
Proceedings of Machine Learning Research vol 145:1–22, 2022 3rd Annual Conference on Mathematical and Scientific Machine Learning

Learning Green’s Functions of Linear Reaction-Diffusion Equations
with Application to Fast Numerical Solver

Yuankai Teng YTENG@EMAIL.SC.EDU
Department of Mathematics, University of South Carolina, Columbia, SC, USA

Xiaoping Zhang XPZHANG.MATH@WHU.EDU.CN
School of Mathematics and Statistics, Wuhan University, Wuhan, China

Zhu Wang WANGZHU@MATH.SC.EDU

Lili Ju*
JU@MATH.SC.EDU

Department of Mathematics, University of South Carolina, Columbia, SC, USA

Editors: Bin Dong, Qianxiao Li, Lei Wang, Zhi-Qin John Xu

Abstract
Partial differential equations are commonly used to model various physical phenomena, such as
heat diffusion, wave propagation, fluid dynamics, elasticity, electrodynamics and so on. Due to
their tremendous applications in scientific and engineering research, many numerical methods have
been developed in past decades for efficient and accurate solutions of these equations on modern
computing systems. Inspired by the rapidly growing impact of deep learning techniques, we pro-
pose in this paper a novel neural network method, “GF-Net”, for learning the Green’s functions of
the classic linear reaction-diffusion equation with Dirichlet boundary condition in the unsupervised
fashion. The proposed method overcomes the numerical challenges for finding the Green’s func-
tions of the equations on general domains by utilizing the physics-informed neural network and the
domain decomposition approach. As a consequence, it also leads to a fast numerical solver for the
target equation subject to arbitrarily given sources and boundary values without network retraining.
We numerically demonstrate the effectiveness of the proposed method by extensive experiments
with various domains and operator coefficients.
Keywords: Green’s functions, linear reaction-diffusion equations, unsupervised learning, domain
decomposition, fast solver,

1. Introduction

Rapid development and great success of deep learning for computer vision and natural language pro-
cessing have significantly prompted its application to many other science and engineering problems
in recent years. Thanks to the integration of available big data, effective learning algorithms and un-
precedented computing powers, the resulted deep learning studies have showed increasing impacts
on various subjects including partial differential equations (PDEs), dynamical system, reduced order
modeling and so on. In particular, the synthesis of deep learning techniques and numerical solution
of PDEs has become an emerging research topic in addition to conventional numerical methods
such as finite difference, finite element and finite volume ones.

Some popular deep learning algorithms include the physics-informed neural networks (PINNs)
(Raissi et al., 2019), the deep Ritz method (DRM) (E and Yu, 2018), the deep Galerkin method
(DGM) (Sirignano and Spiliopoulos, 2018) and the PDE-Net (Long et al., 2018). Note that the first

* Corresponding author

© 2022 Y. Teng, X. Zhang, Z. Wang & L. Ju.

TENG ZHANG WANG JU

three are meshfree and trained without any explicitly observed data and the last one uses instead
rectangular meshes and ground-truth information for training. Deep learning based methods also
have been applied to construct computational surrogates for PDE models in a series of research
(Khoo et al., 2021; Nagoor Kani and Elsheikh, 2017; Nabian and Meidani, 2019; Lee and Carlberg,
2020; San et al., 2019; Mücke et al., 2019; Zhu et al., 2019; Sun et al., 2020). On the other hand,
classic methods for solving PDEs also have been used to understand and further improve the net-
work structure and training settings. For instance, the connection between multigrid methods and
convolutional neural networks (CNNs) was discussed in (He and Xu, 2019) and MGNet was then
proposed to incorporate them.

The goal of our work is to design a neural network based method for fast numerical solution
of the classic linear reaction-diffusion equation on arbitrary domains, that could yield an accurate
response to various sources and Dirichlet boundary values without retraining. To achieve this, we
propose a neural network, called “GF-Net”, that computes the Green’s functions associated with the
target PDE under Dirichlet boundary conditions. Note that the exact solution of the target equation
can be explicitly expressed in terms of the Green’s function, source term and boundary values via
area and line integrals (Evans, 1998). After evaluating the Green’s function at a set of sample points
with the trained GF-Net, the target PDE problem can numerically be solved in an efficient manner.
As the Green’s function is the impulse response of the linear differential operator, which is well
approximated by the GF-Net through a nonlinear mapping, a significant advantage of the proposed
method compared to most existing deep learning methods for numerical PDEs is that it does not
need network retraining when the PDE source and/or the Dirichlet boundary condition change.
How to determine the Green’s functions of a PDE is a classic problem. The analytic formulation of
Green’s functions are only known for a few operators on either open spaces or domains with simple
geometry (Evans, 1998), such as the linear reaction-diffusion operator. On the other hand, finding
their numerical approximations by traditional numerical methods often turns out to be too expensive
in terms of computation and memory. In addition, the high-dimensional parameter space makes it
almost impossible to use model reduction to find efficient surrogates for the Green’s functions.

In this paper, we propose a neural network architecture GF-Net that can provide a new way to
tackle this classic problem for the linear reaction-diffusion equation with Dirichlet boundary con-
dition through deep learning to overcome some limitations of traditional methods. In particular,
our GF-Net is physics-informed: a forward neural network is trained by minimizing the loss func-
tion measuring the pointwise residuals, discrepancy in boundary values, and an additional term for
penalizing the asymmetry of the output due to the underlying property of symmetry possessed by
Green’s functions. Meanwhile, to accelerate the training process, we also design a sampling strategy
based on the position of the point source, and further put forth a domain decomposition approach to
train multiple GF-Nets in parallel on many blocks. Note that each GF-Net is assigned and associated
with a specific subdomain block. Finally, the application of the produced GF-Nets to fast numerical
solution of the target equation with different sources and boundary values is carefully tested and
demonstrated through experiments with various domain and operator coefficients.

2. Related work

Using neural networks to solve differential equations has been investigated in several early works,
e.g., (Dissanayake and Phan-Thien, 1994; Lagaris et al., 1998), and recent advances in deep learning
techniques have further stimulated new exploration towards this direction.

2

GF-NET AND FAST NUMERICAL SOLVER

The physics-informed neural network (PINN) (Raissi et al., 2019) represents the mapping from
spatial and/or temporal variables to the state of the system by deep neural networks, which is then
trained by minimizing the weighted sum of the residuals of PDEs at randomly selected interior
points and the errors at initial/boundary points. This approach later has been extended to solve
inverse problems (Raissi et al., 2020), fractional differential equations (Pang et al., 2019), stochastic
differential equations and uncertainty quantification (Nabian and Meidani, 2019; Yang et al., 2020;
Zhang et al., 2020, 2019). Improved sampling and training strategies have been considered in (Lu
et al., 2021b; Anitescu et al., 2019; Zhao and Wright, 2021; Krishnapriyan et al., 2021). In order
to solve topology optimization problems for inverse design, PINNs with hard constraints were also
investigated in (Lu et al., 2021c). The deep Ritz method (DRM) (E and Yu, 2018) considers the
variational form of PDEs, which combines the mini-batch stochastic gradient descent algorithms
with numerical integration to optimize the network. Note that later the variational formulation was
also considered in weak adversarial networks (Zang et al., 2020). The deep Galerkin method (DGM)
(Sirignano and Spiliopoulos, 2018) merges the classic Galerkin method and machine learning, that
is specially designed for solving a class of high-dimensional free boundary PDEs. The above three
learning methods use no meshes as opposed to traditional numerical methods and are trained in the
unsupervised fashion (i.e., without ground-truth data). The PDE-Net (Long et al., 2018) proposes
a stack of networks (δt-blocks) to advance the PDE solutions over a multiple of time steps. It
recognizes the equivalence between convolutional filters and differentiation operators in rectangular
meshes under the supervised training with ground-truth data. This approach was further combined
with a symbolic multilayer neural network for recovering PDE models in (Long et al., 2019).

