × n`+1

weight matrix W (`,q→p). Finally two connections q → p and q′ → p′ can be shared, setting the
corresponding matrices to be equal W (`,q→p) = W (`,q′→p′).

The inputs of the network x are vectors in (Rn0)I0 , for example for colour images of widthw and
height h, we have n0 = 3 and I0 = {1, ..., w}×{1, ..., h} ⊂ Z2. The activations and preactivations
α(`), α̃(`) ∈ (Rn`)I` are constructed recursively using the graph-based parametrization that we now
introduce: we set α(0,p) (x) = x(p) and for ` = 0, . . . , L− 1 and any position p ∈ I`+1,

α̃(`+1,p)(x) = βb(`) +

√
1− β2√
|P (p)|n`

∑
q∈P (p)

W (`,q→p)α(`,q)(x) (2)

α(`+1,p) (x) = σ
(
α̃(`+1,p) (x)

)
where σ is applied entry-wise, β ≥ 0 and |P (p)| is the cardinality of P (p).

Remark. Note that normalizing according to the number of parents is similar to a common
normalization in the context of graph neural networks Hua; Li et al. (2020); Sim; Sabanayagam
et al. (2022). Graph neural networks deal with graph-structured data by working on a fixed graph,
iteratively updating the values of its nodes (and edges) without changing its shape to make predictions.
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One such update can be an averaging over the neighbors’ values, hence normalizing by the number
of neighbors of a node. A GB-NN makes computations from one layer to the other in a directed
fashion, the sizes of the layers and connections between them need not be the same, akin to a
convolutional neural network. This is in the same vein as the computation skeleton of Section 4 in
Daniely et al. (2016). Even though for some very specific instances a graph neural network can be
written as a GB-NN, they are not equivalent in general.

Assumption. Henceforth, we will only consider GB-NNs that enjoy the following property: shared
weights do not lead to the same neuron, that is, at any layer ` + 1, for all neuron p ∈ I`+1 and all
q, q′ ∈ P (p), the weight matrices W (`,q→p),W (`,q′→p) are not shared.

If this assumption is not fulfilled, this may alter some of the forthcoming results. However, it
is satisfied for typical architectures in the literature, and in particular it holds for deconvolutional
networks described below.

5.1.2. DECONVOLUTIONAL NETWORKS

Deconvolutional networks (DC-NNs) in dimension D can be seen as a special case of GB-NNs.
We first consider borderless DC-NNs, i.e. the set of positions are I` = ZD for all layers `. Given
window dimensions (w1, ..., wD) and strides (s1, ..., sD), the set of parents of p ∈ I`+1 is the
hyperrectangleP (p) = {bp1/s1c+ 1, ..., bp1/s1c+ w1}×· · ·×{bpD/sDc+ 1, ..., bpD/sDc+ wD} ⊂
ZD. Two connections q → p and q′ → p′ are shared if sd | pd − p′d (i.e. sd is a divisor of pd − p′d)

and qd−q′d =
pd−p′d
sd

for all d = 1, ..., D. This definition can easily be extended to any other choices
of position sets I` ⊂ ZD (for example hyperrectangles) by considering P (p) ∩ I` in place of P (p)
as parents of p.

5.1.3. NEURAL TANGENT KERNEL

As for FC-NNs , in the infinite width limit (when n1, ..., nL−1 → ∞) the preactivations α̃(`,p)
i (x)

converge to Gaussian processes with covariance

Cov
(
α̃

(`+1,p)
i (x), α̃

(`+1,q)
j (y)

)
= δijΣ

(`,pq)(x, y).

The behavior of the network during training is described by the NTK

Θ
(`,pq)
ij (x, y) =

P∑
k=1

∂θk α̃
(`+1,p)
i (x)∂θk α̃

(`+1,q)
j (y).

In the Appendix E we prove the convergence Θ
(`,pq)
ij (x, y) → δijΘ

(`,pq)
∞ (x, y) of the NTK for the

sequential limit n1, · · · , nL−1 → ∞ and give formulas for the limiting kernels Σ(`,pq)(x, y) and
Θ

(`,pq)
∞ (x, y). The simultaneous limit yields the same formulas.

5.2. Order/Chaos transition, Border Artifacts and Checkerboard Patterns

In the context of convolutional networks, in particular GANs, the order/chaos transition sheds
light on some interesting phenomena: a common problem in GAN training is the so-called ‘mode
collapse’, where the generator converges to a constant function, hence generating a single image

10
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instead of a variety of images. This problem is closely related to the fact that the constant mode of
the NTK Gram matrix dominates, and indeed the problem of mode collapse is most prominent in the
ordered regime (Figure 2), while normalization techniques (leading to a chaotic network) mitigate
this problem.

Other typical problems related to GANs are the appearance of checkerboard patterns and border
artifacts in the generated images. Checkerboard patterns occur when regularly spaced pixels are
highly correlated, as in the top-right generated pictures in Figure 2. Our analysis of checkerboard
patterns is a NTK-based theoretical explanation of Odena et al. (2016), in which checkerboard
patterns in deconvolutional network are described. Border artifacts happen when pixels close to the
border are visually distinct from those in the middle of the image, for example the border pixels will
sometimes be darker (see top-right image in Figure 1 ).

Our goal is therefore to use the NTK to explain the appearance of border artifacts and checkerboard
patterns in generated images. We show that the border artifacts issue can be solved by a change of
parametrization and, after establishing the order/chaos transition for DC-NNs, that the checkerboard
patterns occur in the ordered regime, and can hence be avoided by adding normalization and using
layer-wise learning rates. With these changes we are able to train GANs on CelebA dataset without
Batch Normalization.

5.2.1. BORDER EFFECTS

A very important element of the graph-based parametrization proposed in Section 5.1.1 is the factors
1/
√
|P (p)|n` in the definition of the preactivation (Equation 2): we scale the contribution of the

previous layer according to the number of neurons |P (p)|n` (i.e. n` channels for each of the|P (p)|
positions) which are fed into the neuron. For inputs x ∈ SI0n0

(i.e. such that x(p) ∈ Sn0 for all p),

these factors ensure that the limiting variance Σ(`,pp) (x, x) of α̃(`,p)
i (x) at initialization is the same

for all p:

Proposition 8 For GB-NNs with the graph-based parametrization, Σ(`,pp) (x, x) and Θ
(`,pp)
∞ (x, x)

do not depend neither on p ∈ I` nor on x ∈ SI0n0
.

These factors are usually not present and to compensate, the variance of the weights at initialization
is reduced. In convolutional networks with LeCun initialization, the standard deviation of the
weights at initialization is set to 1√

whn`
forw and h the width and height of the window of convolution,

which has roughly the effect of replacing the 1√
|P (p)|n`

factors by 1√
whn`

. However whn` is the

maximal number of parents that a neuron can have, it is typically attained at positions p in the
middle of the image. Positions p on the border of the image have less parents hence leading to a
smaller contribution of the previous layer. This leads both kernels Σ(`,pp)(x, x) and Θ(`,pp)(x, x) to
have lower intensity for p ∈ I` on the border (see Appendix G for an example when I` = N, i.e.
when there is one border pixel), leading to border artifacts as seen in Figure 2.

5.2.2. ORDER, CHAOS AND CHECKERBOARD PATTERNS

Large depths deconvolutional networks exhibit a similar Order/Chaos transition as that of FC-NNs,
the values of the limiting kernel at different positions Θ(L,pq) is especially interesting.

For GB-NNs, the value of an output neuron at a position p ∈ IL only depends on the inputs
which are ancestors of p, i.e. all positions q ∈ I0 such that there is a chain of connections from q

11
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Figure 2: The left and middle columns represent the first 8 eigenvectors of the NTK Gram matrix
of a DC-NN (L=3) on 4 inputs. (left) without the Graph-Based Parametrization (GBP)
and the Layer-Dependent Learning Rate (LDLR); (middle) with GBP and LDLR. The
right column represents the results of a GAN on CelebA with GBP and LDLR. Each
line correspond to a choice of nonlinearity/normalization for the generator: (top) ReLU,
(middle) normalized ReLU and (bottom) ReLU with Batch Normalization.

to p. For the same reason , the NTK Θ(L,pp′)(x, y) only depends on the values xq, yq′ for q, q′ ∈ I0

ancestors of p and p′ respectively.
For a stride s ∈ {2, 3, . . .}d, we denote the s-valuation vs (n) of n ∈ Zd as the largest

k ∈ {0, 1, 2, . . .} such that ski | ni for all i = 1, ..., d. The behaviour of the NTK Θ
(L)
p,p′(x, y) depends

on the s-valuation of the difference of the two output positions. If vs (p′ − p) is strictly smaller than
L, the NTK Θ(L,pp′)(x, y) converges to a constant in the infinite-width limit for any x, y ∈ SI0n0

.
Again the characteristic value rσ,β plays a central role in the behavior of the large-depth limit. In this
context, we define the rescaled NTK as ϑ(L,pp′) (x, y) = Θ(L,pp′)(x, y)/

√
Θ(L,pp)(x, x)Θ(L,p′p′)(y, y)

(note that the denominator actually does not depend on p, p′, x nor y by Proposition 8)

Theorem 9 Consider a borderless DC-NN with position sets I` = ZD for all layers `, upsampling
stride s ∈ {2, 3, . . .}D and window sizesw ∈ {1, 2, 3, . . .}D. For a standardized twice differentiable
σ, there exist constants C1, C2 > 0, such that the following holds: for x, y ∈ SI0n0

, and any positions
p, p′ ∈ IL, we have

12
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Order: When rσ,β < 1, taking v = min (vs (p− p′) , L− 1), we have

1− rv+1
σ,β

1− rLσ,β
− C1(v + 1)rvσ,β ≤ ϑ(L,pp′) (x, y) ≤

1− rv+1
σ,β

1− rLσ,β
.

