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Abstract

We develop theoretically guaranteed stochastic methods for outlier-robust PCA. Outlier-
robust PCA seeks an underlying low-dimensional linear subspace from a dataset that is
corrupted with outliers. We are able to show that our methods, which are variants of
stochastic geodesic gradient descent over the Grassmannian manifold, converge and recover
an underlying subspace in various regimes through the development of a novel convergence
analysis. The main application of this method is an effective differentially private algo-
rithm for outlier-robust PCA that uses a Gaussian noise mechanism within the stochastic
gradient method. Our results emphasize the advantages of the nonconvex methods over
another convex approach to solve Outlier-robust PCA in the differentially private setting.
Experiments on synthetic and stylized data verify these results.

1. Introduction

Outlier-robust PCA (ORPCA) involves the problem of robustly estimating an underlying
linear subspace from data in the presence of large amounts of corrupted data. While many
solutions have been proposed for this problem, some particularly effective methods involve
nonconvex energy minimization (Maunu et al., 2019). However, these methods require
generic conditions on the full dataset, and it is not clear how they behave in the presence of
stochastic gradients, since they typically require good initialization and control over where
the iterates lie.

This work develops a deeper understanding of how nonconvex methods for ORPCA
interact with stochastic gradients. Past studies have mainly looked at recovery limits of
such methods (Lerman and Maunu, 2018b), both in terms of percentages of corrupted data
as well as their associated statistics. In the current work, we show that it is possible to
extend the results to the stochastic setting while maintaining robustness guarantees.

As an important application, we show that specific choices of stochastic gradients lead
to differential privacy. Private algorithms provide an important way to gain insight from
sensitive data. As a framework, differential privacy has harkened in a new era in the study
of privacy and its interaction with data science and machine learning (Dwork et al., 2006;
Dwork, 2008). To make an algorithm differentially private, one typically incorporates some
sort of noise mechanism. This noise mechanism is applied to either the data itself or within
the algorithm to limit the influence any single point can have on the output. In this paper,
we focus on differentially private gradient descent algorithms, which use noisy gradients at
each iteration to achieve differential privacy.
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While differential privacy may be simple to include within an algorithm, it is less straight-
forward to guarantee how accurate the algorithm will be, especially in nonconvex settings.
Recently, there has been work on empirical risk minimization by differentially private meth-
ods, which show that it is possible to achieve fast estimation and optimization rates with
differentially private algorithms (Bassily et al., 2014; Talwar et al., 2014; Bassily et al.,
2019). Such results typically focus on the convex setting, but some recent work has studied
such algorithms in the nonconvex setting as well (Wang et al., 2019). While these results
are quite general, they do not capture the intricacies of the analysis of robust methods.
That is, especially in the setting of ORPCA, robust methods are concerned with recovery
results, where under various conditions on a corrupted dataset, an algorithm can still recover
some unknown underlying structure. Especially in nonconvex recovery problems, it is not
clear how the stochastic nature of the private algorithms interacts with existing recovery
guarantees. Due to our generic guarantees for stochastic gradient methods, we are able to
guarantee recovery for a differentially private method.

1.1. Background

Suppose that we observe a dataset X = {x1, . . . ,xN} ⊂ RD. The classical problem of
principal component analysis (PCA) seeks the r directions of maximum variance within
this dataset, where r is a parameter chosen by the user. Equivalently, one can also try
to find a linear subspace that spans these directions. It is therefore convenient to encode
PCA as a problem over the Grassmannian manifold of r-dimensional linear subspaces in RD,
G(D, r). Throughout the paper, we also consider the optimization over orthogonal bases for
L ∈ G(D, r): each element of G(D, r) can be spanned by the columns of a semiorthogonal
matrix in O(D, r) := {V ∈ RD×r : V >V = Ir}.

In this language, PCA solves the geometric problem

min
V ∈O(D,r)

1

N

N∑
i=1

‖(I − V V >)xi‖2, (PCA)

where V V > is the orthogonal projection matrix onto Sp(V ). PCA thus finds the subspace
which minimizes the sum of squared distances between points and the subspace.

PCA is not outlier-robust due to the use of squared error. A typical way to robustify
it is to remove the square, which results in the following formulation which we refer to as
Grassmannian Least Absolute Deviations (GLAD). :

min
V ∈O(D,r)

1

N

N∑
i=1

‖(I − V V >)xi‖ =: F (V ;X). (GLAD)

Many methods have been proposed to solve this nonconvex and nonsmooth problem, and
they are reviewed in Lerman and Maunu (2018b).

To give a high-level overview of our results, we will briefly discuss the two areas that it
straddles. First, the primary result of our analysis is guarantees for a nonconvex, stochastic
method for ORPCA. Typically, ORPCA algorithms assume an inlier-outlier model, X =
Xin ∪ Xout, where Xin lie on a low-dimensional subspace L?, and the outliers Xout are
corrupted to not lie on this subspace. The goal is to recover L? ∈ G(D, r), or V? ∈ O(D, r)
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such that Sp(V?) = L?. For simplicity, we assume that the data is centered, so that
we search for a linear subspace. Throughout the paper, we also make the simplifying
assumption that X ⊂ SD−1, where SD−1 is the sphere in RD, so that the function F is
1-Lipschitz. This can be achieved by first normalizing all points to the sphere, which has
robustifying characteristics to adversarial outliers (Maunu and Lerman, 2019).

Second, the important application of our results involves differential privacy (Dwork and
Roth, 2013). A randomized algorithm A, which takes in an input x and gives back a random
output, is (ε, δ)-differentially private if, for all S ⊆ Range(A) and for all datasets x, y that
only differ in at most one data point, P [A(x) ∈ S] ≤ eεP [A(y) ∈ S] + δ. Two common ways
to make a first-order algorithm private include adding noise to data or adding noise to the
gradients. In this work, since we study stochastic gradient methods for outlier-robust PCA,
the recovery guarantees we prove naturally extend to the private setting.

1.2. Contributions

We derive the following results for ORPCA with large N :

1. We present stochastic versions of the geodesic gradient descent (GGD) algorithm,
which results in the Noisy GGD (NGGD), Stochastic GGD (SGGD), and Noisy
Stochastic GGD (NSGGD) methods. We give theorems guaranteeing linear conver-
gence and subspace recovery by these three methods. Our results are the first non-
convex convergence guarantees for stochastic gradient descent in the least absolute
deviations framework.

2. With specifically chosen noise parameters, we demonstrate that these methods are
differentially private, and we refer to the resulting algorithms as dp-GGD and dp-
SGGD, respectively. We compare these private algorithms to convex methods for
differentially private outlier-robust PCA based on the REAPER problem (Lerman
et al., 2015), (dp-REAP). In this setting, we extend past results on differentially
private convex empirical risk minimization to give subspace recovery guarantees for
the dp-REAP algorithms under generic conditions.

3. By comparing our theoretical results for the differentially private methods, we demon-
strate a distinct advantage in the differentially private setting for dp-(S)GGD over
dp-REAP. The nonconvex dp-(S)GGD algorithm converges at a linear rate while the
convex dp-REAP methods converge at a sublinear rate, meaning that one can obtain
a much more accurate approximation to the underlying subspace in less iterations.
In terms of best approximations while still maintaining privacy, we achieve approx-
imation errors (in terms of distance to ground truth squared) that are O(N−1) for
the convex methods and errors on the order of O(2−N

τ
) for the nonconvex methods,

where τ is some constant in (0, 2) that depends on the statistics of the dataset.

4. Experiments on synthetic and stylized data emphasize the theoretical results of this
paper. In particular, they demonstrate the advantage in terms of speed and accuracy
for the nonconvex methods, and in particular demonstrate distinct advantages for the
dp-SGGD method.
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1.3. Review of Directly Related Work

For a comprehensive review of the many methods used for ORPCA, we direct the reader
to Lerman and Maunu (2018b). Perhaps one of the most popular frameworks for ORPCA
uses least absolute deviations. Originating with the study of robust orthogonal regression
in Osborne and Watson (1985); Späth and Watson (1987), it was considered for ORPCA
in Ding et al. (2006). More recent studies by Zhang and Lerman (2014); Lerman et al.
(2015); Lerman and Maunu (2018a); Maunu et al. (2019) have demonstrated the consider-
able advantages of this program. This problem is distinct from what is called Robust PCA
(RPCA), which considers sparse corruptions (Chandrasekaran et al., 2011; Candès et al.,
2011).

The nonconvex method we propose is based on optimization on the Grassmannian man-
ifold (Edelman et al., 1999). Manifold optimization has recently been of great interest for
the machine learning community (Zhang and Sra, 2016).

Differential privacy has become the preeminent way of protecting sensitive data (Dwork
and Roth, 2013). There has been a recent surge of work examining how differential privacy
affects the accuracy of various methods (Bassily et al., 2014, 2019). Some recent work has
been devoted to considering differentially private methods for PCA (Chaudhuri et al., 2013;
Hardt and Price, 2014; Jiang et al., 2016).