Learning the operators can provide better capability and efficiency by solving a whole family
of PDEs instead of a single fixed equation. The Fourier neural operator (FNO) (Li et al., 2021a)
aims to parameterize the integral kernel in Fourier space and is able to generalize trained models
to different spatial and time resolutions. The DeepONet (Lu et al., 2021a) extends the universal
approximation theorem for operators in (Chen and Chen, 1995) to deep neural networks. It contains
two subnetworks to encoder the input functions and its transformed location variable respectively
and then uses the extended theorem to generate the target output. DeepONet has quite powerful gen-
eralization ability to handle diverse linear/nonlinear explicit and implicit operators. Error estimation
for DeepONet was recently investigated in (Lanthaler et al., 2022). Physics-informed DeepONets
proposed in (Wang et al., 2021) further reduces the requirement for data and achieves up to three
order of magnitude faster inference time than convectional method. Learning operators by using
graph neural networks (GNN) was first considered in (Anandkumar et al., 2020) and later improved
in (Li et al., 2020). In (Li et al., 2021b), the physics-informed neural operator (PINO), which com-
bines the operator learning and function approximation frameworks to achieve higher accuracy, was
proposed. In addition, attention mechanism was further introduced in (Kissas et al., 2022) to solve
the climate prediction problem.

There also exist a few works which compute or use Green’s functions to solve PDEs. The data-
driven method recently proposed in (Boullé et al., 2022) applies rational neural network structure to
train networks with generated excitation for approximating Green’s functions and the homogeneous
solution separately. The PINN was recently used to solving some PDEs with point source in (Huang
et al., 2021). For handling nonlinear boundary value problems, the DeepGreen in (Gin et al., 2021)
first linearizes the nonlinear problems using a dual autoencoder architecture, then evaluates the
Green’s function of the linear operator, and finally inversely transforms the linear solution to solve
the nonlinear problem.

3

TENG ZHANG WANG JU

3. Linear Reaction-diffusion equations and Green’s functions

Let Ω ⊂ Rd be a bounded domain, we consider the linear reaction-diffusion operator of the follow-
ing form:

L(u)(x) := −∇ · (a(x)∇u(x)) + r(x)u(x), x ∈ Ω, (1)

where a(x) > 0 is the diffusion coefficient and r(x) ≥ 0 is the reaction coefficient. The corre-
sponding linear reaction-diffusion problem with Dirichlet boundary condition then reads:{

L(u)(x) = f(x), x ∈ Ω,
u(x) = g(x), x ∈ ∂Ω,

(2)

where f(x) is the given source term and g(x) the boundary value. The Green’s function G(x, ξ)
represents the impulse response of the PDE subject to homogeneous Dirichlet boundary condition,
that is, for any impulse source point ξ ∈ Ω,{

L(G)(x, ξ) = δ(x− ξ), x ∈ Ω,
G(x, ξ) = 0, x ∈ ∂Ω,

(3)

where δ(x) denotes the Dirac delta source function satisfying δ(x) = 0 if x ̸= 0 and
∫
Rd δ(x) dx =

1. Note that the Green’s function G is symmetric, i.e., G(x, ξ) = G(ξ,x). If G(x, ξ) is known, the
solution of the problem (2) can be readily expressed by the following formula:

u(x) =

∫
Ω
f(ξ)G(x, ξ) dξ −

∫
∂Ω

g(ξ)a(ξ)(∇ξG(x, ξ) · nξ) dS(ξ), ∀x ∈ Ω, (4)

where nξ denotes the unit outer normal vector on ∂Ω. However, the above Green’s function (i.e.,
the solution of (3)) on a general domain usually does not have analytic form, and consequently we
need to numerically approximate the Green’s function.

4. GF-Net: Learning Green’s functions

We will construct a deep feedforward network, GF-Net, to learn the Green’s function associated
with the operator (1), and then use it to fast solve the problem (2) based on the formula (4). In
order to represent the Green’s function obeying (3), we adopt the framework of PINNs (Raissi
et al., 2019), a fully connected neural network, with slight modifications and accommodate the
symmetric characteristic of Green’s function into the network structure. In this work, we take
the two-dimensional problem for illustration and testing of the GF-Net considering computing and
memory budgets, but the proposed method can be naturally generalized to higher dimensions.

4.1. Network architecture

The architecture of GF-Net for a 2D problem is shown in Figure 1.
The vector v = [x, ξ]⊺ is fed as input to the network, followed by an auxiliary layer without

bias and activation:

ℓ0(x, ξ) = W 0

[
x
ξ

]
, W 0 =

 I 0
0 I
I −I

 .

4

GF-NET AND FAST NUMERICAL SOLVER

...
...

...

...
...

... G

x1

x2

ξ1

ξ2

x1

x2

ξ1

ξ2

x1 − ξ1

x2 − ξ2

Gx1

Gx2

Gx1x1

Gx2x2

Figure 1: An illustration of the GF-Net architecture with 1 auxiliary layer (green) and 6 hidden
layers (blue) for a 2D problem. The derivatives, such as Gx1 , Gx1x1 , · · · , can be naturally
obtained by applying derivatives on G with automatic differentiation.

This is a preprocessing or auxiliary layer inspired by the formulation of the Greens’ function con-
taining the variables x, ξ and x − ξ. The layer is then connected to D − 1 hidden layers and an
output layer, which form a fully-connected neural network of depth D. Letting ℓk be the k-th layer
after the auxiliary layer, then this layer receives an input vk−1 from the previous layer output and
transforms it by an affine mapping to

ℓk(v
k−1) = W kvk−1 + bk, (5)

where W k is called the connection weight and bk the bias. The nonlinear activation function σ(·)
is applied to each component of the transformed vector before sending it to the next layer, except
the last hidden one. The network thus is a composite of a sequence of nonlinear functions:

G(x, ξ;Θ) = (ℓD ◦ σ ◦ ℓD−1 ◦ · · · ◦ σ ◦ ℓ1 ◦ ℓ0) (x, ξ), (6)

where the operator “◦” denotes the composition and Θ = {W k, bk}Dk=1 represents the trainable
parameters in the network. It should be noted that the weight W 0 is frozen that needs not to be
updated during the training process.

4.2. Approximation of the Dirac delta function

In the network setting, we seek for a classic (smooth) solution satisfying the strong form of the
PDE (3). However, G(x, ξ) is not differentiable everywhere as it is a response to the impulse
source defined by the Dirac delta function. Indeed, it can only be well defined in the sense of
distribution. In practice, we approximate the Dirac delta function by a multidimensional Gaussian
density function:

ρ(x− ξ) =
1

(
√
2πs)2

e−
|x−ξ|2

2s2 , (7)

where the parameter s > 0 denotes the standard deviation of the distribution. As s → 0, the function
(7) converges to the Dirac delta function pointwisely except at the point x = ξ.

5

TENG ZHANG WANG JU

4.3. Sampling strategy for the variable x

Since the GF-Net takes both x and ξ as input, how to sample them in a reasonable manner could be
crucial to the training process. In particular, the distribution of x-samples with respect to different ξ
should vary following the behaviour of ρ(x− ξ): most samples need to be placed within 3 standard
deviations away from the mean of a Gaussian distribution based on the empirical rule.

To make the sampling effective, we put forth the following strategy: Since the spatial domain Ω
may have complex geometrical shape, we adopt a mesh generator to first partition Ω into a triangular
mesh Tξ = (Vξ, Eξ) where Vξ denotes the vertex set and Eξ denotes the edge set, and then collect
ξ-samples from the interior vertices to form Sξ = {ξ ∈ Vξ : ξ /∈ ∂Ω}. For each fixed ξ, we select
x-samples that concentrate around it because the Gaussian density function centers at this ξ. Hence,
we generate another three meshes {T i

x = (V i
x, E i

x)}3i=1 of resolutions from high to low, and collect
x-samples to form the set Sx,ξ = S1

x,ξ ∪ S2
x,ξ ∪ S3

x,ξ, in which

S1
x,ξ = {x ∈ V1

x : ∥x− ξ∥∞ ≤ c1s},
S2
x,ξ = {x ∈ V2

x : c1s < ∥x− ξ∥∞ < c2s},
S3
x,ξ = {x ∈ V3

x : ∥x− ξ∥∞ ≥ c2s},

and c1, c2 are two hyperparameters. Finally, the overall dataset is selected as S = {(x, ξ) : ξ ∈
Sξ,x ∈ Sx,ξ}. To highlight this sampling strategy, we plot in Figure 2 the x-samples associated to
given ξ in three types of domains (square, annulus and L-shaped) considered in numerical tests.