Chaos: When rσ,β > 1, if either vs (p− p′) < L or if there exists c < 1 such that for all

positions q ∈ I0 which are ancestors of p,
∣∣∣∣xTq yq+ p′−p

sL

∣∣∣∣ < c, then there exists h < 1 such that∣∣∣ϑ(L,pp′) (x, y)
∣∣∣ ≤ C2h

L.

This theorem suggests that in the order regime, the correlations between differing positions
p and p′ increase with vs (p− p′), which is a strong feature of checkerboard patterns Odena et al.
(2016). These artifacts typically appear in images generated by DC-NNs. The form of the NTK also
suggests a strong affinity to these checkerboard patterns: they should dominate the NTK spectral
decomposition. This is shown in Figure 2 where the eigenvectors of the NTK Gram matrix for a
DC-NN are computed.

In the chaotic regime, the normalized NTK converges to a “scaled translation invariant” Kronecker
delta. For two output positions p and p′ = p+ ksL we associate the two regions ω and ω′ = ω + k

of the input space which are connected to p and p′. Then ϑ(L,p,p+ksL) (x, y) is one if the patch yω′
is a k translation of xω and approximately zero otherwise.

5.2.3. LAYER-DEPENDENT LEARNING RATE

The NTK is the sum Θ(L) =
∑

` Θ
(L)

W (`) +Θ
(L)

b(`)
over the contributions of the weights Θ

(L,pq)

W (`) (x, y) =∑
ij ∂W (`)

ij

fθ,p(x)∂
W

(`)
ij

fθ,q(y) and biases Θ
(L,pq)

b(`)
(x, y) =

∑
j ∂b(`)j

fθ,p(x)∂
b
(`)
j

fθ,q(y). At the `-th

layer, the weights and biases can only contribute to checkerboard patterns of degree v = L− ` and
v = L− `− 1, i.e. patterns with periods sL−` and sL−`−1 respectively, in the following sense:

Proposition 10 In a DC-NN with stride s ∈ {2, 3, ...}d, the infinite width limiting NTK is such that
Θ

(L,pp′)

W (`) (x, y) = 0 if sL−` - p′ − p and Θ
(L,pp′)

b(`)
(x, y) = 0 if sL−`−1 - p′ − p.

This suggests that the supports of Θ
(L)

∞,W (`) and Θ
(L)

∞,b(`) increase exponentially with `, giving
more importance to the last layers during training. In the classical parametrization, the balance
is restored by letting the number of channels n` decrease with depth Radford et al. (2015). In
the graph-based parametrization, the limiting NTK is not affected by the ratios n`

nk
. To achieve

the same effect, we divide the learning rate of the weights and bias of the `-th layer by S
`
2 and

S
(`+1)

2 respectively, where S =
∏
i si is the product of the strides. Together with the graph-based

parametrization and the normalization of the nonlinearity (in order to lie in the chaotic regime) this
rescaling of the learning rate removes both border and checkerboard artifacts in Figure 2. Technical
details are provided in Appendix F.2.

6. Conclusion

This article shows how the NTK can be used theoretically to understand the effect of architecture
choices (such as decreasing the number of channels or batch normalization) on the training of DNNs.
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In the context of GB-NNs we show that the “order” regime yields a strong affinity to constant
modes and checkerboard artifacts: this slows down training and can contribute to a mode collapse
of the DC-NN generator of GANs. We introduce simple modifications to solve these problems: the
effectiveness of normalizing the nonlinearity, a graph-based parametrization and a layer-dependent
learning rates is shown both theoretically and numerically.
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Organisation of the appendix.

• Appendix A: More explanations are provided regarding the parametrization of FC-NNs we
considered, such as how it relates to other standard parametrization.

• Appendix B: The proofs of the claims of Section 3 about the order-chaos transition for FCNNs
are given, namely Theorem 3 and Theorem 4.

• Appendix C: The proofs of the claims of Section 4 about the effects of layer normalization
and nonlinearity normalization are given, stated in Proposition 5 and Proposition 6 in the main
text and proven respectively in Appendix C.1 and C.2.

• Appendix D: The proof of Lemma 7 about batch normalization is given.

• Appendix E: The expression of the NTK in the infinite width limit is given and derived for
the GB-NNs defined in Section 5.1.1.

• Appendix F: The proof of Theorem 9 establishing the order-chaos transition for borderless
DCNNs is given in Section F.1. In Section F.2. we provide more details on the effect of our
layer-dependent learning rates introduced in Section 5.2.3 on the NTK, by stating Proposition
21 and making its proof, which explains how it allows to avoid checkerboard patterns in the
order regime.

• Appendix G: We provide more details on border effects. In Proposition 22 we exhibit border
effects on the activation kernels and the limiting NTK for a special case of a DCNN with
NTK-parametrization, whereas it is not the case anymore when using the graph-based parametrization,
as stated in the main text Proposition 8, whose proof is provided in this Appendix.

• Appendix H: The proof of Proposition 10 about the contribution of a given layer on checkerboard
patterns is given.

Appendix A. Choice of Parametrization

The NTK parametrization for FC-NNs introduced in Section 2 differs slightly from the one commonly
used, yet it ensures that the training is consistent as the size of the layers grows. In the standard
parametrization, for ` = 0..L− 1, the activations are defined by

α(0)(x) = x

α̃(`+1)(x) = W (`)α(`)(x) + b(`)

α(`+1)(x) = σ
(
α̃(`+1)(x)

)
.

Let denote by gθ the output function of the FC-NN thus parametrized, where θ is the concise notation
for the vector of free parameters of the FC-NN, and fθ that of the FC-NN with NTK parametrization.
Note the absence of 1√

n`
in comparison to the NTK parametrization. With LeCun/He initialization

LeCun et al. (2012), the parametersW (`) have standard deviation 1√
n`

(or
√

2√
n`

for the ReLU but this
does not change the general analysis). Using this initialization, the activations stay stochastically
bounded as the widths of the FC-NN get large. In the forward pass, there is almost no difference
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between the two parametrizations and for each choice of parameters θ, we can scale down the

connection weights by
√

1−β2
√
n`

and the bias weights by β to obtain a new set of parameters θ̂ such
that

fθ = gθ̂.

The two parametrizations will exhibit a difference during backpropagation since:

∂
W

(`)
ij

gθ̂(x) =

√
n`√

1− β2
∂
W

(`)
ij

fθ(x), ∂
b
(`)
j

gθ̂(x) =
1

β
∂
b
(`)
j

fθ(x).

The NTK is a sum of products of these derivatives over all parameters:

Θ(L) = Θ(L:W (0)) + Θ(L:b(0)) + Θ(L:W (1)) + Θ(L:b(1)) + ...+ Θ(L:W (L−1)) + Θ(L:b(L−1)).

With our parametrization, all summands converge to a finite limit, while with the Le Cun or He
parameterization we obtain

Θ̂(L) =
n0

1− β2
Θ(L:W (0)) +

1

β2
Θ(L:b(0)) + ...+

nL−1

1− β2
Θ(L:W (L−1)) +

1

β2
Θ(L:b(L−1)),

where some summands, namely the
(

ni
1−β2 Θ(L:W (i))

)
i
, explode in the infinite width limit. One

must therefore take a learning rate of order 1
max(n1,...nL−1) Karakida et al. (2018); Park et al. (2018)

to obtain a meaningful training dynamics, but in this case the contributions to the NTK of the first
layers connections W (0) and the bias of all layers b(`) vanish, which implies that training these
parameters has less and less effect on the function as the width of the network grows. As a result,
the dynamics of the output function during training can still be described by a modified kernel
gradient descent: the modified learning rate compensates for the absence of normalization in the
usual parametrization.

The NTK parametrization is hence more natural for large networks, as it solves both the problem
of having meaningful forward and backward passes, and to avoid tuning the learning rate, which
is the problem that sparked multiple alternative initialization strategies in deep learning Glorot and
Bengio (2010). Note that in the standard parametrization, the importance of the bias parameters
shrinks as the width gets large; this can be implemented in the NTK parametrization by taking a
small value for the parameter β.

Appendix B. FC-NN Order and Chaos

In this section, we prove the existence of two regimes,‘order’ and ‘chaos’, in FC-NNs. First, we
improve some results of Daniely et al. (2016), and study the rate of convergence of the activation
kernels as the depth grows to infinity. In a second step, this allows us to characterise the behavior
of the NTK for large depth.

