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Abstract

We propose a hybrid technique combining Bayesian inference and quantum-inspired Hamiltonian
Monte Carlo (QHMC) method for imputation of missing datasets. QHMC is an efficient way to
sample from a broad class of distributions. Unlike the standard Hamiltonian Monte Carlo algorithm
in which a particle has a fixed mass, QHMC allows a particle to have a random mass matrix with
a probability distribution. Our data imputation method uses stochastic gradient optimization in
QHMC to avoid calculating the full gradient on the entire dataset when evolving the Hamiltonian
system. We combine the stochastic gradient QHMC and first order Langevin dynamics to obtain
samples whose distribution converges to the posterior one. Comparing the performance of our
method with existing imputation methods on several datasets, we show that the proposed algorithm
improves the efficiency of data imputation.

Keywords: quantum-inspired, Hamiltonian Monte Carlo, Bayesian inference, missing data.

1. Introduction

Having missing components in datasets is a problem that occurs in many empirical studies such
as statistics, data mining and machine learning Little and Rubin (2002). In practice, it is common
that a large number of datasets suffer from noise, incompleteness or lack of training samples which
decrease the performance of data analysis methods. In these scenarios, data augmentation and im-
putation techniques are usually employed to handle the missing data problem, and hence to improve
the performance of computations and parameter estimations.

A considerable amount of research has been dedicated to developing missing data imputation
approaches in the fields of data mining and statistics Zhang et al. (2011). One of the simplest
methods is listwise deletion, also called complete case analysis. In this approach, the latent vari-
ables are not considered and calculations are performed only through the observed variables of the
dataset. Although this method can be implemented easily, it cannot represent the missing variables
in the data, which may lead to failure of recognizing the characteristics of available and unavailable
components Soley-Bori (2013). Single Little and Rubin (2002) and multiple imputation tech-
niques C Yuan (2005) offer to replace the latent variables with estimated values such as the mean
of observed components. Those methods generate synthetic data that represent the characteristics
of the original data, and they have their advantages and disadvantages depending on the type of the
data and problem. They require self-efficient estimations, otherwise the variance of the estimator
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might be inconsistent and considerably biased Yang et al. (2020). Hot-deck imputation is an im-
provement for the multiple imputation techniques, where the value of a similar case is borrowed
to estimate the value of a latent variable Myers (2011); Roth et al. (1999). The hot-deck method
aims to preserve the joint probability of observed data. Other examples of the improved impu-
tation methods are k-nearest neighbor (kNN) Zhang (2012), kernel-based imputation Zhang et al.
(2011), regression-based imputation Zhang et al. (2005) and support vector machines Pelckmans
et al. (2005). Although they can be applicable to a broad class of cases, they all suffer from the
bias issue which arises from deleting or replacing the data. Therefore, those techniques are not very
well suited for especially high-dimensional datasets. Novel machine learning approaches, such as
generative deep learning models (GANs) Goodfellow et al. (2014) are also widely used in handling
missing data problems. In GANs framework, synthetic data is generated from scratch by feeding on
random noise as input. Although GANs can provide realistic copies of the original data, they suffer
from the problem of vanishing gradients which can make the training difficult and slow. Another
issue of GANSs is that the algorithm cannot guarantee convergence Yoon et al. (2018); Joshi and
Nolan (2019).

On the other hand, Bayesian inference with a Markov Chain Monte Carlo (MCMC) approach
can be an efficient approach for imputing latent variables and augment the generated data samples.
A specific version of an MCMC, named Hamiltonian Monte Carlo (HMC) Chen et al. (2014), offers
a more practical approach to represent and analyze the cross-dimensional relations Pourshahrokhi
et al. (2021). HMC method is a well-known powerful and efficient sampling algorithm for con-
tinuous distributions. It explores the posterior distribution using the Hamiltonian dynamics and
random walk, and then generates samples for large scale datasets. In this way, it is possible to ob-
tain multiple samples that can represent the distribution of the available data. These samples can
be used for training the model and performing a learning process Wang et al. (2013). In particular,
folded Hamiltonian Monte Carlo (FHMC) (2020) is an HMC-based method that handles missing
data problems. This method uses the Hamiltonian dynamics to adapt posterior distribution, and
process the cross-dimensional relations by applying a random walk procedure. It performs an HMC
procedure for estimating the mean and the variance of the feature distribution. Then, another HMC
(fold) is performed to obtain samples from posterior. The FHMC algorithm has been tested on high
dimensional datasets and the results have shown that it can successfully impute the incomplete parts
and augment the data. Although this technique provides an effective way to augment data samples
and complete missing variables, it is efficient for small datasets Pourshahrokhi et al. (2021).