In all experiments, we adopt the mesh generator in (Ju, 2007) to generate the sampling points
since it is easily applicable to plenty of commonly used complex domains. Random or pseudo-
random sampling methods may have some inconveniences and need extra process in dealing with
irregular regions; for instance, the popular Latin hypercube sampling (McKay et al., 1979) method
plus the rejection procedure (Ross, 1976) also can be used here.

Figure 2: Locally refined x-samples for a given ξ (marked by the large red cross). Left: ξ = (0, 0)
in a square; middle: ξ = (34 , 0) in an annulus; right: ξ = (−1

2 , 0) in a L-shaped domain.

4.4. Partitioning strategy for the point source location ξ

Ideally, we wish to use one single GF-Net to model the Green’s function associated to any ξ in
the domain Ω, but such a network may easily become unmanageable due to a large amount of data
in S, or be very difficult to train as different ξ may yield totally distinct behaviors of the Green’s

6

GF-NET AND FAST NUMERICAL SOLVER

function. On the other hand, since the Green’s function corresponding to different ξ can be solved
individually, it is feasible to train a GF-Net for each sample ξ, which however would cause the loss
of efficiency and result in large storage issues. Therefore, we propose an domain decomposition
strategy for ξ and train a set of GF-Nets on ξ-blocks. Given any target 2D domain Ω, we first
identify an circumscribed rectangle of Ω, then divide it into m × n blocks uniformly. Suppose
there are K (≤ m × n) blocks containing samples of ξ, we denote the ξ-sample set in the k-th
block by Sk

ξ , for k = 1, . . . ,K. Figure 3 shows the ξ-blocks associated to the three different
domains (square, annulus and L-shaped). Consequently, we define the sample set associated to the
k-th ξ-block by Sk = {(x, ξ) : ξ ∈ Sk

ξ ,x ∈ Sx,ξ}. Based on the new partitioned samples,
a set of K GF-Nets will be independently trained. The approach has at least two advantages:
first, the training tasks are divided into many small subtasks, which are naturally parallelizable and
can be distributed to multiple GPUs for efficient implementations; second, locally trained models
tend to obtain better accuracy and stronger generalization ability (for unseen/predicted ξ located in
corresponding blocks) than the global single model.

Figure 3: Illustration of uniform sampling on three different domains (square, annulus and L-
shaped) and domain partitioning for the point source location ξ. Left: 4 × 4 blocks;
middle: 4× 4 blocks; right: 6× 6 blocks.

4.5. Loss function

Define the training data for the set of GF-Nets: Sk = Sk
c ∪Sk

b , where Sk
c = {(x, ξ) ∈ Sk : x /∈ ∂Ω}

and Sk
b = {(x, ξ) ∈ Sk : x ∈ ∂Ω}, for k = 1, . . . ,K. The k-th GF-Net is trained by minimizing

the following total loss:

L(Θk) = Lres(Θk) + λbLbdry(Θk) + λsLsym(Θk), (8)

where

Lres(Θk) =
1

|Sk
c |

∑
(x,ξ)∈Sk

c

[LG(x, ξ;Θk)− ρ(x, ξ)]2 ,

Lbdry(Θk) =
1

|Sk
b |

∑
(x,ξ)∈Sk

b

[G(x, ξ;Θk)]
2 ,

Lsym(Θk) =
1

|Sk
c |

∑
(x,ξ)∈Sk

c

[G(x, ξ;Θk)−G(ξ,x;Θk)]
2 .

7

TENG ZHANG WANG JU

Here, Lres(Θk) represents the pointwise PDE residual defined for each (x, ξ) pair, Lbdry measures
the errors on boundary, Lsym(Θk) is introduced to enforce the intrinsic symmetry property of the
Green’s function, and λb and λs are two hyperparameters for balancing the three terms. Note that the
loss function (8) does not use any ground-truth data (i.e., the exact or certain approximate solution
of the problem (3)).

5. A Fast Numerical Solver using GF-Nets

After training the set of GF-Nets, numerical solutions of the linear reaction-diffusion problem (2)
can be directly computed based on the formula (4) using GF-Nets. In order to evaluate the integrals
in (4) accurately, we apply numerical quadrature on triangular meshes. To this end, we generate a
triangulation for the domain Ω consisting of triangles Tq = {Tl}. Denote the intersection of the
triangle edges with the domain boundary by Ebdry

q = {Em}. For any x ∈ Ω, we have

u(x) ≈
∑
Tl∈Tq

ITl
ξ,h

[
f(ξ)G(ξ,x)

]
−

∑
Em∈Ebdry

q

IEm
ξ,h

[
g(ξ)a(ξ)(∇ξG(ξ,x) · nξ)

]
, (9)

where ITl
ξ,h[·] denotes the numerical quadrature for evaluating

∫
Tl
f(ξ)G(ξ,x) dξ and IEm

ξ,h [·] the
quadrature for evaluating

∫
Em

g(ξ)a(ξ)(∇ξG(ξ,x) · nξ) dS(ξ), respectively. For clarity, in Figure

4, we plot the quadrature points used in evaluating ITl
ξ,h[·] by a 4-point Gaussian quadrature rule for

triangular elements and IEm
ξ,h [·] by a 3-point Gaussian quadrature rule on boundary segments. Due

to the symmetry of G(ξ,x), the formula (9) can also be rewritten as an integration with respect
to x instead of ξ. The algorithm for solving the PDE problem (2) with GF-Nets is summarized in
Algorithm 1.

Figure 4: An illustration of the triangular mesh Tq and the quadrature points.

6. Experimental results

In this section, we will investigate the performance of the proposed GF-Nets for approximating the
Green’s functions (3) and its application for fast solution of the linear reaction-diffusion problem
(2) by Algorithm 1.

8

GF-NET AND FAST NUMERICAL SOLVER

Algorithm 1 Solving the model problem (2) by GF-Nets
Input: L(·), f(x) and g(x), the mesh Tq, and an interior vertex x̂ ∈ Ω
Output: The PDE solution at x̂: u(x̂)

1: Generate sampling points Sξ and Sx,ξ.
2: Apply the domain partition to divide Ω into K blocks.
3: for k = 1 to K do
4: Collect the dataset in the k-th ξ-block Sk = {(x, ξ) : ξ ∈ Sk

ξ ,x ∈ Sx,ξ}.
5: Train the GF-Nets G(x, ξ;Θk) by feeding all (x, ξ) ∈ Sk.
6: end for
7: Check index k of the ξ-block which x̂ locates in, u(x̂) is computed from (9) using the

G(ξ,x;Θk).

6.1. Model parameters setting

Each GF-Net (associated with one block) in the experiments has 1 auxiliary layer and 6 hidden
layers with 50 neurons per layer, σ(x) = sin(x) is used as the activation function, λb = 400 and
λs = 1 are taken in the loss function if not otherwisely specified, and s = 0.02 is used in the
Gaussian density function for approximating the Dirac delta function. For generating the training
sample sets, we choose c1 = 5 and c2 = 10. Both the Adam and LBFGS optimizers are used in
the training process. The purpose of the former is to provide a good initial guess to the latter. The
Adam is run for up to 2 × 104 steps with the training loss tolerance ϵ1 = 0.5 for possible early
stopping, which is then followed by the LBFGS optimization for at most 1× 104 steps with the loss
tolerance ϵ2 = 1 × 10−4. The same settings are used in training all GF-Nets for ensuring them to
possess the same level of accuracy.