1.4. Notation

We let σj(·) denote the jth singular value of a matrix. For measuring subspace approxi-
mation, we use a distance metric on the Grassmannian. A typical metric is d(L1, L2) =√∑r

j=1 θ
2
j , where θj are the principal angles between L1 and L2. For our later analysis of

the nonconvex method, for V ,V ′ ∈ O(D, r), which are bases for two elements of G(D, r),
it is more convenient to work with the squared metric d2r(V ,V

′) = 1 − σr(V >V ′), which
for subspaces that are close together is on the order of 1/2 times the largest principal angle
squared between Sp(V ) and Sp(V ′) (specifically, it is 1− cos(θ1)). We denote Bd2r(V , ρ) to
be the ball of radius ρ with respect to d2r .

2. Stochastic Algorithms to Minimize GLAD

In this paper, we propose to use stochastic gradient descent to directly minimize (GLAD).
This extends the existing framework for ORPCA studied by Maunu et al. (2019), where the
authors proposed to use vanilla geodesic gradient descent (GGD). Section 2.1 reviews the
GGD method used to minimize (GLAD). Then, Section 2.2 discusses modifications of this
method to include noisy and minibatch gradients, which result in stochastic GGD methods.

2.1. Geodesic Gradient Descent

One can directly optimize (GLAD) over the Grassmannian manifold using geometric meth-
ods. Past algorithms that accomplish this with some theoretical guarantees (despite the
nonconvex setting) include IRLS (Lerman and Maunu, 2018a) and GGD (Maunu et al.,
2019). On top of frequently being more accurate than their convex counterparts, these
methods are also faster than convex methods, since nonconvex methods work with a D× r
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optimization variable rather than the typical D ×D variable that replaces the orthogonal
projection V V T .

We briefly review GGD. Since G(D, r) forms a Riemannian manifold, the Riemannian
gradient of the energy function in (GLAD) is

∇F (V ;X) =
1

|X|
QV

∑
x∈X

xx>V

‖QV x‖
, (2.1)

where V ∈ O(D, r) is a matrix whose columns span L, QV = I−V V > projects the gradient
to the tangent space of G(D, r) and |X| denotes the number of points in the set X. Geodesic
gradient descent (GGD) then takes the form Vk+1 = ExpVk(−ηk∇F (Vk;X)) (where Exp is
the exponential map). For a complete discussion of this iteration and associated concepts
related to the geometry of G(D, r), see Edelman et al. (1999); Maunu et al. (2019).

2.2. Stochastic Geodesic Gradient Descent Methods

In terms of optimization, the main innovation in this work is to consider stochastic gradient
methods for (GLAD). One specific stochastic gradient one may consider is the addition
of Gaussian noise, which enhances privacy. To go beyond this setting, we also consider
stochasticity due to minibatching. While the addition of stochastic gradients is a small
modification of the original GGD method, it is entirely nontrivial to extend convergence
and recovery analysis to the stochastic setting (see Section 3).

We first describe a version of GGD which uses noisy gradients. Let Bk ∈ RD×r whose
entries are i.i.d.∼ N(0, σ2). The noisy GGD (NGGD) iteration is given by

Vk+1 = PO(D,r)(Vk − ηk(∇F (Vk;X) +Bk)), (NGGD)

where PO(D,r) is the projection operator that solves PO(D,r)(A) = argminV ∈O(D,r) ‖V −A‖2.
This is an example of the orthogonal Procrustes problem (Gower and Dijksterhuis, 2004),
and it can be solved via the SVD or polar decomposition (Fan and Hoffman, 1955). This
iteration is referred to as Noisy Geodesic Gradient Descent (NGGD).

We can also use stochastic estimates of ∇F (Vk;X) to add further “noise” to the gradient.
We call such a method noisy stochastic geodesic gradient descent, NSGGD, which is defined
by the iteration

Ṽk+1 = PO(D,r)(Ṽk − ηk(Gk +Bk)). (NSGGD)

Here, Gk is an estimate of the gradient at Ṽk. When using minibatch stochastic gradients,
we let Gk = gradF (Vk;X

k), where Xk ⊂ X. We refer to the method with minibatch
stochastic gradients and zero noise as SGGD.

These methods have many potential applications. First, the minibatch SGGD method
allows for less per-iteration complexity than that of GGD, where SGGD has complexity
O(BDd) per iteration (where |Xk| = B) and GGD has complexity of O(NDd) per iteration.
Furthermore, the addition of noise allows for the potential development of Langevin-like
algorithms on the Grassmannian. Finally, as we discuss later, when the noise has sufficiently
large variance, we can show that the resulting method is differentially private.
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3. Theory

In the following sections we present our theoretical results for NGGD, SGGD, and NSGGD.
In particular, we prove convergence and subspace recovery results for these methods.

First, in Section 3.1, we recall a result from Maunu et al. (2019), which shows that
PCA gives a good initial approximation to the underlying subspace with high probability.
After this, Section 3.2 gives an iteration complexity and approximation result for NGGD.
Then, Section 3.3 gives an iteration complexity and approximation result for SGGD as well
as a convergence and recovery theorem for NSGGD. The proofs of convergence for these
differentially private methods require nontrivial extensions of the past proofs of convergence
for GGD seen in Maunu et al. (2019). After this, we finish in Section 3.4 by showing how
one can extend these approximation guarantees to achieve linear convergence of the NGGD,
SGGD, and NSGGD algorithms with a geometrically diminishing step size scheme. For
brevity, all proofs are left to the Appendix.

The results in these sections represent the main theoretical innovation of this work.
Similar to the analysis of the deterministic GGD method, the strategy is to prove, under a
general condition called stability, 1) good initialization by some means, and 2) convergence
of the nonconvex stochastic gradient method.

3.1. Initialization by PCA

Our nonconvex methods require initialization in a sufficiently small neighborhood of the true
subspace spanned by V?. To accomplish this, we initialize NGGD, SGGD, and NSGGD
using a PCA subspace. Later, in the case of differentially private methods, we show that
one can also initialize with differentially private PCA. The main result for initialization
follows.

Theorem 1 (Maunu et al. (2019)) If

SPCAρ (X) := 2 sin(arccos(1− ρ))µr(XinX
>
in)− ‖Xout‖22 > 0, (3.1)

then d2r(LPCA, L?) < ρ.

Here, µj(A) is the jth largest eigenvalue of a given matrix A.

3.2. Noisy GGD

Towards a complete theory for private, nonconvex robust subspace recovery, we first prove
an iteration complexity and approximation result for NGGD. This section and the following
are mainly inspired by the analysis in Zhou et al. (2020). Following the analysis in Maunu
et al. (2019), the goal is to show that the sequence σr(V

>
? Vk) forms a sequence that rapidly

increases with k.
For the convergence of GGD in Maunu et al. (2019), the key idea is the development of

the stability statistic, which is defined as

Sρ(X) = (1− ρ)µr

 1

N

∑
Xin

xx>

‖x‖

− max
V ∈O(D,d)

σ1 (∇F (V ;Xout)))
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= (1− ρ)P(Xin)−A(Xout).

Note that our parametrization of this statistic is slightly different from that of Maunu
et al. (2019), where we use 1 − ρ instead of cos(γ). Under stability, or the assumption
that Sρ(X) > 0, Maunu et al. (2019) prove local convergence of GGD given initialization in
Bd(V?, arccos(1 − ρ)) ≡ Bd2r(V?, ρ) for a different metric d. As we can see, the statistic
Sρ(X) is a difference between an inlier term and an outlier term.

In the following theorem, we prove convergence of NGGD when Sρ(X) > 0 as long as V0 ∈
Bd2r(V?, ρ/2) – notice that the noisy method requires some extra wiggle room in terms of the
initialization to ensure that iterations do not leave the neighborhood Bd2r(V?, arccos(1−ρ)).

Theorem 2 Assume that Sρ(X) > 0, NGGD is initialized at V0 ∈ Bd2r(V?, ρ/2) with a
constant step size ηk = s = c1a/T

ν , 0.5 < ν < 1, and is run for T iterations, where

T > F1(a/d
2
r(V?,V0), λ),

for F1 defined in (B.13) that depends on all parameters. Then NGGD yields a final iterate
VT ∈ Bd2r(V?, a) with probability at least 1− 2λ.

By Theorem 1, PCA initialization achieves the proper initialization with high probability
when the condition SPCAρ (X) > 0 holds. Theorem 2 states that, effectively, as long as the
number of iterations is larger than F1(c), the NGGD final iterate lies in Bd2r(V?, cρ) with
high probability. We will show in Section 3.4 how one can turn this into a linear convergence
result.