Let us consider a standardized differentiable nonlinearity σ, i.e. satisfying Ex∼N (0,1)

[
σ2 (x)

]
=

1. Recall that the the activation kernels are defined recursively by Σ(1)(x, y) = 1−β2

n0
xT y + β2 and

Σ(`+1)(x, y) = (1−β2)Lσ
Σ(`)(x, y)+β2, where Lσ

Σ(L) was introduced in Section 2.2. By induction,

20



FREEZE AND CHAOS: DNN NORMALIZATION, CHECKERBOARD AND BOUNDARY ARTIFACTS

Figure 3: Result of two GANs on CelebA. (Left) with Nonlinearity Normalization and (Right) with
Batch Normalization. In both cases the discriminator uses a Normalized ReLU.

for any x, y ∈ Sn0 , Σ(`+1)(x, y) is uniquely determined by ρx,y = 1
n0
xT y. Defining the two

functions Rσ, Bβ : [−1, 1]→ [−1, 1] by:

Rσ(ρ) = E
v∼N

0,

 1 ρ
ρ 1

 [σ(v0)σ(v1)] ,

Bβ(ρ) = β2 + (1− β2)ρ,

one can formulate the activation kernels as an alternate composition of Bβ and Rσ:

Σ(`)(x, y) = (Bβ ◦Rσ)◦`−1 ◦Bβ (ρx,y) .

In particular, this shows that for any x, y ∈ Sn0 , Σ(`)(x, y) ≤ 1. Since the activation kernels are
obtained by iterating the same function, we first study the fixed points of the composition Bβ ◦Rσ :
[−1, 1] → [−1, 1]. When σ is a standardized nonlinearity, the function Rσ, named the dual of σ,
satisfies the following key properties proven in Daniely et al. (2016):

1. Rσ(1) = 1,

2. For any ρ ∈ (−1, 0), Rσ(ρ) > ρ,

3. Rσ is convex in [0, 1),

4. R′σ(1) = E
[
σ̇(x)2

]
, where R′σ denotes the derivative of Rσ,

5. R′σ = Rσ̇ .
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By definition Bβ(1) = 1, thus 1 is a trivial fixed point: Bβ ◦ Rσ(1) = 1. This shows that for any
x ∈ Sn0 and any ` ≥ 1:

Σ(`)(x, x) = 1.

It appears that−1 is also a fixed point ofBβ◦Rσ if and only if the nonlinearity σ is antisymmetric
and β = 0. From now on, we will focus on the region (−1, 1). From the property 2. of
Rσ and since Bβ is non decreasing, any non trivial fixed point must lie in [0, 1). Since Bβ ◦
Rσ(0) > 0, Bβ ◦ Rσ(1) = 1 and Rσ is convex in [0, 1), there exists a non trivial fixed point
of Bβ ◦ Rσ if (Bβ ◦Rσ)′ (1) > 1 whereas if (Bβ ◦Rσ)′ (1) < 1 there is no fixed point in
(−1, 1). This leads to two regimes shown in Daniely et al. (2016), depending on the value of
rσ,β =

(
1− β2

)
Ex∼N (0,1)

[
σ̇2 (x)

]
:

1. “Order” when rσ,β < 1: Bβ ◦Rσ has a unique fixed point equal to 1 and the activation kernels
become constant at an exponential rate,

2. “Chaos” when rσ,β > 1: Bβ ◦ Rσ has another fixed point 0 ≤ a < 1 and the activation
kernels converge to a kernel equal to 1 if x = y and to a if x 6= y and, if the nonlinearity is
antisymmetric and β = 0, it converges to −1 if and only if x = −y.

To establish the existence of the two regimes for the NTK, we need the following bounds on the rate
of convergence of Σ(`)(x, y) in the “order” region and on its values in the “chaos” region:

Lemma 11 Suppose that σ is a standardized differentiable nonlinearity.
If rσ,β < 1, then for any x, y ∈ Sn0 ,

1 ≥ Σ(`)(x, y) ≥ 1− 2r`−1
σ,β (1− β2).

If rσ,β > 1, then there exists a fixed point a ∈ [0, 1) of Bβ ◦Rσ such that for any x, y ∈ Sn0 ,∣∣∣Σ(`)(x, y)
∣∣∣ ≤ max

{∣∣∣∣β2 +
1− β2

n0
xT y

∣∣∣∣ , a} .
Proof Let us denote r = rσ,β and suppose first that r < 1. By Daniely et al. (2016), we know
that R′σ = Rσ̇ and Rσ̇(ρ) ∈

[
−E

[
σ̇(z)2

]
,E
[
σ̇(z)2

]]
where z ∼ N (0, 1). From now on, we will

omit to specify the distribution asumption on z. The previous equalities and inequalities imply that
Rσ(ρ) ≥ 1− E

[
σ̇(v)2

]
(1− ρ), thus we obtain:

Bβ ◦Rσ(ρ) ≥ β2 + (1− β2)(1− E
[
σ̇(z)2

]
(1− ρ)) = 1− r(1− ρ).

By definition, we then have Σ(`)(x, y) = (Bβ ◦Rσ)◦`−1 ◦ Bβ
(

1
n0
xT y

)
≥ 1 − 2(1 − β2)r`−1.

Using the bound Σ(`)(x, y) ≤ 1, this proves the first assertion.
When r > 1, there exists a fixed point a of Bβ ◦ Rσ in [0, 1). By a convexity argument, for

any ρ in [a, 1), a ≤ Bβ ◦ Rσ(ρ) ≤ ρ and because Rσ(ρ) is increasing in [0, 1), for all ρ ∈ [0, a],
0 ≤ Bβ ◦Rσ(ρ) ≤ a.

For negative ρ, we claim that |Bβ ◦Rσ(ρ)| ≤ Bβ ◦Rσ(|ρ|),which entails the second assertion.
Since Rσ(ρ) =

∑∞
i=0 biρ

i for positive bis Daniely et al. (2016), and the composition Bβ ◦Rσ(ρ) =∑∞
i=0 ciρ

i for c0 = b0(1− β2) + β2 ≥ 0 and ci = bi(1− β2) ≥ 0 when i > 0, we have

|Bβ ◦Rσ(ρ)| =

∣∣∣∣∣
∞∑
i=0

ciρ
i

∣∣∣∣∣ ≤
∞∑
i=0

ci |ρ|i = Bβ ◦Rσ(|ρ|).
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This leads to the inequality in the chaos regime.

Before studying the normalized NTK, let us remark that the NTK on the diagonal (with x = y
in Sn0) is equal to:

Θ(L)
∞ (x, x) =

L∑
`=1

Σ(`)(x, x)
L∏

k=`+1

Σ̇(k)(x, x) =
L∑
`=1

(
(1− β2)E

[
σ̇(x)2

])L−`
=

1− rL

1− r
.

This shows that in the ordered regime, Θ
(L)
∞ (x, x) −→

L→∞
1

1−r and in the chaotic regime Θ
(L)
∞ (x, x)

grows exponentially. At the transition, r = 1 and thus Θ
(L)
∞ (x, x) = L. Besides, if x, y ∈ Sn0 ,

using the Cauchy-Schwarz inequality, for any ` ,
∣∣Σ(`)(x, y)

∣∣ ≤ ∣∣Σ(`)(x, x)
∣∣ and

∣∣∣Σ̇(`+1)(x, y)
∣∣∣ ≤∣∣∣Σ̇(`+1)(x, x)

∣∣∣. This implies the following inequality: Θ
(L)
∞ (x, y) ≤ Θ

(L)
∞ (x, x).

We now study the normalized NTK ϑL (x, y) = Θ
(L)
∞ (x,y)

Θ
(L)
∞ (x,x)

≤ 1.

Theorem 12 (Theorem 3 in the main) Suppose that σ is twice differentiable and standardized.
If r < 1, we are in the ordered regime: there exists C1 such that for x, y ∈ Sn0 ,

1− C1Lr
L ≤ ϑ(L) (x, y) ≤ 1.

If r > 1, we are in the chaotic regime: for x 6= y in Sn0 , there exist s < 1 and C2, such that∣∣∣ϑ(L) (x, y)
∣∣∣ ≤ C2s

L.

Proof First, let us suppose that r < 1. Recall that the NTK is defined as

Θ(L)
∞ (x, y) =

L∑
`=1

Σ(`)(x, y)Σ̇(`+1)(x, y) . . . Σ̇(L)(x, y).

Several times in the appendix, we will use the following fact: for any a1, · · · , ak ∈ (0, 1), we have

k∏
i=1

(1− ai) ≥ 1−
k∑
i=1

ai. (3)

For all ` = 1..L, Σ(`)(x, y) ≤ Σ(`)(x, x) = 1 and Σ̇(`)(x, y) ≤ Σ̇(`)(x, x) = r. Writing
Σ(`)(x, y) = 1− ε(`) and Σ̇(`)(x, y) = r − ε̇(`) for ε(`), ε̇(`) ≥ 0, we have that

Θ(L)
∞ (x, y) =

L∑
`=1

(
1− ε(`)

) L∏
k=`+1

(
r − ε̇(`)

)

≥
L∑
`=1

rL−` − rL−`ε(`) −
L∑

k=`+1

rL−`−1ε̇(`),
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by (3). Using the bound of Lemma 11 and the fact that for any x, y ∈ Sn0 , Σ̇(`)(x, y) = (1 −
β2)Rσ̇(Σ(`−1)(x, y)) ≥ r − ψε(`−1) for ψ = (1 − β2)Ez∼N (0,1) [σ̈(z)], we obtain ε(`) < 2(1 −
β2)r`−1 and ε̇(`) ≤ 2(1− β2)ψr`−2. As a result:

Θ(L)
∞ (x, y) ≥

L∑
`=1

rL−` − 2(1− β2)rL−`r`−1 −
L∑

k=`+1

2(1− β2)ψrL−`−1rk−2

= Θ(L)
∞ (x, x)− 2(1− β2)

L∑
`=1

rL−1 + ψ
L∑

k=`+1

rL−`+k−3

= Θ(L)
∞ (x, x)− 2(1− β2)

[
LrL−1 + ψrL−2

L∑
`=1

1− rL−`

1− r

]

≥ Θ(L)
∞ (x, x)− 2(1− β2)

[
r + ψ

1

1− r

]
LrL−2

≥ Θ(L)
∞ (x, x)− CLrL.