To test the ability of the GF-Net for approximating the Green’s functions, we consider both the
Poisson’s (pure diffusion) equations and a reaction-diffusion equation in the square Ω1 = [−1, 1]2,
the annulus Ω2 = B1(0)\B1/2(0) with Br(0) denoting a circle centered at the origin with radius
r, and the L-shaped domain Ω3 = [−1, 1]2\[0, 1]2, as shown in Figure 3. The numerical solu-
tions of the PDEs at all the interior vertices Vq of the triangulation Tq are used for quantifying the
performance, which are evaluated by the relative error in the l2 norm:

Error =

(∑
x∈Vq

|ue(x)− up(x)|2Ax

)1/2(∑
x∈Vq

|ue(x)|2Ax

)1/2 ,

where Ax is the area of the dual cell related to the vertex x, ue and up denote the exact solution and
approximate solution, respectively. All the experiments reported in this work are performed on an
Ubuntu 18.04.3 LTS desktop with a 3.6GHz Intel Core i9-9900K CPU, 64GB DDR4 memory and
Dual NVIDIA RTX 2080 GPUs.

6.2. Ablation study based on the Green’s function with a fixed point source

In this subsection, we choose the classic Poisson’s equation in a unit disk with a fixed point source
ξ located at its center (i.e., the origin) to conduct ablation study of the proposed GF-Net, including
the learning accuracy and the effect of using the symmetric loss term Lsym in (8). Furthermore,
detailed discussions about the choice of activation function and the effect of the auxiliary layer are

9

TENG ZHANG WANG JU

presented in Appendix A.1. The analytic form of this specific Green’s function is given as below:

Ge(x,0) = − 1

4π
ln (x21 + x22), x ∈ B1(0).

Since the point source ξ is fixed at the origin, only x needs to be sampled for training and we still
adopt sampling strategy in Subsection 4.3 to obtain Sx,0, where three different levels of meshes
{Tx}3i=1 with #V1

x = 31213,#V2
x = 7842,#V3

x = 1982 are used. No domain partition is used
since there is only one source point in this case.

Accuracy of learned Green’s function To measure the accuracy of the predicted Green’s func-
tion produced by GF-Net, we calculate its relative l2 error in B\ϵ(0) = B1(0)\Bϵ(0) with ϵ = 3s
to avoid the singularity at the origin. Quantitatively, we find the relative l2 error is only about
1.29× 10−3, which demonstrate very good performance of the proposed GF-Net for predicting the
Green’s function. Figure 5 plots qualitative comparison of the Green’s function and its prediction
by GF-Net, from which we see that the error mainly concentrates at the origin (the point source
location) and decays rapidly to the boundary.

0.5 0.0 0.5
x1

0.5

0.0

0.5

x 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) Ge(x,0)

0.5 0.0 0.5
x1

0.5

0.0

0.5

x 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) Ga(x,0)

0.5 0.0 0.5
x1

0.5

0.0

0.5

x 2

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

(c) |Ga(x,0)−Ge(x,0)|

Figure 5: Numerical results for the Green’s function in the unit disk with the point source at the
origin: the exact solution (left), the predicted solution by GF-Net (middle) and the nu-
merical error (right).

Effect of the symmetric loss Since the Green’s function is symmetric about x and ξ, i.e., G(x, ξ) =
G(ξ,x) and such symmetric property is crucial to the quadrature formula (9), we introduce a sym-
metric error term into the total loss (8) so that the predicted Green’s function by GF-Net could
preserve this property. To test the effect of this term to the learning outcome, we train the model in
two ways: one includes the symmetric loss with λs = 1, and the other excludes the symmetric loss
from (8). The test results are shown in Figure 6, from which we see that adding the symmetric loss
clearly improves the accuracy of predicted Green’s function.

6.3. Ablation study based on Poisson’s equation with homogeneous and inhomogeneous
boundary conditions

In this subsection, we investigate the effect of the domain partitioning strategies and the choice
of the Gaussian parameter s on the performance of the proposed GF-Net. For testing purpose,
we consider the Poisson’s equation (i.e., the pure diffusion case with a(x) = 1 and r(x) = 0 in

10

GF-NET AND FAST NUMERICAL SOLVER

0.5 0.0 0.5
x1

0.5

0.0

0.5

x 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) Ge(0,x)

0.5 0.0 0.5
x1

0.5

0.0

0.5

x 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) Ga(0,x) with λs = 1

0.5 0.0 0.5
x1

0.5

0.0

0.5

x 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(c) Ga(0,x) with λs = 0

Figure 6: Numerical results for the symmetric property of Green’s function in the unit disk with the
point source at the origin: the exact solution (left) and the predicted solutions by GF-Net
with (middle) and without (right) the symmetric loss, respectively.

(1)) in the square Ω1. Both homogeneous and inhomogeneous Dirichlet boundary conditions are
considered as below:

Case I (homogeneous BC) : u(x1, x2) = sin(2πx1) sin(2πx2),

Case II (inhomogeneous BC) : u(x1, x2) = cos(πx1) cos(πx2).

The source term f(x1, x2) and the boundary values g(x1, x2) are accordingly imposed to match the
exact solution for interior and boundary points. s = 0.02 and s = 0.015 are used to examine how
approxiamtion of Dirac delta function would affect the GF-Net. To train our GF-Net, we choose the
mesh Tξ with #Vξ = 545 for ξ-samples and the related x-samples are selected from three meshes
{T i

x}3i=1 with #V1
x = 32753,#V2

x = 8265,#V3
x = 2105 to generate the sampling point set S .

Effect of the domain partitioning strategy We test the impact of the domain partitioning strategy
on GF-Nets by considering 4×4, 5×5 and 6×6 blocks. For the case of 4×4 blocks, the predicted
Green’s function with the source point ξ = (−0.8, 0.8) is shown in Figure 9 (left). Moreover, the
time costs of the training process under different domain partition settings are reported in Appendix
A.2. The trained GF-Net is then applied for solving the Poisson’s equation. Three sets of quadrature
points (#Vq = 145, 289, 545) for numerical integration are considered and the resulted solution
errors are reported in Table 1. It is easy to see that although different domain partitions are used,
the numerical accuracy remains almost at the same level, with only slight improvements for larger
partitions and more quadrature points in both cases. The predicted results by GF-Nets with 6 × 6
subdomain blocks are presented in Figure 7 for visual illustration.

#Vq
Case I Case II

4× 4 5× 5 6× 6 4× 4 5× 5 6× 6
145 9.97e-3 9.63e-3 8.67e-3 6.00e-3 6.17e-3 5.78e-3
289 9.42e-3 8.91e-3 8.54e-3 4.46e-3 4.67e-3 5.32e-3
545 1.26e-2 1.19e-2 1.18e-2 4.31e-3 4.79e-3 4.23e-3

Table 1: Numerical errors of the predicted solutions to the Poisson’s equation in Ω1 obtained by
using GF-Nets when three different domain partitions are used.

11

TENG ZHANG WANG JU

x1

1.0
0.5

0.0
0.5

1.0

x 2
1.0

0.5
0.0

0.5
1.0

0.75
0.50
0.25

0.00
0.25
0.50
0.75

0.75

0.50

0.25

0.00

0.25

0.50

0.75

x1

1.0
0.5

0.0
0.5

1.0

x 2

1.0
0.5

0.0
0.5

1.0

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

(a) Exact solution

x1

1.0
0.5

0.0
0.5

1.0

x 2

1.0
0.5

0.0
0.5

1.0

0.75
0.50
0.25

0.00
0.25
0.50
0.75

0.75

0.50

0.25

0.00

0.25

0.50

0.75

x1

1.0
0.5

0.0
0.5

1.0

x 2

1.0
0.5

0.0
0.5

1.0

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

(b) Predicted solution

1.0 0.5 0.0 0.5 1.0
x1

1.0

0.5

0.0

0.5

1.0

x 2

0.020

0.015

0.010

0.005

0.000

0.005

0.010

0.015

0.020

1.0 0.5 0.0 0.5 1.0
x1

1.0

0.5

0.0

0.5

1.0

x 2

0.006

0.004

0.002

0.000

0.002

0.004

0.006

0.008

(c) Error

Figure 7: Numerical results for the solution of Poisson’s equation in Ω1 under Cases I (top row)
and II (bottom row) obtained by using the trained GF-Nets with 6× 6 subdomain blocks.
Left: the exact solutions; middle: the predicted solutions; right: the numerical errors.

