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Abstract

Learning dynamical systems from observed trajectories is a fundamental problem in data-driven
science and engineering. While many existing works focus on improving model architectures or
training methods, less attention has been directed at how to effectively sample training data to give
rise to accurate models. In particular, one of the most basic problems is to select the length of sam-
pled trajectories that balances computational overhead due to sampling and the quality of learned
models. This paper deals with the task of improving sampling efficiency for learning dynamics.
We first formulate proper target risks to evaluate the model performance of learning in the dynam-
ical setting. This allows us to connect generalization to matching empirical measures with specific
target measures. In line with this observation, we propose a class of adaptive algorithms to find
effective sampling strategies that control the length of sampled trajectories. Through numerical
experiments, we show the adaptive algorithms can achieve more accurate results given a sampling
budget compared to baseline sampling methods.

Keywords: Adaptive Sampling; Machine Learning; Dynamical Systems.

1. Introduction

Modelling dynamical systems based on observed trajectories is an important goal in numerous do-
mains of science and engineering. With growing data availability and computational power, data-
driven methods have become a promising alternative to traditional modelling techniques for study-
ing dynamical systems. This gives rise to a host of new mathematical and algorithmic problems on
the intersection of machine learning and dynamical systems. On this front, many previous works
(Brunton et al. (2016); Hamzi and Owhadi (2021); Lin et al. (2022a); Raissi (2018); Williams et al.
(2015)) focus on developing new model architectures or training methods, such as (sparse) regres-
sion of nonlinear dynamics using pre-defined dictionary functions (Brunton et al. (2016)), com-
bining neural networks and partial differential equations to model spatio-temporal data, e.g. for
solution of high-dimensional PDEs (Raissi (2018); Han et al. (2018)), system identification (Long
et al. (2018)) or computing important quantities associated with the dynamics, including committor
functions (Khoo et al. (2019); Li et al. (2019)) , quasi-potentials (Lin et al. (2022a)), and invariant
distributions (Chen et al. (2021); Lin et al. (2022b)).

However, relatively little attention has been paid to studying efficient data (trajectory) sampling
methodologies. On the one hand, for some applications where abundant training data can be directly
generated from numerical simulations at little computational overheads, sampling issues often do
not pose significant challenges. On the other hand, in real-life scenarios where the cost to generate
training trajectories can be very high, efficient data sampling strategies become a crucial aspect of
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a scalable data-driven workflow. Examples of such include ab initio molecular dynamics simula-
tion (Tuckerman (2002)), quasi-potential landscape construction (Zhou and Li (2016)) and learning
dynamical models from experimental data. In these applications where data generation cost is sig-
nificant, it is crucial to balance the trade-off between sampling cost and the performance of the
learned dynamical model. In fact, one of the most basic yet under-explored question is how long
the sampled trajectories should be to learn a sufficiently accurate approximation of the dynamical
system.

Lacking systematic sampling algorithms for dynamics learning may lead to less accurate mod-
els. This is a chicken-and-egg problem in which a correct model (or at least some knowledge of
the model) is often a prerequisite for an efficient sampling strategy, while properly sampled data
is indispensable for learning an accurate model. Without adaptive sampling methods, generaliza-
tion performance of learning-based approaches (Brunton et al. (2016); Raissi (2018)) rely on strong
prior knowledge, such as proper choices of basis functions to reduce the dynamical complexity,
to achieve high accuracy with possibly limited number and diversity of samples. Although there
are many generalization analyses in traditional statistical learning (Hastie et al. (2001)), these guar-
antees are often based on the assumption that the training data are independent and identically
distributed (IID). More importantly, they follow the same distribution as the test data that ultimately
determine the model’s performance. It turns out that neither of these assumptions are appropriate
for a large variety of tasks involving learning dynamics. We will make this notion precise in Sec. 2.
To deal partially with this issue, references (Foster et al. (2020); Mania et al. (2020)) propose active
learning methods for model identification with guarantees based on one long controllable trajec-
tory. Their methods are currently limited to controllable dynamics which can be expressed as linear
combinations of known features. However, in practical scenarios the sampler may be a black-box
simulator, and may not be controllable. Thus, it is important to develop generic sampling methods
that can be applied to a wide variety of scenarios involving learning dynamical systems.