Now, let us suppose that r > 1. Recall that Bβ ◦ Rσ has a unique fixed point a on [0, 1). For

any x and y in Sn0 , the kernels Σ(`)(x, y) are bounded in norm by v = max
{∣∣∣β2 + 1−β2

n0
xT y

∣∣∣ , a}
from Lemma 11. For the kernels Σ̇(`) we have

∣∣∣Σ̇(`)(x, y)
∣∣∣ = (1 − β2)

∣∣Rσ̇(Σ(`−1)(x, y))
∣∣ ≤

(1 − β2)Rσ̇(
∣∣Σ(`−1)(x, y)

∣∣) ≤ (1 − β2)Rσ̇(v) =: w where the first inequality follows from the
fact that Rσ̇(ρ) =

∑
i biρ

i for bi ≥ 0 and the second follows from the monotonicity of Rσ̇ in [0, 1].
Applying these two bounds, we obtain:∣∣∣Θ(L)

∞ (x, y)
∣∣∣ ≤ L∑

`=1

v
L∏

k=`+1

w = v
1− wL

1− w
.

Since Θ
(L)
∞ (x, y) = 1−rL

1−r , we have that |ϑL (x, y)| ≤ v 1−wL
1−rL . If x 6= y then v < 1 and since σ is

nonlinear, w = (1 − β2)Rσ̇(v) < (1 − β2)Rσ̇(1) = r. This implies that |ϑL (x, y)| converges to
zero at an exponential rate, as L→∞.

B.1. ReLU FC-NN

For the standardized ReLU nonlinearity, σ (x) =
√

2 max (x, 0), the dual activation is computed in
Daniely et al. (2016):

Rσ(ρ) =

√
1− ρ2 +

(
π − cos−1(ρ)

)
ρ

π
,

and the dual activation of its derivative is given by:

Rσ̇(ρ) =
π − cos−1(ρ)

π
.

The characteristic value r = rσ,β of the standardized ReLU is equal to 1 − β2: the ReLU
nonlinearity therefore lies in the “order” regime as soon as β > 0. More explicitly, Lemma 11 still
holds of the standardized ReLU and the following inequalities hold for any x, y ∈ Sn0 :

1 ≥ Σ(`)(x, y) ≥ 1− 2r`.
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Using these bounds, we can now prove Theorem 4.

Theorem 13 (Theorem 4 in the main) With the same notation as in Theorem 12, taking σ to be
the standardized ReLU and β > 0, we are in the weakly ordered regime: there exists a constant C
such that 1− CLrL/2 ≤ ϑ(L) (x, y) ≤ 1.

Proof The first inequality ϑL (x, y) ≤ 1 follows the same proof as in the differentiable case.
For the lower bound, using the fact that (1− β) r = 1, we have ε(`) = 1 − Σ(`)(x, y) ≤ 2r`

and using the explicit value of Rσ̇(ρ), we get that Rσ̇(ρ) ≥ 1 −
√

1− ρ which implies that ε̇(`) =

r − Σ̇(`)(x, y) ≤ r
√

2r
`−1
2 : using (3), we write

Θ(L)
∞ (x, y) =

L∑
`=1

(
1− ε(`)

) L∏
k=`+1

(
r − ε̇(k)

)
≥

L∑
`=1

rL−` − 2rL−`r` −
√

2

L∑
k=`+1

rL−`−1+ k−1
2

≥ Θ(L)
∞ (x, x)− 2LrL −

√
2

L∑
`=1

rL−
`
2
−1

L−`−1∑
k=0

r
k
2 .

Focusing on bounding the double sum from above, we have

√
2

L∑
`=1

rL−
`
2
−1

L−`−1∑
k=0

r
k
2 ≤

√
2

1−
√
r
r
L
2
−1

L−1∑
`=0

r
`
2

√
2

1−
√
r
r
L
2
−1 1

1−
√
r

≤
√

2

r (1−
√
r)

2 r
L
2

Hence, we see that

Θ(L)
∞ (x, y) ≥ Θ(L)

∞ (x, x)−

[
2Lr

L
2 −

√
2

r (1−
√
r)

2

]
r
L
2 .

Recall that for any x ∈ Sn0 , Θ
(L)
∞ (x, x) = 1−rL

1−r is bounded in L. Dividing the previous inequality

by Θ
(L)
∞ (x, x) we get: 1− CrL/2 ≤ ϑL (x, y) ≤ 1, as claimed, where the constant C is explicit.

Appendix C. Layer Normalization and Nonlinearity Normalization

This section of the Appendix is devoted to the proof of Proposition 6.

C.1. Layer normalization is asymptotically equivalent to nonlinearity normalization.

With Layer Normalization (LN), the coordinates of the normalized vectors of activations are α̌(`)
j (x) =

√
n`

α
(`)
j (x)−µ(`)(x)

||α(`)(x)−µ(`)(x)|| , where µ(`) := 1
n`

∑n`
i=1 α

(`)
i (x) and µ(`) :=

µ
(`)

...
µ(`)

. We simplify the

notation by making the dependence on x implicite and denote the standardized nonlinearity σ(·) :=
σ(·)−E(σ(Z))√

Var(σ(Z))
, where Z d∼ N (0, 1).
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Suppose that L = 2, that is we have a single hidden layer after which the LN is applied. More
precisely, the output of the network function with LN is α̃(2)(α̌(1)(x)). We rewrite

α̌(1) =
√
n1

σ(α̃(1))− µ(1)

||σ(α̃(1))− µ(1)||
= σ(α̃(1))C1 + C2,

where C1 =
√
n1

√
Var(σ(Z))

||σ(α̃(1))− µ(1)||
, and C2 =

√
n1

E(σ(Z))− µ(1)

||σ(α̃(1))− µ(1)||
.

Note that C1 → 1 and C2 → 0 almost surely, as n1 →∞. Indeed, since the α̃(1)
i ’s are independent

standard Gaussian variables at initialization (recall that we assume that the inputs belong to Sn0),
the law of large numbers entails that µ(1) → E(σ(Z)) almost surely, as n1 →∞, and similarly for
||σ(α̃(1))−µ(1)||2

n1
→ Var(σ(Z)).

To show that LN is asymptotically equivalent to centering and standardizing the nonlinearity,
we now establish that C1 and C2 are constant during training. We have

∂

∂α̃
(1)
j

||σ(α̃(1))− µ(1)|| =
σ̇(α̃

(1)
j )

∑n1
i=1(δij − 1/n1)(σ(α̃

(1)
i )− µ(1))

||σ(α̃(1))− µ(1)||
=
σ̇(α̃

(1)
j )(σ(α̃

(1)
j )− µ(1))

||σ(α̃(1))− µ(1)||
.

(4)

Note that the absolute value of the latter is bounded by 2||σ̇||∞. We write g(t) for any function g
that depends on the parameters θ(t) at time t ≥ 0. Using twice the triangle inequality yields that∣∣∣||σ(α̃(1)(t))− µ(1)(t)|| − ||σ(α̃(1)(0))− µ(1)(0)||

∣∣∣ ≤ ||σ(α̃(1)(t))− σ(α̃(1)(0))||+ ||µ(1)(t)− µ(1)(0)||

≤ ||σ̇||∞

( n1∑
i=1

(α̃
(1)
i (t)− α̃(1)

i (0))2

)1/2

+
1
√
n1

n1∑
i=1

∣∣∣α̃(1)
i (t)− α̃(1)

i (0)
∣∣∣
 ≤ ct, (5)

for some constant c > 0, where we used that |α̃(1)
i (t) − α̃(1)

i (0)| = O(t/
√
n1), see Appendix A.2

of Jacot et al. (2018). Since ||σ(α̃(1)(0)) − µ(1)(0)|| ∼ √n1 by the law of large numbers, we can
always write ||σ(α̃(1)(t)) − µ(1)(t)|| > ||σ(α̃(1)(0)) − µ(1)(0)|| − ct > 0. Hence, using (4) then
(5), we get ∣∣∣∣∣ ∂C1(t)

∂α̃
(1)
j (t)

∣∣∣∣∣ =

√
n1Var(σ(Z))

||σ(α̃(1)(t))− µ(1)(t)||2
·

∣∣∣∣∣ σ̇(α̃
(1)
j (t))(σ(α̃

(1)
j (t))− µ(1)(t))

||σ(α̃(1)(t))− µ(1)(t)||

∣∣∣∣∣
≤

√
n1Var(σ(Z))

(||σ(α̃(1)(0)− µ(1)(0))|| − ct)2
||σ̇||∞ = O(1/

√
n1), (6)

by the law of large numbers. The case of C2 is similar:

∂C2(t)

∂α̃
(1)
j (t)

=
−σ̇(α̃

(1)
j (t))

√
n1||σ(α̃(1)(t))− µ(1)(t)||

−
√
n1

(E(σ(Z))− µ(1)(t))σ̇(α̃
(1)
j (t))(σ(α̃

(1)
j (t))− µ(1)(t))

||σ(α̃(1)(t))− µ(1)(t)||3

≤ ||σ̇||∞

(
1

n1

√
n1

||σ(α̃(1)(0))− µ(1)(0)|| − ct
− 1
√
n1

n1(E(σ(Z))− µ(1)(0) + ct)

(||σ(α̃(1)(0))− µ(1)(0)|| − ct)2

)
= O(1/

√
n1),

(7)
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again by the law of large numbers. For i = 1, 2, we now write ∂Ci(t)
∂t =

∂α̃
(1)
j (t)

∂t
∂Ci(t)

∂α̃
(1)
j (t)

and recall

that the first term is changing at rateO(1/
√
n1). Therefore, |Ci(t)−Ci(0)| ≤ O(t/n1). The claim

for L ≥ 3 follows by induction.