In this paper, we propose a hybrid inference technique of Bayesian inference and quantum-
inspired Hamiltonian Monte Carlo method (QHMC) Liu and Zhang (2020), which is applicable to
large datasets. More specifically, we implement the QHMC by stochastic optimization and first or-
der Langevin dynamics to perform missing data imputations. We perform gradient approximations
on randomly selected subsets of the dataset to avoid full gradient calculations, and use the approx-
imated gradient information to generate parameter updates. Following the framework of Langevin
dynamics, we inject noise into the parameter updates such that the parameters will converge to
the posterior distribution. We apply our proposed algorithm and the original QHMC algorithm on
various types of datasets: a synthetically generated Gaussian dataset, MNIST dataset and an adult
income dataset which contains information about approximately 32, 000 people. The main contri-
butions of this paper are: (i) we propose to use the QHMC method on missing data problems, (ii) we
develop a modified version of QHMC to obtain the posterior distribution of the data by approximat-
ing the gradient information and impute the latent variables with that posterior distribution, and (iii)
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we improve the performance of data imputation using HMC-based method in terms of computa-
tional efficiency, especially for large datasets. Although the proposed algorithm is not only specific
to the data imputation problems, this work is among the earliest applications of QHMC for data
imputation.

1.1. Hamiltonian Monte Carlo

HMC method is a framework for sampling high dimensional continuous distributions. It introduces
original and auxiliary variables to represent the movement of a particle in state space, where original
variables x represent position, and auxiliary variables ¢ represent the Gaussian momentum. In the
HMC structure, the position is assumed to be independent of the momentum Barbu and Zhu (2020).
The method employs Hamiltonian dynamics to describe the evolution of the state (z, q). Specifi-
cally, this evolution is driven by the energy function H(x, ¢), and Hamiltonian equations Barbu and
Zhu (2020):

de OH

ait - og (D
dg  OH

dt oz @

Here, the energy of the system is H (z, q) = U(x) + K (q), where U is the potential energy function
and K is the kinetic energy function. The target density that we aim to sample is

1
P(z) = - exp(~U(z)),
where Z is the intractable normalizing constant. Since the HMC equations require computing
derivatives, U (z) needs to be differentiable. In Bayesian inference, the potential energy function U
is the negative log of the posterior distribution (with prior p and log-likelihood [ and a dataset X),
which is defined as

U(xz) = —log[p(z)] — I(X]z).

The momentum g comes from a multivariate normal distribution with a positive-definite covariance
matrix X, and its kinetic energy function is defined as

K(q) = %qTE‘lq.

The sampling procedure of a standard HMC consists of two steps. In the first step, we move a
particle along a constant energy surface which satisfies Hamiltonian dynamics given in equations
(1) and (2), with a step size € and number of iteration steps L. In the second step, we resample
the momentum ¢ while maintaining its position z to make a transition into another energy level.
Since the leapfrog integration satisfies both volume preservation and reversibility, a standard HMC
procedure uses leapfrog integration to update its state. Finally, a Metropolis-Hastings (MH) step is
employed to accept or reject the proposal for (x, ¢), in order to correct any discretization error that
might be caused by Leapfrog integrator Liu and Zhang (2020); Barbu and Zhu (2020); Brooks et al.
(2011).
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1.2. Quantum Inspired Hamiltonian Monte Carlo

Although HMC is a popular framework to sample from high dimensional distributions, it has several
limitations. One of these challenges is that it cannot perform well for discontiunous, non-smooth,
spiky and multimodal distributions. QHMC, on the other hand, handles this problem by exploring
various landscapes thanks to its time-varying mass and it can perform on such distributions Liu and
Zhang (2020). Unlike the standard HMC algorithm in which a particle has a fixed mass, motivated
by quantum mechanics, QHMC allows a particle to have a random mass matrix with a probability
distribution.

In order to understand the quantum aspect of QHMC, we can consider a one-dimensional har-
monic oscillator as an example provided in Liu and Zhang (2020). Let us suppose that we have a
ball with fixed mass m attached to a spring at the origin. The stored force of the ball that pulls back
the ball to the origin is F' = —kz, where x is the displacement. In this type of a system, the ball
oscillates with a time period 1" = 27r\/% . In QHMC, the ball has a time-varying matrix, which
means that the ball sometimes moves slowly and sometimes moves fast. This property is equivalent
to having a varying time-scale, which helps explore different distribution landscapes with different
time-scales. QHMC can quickly scan a broad but flat region with a small time period 7', i.e., small
m, while it uses a larger T" (or m) in a spiky region where it needs to consider every corner of the
landscape Liu and Zhang (2020). Because of its ability to explore different distribution landscapes
and property of satisfying HMC dynamics, QHMC is a variant of the Hamiltonian method suit-
able for sampling from spiky or multimodular distributions. The main idea is to set a time-varying
mass matrix as a random variable associated with a probability distribution, which facilitates sam-
pling from a spiky distribution efficiently. Specifically, a stochastic process M (t) is constructed
for the mass, and at each time ¢, M (¢) is sampled from a distribution denoted as Py;(M). The
implementation of QHMC is straightforward, as it only adds one additional step of resampling the
positive-definite mass matrix to the standard HMC algorithm Liu and Zhang (2020). Algorithm 1
presents the steps of the QHMC method with a mass-varying matrix. Note that in Algorithm 1,
Py (M) is assumed to be independent of = and g. Although the choice of mass distribution is pretty
flexible, in practice, simple choices can be quite useful. An example of a mass density function
Py(M) with mean py,, and variance o2, is logm ~ N (pm,02,), M = ml, where I is the iden-