To address these challenges, we propose a general and principled approach to adaptively select
the length of sampled trajectories used to train machine learning models for modelling dynamics.
To do so, we formulate the precise problem of learning dynamics by distinguishing different types
of evaluation metrics appropriate for different practical goals. Based on the selected metric, the
sampling strategy attempts to match the sampled data distribution (by selecting the trajectory length)
with a target distribution associated with the evaluation metric. The sampling strategy is based on
an upper bound of the generalization error in learning dynamics, which connects the latter with
the 1-Wasserstein distance between the target distribution and the empirical distribution. Based on
this observation, we propose adaptive sampling algorithms to determine an appropriate sampling
trajectory length to learn an unknown dynamics given the initial condition (the starting points of
trajectories). Through numerical experiments, we demonstrate our sampling algorithms lead to
efficient learning of dynamical systems and show a substantial improvement over baseline sampling
methods with pre-determined trajectory lengths. Moreover, we demonstrate that our algorithms are
robust to different types of dynamical systems, practical goals and learning model architectures.

2. Mathematical Formulation of Learning Dynamics

In this section, we introduce the basic mathematical formulation of learning dynamics. We pay
particular attention to different types of possible error metrics arising in practice, and how they
translate to different sampling requirements.
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Since most continuous dynamics are simulated by time discretization, here we consider a dis-
crete time dynamical system on R™

Tep1 = fo(xt), (D

where f, : R™ — R™ is Lipschitz continuous. We assume that we have access to a simulator
for this dynamics that produces sample trajectories. More specifically, given a initial condition

consisting of N points {xa}fil drawn IID from some initial distribution pg, the sampling data is
collected from [V trajectories of length T, and is partitioned as input-output pairs

{(a}, 2% ) |2l = fu(@h),i€{1,2,...,N},j € {0,1,...T — 1}}. )

We denote the empirical measure associated with this dataset as

1 N T-1
N—ZZ . (3)

7=0

Here, §,. denotes the Dirac point mass at z. Given a model hypothesis space # := {Llpschltz f (+;6):
R™ — R™ | Lip(f) < K, 6 € ©}, the training step is to learn an approximation f (z; §) of f,(x) by
solving the empirical risk minimization problem over sampling measure. In particular, an emplrlcal
risk minimizer 6 is defined as

6 € argmin Lyr(9), 4)
0cO
with
1 T—1
Lyr(8) = 5 20 D d (540, flafi0)
i=1 j=0 &)

Here, the loss function d : R™ x R™ — R is a semi-metric satisfying p-triangle inequality
d(z1,22) < p(d(21,73) + d (23, 72)) (6)
for any x1, x2, 3 € R™, and p > 1 is a constant depending on d.

Remark 1 We consider the slightly more general formulation where d is a semi-metric to cover the
popular choice of d(x1,x2) = ||x1 — 22||?, i.e. mean-squared error. For other applications, e.g. L
regression, d(x1,x2) = ||x1 — z2||1 can be a metric.

At this point, we emphasize a key difference from traditional supervised learning, in that the
evaluation of the performance of f varies with application. In the classical supervised learning
scenario, the model performance L, is equal to the expectation of the empirical error over the IID
training samples. In the current dynamical situation, there are two main differences. First, multiple
performance metrics can be chosen to evaluate the learned model according to different practical
goals. Second, there involve performance metrics that are associated with necessarily different
distributions from the sampling distribution piy 7.
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In this simplest case where we are interested in one-step predictions from initial conditions
drawn from g and the training data are also one-step trajectories, then the model performance is
measured as in the usual supervised learning setting

L.(0)= E [d(f*(:c),f(a:;é’))]

T Ho
- / d (£.(@). f(:0)) duo ™
= E[Ln,1(0)].