C.2. Pre-layer normalization has asymptotically no effect.

Normalizing the preactivations has asymptotically no effect on the network at initialization as well

as during training. The output of the `-th layer becomes α̌(`)
j = σ

(√
n`

α̃
(`)
j −µ

(`)

||α̃(`)−µ(`)||
)

where µ(`) and

µ(`) are computed similarily as before with α̃(`) in place of α(`). As before, we assume L = 2 and

deduce the general case by induction. We write α̌(1)
j = σ(α̃

(1)
j C1 + C2), with C1 =

√
n1/||α̃(`) −

µ(`)|| and C2 = −√n1µ
(1)/||α̃(`) − µ(`)||. Again, the law of large numbers show that C1 → 1 and

C2 → 0 almost surely, as n1 →∞. Moreover, similarily as (4) and (5), we have that

∂

∂α̃
(1)
j

||α̃(1) − µ(1)|| =
α̃

(1)
j − µ(1)

||α̃(1) − µ(1)||
,∣∣∣||α̃(1)(t)− µ(1)(t)|| − ||α̃(1)(0)− µ(1)(0)||

∣∣∣ ≤ ct,
for some constant c > 0. Using the same argument as in (6) and (7), one can thus show for i = 1, 2
that ∣∣∣∣∣∂Ci(t)∂α̃

(1)
j

∣∣∣∣∣ = O(1/
√
n1).

We conclude as previously, noting that

∂α̌
(1)
j (t)

∂t
= σ̇

(
α̃

(1)
j (t)C1(t) + C2(t)

)(∂α̃(1)
j (t)

∂t
C1(t) + α̃

(1)
j (t)

∂C1(t)

∂t
+
∂C2(t)

∂t

)
.

Appendix D. Batch Normalization

If one adds a BatchNorm layer after the nonlinearity of the last hidden layer, we have:

Lemma 14 (Lemma 7 in the main) Consider a FC-NN with L layers, with a PN-BN after the last
nonlinearity. For any k, k′ ∈ {1, . . . , nL} and any parameter θp, we have

∑N
i=1 Θ

(L)
θp

(·, xi) =

β2IdnL .

Proof This is an direct consequence of the definition of the NTK and of the following claim:
Claim. For a fully-connected DNN with a BatchNorm layer after the nonlinearity of the last

hidden layer then 1
N

∑N
i=1 ∂θpfθ,k(xi) is equal to β if θp is b(L−1)

k , the bias parameter of the last
layer, and equal to 0 otherwise.

The average of fθ,k on the training set, 1
N

∑N
i=1 ∂θpfθ,k(xi), only depends on the bias of the last

layer:

1

N

N∑
i=1

fθ,k(xi) =

√
1− β2

√
nL−1

W (L−1) 1

N

N∑
i=1

α̂(L−1)(xi) + βb
(L−1)
k = βb

(L−1)
k .
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Thus for any parameter θp, 1
N

∑N
i=1 ∂θpfθ,k(xi) = ∂θp

(
βb

(L−1)
k

)
is equal to β if the parameter is

the bias b(L−1)
k and zero otherwise.

Appendix E. Graph-based Neural Networks

Recall the definition of GB-NNs from Section 5.1.1) and notation therein.
In this section, we prove the convergence of the NTK at initialization for a general family

of DNNs which contain in particular CNNs and DC-NNs. We will consider the graph-based
parametrization introduced in the main.

For any layer ` + 1 and neurons p, p′ ∈ I`+1 and q ∈ P (p), q′ ∈ P (p′), we denote by χ(q →
p, q′ → p′) the map that is equal to 1 if and only if W (`,q→p) and W (`,q′→p′) are shared (in the sense
that the two matrices are forced to be equal at initialization and during training) and 0 otherwise.
It satisfies χ(q → p, q → p) = 1 for any neuron p and any q ∈ P (p) and it is transitive. The
assumption that no pair of connections leading to the same neuron are shared, stated in Section
5.1.1 reads as follows: ∀` = 1..L, ∀p ∈ I`+1, ∀q, q′ ∈ P (p), it holds that χ(q → p, q′ → p) = δqq′ .

Remark 15 Note that the parametrization (2) is different from the traditional one: we divide

by
√
|P (p)|n` instead of dividing by

√
n`

|ω|
s1...sd

. This does not lead to any difference when
one consider infinite-sized images as in Section F since in this case the number of parents is
constant, equal to |ω|

s1...sd
. The key difference between the two parametrizations will be investigated

in Appendix G.

Before we can derive an explicit formula for the NTK, we compute the infinite width limit of
the feature kernels. Recall, that for a kernel K : Rn0 × Rn0 → R, and for any z0, z1 ∈ Rn0 , we
defined:

LgK (z0, z1) = E(y0,y1)∼N(0,(K(zi,zj))i,j=0,1)
[g (y0) g (y1)] .

Proposition 16 In the above setting, as n1 → ∞, . . .,n`−1 → ∞ sequentially, the preactivations(
α̃

(`,p)
i (x)

)
i=1,...,n`,p∈I`

of the `th layer converge to a centered Gaussian process with covariance

Σ(`,pp′)(x, y)δii′ , where Σ(`,pp′)(x, y) is defined recursively as

Σ(1,pp′)(x, y) = β2 +
1− β2√

|P (p)| |P (p′)|n0

∑
q∈P (p)

∑
q′∈P (p′)

χ(q → p, q′ → p′) (xq)
T yq′ ,

Σ(`+1,pp′)(x, y) = β2 +
1− β2√
|P (p)| |P (p′)|

∑
q∈P (p)

∑
q′∈P (p′)

χ(q → p, q′ → p′)Lσ
Σ(`,qq′) (x, y) .

Proof The proof is done by induction on `. For ` = 1 and any i ∈ {1, . . . , n1}, the preactivation

α̃
(1,p)
i (x) = βb

(0)
i +

√
1− β2√
|P (p)|n0

∑
q∈P (p)

(
W (0,q→p)
p xq

)
i

is a random affine function of x and its coefficients are centered Gaussian: it is hence a centered
Gaussian process whose covariance is easily shown to be equal to E

[
α̃

(1,p)
i (x)α̃

(1,p′)
i′ (y)

]
= Σ(1,pp′)(x, y)δii′ .
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For the induction step, we assume that the result holds for the pre-activations of the layer `. The
pre-activations of the next layer are of the form

α̃
(`+1,p)
i (x) = βb

(0)
i +

√
1− β2√
|P (p)|n`

∑
q∈P (p)

(
W (`,q→p)α(`,q)(x)

)
i
.

Conditioned on the activations α(`,q) of the last layer, α̃(`+1,p) is a centered Gaussian process: in
other terms, it is a mixture of centered Gaussians with a random covariance determined by the
activations of the last layer. The random covariance between α̃(`+1,p0)

i0
(x) and α̃(`+1,p1)

i1
(y) is equal

to

β2δi0i1 +
1− β2√

|P (p)| |P (p′)|n`

∑
q0 ∈ P (p0)
q1 ∈ P (p1)

n∑̀
j0,j1=1

E
[
W

(`,q0→p0)
i0j0

W
(`,q1→p1)
i1j1

]
α

(`,q0)
j0

(x)α
(`,q1)
j1

(y)

= δi0i1

β
2 +

1− β2√
|P (p)| |P (p′)|

∑
q0 ∈ P (p0)
q1 ∈ P (p1)

χ(q0 → p0, q1 → p1)
1

n`

n∑̀
j=1

σ
(
α̃

(`,q0)
j (x)

)
σ
(
α̃

(`,q1)
j (y)

)
 ,

where we used the fact that E
[
W

(`,q0→p0)
i0j0

W
(`,q1→p1)
i1j1

]
= χ(q0 → p0, q1 → p1)δi0i1δj0j1 . Using the

induction hypothesis, as n1 →∞, . . .,n`−1 →∞ sequentially, the preactivations
(
α̃

(`,q0)
j (x), α̃

(`,q1)
j (y)

)
j

converge to independant centered Gaussian pairs. As n` → ∞, by the law of large numbers, the
sum over j along with the 1

n`
converges to LΣ(`,qq′)

σ (x, y). In this limit, the random covariance of the
Gaussian mixture becomes deterministic and as a consequence, the mixture of Gaussian processes
tends to a centered Gaussian process with the right covariance.

Similarly to the activation kernels, one can prove that the NTK converges at initialization.

Proposition 17 As n1 →∞, . . .,nL−1 →∞ sequentially, the NTK Θ(L,p0p1) of a general convolutional
network converges to Θ

(L)
∞,p0p1 ⊗ IdnL where Θ

(L,p0p1)
∞ (x, y) is defined recursively by:

Θ(1,p0p1)
∞ (x, y) =Σ(1,p0p1)(x, y),

Θ(L,p0p1)
∞ (x, y) =

1− β2√
|P (p0)| |P (p1)|

∑
q0 ∈ P (p0)
q1 ∈ P (p1)

χ(q0 → p0, q1 → p1)Θ(L−1,q0q1)
∞ (x, y)Lσ̇

Σ(L−1,q0q1)
(x, y)

+ Σ(L,p0p1)(x, y).