Effect of the Gaussian parameter s The value of the Gaussian parameter s plays the most im-
portant role in accurately approximating the Dirac delta function. When the impulse source point
ξ is positioned near the boundary, the Gaussian density function could not quickly decay to zero
on the boundary if s is not sufficiently small, which then causes large approximation errors due to
the sudden truncation on the boundary (see the corresponding Gaussian density functions illustrated
in Figure 8). To find how such truncation error would affect the accuracy of GF-Nets and corre-
sponding fast solver for the Poisson’s equation, we repeatedly fine-tuned the obtained GF-Net from
s = 0.02 to s = 0.015 based on two experimental observations: 1) Directly training GF-Nets with
s = 0.015 or even smaller could be unstable because training samples are insufficient to represent a
sharp distribution change around the impulse source; 2) Even by applying the fine-tuning strategy,
the training time for a smaller s is much higher. The resulting numerical errors of the predicted solu-
tions to the Poisson’s equation are compared in Table 2, where 545 training samples for ξ and 6× 6
subdomain block are used. It is observed that a smaller s leads to more accurate results when the
integral quadrature is accurate enough, but of course at the cost of longer training times and larger
memory usages. Considering that the choice of s = 0.02 already yields good approximations, we
will stick with it in the subsequent numerical tests.

6.4. More tests on Poisson’s equation

To further investigate the performance of the proposed GF-Net on non-convex domains, we also test
the proposed GF-Nets and corresponding fast solver in the annulus Ω2 and the L-shaped domain Ω3.
The same exact solutions as those (Cases I and II) in the previous subsection are considered. Some
model parameters are listed in Table 3. Examples of the predicted Green’s functions G(x, ξ) in Ω2

with the source point ξ = (0, 0.8) and in Ω3 with ξ = (−0.2,−0.2) are shown in Figure 9 (middle

12

GF-NET AND FAST NUMERICAL SOLVER

Figure 8: The approximations of the Dirac delta function with the source point at (−0.7,−0.96) by
the Gaussian density functions with s = 0.02 (left), s = 0.015 (middle) and s = 0.01
(right), respectively.

#Vq
Case I Case II

s = 0.02 s = 0.015 s = 0.02 s = 0.015
145 8.67e-3 8.84e-3 5.78e-3 6.15e-3
289 8.54e-3 6.80e-3 5.32e-3 5.27e-3
545 1.18e-2 5.71e-3 4.23e-3 3.95e-3

Table 2: Numerical errors of the predicted solutions to the Poisson’s equation on Ω1 obtained by
using GF-Nets with two different Gaussian parameter s.

and right). As an example, numerical results for the solution of Poisson’s equation under Case II in
Ω2 and Ω3 obtained using the trained GF-Nets are also plotted in Figure 10 for visual illustration.
More related test results are provided in Appendix B.

Domain #Vξ #V1
x #V2

x #V3
x m n c1 c2

Ω1 545 32753 8265 2105 4 4 5 10
Ω2 493 27352 6981 1819 4 4 5 10
Ω3 411 49663 6102 1565 6 6 5 10

Table 3: Parameter settings for the GF-Nets and the corresponding fast solver.

x1

1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

x 2

1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

G

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.00

0.05

0.10

0.15

0.20

0.25

0.30

x1

1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

x 2

1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

G

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

x1

1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

x 2

1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

G

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

Figure 9: Predicted Green’s functions G(x, ξ) of the Poisson’s equation by GF-Nets. Left: Ω1 with
ξ = (−0.8,−0.8); middle: Ω2 with ξ = (0, 0.8); right: Ω3 with ξ = (−0.2,−0.2).

13

TENG ZHANG WANG JU

x1

1.0
0.5

0.0
0.5

1.0

x 2
1.0

0.5
0.0

0.5
1.0

0.8
0.6
0.4
0.2
0.0
0.2

0.8

0.6

0.4

0.2

0.0

0.2

x1

1.0
0.5

0.0
0.5

1.0

x 2

1.0
0.5

0.0
0.5

1.0

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

(a) Exact solution

x1

1.0
0.5

0.0
0.5

1.0

x 2

1.0
0.5

0.0
0.5

1.0

0.8
0.6
0.4
0.2
0.0
0.2

0.8

0.6

0.4

0.2

0.0

0.2

x1

1.0
0.5

0.0
0.5

1.0

x 2

1.0
0.5

0.0
0.5

1.0

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

(b) Predicted solution

0.5 0.0 0.5
x1

0.5

0.0

0.5

x 2

0.0060

0.0045

0.0030

0.0015

0.0000

0.0015

0.0030

0.0045

1.0 0.5 0.0 0.5 1.0
x1

1.0

0.5

0.0

0.5

1.0

x 2

0.03

0.00

0.03

0.06

0.09

0.12

0.15

0.18

(c) Error

Figure 10: Numerical results for the solution of Poisson’s equation (Case II) in Ω2 (top row) and Ω3

(bottom row) obtained by using the trained GF-Nets. Left: the exact solutions; middle:
the predicted solutions; right: the numerical errors.

To demonstrate the accuracy and efficiency of the proposed method as a numerical solver of
the target PDE, we also compare the numerical solutions of the Poisson’s equation obtained by the
trained GF-Nets with those of the classic finite element method (FEM) (implemented by FEniCS
(Alnaes et al., 2015)) in the three domains Ω1,Ω2 and Ω3. For a fair comparison, the FEM solutions
are computed on the same meshes as those used for evaluating (9) with GF-Net. Numerical results
for the Poisson’s equation, including solution errors and computation times (in seconds per GPU
card), are reported in Table 4. We observe: 1) GF-Net is able to predict Green’s functions as well
as FEM on all the three domains; 2) Evaluating the formula (9) on a finer quadrature mesh doesn’t
improve the accuracy significantly, which indicates the numerical error is dominated by Green’s
function approximation error in these cases; 3) the prediction accuracy of GF-Net can be better than
that of FEM, at least on the relatively coarse grid; 4) the time costs of GF-Net are comparable to
that of FEM, and furthermore, due to the superior parallelism for multiple GF-Nets, the computation
time by GF-Nets can be be significantly reduced when multiple GPU cards are available.

6.5. Tests on the reaction-diffusion equation

We next test the following reaction-diffusion operator:

L(u) = −∇ · ((1 + 2x22)∇u) + (1 + x21)u (10)

defined in the same three typical domains as before. The exact solution is chosen as u(x1, x2) =
e−(x2

1+2x2
2+1) and the boundary conditions and the source term are determined accordingly. We use

the same parameters as listed in Table 3. The predicted Green’s functions G(x, ξ) are shown in
Figure 11 for the problem in Ω1 with the source point ξ = (−0.8,−0.8), Ω2 with ξ = (0, 0.8), and

14

GF-NET AND FAST NUMERICAL SOLVER

Ω1: #Vq
Case I Case II

GF-Net Time FEM Time GF-Net Time FEM Time
145 9.97e-3 0.11 2.36e-1 0.15 6.00e-3 0.11 6.35e-2 0.16
289 9.42e-3 0.18 1.15e-1 0.17 4.46e-3 0.18 2.67e-2 0.16
545 1.26e-2 0.40 5.19e-2 0.24 4.31e-3 0.34 1.46e-2 0.23

Ω2: #Vq
Case I Case II

GF-Net Time FEM Time GF-Net Time FEM Time
143 1.27e-2 0.11 6.11e-1 0.16 8.14e-3 0.11 4.33e-2 0.15
224 1.42e-2 0.14 5.51e-1 0.17 8.27e-3 0.13 2.45e-2 0.16
493 1.36e-2 0.30 5.20e-1 0.22 4.53e-3 0.28 9.95e-3 0.30

Ω3: #Vq
Case I Case II

GF-Net Time FEM Time GF-Net Time FEM Time
113 1.08e-2 0.17 2.48e-1 0.14 5.09e-2 0.17 6.11e-2 0.15
225 8.79e-3 0.24 1.13e-1 0.15 5.77e-2 0.23 2.65e-2 0.16
411 1.18e-2 0.38 5.37e-2 0.22 4.89e-2 0.37 1.46e-2 0.23

Table 4: Quantitative comparisons of solution errors and computation times (seconds) used by the
GF-Net and the FEM for solving the Poisson’s equation.

x1

1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

x 2

1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

G

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

x1

1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

x 2

1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

G

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

x1

1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

x 2

1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

G

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Figure 11: Predicted Green’s functions G(x, ξ) of the reaction-diffusion equation (10) by GF-Nets.
Left: Ω1 with ξ = (−0.8,−0.8); middle: Ω2 with ξ = (0, 0.8); right: Ω3 with ξ =
(−0.2,−0.2).