m
tity matrix. After obtaining a realization of the mass distribution, QHMC approach simulates the

following dynamical system:
2\ _ o (M)
d(q)-dt <—vv<x> |

In this work, we implement the QHMC method for data imputation. Here, we consider the missing
variables as x in Algorithm 1. The method makes QHMC move to impute missing variables, and
impute them by QHMC updates for = in Algorithm 1. To improve the efficiency of QHMC, we
integrate the Stochastic Gradient Langevin Dynamics Welling and Teh (2011) (SGLD) approach
with the QHMC method to avoid calculating the full gradient on the entire dataset. In this way,
we can decrease the computational costs without sacrificing the accuracy of the imputations and
parameter estimations, especially for large datasets.
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Algorithm 1 Quantum Inspired Hamiltonian Monte Carlo (QHMC)
Input: Starting point zg, step size €, number of simulation steps L, mass distribution parameters
L, and op,.
fort=1,2,...do
Resample M; ~ Py(M)
Resample ¢; ~ N (0, My)
(x0,40) = (), ¢")
qo + qo — sVU(x0)
fori=1,2,....L—1do
Ti < Ti—1 + EMt_ICIi—l
¢ <+ qi—1 — §VU(x;)
end for
xp < wp—1 +eM; g
qr < qr—1 — 5VU(zr)
(@,4) = (v1,qz)
MH step: u ~ Uniform[0, 1];
p= e—H(fi,é)JrH(x(”,q(”);
if u < min(1, p) then
(x(t—l-l)’ q(t+1)) _ (i‘, (j)
else
(a;(tJrl)’ gt = (m(t)’ q(t))
end if
end for
Output: {z() 22 .1

2. Methods and Technical Solutions

Similar to the original version of HMC Barbu and Zhu (2020), the original QHMC algorithm re-
quires the full gradient computation over each training sample. Hence, it can be costly when the
training dataset is large. Stochastic gradient HMC Chen et al. (2014) approach is an efficient method
that builds on the HMC framework using stochastic gradient approximations to avoid the cost of full
gradient calculation and introducing the second-order Langevin dynamics to ensure convergence.
Quantum Stochastic Gradient Nosé-Hoover Thermostat (QSGNHT) introduced in Liu and Zhang
(2020) approximates the true gradient with only a small batch of samples. The algorithm also
considers the extra noise term arising from mini batch estimation and handles it by using the ther-
mostat technique. Inspired by the stochastic HMC and QSGNHT, we propose a stochastic version of
QHMC, in which we use the first order Langevin dynamics Welling and Teh (2011), rather than the
thermostat technique. We aim at combining SGLD framework with QHMC and adapt the resulting
technique for missing data environments. Our method combines the efficiency of QHMC in state
space exploration with the computational efficiencies of SGLD. It would serve as a Bayesian sam-
pling algorithm that can successfully and rapidly approximate the posterior for large-scale datasets.
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2.1. Bayesian Framework

Bayesian inference, or Bayesian parameter estimation uses the initial distribution called prior dis-
tribution and the likelihood to estimate the posterior. The key idea is to update the prior knowl-
edge using observation data to make the predictions more dependable Davidson-Pilon (2015). In
Bayesian literature, the distribution of interest is the conditional distribution of the unknown vari-
able given the available variable y, denoted by 7(x) = p(z|y). Let z denote the unknown variable
and y denote the observed variable. Then, the conditional distribution is defined as Acquah (2013)
p(zly) = %, where p(z|y) stands for the posterior probability density, p(z) is the prior
probability density function and p(y|x) is the likelihood function. In Bayesian approach, p(y) is
assumed to be independent of z, the variable of interest. Hence, we can neglect p(y) and rewrite the
posterior probability as

p(zly) o p(x)p(y|z), 3)
meaning that the posterior distribution is proportional to the prior distribution and the likelihood
function Gelman et al. (2014), O’hara et al. (2002).