3.3. Noisy Stochastic GGD

We first present a novel analysis of minibatch SGGD for solving (GLAD).
To this end, we assume minibatches Xk, 1 ≤ k ≤ T , of size B that are drawn from X

with replacement. We can separate each minibatch into inlier and outlier components Xkin
and Xkout, respectively. Much in the same way that one can analyze GGD and NGGD, we
analyze SGGD through the use of stability statistics. For SGGD, the main difference is now
each minibatch has an associated stability statistic, Sρ(X

k) = (1− ρ)P(Xkin)−A(Xkout). As
there are NB subsets Xk, we get a range of stability statistics, some of which are positive
and some of which are negative. Now, instead of assuming that Sρ(X) > 0, we assume that
for a minibatch selected uniformly at random from X without replacement,

EXkSρ(X
k) = Sρ,E > 0. (3.2)

Theorem 3 Assume that Sρ,E > 0, SGGD is initialized at V0 ∈ Bd2r(V?, ρ/2) with a
constant step size ηk = s = c1a/T

ν , 0.5 < ν < 1, and is run for T iterations, where

T > F2(a/d
2
r(V?,V0), λ),

for F2 defined in (B.15) that depends on all other parameters. Then SGGD yields a final
iterate VT ∈ Bd2r(V?, a) with probability at least 1− 2λ.
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To additionally prove convergence of NSGGD, we must also control the noise throughout
the iterations. This result essentially combines Theorems 2 and 3. As before, this theorem
states that in a number of iterations > F3(c), the NSGGD final iterate lies in Bd2r(V?, cρ)
with high probability.

Theorem 4 Assume that Sρ,E > 0, NSGGD is initialized at V0 ∈ Bd2r(V?, ρ/2) with a
constant step size ηk = s = c1a/T

ν , 0.5 < ν < 1, and is run for T iterations, where

T > F3(a/d
2
r(V?,V0), λ),

for F3 defined in the Appendix that depends on all other parameters. Then NSGGD yields
a final iterate VT ∈ Bd2r(V?, a) with probability at least 1− 4λ.

Finally, we demonstrate how one might hope to have Sρ,E > 0 with a simple model.
Using the bound from (Maunu and Lerman, 2019, Appendix C), for a sample from X

without replacement of size B, which we denote by XB

Sρ,E(X) = E
(

(1− ρ)µr

 1

B

∑
XBin

xx>

‖x‖

− max
V ∈O(D,d)

σ1
(
∇F (V ;XBout))

)
(3.3)

≥ E

(1− ρ)µr

 1

B

∑
XBin

xx>

‖x‖

− E

[√
#(XBout)‖XB

out‖2
]
.

We thus believe that one can show that this holds for a range of examples by bounding
expected eigenvalues of sub-Gaussian random matrices. This could be done in a similar way
to what is done in (Maunu and Lerman, 2019, Theorem 14), using bounds seen for example
in (Vershynin, 2012, Section 5.3).

3.4. Linear Convergence Analysis

As we commented in the previous sections, in a constant number of iterations, F1(c) for
NGGD, F2(c) for SGGD, and F3(c) for NSGGD, the stochastic GGD algorithms converge
to Bd2r(V?, cρ). Setting c = 1/2, these methods have yielded final estimates twice as close
to V? in a constant number of iterates.

Using this fact, the following theorem guarantees linear convergence of the stochastic
GGD algorithms. To accomplish this, we use a geometrically diminishing step size. That
is, we run the algorithm with a constant step size s for a sufficient number of iterations.
Then, the algorithm is restarted with a constant step size cs for some fraction c ∈ (0, 1).
This restarting procedure is then repeated R times. This is similar to the strategy used
in Maunu et al. (2019) to prove linear convergence of GGD.

Theorem 5 Suppose that one of the stochastic GGD algorithms is run for R restarts and
S > 0, where S = Sρ(X) for NGGD and S = Sρ,E(X) for SGGD and NSGGD. Suppose
that in the first run of the algorithm (out of all the restarts), the step size is s = c1aT

−ν
1 ,

0.5 < ν < 1 and the number of iterations is T1 = O(Fj(a/d
2
r(V?,V0))), where j = 1 for

NGGD, j = 2 for SGGD, and j = 3 for NSGGD. Suppose further that the step size for
the lth restart is s/2l−1 for Tl = Fj(1/2) iterations. Then, with probability at least 1− 2Rλ

(or 1− 4Rλ for NSGGD), the output of the Rth restart, V̂ , satisfies V̂ ∈ Bd2r(V?, a/2
R).
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We see that this theorem guarantees an approximation that decreases at an exponential
rate over the number of restarts. There is an interplay between the recovery probability
and error guarantee: while the approximation decreases in R, the probability of success
also decreases in R. However, the error decreases exponentially while the probability only
decreases linearly. Therefore, we can specify a small recovery error E and then offset this
with a sufficiently small parameter λ = O(log(1/E), which would then increase the number
of iterations in Theorems 2-5.

4. Application: Differential Privacy

In both the NGGD and NSGGD methods, if the noise variance is sufficiently large, then
the methods become differentially private. We guarantee the privacy of these methods in
the following theorem.

Theorem 6 (Differential Privacy of NGGD and NSGGD) There exists a constant

c such that for any ε < cT , if σ2 ≥ cT log2(1/δ)
ε2N2 , then NGGD run for T iterations is (ε, δ)

differentially private. On the other hand, if the batch size is B, there exist constants c1 and

c2 such that for any ε < c1q
2T , if σ2 ≥ c2 (B/N)2T log(1/δ)

ε2N2 , then NSGGD run for T iterations
is (ε, δ) differentially private.

The proof of differential privacy for such stochastic first-order methods is standard and
follows Bassily et al. (2014); Talwar et al. (2014); Jayaraman et al. (2018). With the noise
variances as specified in Theorem 6, we refer to the NGGD algorithm as dp-GGD and to
NSGGD as dp-SGGD. When writing statements that apply to either dp-GGD or dp-SGGD,
we will refer to dp-(S)GGD.

In the following sections, we examine the implications of our recovery results in the differ-
entially private setting. First, Section 4.1 discusses how to initialize NGGD and NSGGD in
a private way. Then, Section 4.2 explains how the results for NGGD and NSGGD translate
to the differentially private setting. Lastly, in Section 4.3 we present convex differentially
private methods based on REAPER (Lerman et al., 2015), which gives an important base-
line for subspace recovery based on differentially private convex empirical risk minimization.
In particular, we extend convergence results for convex empirical risk minimization to the
case of the REAPER algorithm and show that these have implications for subspace recovery.

4.1. PCA Initialization

Throughout the paper, we refer to dp-PCA as the output of the differentially private PCA
method of Jiang et al. (2016). Combining the previous result in Theorem 1 with a result
of Jiang et al. (2016), we obtain the following theorem.

Theorem 7 If N is sufficiently large and SPCAρ/2 (X) > 0, we have that the output of dp-PCA,

Vdp−PCA, lies in Bd2r(V?, ρ/2) with high probability.

4.2. Approximation for dp-(S)GGD

Notice that, in order for the conditions of Theorem 6 to be satisfied, we need the total
number of iterations to be bounded as T = O(N2ε2). To get a sense of the number of
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restarts we can take, we note that this implies
∑R

l=1 Tl = O(N2ε2). If we take Tl = (εN)α

for 0 < α < 2 for all l = 1, . . . , R, the conditions of Theorem 5 are satisfied once N is
sufficiently large. Therefore, we can take R = O((εN)2−α), which yields a dp-(S)GGD
estimator with accuracy on the order of 1/2(εN)2−α , which decreases exponentially in N .
Taking this all together, we have the following corollary of Theorems 5 and 6.

Corollary 8 Running the dp-(S)GGD algorithm as in Theorem 5 for the maximum number
of restarts R while still maintaining privacy in Theorem 6 yields a final iterate V̂ such that
d2r(V̂ ,V?) = O(ρ/2(εN)2−α).

4.3. Differentially Private REAPER Algorithms

One could also attempt to relax (GLAD) and solve a surrogate convex problem instead. A
popular relaxation for this task is the REAPER relaxation of Lerman et al. (2015). In this
section, we present a simple differentially private version of this method. We can directly
apply existing empirical risk minimization results to this problem (Bassily et al., 2014, 2019)
to yield subspace recovery guarantees. This will give us a baseline that demonstrates the
superiority of the nonconvex method.

The REAPER program (Lerman et al., 2015) solves (GLAD) by relaxing the nonconvex
constraints that PL is an orthoprojection:

min
P∈H

1

N

N∑
i=1

‖(I − P )xi‖, H := {P : 0 � P � I, Tr(P ) = r}. (REAP)

This is a convex program, and so (REAP) can be solved by an array of standard convex opti-
mization algorithms. Since X ⊂ SD−1, G(P ;X) = 1

N

∑N
i=1 ‖(I−P )xi‖ is 1-Lipschitz. Since

the objective in (REAP) is not smooth, one must use subgradient based methods (Clarke,
1990). We use the following subgradient of REAPER:

∇G(P ;X) = −
∑
x∈X

‖x−Px‖>0

(I − P )xxT + xxT (I − P )

2‖x− Px‖
. (4.1)

While Lerman et al. (2015) proposes to solve this problem using an iteratively reweighted
least squares method, we instead opt to study first-order methods. The first method we
consider is gradient descent, and the second is a mirror descent. To make these methods
differentially private, we again use the Gaussian mechanism and add noise to the gradient.
Since past work has demonstrated advantages for considering stochastic first-order methods
when making convex algorithms private (Abadi et al., 2016; Bassily et al., 2019), we also give
stochastic versions of each algorithm. These convex optimization methods for the REAPER
problem are differentially private by the previous arguments of Bassily et al. (2014); Talwar
et al. (2014).