Ω3 with ξ = (−0.2,−0.2). Numerical results for the predicted solutions to the reaction-diffusion
equation (10) are reported in Table 5 and plotted in Figure 12. It is observed that the proposed
GF-Net method again achieves similar numerical performance as to the Poisson’s equation.

Ω1 Ω2 Ω3

#Vq Error #Vq Error #Vq Error
145 4.82e-3 143 7.89e-3 113 4.34e-2
289 4.52e-3 224 5.08e-3 225 5.10e-2
545 5.02e-3 493 2.23e-3 411 4.50e-2

Table 5: Numerical errors of the predicted solutions to the reaction-diffusion equation (10) in
Ω1,Ω2 and Ω3, obtained by using the trained GF-Nets.

15

TENG ZHANG WANG JU

x1

1.0
0.5

0.0
0.5

1.0

x 2

1.0
0.5

0.0
0.5

1.0

0.05
0.10
0.15
0.20
0.25
0.30
0.35

0.05

0.10

0.15

0.20

0.25

0.30

0.35

x1

1.0
0.5

0.0
0.5

1.0

x 2

1.0
0.5

0.0
0.5

1.0

0.05

0.10

0.15

0.20

0.25

0.075
0.100
0.125
0.150
0.175
0.200
0.225
0.250
0.275

x1

1.0
0.5

0.0
0.5

1.0

x 2

1.0
0.5

0.0
0.5

1.0

0.05
0.10
0.15
0.20
0.25
0.30
0.35

0.05

0.10

0.15

0.20

0.25

0.30

0.35

(a) Exact solution

x1

1.0
0.5

0.0
0.5

1.0

x 2

1.0
0.5

0.0
0.5

1.0

0.05
0.10
0.15
0.20
0.25
0.30
0.35

0.05

0.10

0.15

0.20

0.25

0.30

0.35

x1

1.0
0.5

0.0
0.5

1.0
x 2

1.0
0.5

0.0
0.5

1.0

0.05

0.10

0.15

0.20

0.25

0.075
0.100
0.125
0.150
0.175
0.200
0.225
0.250
0.275

x1

1.0
0.5

0.0
0.5

1.0

x 2

1.0
0.5

0.0
0.5

1.0

0.05
0.10
0.15
0.20
0.25
0.30
0.35

0.05

0.10

0.15

0.20

0.25

0.30

0.35

(b) Predicted solution

1.0 0.5 0.0 0.5 1.0
x1

1.0

0.5

0.0

0.5

1.0

x 2

0.004

0.003

0.002

0.001

0.000

0.001

0.002

0.003

0.004

0.5 0.0 0.5
x1

0.5

0.0

0.5

x 2

0.0015
0.0012
0.0009
0.0006
0.0003

0.0000
0.0003
0.0006
0.0009
0.0012

1.0 0.5 0.0 0.5 1.0
x1

1.0

0.5

0.0

0.5

1.0

x 2

0.015

0.000

0.015

0.030

0.045

0.060

0.075

0.090

(c) Error

Figure 12: Numerical results for the solution of the reaction-diffusion equation (10) in Ω1 (top row),
Ω2 (middle row) and Ω3 (bottom row) obtained by using the trained GF-Nets. Left: the
exact solutions; middle: the predicted solutions; right: the numerical errors.

7. Conclusion

In this paper, we proposed the neural network model “GF-Net” to learn the Green’s functions of the
classic linear reaction-diffusion equations in the unsupervised fashion. Our method overcomes the
challenges faced by classic and machine learning approaches in determining the Green’s functions to
differential operators in arbitrary domains. A series of procedures were taken to embed underlying
properties of the Green’s functions into the GF-Net model. In particular, the symmetry feature is
preserved by adding a penalization term to the loss function, and a domain decomposition approach
is used for accelerating training and achieving better accuracy. The GF-Nets then can be used
for fast numerical solutions of the target PDE subject to various sources and Dirichlet boundary
conditions without the need of network retraining. Numerical experiments were also performed
that show our GF-Nets can well handle the reaction-diffusion equations in arbitrary domains. Some
interesting future works include the use of hard constraints for better match of the boundary values,
the improvement of the sampling strategies for training GF-Nets for higher dimensional problems,
and the extension of the proposed method to time-dependent and nonlinear PDEs.

16

GF-NET AND FAST NUMERICAL SOLVER

Acknowledgments

X. Zhang’s work is partially supported by National Key Research and Development Program of
China (2021YFD1900805-02). Z. Wang’s work is partially supported by U.S. National Science
Foundation grant DMS-2012469. L. Ju’s work is partially supported by U.S. Department of Energy
grant number DE-SC0022254.

References

M. S. Alnaes, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. E.
Rognes, and G. N. Wells. The fenics project version 1.5. Archive of Numerical Software, 3(100):
9–23, 2015.

Anima Anandkumar, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Nikola Kovachki, Zongyi
Li, Burigede Liu, and Andrew Stuart. Neural operator: Graph kernel network for partial differ-
ential equations. In ICLR 2020 Workshop on Integration of Deep Neural Models and Differential
Equations, 2020.

Cosmin Anitescu, Elena Atroshchenko, Naif Alajlan, and Timon Rabczuk. Artificial neural network
methods for the solution of second order boundary value problems. Computers, Materials &
Continua, 59(1):345–359, 2019.

Nicolas Boullé, Christopher J Earls, and Alex Townsend. Data-driven discovery of green’s functions
with human-understandable deep learning. Scientific reports, 12(1):1–9, 2022.

Tianping Chen and Hong Chen. Universal approximation to nonlinear operators by neural networks
with arbitrary activation functions and its application to dynamical systems. IEEE Transactions
on Neural Networks, 6(4):911–917, 1995.

M. Dissanayake and N. Phan-Thien. Neural-network-based approximations for solving partial dif-
ferential equations. Communications in Numerical Methods in Engineering, 10(3):195–201,
1994.

Weinan E and Bing Yu. The deep Ritz method: a deep learning-based numerical algorithm for
solving variational problems. Communication in Mathematics and Statistics, 6(1):1–12, 2018.

Lawrence C. Evans. Partial Differential Equations. American Mathematical Society, 1998.

Craig R Gin, Daniel E Shea, Steven L Brunton, and J Nathan Kutz. Deepgreen: deep learning of
green’s functions for nonlinear boundary value problems. Scientific Reports, 11(1):1–14, 2021.

Juncai He and Jinchao Xu. MgNet: A unified framework of multigrid and convolutional neural
network. Science China Mathematics, 62:1331–1354, 2019.

Xiang Huang, Hongsheng Liu, Beiji Shi, Zidong Wang, Kang Yang, Yang Li, Bingya Weng, Min
Wang, Haotian Chu, Jing Zhou, Fan Yu, Bei Hua, Lei Chen, and Bin Dong. Solving partial dif-
ferential equations with point source based on physics-informed neural networks. arXiv preprint
arXiv.2111.01394, 2021.

17

TENG ZHANG WANG JU

Lili Ju. Conforming centroidal voronoi delaunay triangulation for quality mesh generation. Inter-
national Journal of Numerical Analysis and Modeling, 4:531–546, 2007.

Yuehaw Khoo, Jianfeng Lu, and Lexing Ying. Solving parametric pde problems with artificial
neural networks. European Journal of Applied Mathematics, 32(3):421–435, 2021.

Georgios Kissas, Jacob Seidman, Leonardo Ferreira Guilhoto, Victor M Preciado, George J
Pappas, and Paris Perdikaris. Learning operators with coupled attention. arXiv preprint
arXiv:2201.01032, 2022.

Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney. Char-
acterizing possible failure modes in physics-informed neural networks. Advances in Neural In-
formation Processing Systems, 34, 2021.

Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. Artificial neural networks for solving
ordinary and partial differential equations. IEEE transactions on neural networks, 9(5):987–
1000, 1998.