However, there are other practical problems for learning dynamics that involve distinct performance
metrics. For example, one may be interested to recover (an approximation) of the right hand side
vector field f,, over some domain of interest S (e.g. Lin et al. (2022a)). Then, the model perfor-
mance takes a different form

L) = [ (4a) - f<x;0>)2 i,
]S|/ falz x 9))2115 dz;

As a further example, we may be interested to predict the dynamics’ long time behavior, such as the
evolution of the Van der Pol oscillator on its limit cycle. To do so, it is necessary to approximate the
vector field f, over the invariant measure i,y of the dynamical system, i.e.

L) = [ (£a) = F(a38)) . ©

This motivates us to define more precisely the types of evaluation methods we encounter in
practical applications. From the discussions above, a natural candidate for model performance is

®)

L.(6) = / d(f. (), f(:6)) dus, (10)

where the target measure u, takes variable forms depending on application. For one-step prediction
tasks we take p,. = po; for approximation of vector fields over compact domains we take p, =
to be the invariant

measure.

One important case not directly covered by (10) is trajectory prediction over a finite time interval
T > 1. However, we observe that in this case there is an upper bound of the expected error in the
form of (10). More precisely, the expected multiple-step trajectory prediction error starting from
some distribution /i, at time ¢ satisfies

LT Z d (:ﬁtﬂ, xt)>

th,u*

_/Zdw(x)’fj(xs@)) djis (i1)
j=1
/ (ful@), £(2:0)) dpsa,

4



ADAPTIVE SAMPLING METHODS FOR LEARNING DYNAMICAL SYSTEMS

where 7' is the length of trajectories for evaluation, and

T-1
s = Z KT_I_I(f* + l)l#ﬂ*- (12)
=0

That is, u4 is a mixture of pushforward distributions of . by f.. Recall that K is the uniform
Lipschitz constant of all hypotheses in H. The proof of (12) can be found in Appendix E. Given
a mapping h : R™ — R™ and measure v with bound support M in R™, the push forward of v is
defined to be the measure h#v by (h#v) (B) = v (h~!(B)) for B C M.

In summary, (10) can be seen as a general formulation of the performance indicator of learned
dynamical models, which is captured by the target measure p. that varies according to different ap-
plications. In particular, observe that unlike traditional supervised learning, the sampling measure
w1, 7 does not in general converge, as N — oo and/or T" — oo, to u,. Hence, balancing sampling
cost and model performance becomes an interesting question to be investigated. In the next sec-
tion, we show that indeed, the discrepancy between i 7 and p, bounds the model performance
error. Thus, this forms the basis of our proposed algorithms that aim to adaptively minimize this
discrepancy.

Remark 2 While (11) provides an upper bound on multi-step trajectory prediction error based
on one-step prediction error, this may not be a tight bound in practice. For example, the dynamics
may include fast varying temporal modes that average themselves for sufficiently long observation
horizons, thus may become easier to learn when considering data spanning multiple time steps.
Examples include Markov state models in Noé and Nuske (2013) and VAMP methods in Wu and
Noé (2020).

3. Adaptive Sampling Algorithms

Following the previous formulation, in this section we present a precise result that connects model
performance and the discrepancy between the empirical and the target measure. This then allows
us to devise sampling strategies to minimize the discrepancy. We start by recalling the definition of
the 1-Wasserstein distance that we will use to measure distances between probability distributions.

Definition 3 (1-Wasserstein distance) The [-Wasserstein distance between two probability mea-
sures |4 and v is defined as

Wi(p,v):= inf / d(z,y) dy(z,y) (13)
YEL (1Y) JR™ xR
where I'(u, v) denotes the collection of all measures on R™ x R™ with marginals (1 and v on the

first and second component respectively.

For p, v with bounded support , we also have the following dual representation

Wi (p,v) = sup {/ g(x)d(p — v)(z) | Lipschitz g : RY — R, Lip(g) < 1} . (14)
R4

The model performance is generally caused by a combination of approximation, optimization
and generalization errors. In the following proposition we make this precise and show that in lieu of
approximation and optimization errors, the target risk is then bounded by the discrepancy between
i+ and gy 7 measured in the 1-Wasserstein distance.