In this work, we use this Bayesian framework for missing data analysis. Assume that X =
(Xmiss; Xobs) 1s the data matrix with incomplete parts, Y is the output vector, and 6 is the parameter
vector of a given model that describes the relation between X and Y. Our goal is to impute the
missing variables X5 in X, and estimate the parameter vector 6 of the model. The conditional
probability of missing variables can be written as

71—(9) Xmiss) = p(e, Xmiss|X0bsa Y)
X p(@, Xmissa Xobsa Y)

n
= p(e) Hp(xmiss,ia ZLobs,i

i=1

9) X p(yz‘|xmiss,ia ZTobs,i > 0)

Under the assumption that X and 6 are independent, we have

p(xmiss,i, xobs,i|9) = p(xmiss,i, xobs,i) = p(:Ei), and
p(yi’xmiss,iv Lobs,i 9) = p(yi‘xiv 9)
The imputation flow starts with this Bayesian learning and continues with an MCMC procedure for

drawing samples generated by the Bayesian framework. A general imputation procedure at step ¢
can be written as

X(t+1) ~ 7r()(miss‘e) = p(Xmiss|Xobs, 9(1&)’ Y)

miss

00D~ (0] Xmiss) = p(0] Xops, X551, V).

miss

More specifically, in SGLD-QHMC, the missing variables (i.e., Xpiss) in a randomly selected subset
of the data are replaced by performing QHMC updates iteratively. QHMC updates first generate
proposal values for missing variables, and after the MH step, the incomplete data is updated.

2.2. Stochastic Gradient Langevin Dynamics

SGLD algorithm is proposed by Welling and Teh (2011) Welling and Teh (2011) as an iterative sub-
sampling based technique for Bayesian learning from large-scale datasets. SGLD is a combination
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of stochastic optimization in which gradient approximations are performed over small mini-batches
and Langevin dynamics in which the gradient information generated by the first part is used to up-
date unknown parameters of the model. Moreover, first order Langevin dynamics injects a noise pa-
rameter to the updates that ensures the updated parameters converge to the samples of full posterior
distribution. The stochastic optimization part is responsible for providing an optimized approxima-
tion to the Markov chain. A standard SGLD sampler switches between stochastic optimization and
a Bayesian inference method Welling and Teh (2011).

Let 0 be the vector of parameters of a given learning model, and X = (z1, zo, ..., x,) be the
random variable representing the training data. The posterior distribution of ¢ can be expressed as
p(0]1X) ~ p(0) [T1, p(xi|0). Let X®) = {a:gt), acg), y (t)} denote a subset of X with size m at
step t. We can apply the stochastic optimization with the following updates Robbins and Monro
(1951):

o+ = 9(t) 4 A9

c®
AGD = - 5 (Vlogp ZVlogp ]9”))

where €!) is the step size satisfying the following conditions to ensure convergence Welling and
Teh (2011):

Do =00, 3 () <00 @
t=1 t=1

After obtaining the estimate for A@(*), we use Langevin dynamics to handle the uncertainty and data
over-fitting problems by adding a Gaussian noise term 7). This step finalizes the SGLD update as

®)
AGD = E <V log p(6™) Z Vlog p(z H(t))> + ), (35)

with n® ~ N (0, e(t)) and the step-sizes e satisfy the conditions in (4). Typically, step-sizes can be
set by the given formula e = a(b+t)~7 with v = 0.55, and a and b are set such that ¢ decays
from 0.01 to 0.0001 as the iteration number increases Welling and Teh (2011).

2.3. Proposed Method

In this SGLD version of the QHMC method, we select a random subset of the data at every iteration,
and approximate the gradient over the selected subset. We update the missing variables using the
gradient information and injecting a noise term. Adding Gaussian noise with an appropriate mag-
nitude, which is balanced with the step size, can provide updates that will converge to the posterior
distribution. Suppose we have n training samples, then the potential energy function in QHMC can
be written as
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where each U;(x) depends only on the 5™ sample. We can perform the stochastic estimation of the
gradient by the following:

VU (z) = % Z VU;(x),

where m is the batch size. We employ the Bayesian approximation for the gradient estimations, and
perform the QHMC update for position x and momentum g as

2D Z g0 (0140 ©)
®
¢t = ¢ 4 (V log p(z Zvlogp ))> +n, @)

where, by definition of HMC dynamics p(z) = exp(—U(z)), and ¥ ~ AN(0,€")) again is the
noise term with step-size ¢). We summarize the SGLD-QHMC algorithm in Algorithm 2. Al-
though the SGLD-QHMC algorithm can be useful for various problems and applications as the
original QHMC, this paper will focus on the missing data application of the method. The updates
in 6 and 7 are used for imputation of latent variables, which are the positions of z in this nota-
tion. Our method performs Bayesian learning combined with a stochastic version of QHMC to
impute missing variables, and it differs from the existing missing data imputation algorithms in the
literature, which delete or replace the data Zhang et al. (2011, 2005); Pelckmans et al. (2005), or
generate synthetic data from scratch Goodfellow et al. (2014), or perform full gradient calculations
to simulate HMC dynamics which is efficient for only small datasets Pourshahrokhi et al. (2021).