Samuel Lanthaler, Siddhartha Mishra, and George E Karniadakis. Error estimates for deeponets: A
deep learning framework in infinite dimensions. Transactions of Mathematics and Its Applica-
tions, 6(1):tnac001, 2022.

Kookjin Lee and Kevin Carlberg. Model reduction of dynamical systems on nonlinear manifolds
using deep convolutional autoencoders. Journal of Computational Physics, 404:108973, 2020.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Andrew Stuart, Kaushik
Bhattacharya, and Anima Anandkumar. Multipole graph neural operator for parametric par-
tial differential equations. Advances in Neural Information Processing Systems, 33:6755–6766,
2020.

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew
Stuart, Anima Anandkumar, et al. Fourier neural operator for parametric partial differential equa-
tions. In International Conference on Learning Representations, 2021a.

Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar
Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial
differential equations. arXiv preprint arXiv:2111.03794, 2021b.

Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong. PDE-Net: Learning PDEs from data. In
International Conference on Machine Learning, pages 3214–3222, 2018.

Zichao Long, Yiping Lu, and Bin Dong. PDE-Net 2.0: Learning PDEs from data with a numeric-
symbolic hybrid deep network. Journal of Computational Physics, 399:108925, 2019.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via DeepONet based on the universal approximation theorem of operators.
Nature Machine Intelligence, 3(3):218–229, 2021a.

Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. Deepxde: A deep learning library
for solving differential equations. SIAM Review, 63(1):208–228, 2021b.

18

GF-NET AND FAST NUMERICAL SOLVER

Lu Lu, Raphael Pestourie, Wenjie Yao, Zhicheng Wang, Francesc Verdugo, and Steven G Johnson.
Physics-informed neural networks with hard constraints for inverse design. SIAM Journal on
Scientific Computing, 43(6):B1105–B1132, 2021c.

M.D. McKay, R.J. Beckman, and W.J. Conover. A comparison of three methods for selecting values
of input variables in the analysis of output from a computer code. Technometrics. American
Statistical Association, 21(2):239–245, 1979.

Nikolaj Takata Mücke, Lasse Hjuler Christiansen, Allan Peter Engsig-Karup, and John Bagterp
Jørgensen. Reduced order modeling for nonlinear pde-constrained optimization using neural
networks. In 2019 IEEE 58th Conference on Decision and Control (CDC), pages 4267–4272.
IEEE, 2019.

Mohammad Amin Nabian and Hadi Meidani. A deep learning solution approach for high-
dimensional random differential equations. Probabilistic Engineering Mechanics, 57:14–25,
2019.

J Nagoor Kani and Ahmed H Elsheikh. Dr-rnn: a deep residual recurrent neural network for model
reduction. arXiv preprint arXiv:1709.00939, 2017.

Guofei Pang, Lu Lu, and George Em Karniadakis. fPINNs: Fractional physics-informed neural
networks. SIAM Journal on Scientific Computing, 41(4):A2603–A2626, 2019.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707, 2019.

Maziar Raissi, Alireza Yazdani, and George Em Karniadakis. Hidden fluid mechanics: Learning
velocity and pressure fields from flow visualizations. Science, 367(6481):1026–1030, 2020.

Sheldon Ross. A First Course in Probability. MacMillan Publishing Company, 1976.

Omer San, Romit Maulik, and Mansoor Ahmed. An artificial neural network framework for re-
duced order modeling of transient flows. Communications in Nonlinear Science and Numerical
Simulation, 77:271–287, 2019.

Justin Sirignano and Konstantinos Spiliopoulos. DGM: A deep learning algorithm for solving partial
differential equations. Journal of Computational Physics, 375:1339–1354, 2018.

Luning Sun, Han Gao, Shaowu Pan, and Jian-Xun Wang. Surrogate modeling for fluid flows based
on physics-constrained deep learning without simulation data. Computer Methods in Applied
Mechanics and Engineering, 361:112732, 2020.

Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of parametric par-
tial differential equations with physics-informed deeponets. Science Advances, 7(40):eabi8605,
2021.

Liu Yang, Dongkun Zhang, and George Em Karniadakis. Physics-informed generative adversarial
networks for stochastic differential equations. SIAM Journal on Scientific Computing, 42(1):
A292–A317, 2020.

19

TENG ZHANG WANG JU

Yaohua Zang, Gang Bao, Xiaojing Ye, and Haomin Zhou. Weak adversarial networks for high-
dimensional partial differential equations. Journal of Computational Physics, 411:109409, 2020.

Dongkun Zhang, Lu Lu, Ling Guo, and George Em Karniadakis. Quantifying total uncertainty in
physics-informed neural networks for solving forward and inverse stochastic problems. Journal
of Computational Physics, 397:108850, 2019.

Dongkun Zhang, Ling Guo, and George Em Karniadakis. Learning in modal space: Solving time-
dependent stochastic pdes using physics-informed neural networks. SIAM Journal on Scientific
Computing, 42(2):A639–A665, 2020.

Jia Zhao and Colby L Wright. Solving allen-cahn and cahn-hilliard equations using the adaptive
physics informed neural networks. Communications in Computational Physics, 29:930–954,
2021.

Yinhao Zhu, Nicholas Zabaras, Phaedon-Stelios Koutsourelakis, and Paris Perdikaris. Physics-
constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification
without labeled data. Journal of Computational Physics, 394:56–81, 2019.

20

GF-NET AND FAST NUMERICAL SOLVER

Appendix A. More Ablation Studies

A.1. Based on the Green’s function with a fixed point source

Effect of the activation function Choosing a proper activation function sometimes could be a key
part to the success of neural network models, thus we compare the effect of three commonly used
activation functions (sin, tanh and sigmod) for training GF-Net and their performance in predicting
the Green’s function. The training loss curves are displayed in Figure 13 (left), which shows that
both tanh and sin work much better than sigmoid in terms of the decaying of training loss. Table
6 reports numerical errors of the predicted Green’s function. It is again observed that tanh and sin
easily outperform sigmoid, and sin performs the best among them. Hence, sin is selected as the
activation function for GF-Net in all the experiments in this work.

0 2000 4000 6000 8000 10000
Epoch

10 4

10 3

10 2

10 1

Lo
ss

Comparison of different activation functions
sin
tanh
sigmoid

0 2000 4000 6000 8000 10000
Epoch

10 4

10 3

10 2

10 1

Lo
ss

Effect of auxiliary layer
With auxiliary layer
Without auxiliary layer

Figure 13: Comparison of different activation functions (left) and the effect of the auxiliary layer
(right) for training the GF-Net in the unit disk with the point source at the origin. Note
that only the LBFGS steps of the training process are shown here.

Effect of the auxiliary layer We also compare the decaying of training loss with and without the
auxiliary layer, see Figure 13 (right). It is easy to see that the training loss decays faster when the
auxiliary layer is used.

Activation function sin tanh sigmoid
Error 1.29e-3 1.38e-3 1.72e-2

Table 6: Numerical errors of the predicted Green’s function in the unit disk with the point source at
the origin when different activation functions are used for GF-Net.

A.2. Training times with respect to the domain partitioning strategy

The computation costs of the training process under different domain partition settings are reported
in Figure 14. It is observed that: 1) the training on blocks away from corners and boundaries of the
domain are generally faster. In fact, it is found through experiments that the training processes for
all interior blocks always terminates within several thousand LBFGS steps; 2) the training time per

21

TENG ZHANG WANG JU

block decreases as the number of blocks increases, which implies this strategy is very suitable for
parallel training when many GPU cards are available.

10h12′

7h27′

15h14′

13h54′

7h4′

4h25′

3h13′

8h15′

7h48′

2h53′

7h53′

6h6′

7h41′

8h12′

8h12′

13h59′

9h17′

6h42′

7h14′

11h43′

13h57′

8h13′

3h30′

4h20′

4h40′

8h6′

3h11′

4h49′

2h33′

6h16′

2h58′

8h5′

3h45′

4h49′

8h44′

10h19′

8h30′

9h16′

4h2′

6h10′

12h3′

5h30′

3h48′

3h31′

2h28′

3h33′

3h36′

3h35′

2h43′

2h31′

1h56′

4h30′

5h36′

2h25′

2h57′

1h52′

1h41′

2h38′

4h24′

3h11′

2h50′

1h34′

2h24′

1h58′

2h44′

4h57′

3h58′

2h55′

2h40′

2h57′

3h11′

6h1′

4h59′

4h32′

3h13′

4h13′

4h43′

Figure 14: Training time of the GF-Net on each block for 4 × 4 (left), 5 × 5 (middle) and 6 × 6
domain partitions (right).