ZHAO LI

Proposition 4 (Upper bound of the target risk) Given the hypothesis space H = {f(- ;0) :
R™ — R™ | § € O}, for any parameter 0 € ©, the target risk with respect to i, can be bounded
by the summation of three parts, model bias, empirical error and distribution discrepancy:

L*((g) < inf L*(G) + ‘LN,T(Q) — inf LNyT(Q/) + 2C'*W1(,u*,,uN7T) (15)
0cO 0'cO

where C, = sup Lip (d(f*(), f( ;9)).
0O A
Moreover, if H is a universgl approximator (i.e. infg L,(6) = 0) and 0 is an empirical risk min-

imizer, then its target risk L.(0) can be bounded by the 1-Wasserstein distance between empirical
distribution and target distribution,

L.(0) < 2C W1 (s, pin,T).- (16)

Proposition 4 shows that one can select the sampling strategy that minimizes the 1-Wasserstein
distance with target distribution to reduce target risk. More specifically, two parameters of the sam-
pling strategy, the number of starting points NV and trajectory length 7', can be well designed to make
the generated trajectories most efficiently explore the target measure. Compared with traditional su-
pervised learning, the key difference is that the empirical measure 1y 7 need not monotonically
approach u, when either of its arguments goes to infinity. Hence, selecting the best sampling pa-
rameters becomes an optimization problem that one needs to solve on the fly.

In practical scenarios, N starting points are usually IID drawn from some fixed initial distri-
bution pg, so in this paper we only focus on the second part, i.e., given the initial points, how to
find the appropriate trajectory length to sample for learning dynamics. The adaptive selection of the
initial conditions is an interesting problem that is out of the scope of the current work.

3.1. Reformulate sampling as optimization

In view of the bound derived in Proposition 4, once i, is selected according to the goal of learning
dynamics, we can formulate the sampling problem of finding optimal 7" as an optimization problem
that minimizes W1 (p«, v ) with a cost term ¢:

mTin Wi(ps, unr) + ¢(N, T)

. 1 1 . (17)
subject to piN, 741 = NT+1) (Nuno + NTL(f)unrT) = Tl > L(f) o
t=0

where L(f) is a transform operator satisfying L(fx) 0z = 0y, () for z € R™.

Example 1 As a warm-up, we take a dynamical system with a limit cycle as a toy model to demon-
strate that the upper bound (16) and the subsequent optimization formulation (17) are sensible. The
problem is to model the dynamics

dz _ _ 2 2
{dt r+y—x(z® +y?), (18)

_ 2 2
at =y -z -y +y),
over the unit circle. Here p is selected as the uniform distribution over [1.5, 2%, and the target risk
L, is selected as mean square error over the uniform distribution . on the unit circle.
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Figure 1: The red line represents the 1-Wasserstein distance via trajectory length. The blue line
represents the average of target risks with the standard deviation shaded in light blue
calculated from 10 experiment runs. The green line represents the distance with cost
terms.

We feed data sampled from trajectories with different lengths into a shallow fully-connected
neural network, and calculate corresponding 1-Wasserstein distances and target risks in Fig 1.
We observe that the target risk and Wy (., pun 1) vary together as predicted from Proposition 4.
Moreover, as the trajectory length increases, the decrement of both quantities become insignificant.
This implies that trajectories longer than ~ 50 no longer gives meaningful improvement, but incurs
computational cost (thus the rise in the green line). Hence, solving the optimization problem (17)
may lead to a sampling strategy that selects trajectories of length close to 50, without wasting
additional computation.

It should be noted that the optimization problem (17) cannot be directly solved since f, is often
unknown and p, may be inaccessible (i.e. one cannot sample from it efficiently) in some cases,
such as learning dynamics over an unknown invariant measure. Hence, adaptive algorithms needs
to be proposed for different situations. We discuss the basic sampling algorithm and its variants in
the next section.