Proof The proof by induction on L follows the one of Jacot et al. (2018) for fully-connected DNNs.
We present the induction step and assume that the result holds for a general convolutional network
with L − 1 hidden layers. Following the same computations as in Jacot et al. (2018), the NTK
Θ

(L+1)
p0p1,jj′

(x, y) is equal to
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1− β2√
|P (p0)| |P (p1)|nL

∑
q0∈P (p0)

∑
q1∈P (p1)

∑
ii′

Θ
(L,q0q1)
ii′ (x, y)σ̇

(
α̃

(L,q0)
i (x)

)
σ̇
(
α̃

(L,q1)
i′ (y)

)
W

(L,q0→p0)
ij W

(L,q1→p1)
i′j′

+ δjj′β
2 + δjj′

1− β2√
|P (p0)| |P (p1)|nL

∑
q0∈P (p0)

∑
q1∈P (p1)

χ(q0 → p0, q1 → p1)
∑
i

α
(L,q0)
i (x)α

(L,q1)
i (y)

which, by assumption, converges as n1 →∞, . . .,nL−1 →∞ to

1− β2√
|P (p0)| |P (p1)|nL

∑
q0∈P (p0)

∑
q1∈P (p1)

∑
i

Θ(L,q0q1)
∞ (x, y)σ̇

(
α̃

(L,q0)
i (x)

)
σ̇
(
α̃

(L,q1)
i (y)

)
W

(L,q0→p0)
ij W

(L,q1→p1)
ij′

+ δjj′β
2 + δjj′

1− β2√
|P (p0)| |P (p1)|nL

∑
q0∈P (p0)

∑
q1∈P (p1)

χ(q0 → p0, q1 → p1)
∑
i

α
(L,q0)
i (x)α

(L,q1)
i (y).

As nL →∞, using the previous results on the preactivations and the law of large number, the NTK
converges to

1− β2√
|P (p0)| |P (p1)|

∑
q0∈P (p0)

∑
q1∈P (p1)

Θ(L,q0q1)
∞ (x, y)Lσ̇

Σ(L,q0q1)
(x, y)E

[
W

(L,q0→p0)
ij W

(L,q1→p1)
ij′

]

+ δjj′β
2 + δjj′

1− β2√
|P (p0)| |P (p1)|

∑
q0∈P (p0)

∑
q1∈P (p1)

χ(q0 → p0, q1 → p1)Lσ
Σ(L,q0q1)

(x, y) ,

which can be simplified–using the fact that E
[
W

(L,q0→p0)
ij W

(L,q1→p1)
ij′

]
= χ(q0 → p0, q1 →

p1)δjj′–into:

δjj′
1− β2√

|P (p0)| |P (p1)|

∑
q0∈P (p0)

∑
q1∈P (p1)

χ(q0 → p0, q1 → p1)Θ(L,q0q1)
∞ (x, y)Lσ̇

Σ(L,q0q1)
(x, y)

+ δjj′Σ
(L+1,p0p1)(x, y),

which proves the assertions.

Appendix F. Deconvolutional Neural Networks

In this section, in order to study the behaviour of DC-NNs in the bulk and to avoid dealing with
border effects, studied in Section G, we assume that for all layers ` there is no border, i.e. the
positions p are in Zd. Let us consider a DC-NN with up-sampling s ∈ {2, 3, ...}d where the window
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sizes for all layers are all set equal to π = ω = {0, · · · , w1s1 − 1} × · · · × {0, · · · , wdsd − 1}. A
position p has therefore w1 · · ·wd parents which are given by

P (p) =

{⌊
p0

s0

⌋
,

⌊
p0

s0

⌋
+ 1, · · · ,

⌊
p0

s0

⌋
+ w1

}
× · · · ×

{⌊
pd
sd

⌋
,

⌊
pd
sd

⌋
+ 1, · · · ,

⌊
pd
sd

⌋
+ wd

}
.

Two connections q → p and q′ → p′ are shared if and only if s | p − p′ (i.e. for any i = 1, ..., d,
si | pi − p′i ) and qi − q′i =

pi−p′i
si

for any i = 1, ..., d.

F.1. Order and Chaos Regimes

Propositions 16 and 17 hold true in this setting. By Proposition 23, if the nonlinearity σ is standardized,
Σ(`,pp)(x, x) = 1 for any x ∈ SI0n0

and any p ∈ I`. The activation kernels Σ(`,pp′)(x, y) for any two
inputs x, y ∈ SI0n0

and two output positions p, p′ ∈ Zd are therefore defined recursively by:

Σ(1,pp′)(x, y) = β2 + δs|p−p′
1− β2

|P (p)|n0

∑
q∈P (p)

(xq)
T y

q+ p′−p
s

,

Σ(`+1,pp′)(x, y) = β2 + δs|p−p′
1− β2

|P (p)|
∑

q∈P (p)

Rσ

(
Σ(`,q,q+ p′−p

s
)(x, y)

)
,

where p′−p
s =

(
p′i−pi
si

)
i

is a valid position since s|p − p′. Similarly, the NTK at initialization
satisfies the following recursion:

Θ(L+1,pp′)
∞ (x, y) = Σ(L+1,pp′)(x, y)+δs|p−p′

1− β2

|P (p)|
∑

q∈P (p)

Θ
(L,q,q+ p′−p

s
)

∞ (x, y)Rσ̇

(
Σ(L,q,q+ p′−p

s
)(x, y)

)
.

Remark 18 Recall that the s-valuation vs (n) of a number n ∈ Zd is the largest k ∈ {0, 1, 2, . . .}
such that ski | ni for all dimensions i = 1, ..., d. For two pixels p, p′ ∈ Zd and any input vectors
x, y ∈ SI0n0

, if vs(p′ − p) < ` the activation kernel Σ(`,pp′)(x, y) does not depend neither on x nor
on y. More precisely, if v = vs(p

′ − p) = 0, we have

Σ(`,pp′)(x, y) = β2,

and for a general v < `:

cv := Σ(`,pp′)(x, y) = (Bβ ◦Rσ)◦v (β2).

In particular, if v < L, the NTK is therefore also equal to a constant:

Θ(L,pp′)
∞ (x, y) =

v∑
k=0

ck(1− β2)k
k−1∏
m=0

Rσ̇(cm).

We establish the bounds on the rate of convergence in the “order” region and on the values of the
activations kernel in the chaos region for DC-NNs.
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Proposition 19 In the setting introduced above, for a standardized twice differentiable σ, for x, y ∈
SI0n0

, and any positions p, p′ ∈ I`, taking k = min{vs(p′ − p), `}, we have:
If rσ,β < 1 then:

1 ≥ Σ(`,pp′)(x, y) ≥ 1− 2(1− β2)rkσ,β.

If rσ,β > 1 then there exists a fixed point a ∈ [0, 1) of Bβ ◦Rσ such that:

• If k < `: ∣∣∣Σ(`,pp′)(x, y)
∣∣∣ ≤ max

{
β2, a

}
,

• If p′ − p = ms` and there is a c ≤ 1 such that for all input positions q ∈ P ◦`(p),∣∣∣ 1
n0
xTq yq+m

∣∣∣ ≤ c, then ∣∣∣Σ(`,pp′)(x, y)
∣∣∣ ≤ max

{
β2 + (1− β2)c, a

}
.

Proof Let us denote r = rσ,β . Let us suppose that r < 1 and let us prove the first assertion by
induction on `. If ` = 1, then

Σ(1,pp′)(x, y) = β2 + δs|p−p′
1− β2

|P (p)|n0

∑
q∈P (p)

(xq)
T y

q+ p′−p
s

≥ β2 − δs|p−p′(1− β2)

≥ 1− 2(1− β2)

For the induction step, suppose that the inequality holds true for some ` ≥ 1, then

Σ(`+1,pp′)(x, y) ≥ β2 + δs|p−p′
1− β2

|P (p)|

w
s∑

q=0

Rσ

(
1− 2(1− β2)rk−1

)

≥ β2 + δs|p−p′
1− β2

|P (p)|

w
s∑

q=0

1− 2(1− β2)Rσ̇(1)rk−1

≥ β2 + δs|p−p′
(

1− β2 − 2(1− β2)rk
)

=

{
1− (1− β2) if k = 0

1− 2(1− β2)rk if k > 0

≥ 1− 2(1− β2)rk

Now let us suppose that r > 1. If k < `, then
∣∣∣Σ(`,pp′)(x, y)

∣∣∣ =
∣∣∣(Bβ ◦Rσ)◦k

(
β2
)∣∣∣ < max

{
β2, a

}
.