Appendix B. More Experiments for Poisson’s Equation

We investigate more on the application of the GF-Net to solve Poisson’s equation with Dirichlet
boundary conditions. The three selected exact solutions are listed below:

u(x1, x2) = x21 + x22 (B.1)

u(x1, x2) =

{
cos(πx2/2) x1 ≤ 0.6(x2 + 1)

cos(πx2/2) + (x1 − 0.6(x2 + 1))
3
2 x1 > 0.6(x2 + 1)

(B.2)

u(x1, x2) = e−100((x1+0.5)2+(x2+0.5)2) (B.3)

which then accordingly determine the source term f and the Dirichlet boundary condition g for any
given domain. The numerical results are shown in Figures 15, 16, 17, which are produced by the
trained GF-Nets with the parameter settings given in Table 3. We observe that the approximation
errors and simulation times remain at the similar magnitudes as those reported in Table 4.

22

GF-NET AND FAST NUMERICAL SOLVER

x1

1.0
0.5

0.0
0.5

1.0

x 2

1.0
0.5

0.0
0.5

1.0

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

x1

1.0
0.5

0.0
0.5

1.0

x 2

1.0
0.5

0.0
0.5

1.0

0.0
0.2
0.4
0.6
0.8
1.0
1.2

0.2

0.4

0.6

0.8

1.0

1.2

x1

1.0
0.5

0.0
0.5

1.0

x 2

1.0
0.5

0.0
0.5

1.0

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(a) Exact solutions

x1

1.0
0.5

0.0
0.5

1.0

x 2

1.0
0.5

0.0
0.5

1.0

0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

x1

1.0
0.5

0.0
0.5

1.0

x 2

1.0
0.5

0.0
0.5

1.0

0.0
0.2
0.4
0.6
0.8
1.0
1.2

0.2

0.4

0.6

0.8

1.0

1.2

x1

1.0
0.5

0.0
0.5

1.0

x 2

1.0
0.5

0.0
0.5

1.0

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(b) Predicted solutions

1.0 0.5 0.0 0.5 1.0
x1

1.0

0.5

0.0

0.5

1.0

x 2

0.020
0.015
0.010
0.005

0.000
0.005
0.010
0.015
0.020
0.025

1.0 0.5 0.0 0.5 1.0
x1

1.0

0.5

0.0

0.5

1.0

x 2

0.030

0.024

0.018

0.012

0.006

0.000

0.006

0.012

0.018

1.0 0.5 0.0 0.5 1.0
x1

1.0

0.5

0.0

0.5

1.0

x 2

0.012

0.006

0.000

0.006

0.012

0.018

0.024

0.030

0.036

(c) Errors

Figure 15: Numerical result for the solution of Poisson’s equation in Ω1 under different sets of
source terms and boundary conditions, where the exact solutions (left), the predicted
solutions by GF-Nets (middle), and the numerical errors (right) are presented. First
row: Case (B.1); second row: Case (B.2); and last row: Case (B.3).

23

TENG ZHANG WANG JU

x1

1.0
0.5

0.0
0.5

1.0

x 2

1.0
0.5

0.0
0.5

1.0

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x1

1.0
0.5

0.0
0.5

1.0

x 2

1.0
0.5

0.0
0.5

1.0

0.2
0.4
0.6
0.8
1.0
1.2

0.2

0.4

0.6

0.8

1.0

1.2

x1

1.0
0.5

0.0
0.5

1.0

x 2

1.0
0.5

0.0
0.5

1.0

0.0

0.2

0.4

0.6

0.8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) Exact solution

x1

1.0
0.5

0.0
0.5

1.0

x 2

1.0
0.5

0.0
0.5

1.0

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x1

1.0
0.5

0.0
0.5

1.0

x 2

1.0
0.5

0.0
0.5

1.0

0.2
0.4
0.6
0.8
1.0
1.2

0.2

0.4

0.6

0.8

1.0

1.2

x1

1.0
0.5

0.0
0.5

1.0

x 2

1.0
0.5

0.0
0.5

1.0

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) Predicted solution

0.5 0.0 0.5
x1

0.5

0.0

0.5

x 2

0.0060

0.0045

0.0030

0.0015

0.0000

0.0015

0.0030

0.0045

0.5 0.0 0.5
x1

0.5

0.0

0.5

x 2

0.015
0.010
0.005

0.000
0.005
0.010
0.015
0.020
0.025
0.030

0.5 0.0 0.5
x1

0.5

0.0

0.5

x 2

0.016

0.008

0.000

0.008

0.016

0.024

0.032

0.040

0.048

(c) Error

Figure 16: Numerical tests on Poisson’s equation in Ω2 under different sets of source terms and
boundary conditions, where the exact solutions (left), the predicted solutions by GF-
Nets (middle), and the numerical errors (right) are presented. First row: Case (B.1);
second row: Case (B.2); and last row: Case (B.3).

24

GF-NET AND FAST NUMERICAL SOLVER

x1

1.0
0.5

0.0
0.5

1.0

x 2

1.0
0.5

0.0
0.5

1.0

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

x1

1.0
0.5

0.0
0.5

1.0

x 2

1.0
0.5

0.0
0.5

1.0

0.0
0.2
0.4
0.6
0.8
1.0
1.2

0.2

0.4

0.6

0.8

1.0

1.2

x1

1.0
0.5

0.0
0.5

1.0

x 2

1.0
0.5

0.0
0.5

1.0

0.0

0.2

0.4

0.6

0.8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(a) Exact solution

x1

1.0
0.5

0.0
0.5

1.0

x 2

1.0
0.5

0.0
0.5

1.0

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

x1

1.0
0.5

0.0
0.5

1.0

x 2

1.0
0.5

0.0
0.5

1.0

0.0
0.2
0.4
0.6
0.8
1.0
1.2

0.2

0.4

0.6

0.8

1.0

1.2

x1

1.0
0.5

0.0
0.5

1.0

x 2

1.0
0.5

0.0
0.5

1.0

0.0

0.2

0.4

0.6

0.8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(b) Predicted solution

1.0 0.5 0.0 0.5 1.0
x1

1.0

0.5

0.0

0.5

1.0

x 2

0.015
0.012
0.009
0.006
0.003

0.000
0.003
0.006
0.009
0.012

1.0 0.5 0.0 0.5 1.0
x1

1.0

0.5

0.0

0.5

1.0

x 2

0.03

0.00

0.03

0.06

0.09

0.12

0.15

0.18

1.0 0.5 0.0 0.5 1.0
x1

1.0

0.5

0.0

0.5

1.0

x 2

0.016

0.008

0.000

0.008

0.016

0.024

0.032

0.040

(c) Error

Figure 17: Numerical tests on Poisson’s equation in Ω3 under different sets of source terms and
boundary conditions, where the exact solutions (left), the predicted solutions by GF-
Nets (middle), and the numerical errors (right) are presented. First row: Case (B.1);
second row: Case (B.2); and last row: Case (B.3).

25

	Introduction
	Related work
	Linear Reaction-diffusion equations and Green's functions
	GF-Net: Learning Green's functions
	Network architecture
	Approximation of the Dirac delta function
	Sampling strategy for the variable vx
	Partitioning strategy for the point source location vxi
	Loss function

	A Fast Numerical Solver using GF-Nets
	Experimental results
	Model parameters setting
	Ablation study based on the Green's function with a fixed point source
	Ablation study based on Poisson's equation with homogeneous and inhomogeneous boundary conditions
	More tests on Poisson's equation
	Tests on the reaction-diffusion equation

	Conclusion
	More Ablation Studies
	Based on the Green’s function with a fixed point source
	Training times with respect to the domain partitioning strategy

	More Experiments for Poisson's Equation