2.4. Theoretical Analysis of the Method

In this section, we will show that SGLD-QHMC generates the true posterior p(x), via stochastic
differential equations (SDE). We can define Langevin dynamics for a Hamiltonian system with
diffusion factor A by the following SDE Ding et al. (2014)

dx = qdt, d(q) =—VU(z)dt — Aqdt + V2AdW, )]

where W is the Wiener process, and dW can be simply expressed as N (0, dt). By rescaling time
t < At and letting A — oo we obtain Brownian dynamics

d(q) = —=VU(z)dt + N(0, 2dt).

In SGLD, we use gradient approximations vU (x) and perform updates combining stochastic gradi-
ent and Langevin dynamics with step-size (). Hence, the SGLD-QHMC implementation simulates

the following system:
z\ _ M(t)"'q
1(3) = (oot wio2m) )

In order to show that the system described by Equation (9) has a unique and steady distribution
p(z) o exp(—U(z)), we will first review a result for a general continuous-time Markov process
provided in Ma et al. (2015). A continuous Markov process can be expressed as an SDE:

dz = f(2)dt + /2D(2)dW (1), (10)
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Algorithm 2 Stochastic Gradient Langevin Dynamics QHMC (SGLD-QHMC)
Input: Starting point zg, step size €, number of simulation steps L, mass distribution parameters
L and o,,, subset size m.
fort=1,2,...do

Resample M; ~ Py (M);

Resample ¢ ~ N (0, M;);

Select a random subset x such that the size of x is m;

(z0,q0) = (2, ¢®)

Approximate the gradient VU () by

(Viogp(@) + & S, Viegp(asla))

qo < qo — §VU (o)

fori=1,2,...,.L —1do

€T, — T + EMt_lqi_l

o

G < gi—1 + S5 VU (z;) + ¥
end for
Tp 4 xro1+ €<J§4[1q/:—1
L
qr < qr—1 — 5 VU(zr)
(#,4) = (zL,q1)
MH step: un ~ Uniform[0, 1];
p e e_H(jjv‘j)J’_H(x(t)vq(t));
if un < min(1, p) then
(D), gty = (&, g)
else
(D) D) = (28 ¢®)
end if
end for
Output: {z(), z(?) .}

where z represents a general vector, f(z) is deterministic drift and D(z) is the magnitude of the
Wiener diffusion process. Then, ps(z) o< exp(—H (x)) is a steady distribution of the dynamics in
Equation (10), if f(z) is restricted to the following form:

d

0
f(2) = =[D(z) + Q()IVH(2) +T'(2), Ti(z)=)_ 5, (Pi(2) +Qi(2), (D
j=1 "
where H(z) = U(z) + 1q" M (t)~1q is the Hamiltonian of the system, Q(z) is a skew-symmetric
matrix and D(z) is a positive semi-definite matrix. In practice, Equation (11) can be modified for
the stochastic gradient variant of the sampler as Ma et al. (2015)

£(2) = =€V [D(z) + Q(2)]VH (1) + T'(2)] + N(0,€92D(2) — €9 By), (12)

where B; is the estimate of the variance of additional stochastic noise satisfying 2D (z;) — ¢) B; >
0, i.e. positive semi-definite.
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Lemma 1 The SGLD-QHMC system described by Equation (9) with decaying step-sizes € satisfy
the conditions in 4, but with a constant mass M (t) = M has a unique and steady distribution which
is proportional to exp(—U (z)).

Proof The SGLD-QHMC system has the following update for q:

¢ = ¢ 1 DDV (D) + N(0,2€9 D),
which fits into the framework provided in Equations (10) and (12) by replacing

1

Tar—1
M
2(] q,

H(z) = H(z,q) = U(x) +

Q(z) = Q(z,q) = 0,
D(z) = D(z,q) = D (with B, = 0).

|
Now, we can show that the SGLD-QHMC framework with changing mass can provide a correct
steady-state distribution that describes the aimed posterior distribution p(z) o< exp(—U(x)) apply-

ing Bayes rule. The joint probability density of (xz,q, M) is p(xz,q, M) = p(x, q|M )P (M). We
know from Lemma 1 that we have

p(z,q|M) o exp (=U(z) — K(q)) = exp (=U(x)) exp (—;qTM_lq>,

from which we can obtain the following:

p(x) = / /M dgdMp(x, ¢, M) x exp(~U (x)),

which shows that the marginal steady distribution approaches the true posterior distribution Liu and
Zhang (2020).