Let us suppose at last that k = ` and let us prove the last assertion by induction on `. If ` = 1, then∣∣∣Σ(1,pp′)(x, y)
∣∣∣ ≤ β2 +

1− β2

|P (p)|n0

∑
q∈P (p)

∣∣∣∣xTq yTq+ p′−p
s

∣∣∣∣ ≤ β2 +
1− β2

|P (p)|
∑

q∈P (p)

c

= β2 + (1− β2)c.
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For the induction step, if we suppose that the inequality holds true for `, then

∣∣∣Σ(`+1,pp′)(x, y)
∣∣∣ ≤ β2 +

(1− β2)

|P (p)|
∑

q∈P (p)

∣∣∣∣Rσ (Σ(`,q,q+ p′−p
s

)(x, y)

)∣∣∣∣
≤ β2 +

(1− β2)

|P (p)|
∑

q∈P (p)

Rσ
(
max{β2 + (1− β2)c, a}

)
= Bβ ◦Rσ

(
max{β2 + (1− β2)c, a}

)
≤ max{β2 + (1− β2)c, a},

which allows us to conclude.

The NTK features the same two regimes:

Theorem 20 (Theorem 9 in the main) Take I0 = Zd, and consider a DC-NN with upsampling
stride s ∈ {2, 3, . . .}d, windows π = ω = {0, . . . , w1s1 − 1} × . . . × {0, . . . , wdsd − 1} for
w ∈ {1, 2, 3, . . .}d. For a standardized twice differentiable σ, there exist constants C1, C2 > 0,
such that the following holds: for x, y ∈ SI0n0

, and any positions p, p′ ∈ IL, we have:

Order: When rσ,β < 1, taking v = min (vs (p− p′) , L− 1), taking v = L − 1 if p = p′ and
r = rσ,β , we have

1− rv+1

1− rL
− C1(v + 1)rv ≤ ϑ(L,p,p′)

∞ (x, y) ≤ 1− rv+1

1− rL
.

Chaos: When rσ,β > 1, if either vs (p− p′) < L or if there exists a c < 1 such that for all

positions q ∈ I0 which are ancestor of p,
∣∣∣∣xTq yq+ p′−p

sL

∣∣∣∣ < c, then there exists h < 1 such that

∣∣∣ϑ(L,p,p′)
∞ (x, y)

∣∣∣ ≤ C2h
L.

Proof Let us denote r = rσ,β and let us suppose that r < 1. The NTK can be bounded recursively

Θ(L,pp′)
∞ (x, y) = Σ(L,pp′)(x, y) + δs|p−p′

1− β2

|P (p)|
∑

q∈P (p)

Θ
(L−1;q,q+ p′−p

s
)

∞ (x, y)Rσ̇

(
Σ(L−1;q,q+ p′−p

s
)(x, y)

)

≥ 1− 2(1− β2)rv + δs|p−p′
1

|P (p)|
∑

q∈P (p)

Θ
(L−1;q,q+ p′−p

s
)

∞ (x, y)
(
r − ψ2(1− β2)2rv−1

)
.
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Unrolling this inequality then using (3), we get

Θ(L,pp′)
∞ (x, y) =

v∑
k=0

(
1− 2(1− β2)rk

) v∏
m=k+1

(
r − ψ2(1− β2)2rm−1

)
≥

v∑
k=0

rv−k − 2(1− β2)rv−krk − ψ2(1− β2)2
v∑

m=k+1

rv−k−1rm−1

=
1− rv+1

1− r
− 2(1− β2)(v + 1)rv − ψ2(1− β2)2

v∑
k=0

rv−1
v−k−1∑
m=0

rm

≥ 1− rv+1

1− r
− 2(1− β2)

[
r +

ψ(1− β2)

1− r

]
(v + 1)rv−1

≥ 1− rv+1

1− r
− C(v + 1)rv,

where the constantC is allowed to depend on σ and β. For the upper bound, we have: Θ
(L,pp′)
∞ (x, y) ≤∑L

`=L−k 1
∏L
m=`+1 r = 1−rv+1

1−r . Thus, we get the same bounds as in the FC-NNs case, but with
respect to v, which is the maximal integer strictly smaller than L such that sv|p− p′:

1− rv+1

1− r
≥ Θ(L,pp′)

∞ (x, y) ≥ 1− rv+1

1− r
− C(v + 1)rv.

Dividing by Θ
(L,pp)
∞ (x, x) which is bounded in the ordered regime (see proof of Proposition 23) as

L→∞, one gets the desired result.
If r > 1, there are two cases. When p′−p = ksL then if there exists c < 1 such that

∣∣xTq yq+k∣∣ <
cn0 for all ancestors q of p. Writing z = max{β2 + (1 − β2)c, a} and w = (1 − β2)Rσ̇(z) < r

such that
∣∣∣Σ(`;q,q+ks`)(x, y)

∣∣∣ < z for all position q at layer ` which is an ancestor of p. Then

∣∣∣Θ(L,pp′)
∞ (x, y)

∣∣∣ ≤ L∑
`=1

vwL−` = v
1− wL

1− w

such that ∣∣∣Θ(L,pp′)
∞ (x, y)

∣∣∣∣∣∣Θ(L,pp)
∞ (x, x)

∣∣∣ ≤ c 1− r
1− w

1− wL

1− rL
≤ C(σ, β)

(w
r

)L
which goes to zero exponentially.

If p′ − p is not divisible by sL then for z = max{β2, a} and w = (1− β2)Rσ̇(z) < r

∣∣∣Θ(L,pp′)
∞ (x, y)

∣∣∣ ≤ L∑
`=L−v+1

zwL−` = z
1− wv

1− w

which also converges exponentially to 0.
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F.2. Adapting the learning rate

Let us suppose that we multiply the learning rate of the `-th layer weights and bias by S−
`
2 where

S =
∏
i si. This is slightly different than what we propose in the main, where the learning rate of

the bias are multiplied by S−
`+1
2 instead of S−

`
2 , but it greatly simplifies the formulas. Furthermore,

the balance between the weights and bias can be modified with the meta-parameter β to achieve a
similar result. The NTK then takes the value:

Θ(L,pp)(x, x) =
L∑
`=1

S−
`
2

L∏
n=`+1

r =
L∑
`=1

S−
`
2 rL−` = S−

L
2

1−
(√

Sr
)L

1−
√
Sr

This leads to another transtion inside the “order” regime: if
√
Sr < 1 the NTK Θ

(L,pp)
∞ (x, x) goes

to zero and if 1√
S
< r < 1 it converges to a constant. If we translate the bound of Proposition

20 to the NTK with varying learning rates, the convergence to a constant is only guaranteed when√
Sr < 1, which suggests that adapting the learning (or changing the number of channels) does

reduce the checkerboard artifacts (as confirmed by numerical experiments):

Proposition 21 Suppose that r < 1. For any two inputs x, y such that for all p ∈ Z, ‖xp‖ = ‖yp‖ =√
n0 and for any two output positions p, p′ such that k is the maximal integer in {0, ..., L− 1} such

that sk divides the difference p− p′, it holds that

1− (
√
Sr)k+1

1− (
√
Sr)L

≥ ϑ(L,pp′)
∞ (x, y) ≥ 1− (

√
Sr)k+1

1− (
√
Sr)L

−
Cσ,β(

√
Sr)k∣∣∣1− (
√
Sr)L

∣∣∣
Proof The NTK can be bounded recursively

Θ(L,pp′)
∞ (x, y) = S−

L−1
2 Σ(L,pp′)(x, y) + δs|p−p′

1− β2

|P (p)|
∑

q∈P (p)

Θ
(L−1;q,q+ p′−p

s
)

∞ (x, y)Rσ̇

(
Σ(L−1;q,q+ p′−p

s
)(x, y)

)

≥ S−
L−1
2 (1− 2(1− β2)rk) + δs|p−p′

1

|P (p)|
∑

q∈P (p)

Θ
(L;q,q+ p′−p

s
)

∞ (x, y)
(
r − ψ2(1− β2)2rk−1

)
unrolling then using (3), we get

Θ(L,pp′)
∞ (x, y) ≥

k∑
m=0

S−
L−k+m

2
(
1− 2(1− β2)rm

) k∏
n=m+1

(
r − ψ2(1− β2)2rn−1

)
≥

k∑
m=0

S
k−m−L

2 rk−m − S
k−m−L

2 2(1− β2)rk−mrm − S
k−m−L

2 ψ2(1− β2)2
k∑

n=m+1

rk−m−1rn−1

≥ S−
L
2

1− (
√
Sr)k+1

1−
√
Sr

− 2
1− β2

1− S−
1
2

S
k−L
2 rk − ψ2(1− β2)2rk−1

k∑
m=0

S
k−m−L

2

k−m−1∑
n=0

rn

We can bound the last term:

ψ2(1− β2)2rk−1
k∑

m=0

S
k−m−L

2

k−m−1∑
n=0

rn ≤ ψ2(1− β2)2rk−1S
k−L
2

1

1− S−
1
2

1

1− r
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Hence, we write

Θ(L,pp′)
∞ (x, y) ≥ S−

L
2

(
1− (

√
Sr)k+1

1−
√
Sr

− 2
1− β2

1− S−
1
2

[
1 +

ψr(1− β2)

1− r

](√
Sr
)k)

≥ S−
L
2

(
1− (

√
Sr)k+1

1−
√
Sr

− Cσ,β
(√

Sr
)
k

)
.

For the upper bound, we have that

Θ(L,pp′)
∞ (x, y) ≤

k∑
m=0

S−
L−k+m

2

k∏
n=m+1

r = S−
L
2

1− (
√
Sr)k+1

1−
√
Sr

.

Dividing by Θ
(L,pp)
∞ (x, x) we obtain

1− (
√
Sr)k+1

1− (
√
Sr)L

≥ ϑ(L,pp′)
∞ (x, y) ≥ 1− (

√
Sr)k+1

1− (
√
Sr)L

−
Cσ,β(

√
Sr)k∣∣∣1− (
√
Sr)L

∣∣∣ ,
as claimed.