Since our primary focus is on the nonconvex method, and some nonprivate versions of
the convex methods were previously explored by Goes et al. (2014), we leave the exact
formulation of these methods to the Appendix. In the Appendix, we outline 4 differentially
private algorithm for solving this REAPER program: Differentially Private Gradient De-
scent (dp-GD-REAP), Differentially Private Stochastic Gradient Descent (dp-SGD-REAP),

10
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Differentially Private Mirror Descent (dp-MD-REAP), and Differentially Private Stochastic
Mirror Descent (dp-SMD-REAP).

Previous work on optimization with differential privacy has focused on differentially pri-
vate empirical risk minimization (Bassily et al., 2014; Talwar et al., 2014; Bassily et al.,
2019). In this general set-up, one wishes to minimize the empirical surrogate for the popula-
tion loss. In the non-stochastic setting, we can use the main theorem of Talwar et al. (2014)
for both dp-GD-REAP and dp-MD-REAP. Indeed, if one uses the mirror map Ψ(·) = ‖·‖2/2,
then the algorithm just becomes dp-GD-REAP, whereas if one uses the negative von Neu-
mann entropy, it yields dp-MD-REAP. The following theorem gives our main approximation
result for the nonstochastic and stochastic dp-REAP algorithms. In both cases, we show
that the approximation error for these private methods is on O(1/N), rather than expo-
nential like the dp-(S)GGD algorithms. In contrast to Bassily et al. (2019), this theorem
does not resort to smoothing the cost function and instead uses the optimization rate for
subgradient descent.

Theorem 9 Let D be the diameter of the constraint set H. Then, if dp-GD-REAP or
dp-MD-REAP is run for T = O(ε2N2) and yields the estimator P̄ , we have

EG(P̄ ;X)−min
P

G(P ;X) .
D log(N/δ)

εN
, (4.2)

where the expectation is taken over the randomness of the algorithm. On the other hand,

for dp-SGD-REAP and dp-SMD-REAP, if the noise variance is σ2 = c2
B2T log(1/δ)

ε2N2 , then

EG(P̄ ;X)−min
P

G(P ;X) ≤
√

1 + c2B2 log(1/δ)D
1

εN
,

where the expectation is taken over the randomness of the algorithm and D is the diameter
of the constraint set with respect to the appropriate geometry.

The proof for the nonstochastic methods is just Theorem 3.2 of Talwar et al. (2014), and
the proof for the stochastic methods is given in Appendix B.4.

4.3.1. Implications for Subspace Recovery

We show that the approximate minimization guaranteed by Theorem 9 yields in a generic
setting approximate subspace recovery, or for REAPER, approximate recovery of P? = PL? .

We recall the following permeance, alignment, and stability statistics from Lerman et al.
(2015):

PREAP = inf
u∈L?∩SD−1

1

N

∑
x∈Xin

|u>P?x|, (4.3)

AREAP =
1

N
‖Xout‖‖Q̃?Xout‖, (4.4)

SREAP =
P

4
√
d
−A. (4.5)

Here, Q? = I−P? and the operator ·̃ normalizes the columns of Q?Xout to the unit sphere.
The permeance measures how well spread the inliers are on the underlying subspace, the
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alignment measures how aligned the outliers are orthogonal to L?, and the stability is a
tradeoff between these two terms. The result in Theorem 2.1 of Lerman et al. (2015) states
that if SREAP > 0, then ‖P̂ − P?‖∗ = 0, where ‖ · ‖∗ is the nuclear or Schatten 1-norm. In
other words, the REAPER program exactly recovers L? once SREAP > 0.

The following Theorem states the approximation result for the REAPER algorithms of
Section 4.3. In particular, it states that as N increases and the stability is bounded below,
the distance between the REAPER subspace and the true subspace goes to zero at a rate
of 1/N .

Theorem 10 Suppose that SREAP > 0. If dp-MD-REAP or dp-GD-REAP are run on the
REAPER problem for T = O(ε2N2) iterations, and if L̂ is the principal subspace of the
output of one of these algorithms, then

Ed2(L̂, L?) .
π

2SREAP

log(N/δ)

εN
. (4.6)

On the other hand, if L̂ is the principal subspace of the output of dp-SMD-REAP or dp-
SGD-REAP,

Ed2(L̂, L?) .
π

2SREAP

√
1 + c2B2 log2(1/δ)

εN
. (4.7)

The GD, MD, SGD, and SMD algorithms differ in their respective constants.

4.4. Comparing Nonconvex and Convex Results

Notice that Theorem 10 and Corollary 8 use different distance metrics for G(D, r). It
turns out that up to a factor of r, these are equivalent: for an r-dimensional subspace,
d2(L1, L2) ≤ rθ21, where θ1 is the maximum principal angle between L1 and L2. On the
other hand, 1 − σr(V >1 V2) = 1 − cos(θ1) = O(θ21) for small θ1. Up to a constant factor
of r, the metrics dr(·, ·) and d(·, ·) are of the same order. Thus, comparing the results of
Theorem 10 to Corollary 8, we see that the nonconvex methods have a distinct advantage
in the private setting. That is, the convex algorithm only achieves an approximation error
of O(N−1) while the nonconvex methods achieve approximation errors that are O(2−N

τ
)

4.5. Stability and Privacy

We finish with a short discussion of the interaction between robustness and privacy. Con-
sider the stability result of the GGD algorithm, which states that if Sρ(X) > 0, then GGD
locally recovers the underlying subspace L?. Notice that the robustness of the method itself
can yield privacy. This is stated in the following theorem.

Theorem 11 Let X−i be the dataset X with the ith datapoint removed. Suppose that

Sρ(X−i) > 0, SPCAρ (X−i) > 0, i = 1, . . . , N. (4.8)

Then, GGD with PCA initialization is differentially private.

While the condition of this theorem is hard to verify, it says that for certain inlier-outlier
datasets, one doesn’t even need to add noise to the GGD algorithm, since it is already
private. An in depth study of privacy is left to future work, as the focus of this work is on
the convergence of stochastic GGD methods.
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5. Differential Privacy Experiments

We performed experiments in order to demonstrate some of the predictions of the substantial
theory that was developed. The settings of our experiments focus on differential privacy,
but we emphasize that the results are more general and similar experiments show the benefit
of NGGD, SGGD, and NSGGD in practice. Additional experiments are in the appendix.

5.1. Synthetic Experiments

We present two synthetic experiments in this section. The first tests the convergence prop-
erties of the proposed algorithms for a setting with fixed parameters. The second tests the
methods over a range of sample sizes and dimensions to look at their effect on subspace
recovery. More comprehensive experiments that demonstrate dependencies on other param-
eters are in the supplemental material. All experiments were implemented on a PC with
Intel i7-9700 CPUs and 16GB RAM. Below, error refers to the distance between an iterate
and the underlying subspace, d2(Sp(Vk), Sp(V?)).

We tested the 6 proposed algorithms: dp-(S)GD-REAP, dp-(S)MD-REAP and dp-
(S)GGD. We set the step size for the 4 dp-REAP algorithms to be ηk = 8/

√
k. The step size

for dp-GGD and dp-SGGD is ηk = 1/2bk/50c. We use a fixed batch size B = max
(
N
√

ε
4T , 1

)
for both the convex and nonconvex methods (Bassily et al., 2019).

For both experiments, we randomly generate datasets according to the haystack model,
with Gaussian inliers and outliers, described in Lerman et al. (2015). Points are scaled to
the sphere before running our methods.

In Figure 1, we plot the median and interquartile range of log-error versus iteration
for the six algorithms on 100 randomly generated sets. The fixed model parameters are
r = 2, D = 20, N = 2000 and an inlier ratio 0.5. We set the privacy parameters to be
ε = 0.8 and δ = 1/

√
N . All algorithms are run with T = N iterations. We note that

dp-(S)GGD converges faster to the underlying subspace than dp-(S)GD-REAP and dp-
MD-(S)REAP, since its convergence rate is linear, unlike the sublinear rate for the convex
methods. Nevertheless, in the initial 600 iterations of dp-SGD-REAP and dp-SMD-REAP,
they converge at a faster rate than dp-SGGD (we also observe this with the initial 100
iterations of the non-stochastic methods). If D is not large, it may be beneficial to initialize
dp-(S)GGD with a corresponding dp-REAP method instead of dp-PCA.

For the second experiment, Figure 2 gives a phase transition plot of N vs. D. The data
parameters are r = 2, percentage of inliers is 0.5, and the total number of iterations of each
algorithm is T = 2N , and we set the privacy parameters to be ε = 0.8 and δ = 1/

√
N .