2.5. Discretization Error

We show that the difference between the exact solution and numerical solution generated by SGLD-
QHMC updates is bounded. The SDE form of the exact solution can be written as in equation (8)

dqr = —VU(.Tt) + Y dWry, (13)

where U (z) is the potential energy function of the Hamiltonian system, W} is the Wiener process
and >; is a diagonal covariance matrix. Then, the SGLD solution of the system is Lin et al. (2021)

Qt+1 = Gt — G(t)VU(x)dt + \/G(T)ﬁjgt,

where € are stepsizes satisfying the conditions in 4, and & is the standard Gaussian distribution.
Now let us define the semi-discretized solution {¢; }+>¢ as the linear interpolation of exact solutions
{qt}+>0 by integrating the following:

t t
qt—qo—/ VU(mS)ds—i—/ S, (14)
0 0

10
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Theorem 2 Let us define a function ®7 to quantify the error caused by the gradient approximation
at iteration t, such that VU (z¢) = VU (x1) + ®7. Then, under the assumptions of dissipativity and
smoothness of potential energy function U (x) and having step-sizes satisfying conditions in 4, there
exist constants C1 and Cs such that

Elllg: — G:||%] < CLE[||®?||?] + Cae®. (15)

Proof By integrating (13) and subtracting (14) we obtain
t

G — G = — /Ot (VU(:):S) - VU(xs)> ds +/O (zs _ 2) AW, (16)

forany 0 <t <T. Now, applying Cauchy-Schwarz inequality and then taking the expectation yield

2
‘ ] ;A7

We will find upper bounds for the two terms on the right hand side of the inequality. Applying
Cauchy-Schwarz inequality to the first and second terms we have

‘ 2

2

E[|lg: — ¢:|”] < 2E U /0 (VU(xs) = VU (x;))ds|| | +2E /0 (S — Eo)ds

E /0 VU (xs) — VU (zs)ds

‘ /Ot(zs —$)ds

where following the Burkholder-Davis-Gundy inequalities we can estimate the terms in (18) and (19).
Combining the upper bounds for the terms and convergence property of step-size €t), the theorem
can be proved.

t
< | [ V0t - vuPas]. ay
0

2

t
E <tE [/ |y(zs—28)u2ds], (19)
0

3. Empirical Evaluation

We implemented our SGLD-QHMC algorithm and other baseline methods, namely, kNN, MH and
FHMC on several datasets. We also included the performance of the original QHMC to compare it
with SGLD-QHMC. In all of the experiments conducted with SGLD-QHMC, we randomly selected
40% of the data as the subset for SGLD. The result reported in each experiment is the averaged value
of 100 independent trials. We started with a normally distributed dataset masked intentionally, and
continued with MNIST dataset, which is a well-known benchmark dataset in machine learning,
again masked intentionally. For these datasets, the performance of the different algorithms is mea-
sured by the difference between the predicted results and original ones. We were able to do this
since we masked the synthetic datasets intentionally and have the information about the original
datasets. We defined a distance metric as in Pourshahrokhi et al. (2021) to evaluate the accuracy of
the algorithms, and we included the execution times to compare computational efficiency. In the last
experiments, we tested the algorithm on an adult income dataset which predicts if the annual income
of an individual is greater than $50, 000 based on features such as education level, occupation and
marital status. The dataset contains missing features in it, but has the binary result for every person.
We imputed the dataset and used the generated data for predicting the income levels. We evaluated
the performance by comparing estimated binary results with original ones.

11
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3.1. Numerical Results for Synthetic Dataset

We generated a data matrix X to test the proposed approach on a normally distributed dataset with
latent variables. The prior parameters, mean and covariance of the data are provided. Then another
binary matrix A with the same size as the data matrix is generated in order to mask some variables
in the dataset. Randomly located zero elements in A represent the latent variables in X, while one
represents the observed variables. The sparsity of the mask matrix can be adjusted so that we can
control the portion of incompleteness in the dataset. Thus, we have the following problem setup:

e Data matrix X,,«4, where n = 500, 000 and d = 10,
» Mask matrix A,,«4, where n = 500, 000 and d = 10,
e Observed data X o A,

where o denotes the Hadamard product. We compare the imputation performances of MH, kNN,
FHMC, QHMC and SGLD-QHMC algorithms according to the normalized root mean squared error
(NRMSE) as distance metric defined as Pourshahrokhi et al. (2021)