Appendix G. Border Effects

With the usual scaling of 1√
|ω|

s1...sd

, in a general convolutional network, the positions on the border

have less parents and hence a lower activation variance. In this section, we show, in a special
example, how this parametrization leads to border effects in the limiting activation kernels and
NTK. This could be generalized to a more general setting, yet, our main purpose is to show that
with the graph-based parametrization–as defined in Section E–no border artifact is present in both
kernels in this general setting.

The following proposition illustrates the border artifact present in the usual NTK-parametrization.
Let us consider a DC-NN with a standardized ReLU nonlinearity, with I0 = I1 . . . = N, with up-
sampling stride of 2, and windows π0 = ω0 = π1 = ω1 = . . . = {−3,−2,−1, 0}. In particular,
there is only one border at position 0. Using the formalism of Section E, the set of parents of a
position p is P (p) = {

⌊p
2

⌋
− 1,

⌊p
2

⌋
} ∩ N. In particular, any generic position in any hidden or last

layer has 2 parents except for the border p = 0 for which P (0) = {0}.

Proposition 22 In the setting introduced above, for any x ∈ SI0n0
, the kernels satisfy:

Σ(`,00)(x, x) =
β2 +

(
r
2

)`+1

1− r
2

and Θ(L,00)
∞ (x, x) =

β2(1−
(
r
2

)L
)(

1− r
2

)2 + L

(
r
2

)L+1

1− r
2

.

In particular Σ(`,00)(x, x) is smaller than the “bulk-value” limp→∞Σ(`,pp)(x, x) = 1 and Θ
(L,00)
∞ (x, x)

is smaller than the “bulk-value” limp→∞Θ
(L,pp)
∞ (x, x) = 1−rL

1−r .
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Proof Recall that for the standardized ReLU, rσ,β = 1 − β2. From now on, we denote r = rσ,β
and x is an element of SI0n0

. For any ` = 0, 1 . . ., we have:

Σ(`+1,00)(x, x) = β2 +
1− β2

2

∑
q∈P (0)

E
z∼N (0,Σ

(`)
qq (x,x))

[
σ(x)2

]
= β2 +

1− β2

2
Σ(`,00)(x, x).

Since x ∈ SI0n0
, we get Σ(1)(x, x) = β2 + r

2 : this implies the following equalities:

Σ(`,00)(x, x) =
(r

2

)`
+

`−1∑
k=0

β2
(r

2

)k
=
(r

2

)`
+ β2 1−

(
r
2

)`
1− r

2

=
β2

1− r
2

+

(
r
2

)` − ( r2)`+1 − β2
(
r
2

)`
1− r

2

=
β2 +

(
r
2

)`+1

1− r
2

.

For the limiting NTK, with the usual NTK parametrization, the following recursion holds:

Θ(L+1,00)
∞ (x, x) = Σ(L+1,00)(x, x) +

r

2
Θ(L,00)
∞ (x, x)Lσ̇Σ(L,00)(x, x).

Note that for the standardized ReLU, σ̇ is a rescaled Heaviside, thus

Lσ̇Σ(L,00)(x, x) = Ex∼N (0,Σ(L,00)(x,x))

[
σ̇(x)2

]
= 2Ex∼N (0,1)[Ix≥0] = 1.

This implies:

Θ(L,00)(x, x) =

L∑
`=1

Σ(`,00)(x, x)
(r

2

)L−`
=

L∑
`=1

(
β2

1− r
2

+

(
r
2

)`+1

1− r
2

)(r
2

)L−`
=
β2(1−

(
r
2

)L
)(

1− r
2

)2 + L

(
r
2

)L+1

1− r
2

.

The “bulk-values” for the activation kernels and the limiting NTK kernel can be deduced from
the proof of Proposition 23. A tedious study of variation of functions allows to prove the assertion
on the boundary/bulk comparison.

As a consequence of the previous proposition, in the limits as ` and L goes to infinity, the ratio
boundary/bulk value is bounded by max

(
1, cβ2

)
: the smaller β is, the stronger the boundary effect

will be.
In the graph-based parametrization, the variance of the neurons throughout the network is

always equal to 1 and the NTK Θ
(L)
∞,pp(x, x) becomes independent of the position p: the border

artifacts disappear.

Proposition 23 (Proposition 8 in the main) For the graph-based parametrization of DC-NNs, if
the nonlinearity is standardized,

(
Σ(L)

)
pp

(x) and
(

Θ
(L)
∞
)
pp

(x) do not depend neither on p ∈ IL
nor on x ∈ SI0n0

.
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Proof Actually, we will prove the stronger statement: for any General Convolutional Network, as
defined in Section E, for any standardized nonlinearity, for any x ∈ SI0n0

and any p ∈ IL,

Σ(L,pp)(x, x) = 1, and Θ(L,pp)
∞ (x, x) =

1− rL

1− r
.

For the activation kernels,this is proven by induction on ` . For any x ∈ SI0n0
and any p ∈ I1:

Σ(1,pp)(x, x) = β2 +
1− β2

|P (p)|n0

∑
q∈P (p)

∑
q′∈P (p)

χ(q → p, q′ → p)xTq xq′

= β2 +
1− β2

|P (p)|n0

∑
q∈P (p)

xTq xq = β2 + (1− β2) = 1,

and if the assertion holds true for L, then:

Σ(L+1,pp)(x, x) = β2 +
1− β2

|P (p)|n0

∑
q∈P (p)

∑
q′∈P (p)

χ(q → p, q′ → p)Σ(L,qq′)(x, x)

= β2 +
1− β2

|P (p)|n0

∑
q∈P (p)

Σ(L,qq)(x, x) = 1.

For the activation kernels, this is proven by induction on L. It is easy to see that Θ
(1,pp)
∞ (x, x) = 1

is valid for any x ∈ SI0n0
and any p ∈ IL. Let us show the induction step:

Θ(L+1,pp)
∞ (x, x) = Σ(L+1,pp)(x, x) +

1− β2

|P (p)|
∑

q∈P (p)

Θ(L,qq)
∞ (x, x)Rσ̇

(
Σ(L,qq)(x, x)

)
= 1 + rΘ(L,qq)

∞ (x, x).

Thus, Θ
(L,pp)
∞ (x, x) =

∑L
`=1 r

L−` = 1−rL
1−r .

Appendix H. Layerwise Contributions to the NTK and Checkerboard Patterns

In a DC-NN with stride s ∈ {2, 3, ...}d, two connection weight matrices W (`,q→p) and W (`,q′→p′)

are shared if and only if s | p′ − p. That is, χ(q → p, q′ → p′) = 0 ⇔ s - p′ − p. The limiting

contribution of the weights Θ
(L:W (`))
∞ and bias Θ

(L:b(`))
∞ to the limiting NTK can be formulated

recursively. For the last layer L− 1 we have

Θ(L:b(L−1),pp′)
∞ = β2

Θ(1:W (0),pp′)
∞ = δs|p−p′

1− β2

|P (p)|n0

∑
q∈P (p)

xTq yq+ p′−p
s

Θ(L:W (L−1),pp′)
∞ = δs|p−p′

1− β2

|P (p)|
∑

q∈P (p)

Rσ

(
Σ(L−1,q,q+ p′−p

s
)(x, y)

)
for L > 1
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and for the other layers, we have

Θ(L+1:b(`),pp′)
∞ = δs|p−p′

1− β2

|P (p)|
∑

q∈P (p)

Θ
(L;b(`),q,q+ p′−p

s
)

∞ (x, y)Rσ̇

(
Σ(L,q,q+ p′−p

s
)(x, y)

)

Θ(L+1:W (`),pp′)
∞ = δs|p−p′

1− β2

|P (p)|
∑

q∈P (p)

Θ
(L;W (`),q,q+ p′−p

s
)

∞ (x, y)Rσ̇

(
Σ(L,q,q+ p′−p

s
)(x, y)

)
.

Proposition 24 (Proposition 10 in the main) In a DC-NN with stride s ∈ {2, 3, ...}d, we have

Θ
(L:W (`),pp′)
∞ (x, y) = 0 if sL−` - p′ − p and Θ

(L:b(`),pp′)
∞ (x, y) = 0 if sL−`−1 - p′ − p.

Proof From the formulas of the limiting contributions Θ(L:W (`)) and Θ(L:b(`)), we see that the
bias of the last layer contribute to all pairs p, p′ while the bias only contribute to pairs such that
s | p′−p. Now by induction on L, if Θ(L:b(`),qq′) and Θ(L:W (`),qq′) only contribute to pairs q, q′ such
that sL−`−1 | q′ − q and sL−` | q′ − q then

Θ(L+1:b(`),pp′)
∞ = δs|p−p′

1− β2

|P (p)|
∑

q∈P (p)

Θ
(L;b(`),q,q+ p′−p

s
)

∞ (x, y)Rσ̇

(
Σ(L,q,q+ p′−p

s
)(x, y)

)

Θ(L+1:W (`),pp′)
∞ = δs|p−p′

1− β2

|P (p)|
∑

q∈P (p)

Θ
(L;W (`),q,q+ p′−p

s
)

∞ (x, y)Rσ̇

(
Σ(L,q,q+ p′−p

s
)(x, y)

)

only contribute to pairs p′, p such that sL−` | p′ − p and sL+1−` | p′ − p as needed.
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