The step size for the dp-(S)GD-REAP algorithms is ηk = 8/
√
k, and the step size for dp-

(S)GGD is ηk = 1/2bk/50c. Each algorithm is run 50 times and we display the average of the
log-errors of the final iterate. In the non-stochastic case, the dp-GGD method outperforms
the dp-GD-REAP method. Furthermore, the stochastic versions take a smaller noise, and
so the methods are able to better approximate the underlying subspace for much larger
Ds. Finally, as predicted by the theory, the approximations for dp-(S)GGD are much more
accurate than those for dp-(S)GD-REAP.
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Figure 1: Convergence of the proposed algorithms with fixed parameters (see main text).
Each algorithm is repeated 100 times and the median log error with a shaded region of
interquartile range is plotted as a function of iterations (left two figures) and time (right
two figures).
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Figure 2: Phase transition plot for the number of points, N , versus the dimension, D. Each
square represents the average log-distance between the final iterate and the true subspace for
each algorithm. The nonconvex methods outperform the convex methods, and the stochastic
method is able to perform well for much larger D due to the smaller noise required with
stochastic gradients.

5.2. Stylized Application: Modified POPRES

To test on higher-dimensional data with some real characteristics, we create a stylized
dataset. It aims to imitate the Population Reference Sample (POPRES) database extracted
by Novembre et al. (2008). This highly private database includes 3,192 European individ-
uals with 500,568 alleles at SNP loci. Novembre et al. (2008) filtered SNPs and screened
individuals to reduce the dataset to a sample of N = 1, 387 individuals and D = 197, 146
SNPs. They applied PCA with r = 2 to the reduced data and demonstrated that the
genetic information of the selected sample correlates with a geographical map of Europe.

In view of our experience with the POPRES database, we find several issues with di-
rectly using the procedure of Novembre et al. (2008) when addressing the machine learning
community. First, POPRES is not publicly available. Second, the suggested preprocess-
ing of Novembre et al. (2008) raises some questions about the meaningful selection of re-
duced coordinates and individuals for which a desired correlation with a given map can be
demonstrated. Furthermore, the reporting on the selection of individuals (supp. material
of Novembre et al. (2008)) seems to reveal some private information.

In order to avoid these sensitive issues, we generated a stylized application motivated
by the work of Novembre et al. (2008). We used the publicly available dataset provided on
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Github by the authors of Novembre et al. (2008). It was obtained by applying (non-private)
PCA with r = 20 to their reduced data, so the provided data matrixX has size 1387×20. To
simulate high-dimensional SNP data and further privatize X, we transform it as follows:
We chose D = 10, 000 and multiplied X by a random 20 × 10, 000 Gaussian orthogonal
ensemble (GOE) matrix to get X ′. For outliers, we generated a 1, 000× 30 random matrix
of uniform i.i.d. elements in [−0.5, 0.5] and multiplied this matrix by a random 30× 10, 000
GOE matrix. We thresholded the inlier and outlier matrices to obtain the three values
-1, 0 and 1 to express alleles, which we then recode as 0, 1, 2 (see details in supplemental
material). We concatenated the two matrices to form an inlier-outlier 2, 387×10, 000 matrix
Y with elements in {0, 1, 2}.
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Figure 3: Recovered projections for the stylized POPRES dataset. Each algorithm is run on
a synthetically generated gene matrix which mimics the original SNP data with N = 2387
and D = 10000. Out of these points, 1387 lie close to the underlying subspace, which
recovers the shape of Europe, and 1000 outliers are generated to lie in the ambient space. We
note that dp-SGGD is able to recover the correct shape of Europe, unlike other algorithms.

Figure 3 demonstrates the application of dp-PCA (Chaudhuri et al., 2013), dp-SGGD,
dp-GGD and dp-SGD-REAP to Y , and then plotting the projection of only the inliers
(which are also in X ′). We note that dp-PCA, dp-GGD and dp-SGD-REAP are unable
to recover the target 2-dimensional subspace which indicates the shape of Europe, whereas
the embedding of dp-SGGD is relatively successful in doing this. Additional figures and
runtimes are included in the supplemental material.

6. Conclusion

In this work, we initiate the first study of differentially private ORPCA algorithms. Our re-
sults demonstrate the distinct advantages of taking a nonconvex geometric approach to solv-
ing the ORPCA problem privately. In particular, we show that the nonconvex dp-(S)GGD
algorithm converges linearly to the underlying subspace under a standard assumption of
stability, in contrast to the convex method that only converges sublinearly. The techniques
we use to guarantee the nonconvex dp-(S)GGD are interesting in their own right because
they are the first proofs of convergence for stochastic methods in nonconvex formulation
of least absolute deviations for ORPCA. Furthermore, our experiments confirm our results
and demonstrate the advantages of dp-GGD and dp-SGGD. In fact, dp-SGGD seems to be
superior to dp-GGD due to its ability to use smaller noise in the Gaussian mechanism.
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It would be interesting to further extend the NGGD results to studying the mixing of
Langevin dynamics.

There are directions to explore in future work. The following limitations are of main
interest to theoreticians. We only focus here on large N , where some constants depend on
D. It would be interesting to study the high-dimensional regime; however, even current
works on dp-PCA do not seem to apply to this regime. There are also limitations due to
the theoretical setting of ORPCA. First, we consider here the common setting of inliers
lying exactly on the subspace and it would also be interesting to consider the interplay
of noisy inliers and differentially private subspace recovery. Second, we assume centered
data and search for linear subspaces and it will be good to justify differentially private
centering approaches or extend this work searching for affine subspaces. Finally, robustness
can enhance privacy (Dwork and Lei, 2009), but we did not explore this in the main text.

In addition, more practical limitations are as follows. First, we lack experiments on
real data, though we explained the difficulty of working with and reporting results of the
POPRES data. Second, while we theoretically verify privacy, we do not yet have a good
test to verify that the algorithms are in fact private. Third, we do not know if our bounds
are optimal, and it would be good to tighten these results as well as prove lower bounds.
Fourth, the result for the nonconvex case is only local, and so it is unclear how the methods
perform in general settings. Fifth, the choice of parameters is not sufficiently clear in the
nonconvex case, and even in the convex case the estimates are only approximate. At last,
we require the strong assumption of an inlier-outlier model, and it is not clear in general
when data may meet this assumption.
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Supplementary Material

Appendix A. REAPER Algorithms

In Algorithm 1, we give the dp-SGD-REAPER Algorithm. The full dp-GD-REAP algorithm
follows the same steps, but takes the full dataset as a batch at each iteration, uses the noise
variance σ2 ≥ 32T log2(T/δ)/(ε2N2) (Talwar et al., 2014). The projection step into H that
is in line 6 of Algorithm 1 can be implemented as the water-filling procedure of Lerman
et al. (2015).

We can also use mirror descent to minimize the REAPER objective. This results in
the dp-MD-REAP algorithm, which we write in Algorithm 2. As in the previous case,
the full MD algorithm takes the full dataset as a batch at each iteration and uses the
noise variance σ2 ≥ 32T log2(T/δ)/(ε2N2) (Talwar et al., 2014). The mirror map is the
von Neumann entropy, Ψ(·) = 1

4(Tr(· log(·)) + log(D)), and this approach was used before
in Goes et al. (2014). It turns out that the Bregman projection for this choice of mirror
map just corresponds to trace renormalization.

Algorithm 1: dp-SGD-REAP

Input: Dataset X; subspace dimension r; step sizes ηk; max number of step T ; privacy
parameters: (ε, δ); regularization parameter:λ; batch size B; noise variance

σ2 = c2
(B/N)2T log(1/δ)

ε2N2 .
P0 ← ATA, where A ∈ RD×D and Aij ∼ N(1, 0.01);
for k = 1 : T do

Sample a batch Bk ⊂ X of size B uniformly with replacement;

Sample Bk ∈ RD×D such that Bk = B>k and Bk,ij ∼ N(0, σ2);

∇̃F (Pk;Bk) = ∇F (Pk;Bk) +Bk (using (4.1));

Update: Pk+1 := argminP∈H

∥∥∥P − [ (Pk − ηk (∇̃F (Pk;Bk)
)) ]∥∥∥;

end

Output: P̃ ← 1
T

∑T
k=1Pk

Appendix B. Supplemental Theory

B.1. Projection and Geodesic Gradient Descent

While the methods in NGGD and (NSGGD) are projected gradient methods, due to Gawlik
and Leok (2018), these iteration very well approximate geodesics:

PO(D,r)(Vk−ηk(∇F (Vk;X) +Bk)) = (B.1)

ExpVk(−ηk(∇F (Vk;X) +Bk)) +O(η3k).

B.2. Doob’s Maximial Inequality

For the convergence of the dp-GGD, SGGD, and dp-SGGD algorithms, we use the following
version of Doob’s maximal inequality.
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Algorithm 2: dp-SMD-REAP

Input: Dataset X; subspace dimension r; step sizes ηk; max number of step T ; privacy
parameters: (ε, δ); regularization parameter:λ; batch size B; noise variance

σ2 = c2
(B/N)2T log(1/δ)

ε2N2 .
P0 ← ATA, where A ∈ RD×D and Aij ∼ N(1, 0.01);
for k = 1 : T do

Sample a batch Bk ⊂ X of size B uniformly with replacement;

Sample Bk ∈ RD×D such that Bk = B>k and Bk,ij ∼ N(0, σ2);

∇̃F (Pk;Bk) = ∇F (Pk;Bk) +Bk (using (4.1));

Pk+1 = exp
[
log(Pk)− ηk∇̃F (Pk;Bk)

]
;

Pk+1 = rPk+1/Tr(Pk+1);

end

Output: P̃ ← 1
T

∑T
k=1Pk

Theorem 12 (Doob’s maximal inequality) Suppose that St =
∑t

i=1Xi is a martingale
with respect to the filtered probability space (Ω,F, {Ft}, P ), then

P

(
max

t=1,...,T
|Sk| ≥ x

)
≤ E|ST |2

x2
. (B.2)

In the following proofs, the corresponding filtered probability space should be apparent from
context.