NRMSE = y/mean((X — Xeg)2)/var(X),

where X, stands for the imputed version of X. Figure 1 presents the NRMSE values obtained by
different algorithms with respect to the ratio of missing components. We can see that the kNN and
MH algorithms yield higher NRMSE values, indicating that the distance between imputed and orig-
inal variables are bigger than the distances obtained by FHMC, QHMC and SGLD-QHMC. When
it comes to comparing FHMC and QHMC-based algorithms, we can observe that their prediction
successes are close to each other. However, the execution times of those three algorithms are dif-
ferent as shown in Table 1 which lists the NRMSE values obtained by kNN, MH, FHMC, QHMC
and SGLD-QHMC algorithms as the ratio of missing variables increases. Although we have similar
success rates for the algorithms with QHMC attaining the highest for most of the cases, we can
see a remarkable difference between the execution times. Thanks to the subsampling and gradient
approximation performed by SGLD-QHMC, we can save a significant amount of time with slightly
sacrificing (or without sacrificing) the accuracy of imputations. In this test case, the execution time
of SGLD-QHMC is about 30% shorter than that of QHMC, 40% shorter than that of FHMC and
kNN, and more than 70% shorter than that of MH.

3.2. Numerical Results for MNIST dataset

In this section, we conduct a set of experiments with the MNIST dataset, which contains 60,000 im-
ages of handwritten digits with 28 x 28 pixels. We convert the data into a matrix of size 60, 000 x 784,
assuming that each pixel is a feature dimension. We mask the feature values using a random mask
matrix, and obtain a missing dataset. Figure 2 shows the MNIST images reconstructed by SGLD-
QHMC algorithm after randomly masking 20% of the pixels. We also compared quantitatively the
imputation performances of kNN, MH, FHMC, QHMC and SGLD-QHMC algorithms in terms of
the NRMSE. The comparisons of algorithms as the ratio of missing variables changes are shown in
Figure 3 and Table 2. According to the results, we can clearly see that MH and kNN algorithms are
outperformed by FHMC, QHMC and SGLD-QHMC algorithms. MH gives the highest NRMSE
values with a longer execution time, while kNN gives the second highest NRMSE values with a

12
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Figure 1: Comparison of algorithms on Gaussian dataset.

Table 1: Time comparison of the algorithms with their NRMSE values on Gaussian dataset.

Missing rate || Metric FHMC QHMC SGLD-QHMC kNN MH

10% NRMSE 0.18 0.15 0.17 022 0.20
Time(sec)  55.3 49.2 314 60.7 175.6
20% NRMSE 0.22 0.19 0.21 025 022
Time(sec)  98.5 87.3 64.3 130.8 353.7
30% NRMSE 0.24 0.22 0.24 0.28 0.23
Time(sec) 163.1 144.6 94.0 175.2 631.6
40% NRMSE 0.25 0.22 0.23 032 0.26
Time(sec) 349.6 303.2 198.7 3267 911.2

shorter execution time than MH and FHMC. When it comes to comparing three HMC-based al-
gorithms, although they yield similar prediction successes, QHMC and SGLD-QHMC provide the
most accurate results. Moreover, SGLD-QHMC attains these NRMSE values in a shorter time than
FHMC and QHMC, and the time saving is around 30%.

Table 2: Time comparison of the algorithms with NRMSE values on MNIST dataset.

| Missing rate || Metric  FHMC QHMC SGLD-QHMC kNN  MH

10% NRMSE 0.20 0.14 0.16 0.21 0.24
Time(sec) 17763 1608.1 1280.4 1540.3 2650.4
20% NRMSE 0.20 0.17 0.17 0.26 0.32
Time(sec) 2270.1 2054.2 1502.0 1873.4 2883.2
30% NRMSE 0.21 0.18 0.19 0.31 0.34
Time(sec) 2912.6 2690.0 1978.5 2577.1 3126.2
40% NRMSE 0.22 0.19 0.20 0.35 0.42
Time(sec) 3211.3 2989.3 2245.7 2910.2 3469.4
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Figure 2: Image reconstruction on MNIST dataset using the SGLD-QHMC for data imputation after
randomly dropping 20% pixels as missing values. Upper rows are ground truth, bottom rows are
imputed images by SGLD-QHMC.
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Figure 3: Comparison of the algorithms on the MNIST dataset.

3.3. Numerical Results for Adult Dataset

We analyze a real adult dataset that predicts whether the annual income level of a person exceeds
$50K based on personal details such as education level, sex, marital status, current occupation and
native country. The dataset contains the information of 32,561 people for 5 different categories,
and each row of the data matrix contains one person’s features for these categories. Corresponding
binary labels represent that the income of an adult exceeds $50K per year if it is one, and zero
otherwise. There are approximately 10% missing features in the rows and we indicate them with
the response indicator matrix A. The categorical data is fit with the logistic regression model so
that we make our derivations using the logistic regression function. Similar to the synthetic data
example, X = (Xpiss, Xobs) denotes n x d data matrix with n = 32,561 and d = 5, Y denotes
the corresponding binary outcome, and § = (61,02, ..., 04)" is the parameter vector for the logistic
regression model. We compared the performances of kNN, MH, FHMC, QHMC and SGLD-QHMC
algorithms in terms of prediction accuracy. The steps for calculating the prediction accuracy are
given in the following:
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* The dataset is partitioned into training and test sets.

* The missing parts in the training set are imputed by the algorithms, and parameter estimations
are performed.

» Using the estimated parameter vector § and variables in the test set, the expectation of likeli-
hood function to the observed variables is calculated by

1 Y 1
p(yl) N g 14+ e,xig(z) )

where NV is the number of iterations after burn-in period, and E,(y;) is the prediction prob-
ability that determines the predicted value for y;, the binary result of the logistic regression
function.

* Predicted value is assigned to one, if the prediction probability is greater than 0.5, and as-
signed to zero otherwise.

* The prediction accuracy is calculated by taking the ratio of the number of matching results to
all actual results in the test set.

Figure 4 shows the prediction accuracy for these algorithms with respect to the number of iterations.
It illustrates that the obtained prediction success rates are around 80% for HMC-based methods with
relatively fewer iterations, while kNN and MH require a higher number of iterations to attain that
success rate. Moreover, QHMC and SGLD-QHMC can attain 90% prediction success as the number
of iterations increases, while other methods stay around 80%. Table 3 shows the execution time of
the algorithms. We can see that SGLD-QHMC is more tolerant to the number of iterations than
the original QHMC, and it provides higher accuracy than FHMC, kNN and MH within a shorter
amount of time.
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Figure 4: Comparison of the algorithms on adult dataset.

15



Table 3: Time and prediction accuracy (PA) comparison of algorithms according to number of

iterations on adult dataset.

KOCHAN ZHANG YANG

Number of Iterations H Metric FHMC QHMC SGLD-QHMC kNN MH
1 % 10° PA 0.78 0.80 0.79 0.73 0.75
Time(sec) 475.0 3253 247.6 3720 6133

9 % 105 PA 0.81 0.85 0.82 0.75 0.79
Time(sec) 1102.2 918.3 500.3 9453  1713.7

5 % 10° PA 0.84 0.91 0.91 0.82 0.82
Time(sec) 3176.9 2956.2 1283.3 22852 4002.1

4. Significance and Impact

In this work, we propose a stochastic version of the QHMC method, and implement the method for
missing data problems. The proposed method obtains the posterior distribution using the Bayesian
approach. We integrate the SGLD framework with QHMC, where the gradient approximation is
performed on a randomly selected subset of the dataset in every iteration. Our experiments have
demonstrated that using the gradient estimates rather than exact sampling is an efficient way to
impute missing variables, especially for large-scale datasets. We compared our results with other
types of imputation methods including kNN, MH and FHMC, also original QHMC, and we found
out that the SGLD-QHMC method provides better results. The experiments have evaluated the
performance of the algorithms in three aspects: distance metric (NRMSE), prediction accuracy
(PA) and execution time. In the first set of experiments using synthetic data, the results have shown
that SGLD-QHMC provides slightly better NRMSE values than FHMC results and slightly worse
NRMSE values than QHMC results, even when it uses 40% of the dataset. Since SGLD-QHMC
uses only 40% of the samples to approximate gradients, it requires shorter time in the computation
while maintaining good accuracy. The experiments on MNIST data show that MH and kNN are
outperformed by HMC-based methods in terms of both NRMSE and execution time, while within
the HMC-based methods, SGLD-QHMC is the most efficient. In the last set of experiments in
which a real life adult dataset is used, we have shown that the SGLD-QHMC technique can estimate
whether the income of a person is higher than $50K per year with a success rate of 90%, which is
the same success rate attained by QHMC in a longer time. Moreover, the success rate of SGLD-
QHMC might be increased by using a larger portion of the dataset and it can still perform faster
than FHMC and QHMC.

Overall, the work has demonstrated that both QHMC and the proposed algorithm are efficient
for missing data imputation. Imputing missing datasets using our approach outperforms the other
improved multiple imputation methods such as kNN, and MCMC-based imputation methods such
as MH and FHMC. Although FHMC is an efficient imputation method, SGLD-QHMC can provide
the same or higher accuracy within a shorter amount of time. Unlike FHMC or other imputation
methods that suffer from bias, SGLD-QHMC is more tolerant to larger datasets. Moreover, the
results on MNIST and adult datasets show that SGLD-QHMC is promising to be generalized to
various applications.
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