B.3. Differential Privacy of dp-GGD

Proof [Proof of Theorem 6] The result for dp-GGD is just a rehash of the proof of Wang
et al. (2017, Theorem 6.1) using the strong composition theorem. The result for dp-SGGD
is proven in Abadi et al. (2016) using the moment accounting method.

B.4. Convergence of Stochastic Mirror Descent

Here we prove Theorem 9.
Proof

By a classic result that can be found, for example, in Bubeck et al. (2015), if the stochastic
oracle is such that E‖(∇G(P ;B)) +B‖2 ≤ R2,

EG(P̄ )−min
P

G(P ) ≤ RD
√

2

T
.

In this statement, the randomness is taken over the randomness of the minibatches B,
as well as the randomness in the Gaussian noise B. We have

E‖(∇G(P ;B)) +B‖2 ≤ E‖(∇G(P ;B))‖2 + E‖B‖2
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For the first, we have that E‖(∇G(P ;B))‖2 ≤ 1. For the second,

E‖B‖2 = σ2E‖Z‖2 . σ2M

= c2
B2T log2(1/δ)

ε2N2
M.

Plugging in,

EG(P̄ )−min
P

G(P ) ≤

√
1 + c2

B2T log2(1/δ)

ε2N2
MD

√
2

T
.

If T = O(N2ε2), then

EG(P̄ )−min
P

G(P ) ≤
√

1 + c2B2 log2(1/δ)D
1

εN
.

B.5. Proof of Theorem 10

Theorem 9 only guarantees an approximation to the minimizer of F after T iterations. To
turn this then into a result of approximate recovery for REAPER that we see in Theorem 10,
we rely on the rate of ascent for the perturbed objective by Lemma 2.3 of Lerman et al.
(2015).

Lemma 13 (Lerman et al. (2015), Lemma 2.3)

G(P? + ∆)−G(P?) ≥ S‖∆‖∗

This states that the objective grows quickly when one is far from P?. Therefore, if the
excess risk is on the order of 1/N , then the perturbation can also be bounded on the order
of 1/N . This is stated in the following theorem.

Theorem 14 Suppose that an algorithm to solve the REAPER problem yields a point P̂
such that G(P̂ )−G(P?) ≤ ε. Let L̂ be the principal r-subspace of P̂ . Then,

d(L̂, L?) ≤
π

2

ε

S
(B.3)

Proof This follows from combining Lemma 13 with the Davis-Kahan sin Θ Theorem (Davis
and Kahan, 1970; Yu et al., 2015).

The proof of Theorem 10 follows by combining Theorem 14 with Theorem 9.
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B.6. dp-GGD Proofs

B.6.1. Proof of Theorem 7

Based on Jiang et al. (2016), we have

1− cos(θ1(Ldp−PCA, L?)) = d2r(Vdp−PCA,V?) ≤ ‖Vdp−PCAV >dp−PCA − V?V >? ‖2
≤ ‖Vdp−PCAV >dp−PCA − VPCAV >PCA‖2 + ‖VPCAV >PCA − V?V >? ‖2
≤ 2
√
d‖W ‖2 + ρ/4

≤ 2
√
dO(d log(d)/(Nε)) + ρ/4,

with high probability. For N sufficiently large, we find d2r(Vdp−PCA,V?) < ρ/2 with high
probability.

B.6.2. Proof of Theorem 2

Proof
We can write

σr(V
>
? Vk+1) ≥ σr(V >? Vk) +

(
β>1 V

>
? (−s(gradF (Vk;X) +Bk)β2

)
− c(X)s2.

Taking one minus both sides yields

d2r(V?,Vk+1) ≤ d2r(V >? Vk) + s
(
β>1 V

>
? ((gradF (Vk;X) +Bk)β2

)
+ c(X)s2.

Using the fact that sin(arccos(x)) =
√

1− x2 ≥
√

1− x, x ≥ 0, stability implies that

s
(
β>1 V

>
? ((gradF (Vk;X) +Bk)β2

)
≤ −sSρ(X)dr(V?,Vk) + sβ>1 V

>
? Bkβ2

Thus

d2r(V?,Vk+1) ≤
(

1− sSρ(X)

dr(V >? Vk)

)
d2r(V?,Vk) + sβ>1 V

>
? Bkβ2 + c(X)s2. (B.4)

Let mT = maxj=1,...,T dr(V?,Vj). We can iteratively apply this to yield

d2r(V?,VT ) ≤ (1− sSρ(X)/mT )Td2r(V?,VT )+
T∑
j=1

s(1− sSρ(X)/mT )T−jβ>1 V
>
? Bkβ2+

T∑
j=1

(1− sSρ(X)/mT )T−jc(X)s2.

Bounding the maximum: We proceed by first bounding mT in terms of d2r(V?,V0) and
other quantities. To do this, first notice that this amounts to bounding d2r(V?,Vk) for
k = 1, . . . , T . We can use (B.4) along with sin(arccos(x)) ≥ 1− x to write

d2r(V?,Vk+1) ≤
(

1− sSρ(X)
)
d2r(V?,Vk) + sβ>1 V

>
? Bkβ2 + c(X)s2.
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We proceed by applying Doob’s maximal inequality

Pr
(

max
k=1,...,T

∣∣∣ k∑
j=1

s(1− sSρ(X))k−jβj>1 V >? Bjβ
j
2

∣∣∣ > ε
)

≤ Pr
(

max
k=1,...,T

∣∣∣ k∑
j=1

sβj>1 V >? Bjβ
j
2

∣∣∣ > ε
)
≤ s2Tσ2(

√
D +

√
d)2

ε2
.

Choosing ε = s
√
Tσ(
√
D+
√
d)√

λ
yields

Pr
(

max
k=1,...,T

∣∣∣ k∑
j=1

s(1− sSρ(X))k−jβj>1 V >? Bjβ
j
2

∣∣∣ > ε
)
≤ λ.

With probability at least 1− λ, we thus have that for all k = 1, . . . , T ,

d2r(V?,Vk) ≤
(

1− sSρ(X)
)k
d2r(V?,V0) +

s
√
kσ(
√
D +

√
d)√

λ
+
c(X)sk

Sρ(X)
.

Thus, if
s
√
Tσ(
√
D +

√
d)√

λ
<
d2r(V?,V0)

2

and
s2Tc(X)

Sρ(X)
<
d2r(V?,V0)

2
,

then mT < 2d2r(V?,V0). In particular, for s = c1aT
−ν , these are satisfied if

T > max
([ 2c1a

2c(X)

Sρ(X)d2r(V?,V0)

]1/(2ν−1)
,
[2aσ(

√
D +

√
d)√

λd2r(V?,V0)

]2/(2ν−1))
.

Since a > a2, a sufficient condition is

T > max
([ 2c1ac(X)

Sρ(X)d2r(V?,V0)

]1/(2ν−1)
,
[2aσ(

√
D +

√
d)√

λd2r(V?,V0)

]2/(2ν−1))
. (B.5)

Notice that this is a function of a/d2r(V?,V0) and λ, although it decreases in a. Later on
in the proof of convergence, we will see that other conditions on T imply an inverse scaling
with respect to a.

Choosing s = Ca
T ν ≤

Cd2r(V?,V0)

2
√
T

then yields that mT < 2d2r(V?,V0). In particular, as long

as we initialize in Bd2r(V?, ρ/2), we see that stability holds throughout all iterations with
probability at least 1− λ.
Bounding the T th iterate: Letm0 = 2d2r(V?,V0). From here the proof is straightforward:
the first term geometrically decreases. The second can be bounded with Doob’s maximal
inequality with high probability and uses the fact that∑

j

(1− sSρ(X)/m0)
2(T−j) ≤ 1

1− (1− sSρ(X)/m0)2
=

m2
0

2sSρ(X)m0 − (sSρ(X))2
,
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which is independent of T . More specifically, Doob’s maximal inequality yields

Pr
(

inf
1≤k≤T

∣∣∣ k∑
j=1

s(1− sSρ(X)/m0)
T−jβj>1 V >? Bjβ

j
2

∣∣∣ > ε
)
≤

E
(∑T

j=1 s
2(1− sSρ(X)/m0)

2(T−j)
[
βj>1 V >? Bjβ

j
2

]2)
ε2

.

We can upper bound

E(βj>1 V >? Bjβ
j
2)

2 = E(α>j Bjβ
j
2)

2 ≤ σ2Eσ1(Zj)2

. σ2(
√
D +

√
d)2.

This implies that

Pr
(

inf
1≤k≤T

∣∣∣ k∑
j=1

s(1− sSρ(X)/m0)
T−jβj>1 V >? Bjβ

j
2

∣∣∣ ≤
C
σ(
√
D +

√
d)
√∑T

j=1 s
2(1− sSρ(X)/m0)2(T−j)
√
λ

)
≤ λ,

or

Pr
(

inf
1≤k≤T

∣∣∣ k∑
j=1

s(1− sSρ(X)/m0)
T−jβj>1 V >? Bjβ

j
2

∣∣∣ ≤
Cs

σ(
√
D +

√
d)√

λ

√
m2

0

2sSρ(X)m0 − (sSρ(X))2

)
≤ λ.

The last term uses the fact that

T∑
j=1

(1− sSρ(X)/m0)
T−j ≤ m0

sSρ(X)

Putting these together, we find with probability at least 1− 2λ,

d2r(V?,VT ) ≤ (1− sSρ(X)/m0)
Td2r(V

>
? V0)

+ s
[
C
σ(
√
D +

√
d)√

λ

m0√
2sSρ(X)m0 − (sSρ(X))2

+
m0c(X)

Sρ(X)

]
.

Now, if T is sufficiently large so that s = Ca
T ν satisfies

s <
m0

Sρ(X)
, (B.6)

s <
a

2m0

[
C
σ(
√
D +

√
d)√

λ

1√
2sSρ(X)m0 − (sSρ(X))2

+
c(X)

Sρ(X)

]−1
. (B.7)
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The second condition can be satisfied for T greater than a constant C ′ with respect to a.
Indeed,

[ 1
√
sm0

C
σ(
√
D +

√
d)√

λ

1√
2Sρ(X)− s(Sρ(X))2/m0

+
c(X)

Sρ(X)

]
≤
[ 1
√
sm0

C
σ(
√
D +

√
d)√

λ

√
1

Sρ(X)
+

c(X)

Sρ(X)

]
= O(1/

√
sm0).

Thus, to satisfy the second condition, we need(Ca
T ν

)1/2
<

a

2
√
m0

[
C
σ(
√
D +

√
d)√

λ

√
1

Sρ(X)
+

√
sm0c(X)

Sρ(X)

]−1
(B.8)

or

T >
(√m0

a
2C1/2

[
C
σ(
√
D +

√
d)√

λ

√
1

Sρ(X)
+

√
sm0c(X)

Sρ(X)

])2/ν
(B.9)

Letting T be large enough so that

C
σ(
√
D +

√
d)√

λ

√
1

Sρ(X)
>

√
sm0c(X)

Sρ(X)
, (B.10)

since we can make s = ca/T ν sufficiently small, we need

T >
( √

λ
√
Sρ(X)

Cσ(
√
D +

√
d)

√
cam0c(X)

Sρ(X)

)1/(2ν)
, (B.11)

and

T >
(√m0

a
4C3/2σ(

√
D +

√
d)√

λ

√
1

Sρ(X)

)2/ν
. (B.12)

We combine (B.5), (B.11), and (B.12) to define

F1(a/d
2
r(V?,V0), λ) := max

(( √
λ
√
Sρ(X)

Cσ(
√
D +

√
d)

√
cam0c(X)

Sρ(X)

)1/(2ν)
, (B.13)

(√m0

a
4C3/2σ(

√
D +

√
d)√

λ

√
1

Sρ(X)

)2/ν
,

[ 2c1ac(X)

Sρ(X)d2r(V?,V0)

]1/(2ν−1)
,[2aσ(

√
D +

√
d)√

λd2r(V?,V0)

]2/(2ν−1))
Notice that the constraints on T given by (B.5), (B.11), and (B.13) depend only on a

and d2r(V?,V0) the ratio a/d2r(V?,V0).
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B.6.3. Proof of Theorem 3

Since S(Xk) is bounded between [−maxi ‖xi‖2,maxi ‖xi‖2], we also have the uniform bound

E[S(Xk)− Sρ,E]2 ≤ max
i
‖xi‖2, (B.14)

although in general we expect this to be much smaller. In particular, if the data is spherized,
then this is bounded by 1.
Proof The proof of the theorem follows from the same reasoning as dp-GGD after splitting
the sequence of errors as

d2r(V?,Vk+1) ≤ d2r(V >? Vk) + s
(
β>1 V

>
? ((gradF (Vk;X))β2

)
+ c(X)s2

≤
(

1−
sSρ,E

dr(V >? Vk)

)
d2r(V?,Vk) + (Sρ(X

k)− Sρ,E)sdr(V?,Vk) + c(X)s2

≤
(

1−
sSρ,E
mT

)
d2r(V?,Vk) + (Sρ(X

k)− Sρ,E)sdr(V?,Vk) + c(X)s2,

and then controlling (Sρ(X
k)− Sρ,E)sdr(V?,Vk). Here, again, mT = maxj=1,...,T dr(V?,Vj).

Bounding mT : As before, be begin by bounding mT by first looking at the looser bound

d2r(V?,Vk+1) ≤
(

1− sSρ,E
)
d2r(V?,Vk) + (Sρ(X

k)− Sρ,E)sdr(V?,Vk) + c(X)s2.

Telescoping yields

d2r(V?,Vk) ≤
(

1− sSρ,E
)k
d2r(V?,V0)

+

k∑
j=1

(
1− sSρ,E

)k−j
(Sρ(X

j)− Sρ,E)sdr(V?,Vj) +

k∑
j=1

(
1− sSρ,E

)k−j
c(X)s2.

The last term is bounded by

k∑
j=1

(
1− sSρ,E

)k−j
c(X)s2 ≤ sc(X)

Sρ,E
.

The other term can be bounded by Doob’s maximal inequality

Pr
(

max
k=1,...,T

∣∣∣ k∑
j=1

(
1− sSρ,E

)k−j
(Sρ(X

j)− Sρ,E)sdr(V?,Vj)
∣∣∣ > ε

)

≤ Pr
(

max
k=1,...,T

∣∣∣ k∑
j=1

(Sρ(X
j)− Sρ,E)s

∣∣∣ > ε
)
≤
s2
∑T

j=1 E(Sρ(X
j)− Sρ,E)

ε2
≤ s2T

ε2
.

Setting ε = s
√
T√
λ

yields

Pr
(

max
k=1,...,T

∣∣∣ k∑
j=1

(
1− sSρ,E

)k−j
(Sρ(X

j)− Sρ,E)sdr(V?,Vj)
∣∣∣ > s

√
T√
λ

)
≤ λ.
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Thus, if
s
√
T√
λ
<
d2r(V?,V0)

2

and
s2Tc(X)

Sρ,E
<
d2r(V?,V0)

2
,

then mT < 2d2r(V?,V0). In particular, for s = c1aT
−ν , these are satisfied if

T > max
([ 2c1a

2c(X)

Sρ,Ed2r(V?,V0)

]1/(2ν−1)
,
[ 2a√

λd2r(V?,V0)

]2/(2ν−1))
. (B.15)

Bounding the T th iterate: Letm0 = 2d2r(V?,V0). From here the proof is straightforward:
the first term geometrically decreases. The second can be bounded with Doob’s maximal
inequality with high probability and uses the fact that∑

j

(1− sSρ,E/m0)
2(T−j) ≤ 1

1− (1− sSρ,E/m0)2
=

m2
0

2sSρ,Em0 − (sSρ,E)2
,

which is independent of T . More specifically, Doob’s maximal inequality yields

Pr
(

inf
1≤k≤T

∣∣∣ k∑
j=1

s(1− sSρ(X)/m0)
T−j(Sρ(X

j)− Sρ,E)dr(V?,Vj)
∣∣∣ > ε

)

≤ Pr
(

inf
1≤k≤T

∣∣∣ k∑
j=1

s(1− sSρ(X)/m0)
T−j(Sρ(X

j)− Sρ,E)
∣∣∣ > ε

)

≤
E
(∑T

j=1 s
2(1− sSρ(X)/m0)

2(T−j)
[
(Sρ(X

j)− Sρ,E)
]2)

ε2
.

We can upper bound

E
[
(Sρ(X

j)− Sρ,E)
]2
≤ 1.

In any case, this implies that

Pr
(

inf
1≤k≤T

∣∣∣ k∑
j=1

s(1− sSρ(X)/m0)
T−j(Sρ(X

j)− Sρ,E)dr(V?,Vj)
∣∣∣ > ε

)
≤ m2

0

2sSρ,Em0 − (sSρ,E)2
s2

ε2
,

or

Pr
(

inf
1≤k≤T

∣∣∣ k∑
j=1

s(1− sSρ(X)/m0)
T−j(Sρ(X

j)− Sρ,E)dr(V?,Vj)
∣∣∣
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> s
m0√

2sSρ,Em0 − (sSρ,E)2
√
λ

)
≤ λ.

Putting these together, we find with probability at least 1− 2λ,

d2r(V?,VT ) ≤ (1− sSρ(X)/m0)
Td2r(V

>
? V0) + s

[ m0√
2sSρ,Em0 − (sSρ,E)2

√
λ

+
m0c(X)

Sρ,E

]
.

Now, if T is sufficiently large so that s = Ca
T ν satisfies

s <
m0

Sρ(X)

s <
a

2m0

[ 1√
2sSρ,Em0 − (sSρ,E)2

√
λ

+
c(X)

Sρ,E

]−1
.

Letting T satisfy

T >
(√cam0c(X)√

Sρ,E(X)

)1/(2ν)
(B.16)

so that √
1

Sρ,E(X)
>

√
sm0c(X)

Sρ,E(X)
(B.17)

In a similar way to before, we therefore define

F2(a/d
2
r(V?,V0), λ) := max

((√m0

a
4C1/2

√
1

Sρ,E(X)

)2/ν
, (B.18)

(√cam0c(X)√
Sρ,E(X)

)1/(2ν)
,

[ 2c1a
2c(X)

Sρ,Ed2r(V?,V0)

]1/(2ν−1)
,[ 2a√

λd2r(V?,V0)

]2/(2ν−1))
Then, with probability at least 1− 2λ, after T > F2(a/d

2
r(V?,V0), λ) iterations,

d2r(V?,VT ) < a. (B.19)

Notice again that the constraints on T given by (B.5), (B.11), and (B.13) depend only
on a and d2r(V?,V0) the ratio a/d2r(V?,V0).

B.6.4. Proof of Theorem 4

Proof
Combining the results of the previous two theorems yields the result by simultaneously

controlling both martingales. Notice that F3 will be defined similarly to F1 and F2. In
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particular, it will be the maximum of F2 and a term with the same form as (B.11), where
we replace Sρ with Sρ,E. In particular, it can be defined in the following way:

F3(a/d
2
r(V?,V0), λ) := max

(( √λ√Sρ,E(X)

Cσ(
√
D +

√
d)

√
cam0c(X)

Sρ,E(X)

)1/(2ν)
, (B.20)

(√m0

a
4C3/2σ(

√
D +

√
d)√

λ

√
1

Sρ,E(X)

)2/ν
,

[ 2c1ac(X)

Sρ,E(X)d2r(V?,V0)

]1/(2ν−1)
,[2aσ(

√
D +

√
d)√

λd2r(V?,V0)

]2/(2ν−1)
,

(√m0

a
4C1/2

√
1

Sρ,E(X)

)2/ν
,

(√cam0c(X)√
Sρ,E(X)

)1/(2ν)
,

[ 2c1a
2c(X)

Sρ,Ed2r(V?,V0)

]1/(2ν−1)
,[ 2a√

λd2r(V?,V0)

]2/(2ν−1))
.

The two leading terms for small a depend on (m0/a)1/ν .

B.6.5. Proof of Theorem 5

Proof Set s = c1a
T ν . For T1 sufficiently large so that the conditions within the theorem hold.

Then, with probability 1− 2λ (or 1− 4λ for dp-SGGD), in T1 iterations, d2r(V?,VT1) < a.
Now suppose that we restart with s′ = s/2 and V0 = VT1 . Notice that this is equivalent

to taking a′ = a/2 and starting distance d2r(V?,V
′
0 ) = d2r(V?,VT ) < a. In particular, this

takes T ′ > F•(1/2) iterations to reach VT+T ′ such that d2r(V?,VT+T ′) < a/2. Repeating
this procedure for r restarts every F•(1/2) iterations yields the desired result.

Appendix C. Supplemental Experiments

C.1. Supplemental Synthetic Experiments

This section gives additional plots demonstrating the performance of the various differen-
tially private methods we discuss.

First, we give a phase transition plot with respect to ε and δ. Figure 4 shows that
dp-GGD’s transition from small ε and δ is more abrupt than that of dp-GD-REAP and dp-
MD-REAP. The data parameters are as follows, the inlier dimension r = 2, total dimension
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Figure 4: δ and ε phase transition plot. Each square represents log10 final error.

D = 20, number of points N = 2, 000 and inlier ratio = 0.5. The algorithms’ parameters
are as follows, total number of iterations of each algorithm are the same as the number of
data points N , the step size for the four dp-REAP algorithms to be ηk = 8/

√
k, the step

size for dp-GGD and dp-SGGD is ηk = 1/2bk/50c. The experiment is repeated 50 times and
the medium error is plotted.

Next, we plot the ratio of successful attempts to converge to tolerance 10−2 in 50 rep-
etitions of each algorithm as a function of inlier ratio and batch size in Figure 5. (plot
inlier ratio vs N) The data parameters are as follows, number of points N = 2, 000, total
dimension D = 20, and inlier dimension r = 2. The algorithms’ parameters are as follows,
total number of iterations of each algorithm are the same as the number of points N , the
step size for the four dp-REAP algorithms to be ηk = 8/

√
k, the step size for dp-GGD and

dp-SGGD is ηk = 1/2bk/50c. The plot shows that dp-SGD-REAP converges in the regime
where inlier ratio is ≥ 0.6, dp-SMD-REAP converges in the regime where inlier ratio is
≥ 0.2, and dp-SGGD converges almost for all inlier ratios when the batch size is greater
than 2.

We plot the percentage of repetitions that algorithms converge to tolerance 10−2 in
Figure 5.

We also give a phase transition plot of D versus r, where the value is the final log10
error. Figure 6 shows that dp-GD-REAP, dp-MD-REAP and dp-GGD work well in the
regime where both D and r are small. The data parameters are as follows, number of
points N = 2, 000 and inlier ratio = 0.5. The algorithms’ parameters are as follows, total
number of iterations of each algorithm are the same as the number of points N , the step
size for the four dp-REAP algorithms to be ηk = 8/

√
k, the step size for dp-GGD and
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Figure 5: Inlier ratio and batch size transition plot. Each square represents the percentage
of time that the algorithm achieves the given tolerance for a given combination of inlier
ratio and batch size.
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Figure 6: D and r phase transition plot. Each square represents log10 final error. The
x-axis correspond to different values of D and the y-axis correspond to different values of
r.

dp-SGGD is ηk = 1/2bk/50c. The experiment is repeated 50 times and the medium error of
all repetitions is plotted.

Next, we give a phase transition plot of N versus D with log10 error in Figure 7, and time
to error = 10−2 in Figure 8. We plot log10 final error, and time to converge to tolerance
(Figure 8), and ratio of failed attempt to reach tolerance in 50 repetitions as a function of N
and D in Figure 9. In the event that none of the repetitions successfully reaches tolerance,
the square shows yellow in Figure 8, this corresponds with number of failed attempts in
Figure 9. Figure 7 shows that the dp-GD-REAP, dp-MD-REAP and dp-GD work well in
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Figure 7: D and N phase transition plot. Each square represents log10 final error.
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Figure 8: D and N phase transition plot. Each square represents the time to reach tolerance
10−2. If in all repetitions the algorithms failed to converge, the square is shown in yellow
(I imputed a large number, 2 in this case).

the regime where D is small and N is large. The data parameters are as follows, the inlier
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Figure 9: D and N phase transition plot. Each square represents the percentage of repeti-
tions each algorithm fails to reach tolerance 10−2.

dimension r = 2, and the inlier ratio = 0.5. The algorithms’ parameters are as follows,
total number of iterations of each algorithm are the same twice the number of points 2N ,
the step size for the four dp-REAP algorithms to be ηk = 8/

√
k, the step size for dp-GGD

and dp-SGGD is ηk = 1/2bk/50c. Each algorithm is run repetitions of 50 times.

C.2. Supplemental Plots for POPRES Data

At last we present supplemental plots of the performance of various differentially-private
methods we discuss on the stylized POPRES dataset Figure 10. The top left plot shows
recovered projections by applying PCA to stylized POPRES dataset without outliers (X
in the main text). And the rest of plots show recovered projections by applying various
differentially-private methods to stylized POPRES dataset with outliers.

We report the details of stylized POPRES experiment. The experiment for dp-(S)GGD
algorithm is performed on a machine with Intel i7 processor and 16GB RAM, the running
time of dp-SGGD is 124 seconds and the running time of dp-GGD is 679 seconds. The
experiment for dp-REAP algorithms is performed on a cluster of 24 Intel Haswell E5-2680v3
processors and 60GB RAM. Each dp-REAP algorithm is run for 100 iterations. The running
time of dp-SMD-REAP is 5,471 seconds, that of dp-MD-REAP is 5,684 seconds, that of
dp-GD-REAP is 36,027 seconds and that of dp-SGD-REAP is 35,125 seconds. Note that
dp-REAP methods are more computationally expensive than dp-(S)GGD. Beside what is
noted in the main text, dp-SGD-REAP and dp-SMD-REAP are not able to recover the
subspace exactly but can roughly discern clusters of individuals with the same ancestry.
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Figure 10: Recovered projections for the stylized POPRES dataset. Each algorithm is
run on a synthetically generated gene matrix which mimics the original SNP data with
N = 2387 and D = 10000. Out of these points, 1387 lie close to the underlying subspace,
which recovers the shape of Europe, and 1000 outliers are generated to lie in the ambient
space
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