3.2. The basic sampling algorithm and its variants

In this section, we introduce two variants of the adaptive sampling algorithm according to the acces-
sibility of target measure u.. The first variant assumes that we have access to the target distribution
L. In other words, we can independently sample data from p, at reasonable cost that is negligi-
ble compared with the cost of simulating the dynamics defined by f.. An example is recovering
the decomposition of vector field (Lin et al. (2022a)), where ., is taken as uniform distribution.
In this case, we only need a stopping-criterion from (17) to determine if we continue to sample
data in the next step or we stop. Here, the stopping-criterion is selected as the relative error of
W(T) := Wi(ps, pn1) + ¢(N, T) for fixed N. Moreover, the basic setting considers selecting a
common stopping time 7" for all V initial conditions. The basic algorithm is summarized in Alg. 1.

The cost function ¢ can be naturally taken as linear form ¢(N,T) = ANT, A\ > 0, under
the assumption that the sampling cost is proportional to the number of data points and the time
horizon. This assumes that the black-box simulator is computed in a serial manner. Different
choices of ¢ may be required if one considers parallel computation in N, say ¢(N,T) = AT or
¢(N,T) = AT'log(N). In all numerical examples in this paper, we take ¢(N,T) = ANT with
A = 0.001. Nevertheless, all algorithms are applicable to general selections of the cost function.
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Algorithm 1 Adaptive Sampler (. accessible, common trajectory-wise)

0. given: initial samples Dy = {x; ti=1,...,N,j=0,...,Tp} with N starting points {z;}},
and trajectory length Tj, simulator of the dynamics, target distribution p. sampler, relative error

tolerance € > 0, sampling step AT € NT;

1
1. set: sampling dataset D <— Dy, empirical measure fi < Dl Z 0z, T + To;
| | zeD

2.do ‘ A A

sample z7, 1, -+, &p, o from 27, by the simulator fori = 1,..., N;

update D <~ DU {xh 4, - 2 ap:i=1,...,N};

1
update /i < 5251,T<—T—1—AT;
’ ’ z€D

. W (T—AT)—W(T)| .

while W] > €

3. output: NTsamplesD:{xé:izl,...,N,j:O,...,T}.

In Alg. 1, we also need to calculate the 1-Wasserstein distance between target distribution and
empirical distribution in the stopping-criterion. To do this, we select M points that are IID drawn
from p., to construct the discretization of p., and the optimal transport problem over two discrete
sample sets can be solved by the Sinkhorn algorithm using the package (Flamary et al. (2021)). In
all subsequent experiments, M is taken as |D|, where |D| is the size of the sampling dataset.

Following the basic algorithm presented in Alg. 1, we now discuss some variants that are needed
to handle the different scenarios we motivated earlier. The first variant situation is when the target
distribution p., is inaccessible, i.e. one cannot (cheaply) draw samples from it. An example is to
learn the evolution over a priori inaccessible limit cycle for Van der Pol oscillator. In this case, we
cannot directly generate samples from p., and so we have to devise a method to adaptively generate
data whose distribution becomes closer and closer to . as the learning progresses. The process
is as follows. First, a temporary simulator is generated from f (x; é) by solving the empirical risk
minimization over current sampled data. This serves as an approximation of f, and we assume that
calling f incurs negligible cost, and further that it can be used to create an approximate sampler
from p,. Then, trajectories and approximate samples from u, are generated using the temporary
simulator. Finally, substituting the temporary simulator and target measure sampler into Alg. 1, T’
is updated in the while loop. Repeating the do-while iteration, one can sample and learn f, step by
step.

Example 2 Considering the dynamical system of uniform limit cycle in Example 1, our goal is to
model the dynamics over its inaccessible invariant measure [y, i.e., the uniform distribution over
the unit circle. Here the Algorithm 2 is applied to find the sampling strategy for single starting
points drawn from uniform measure over [1.5,2]%. The target risk is defined as mean square loss
over L, to compare the model performance after different iterations of adaptive sampling. Tempo-
rary invariant measure samplers are generated by infinite compositions of learned simulators.
From the left of Fig. 2, we can see the learned invariant set from single point becomes closer
and closer to the unit circle as the iteration of do-while processes, which illustrates our adaptive
method is able to capture the inaccessible measure after refining sampling strategy via iterations.
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This enables us to train the neural network to achieve good performance as shown in the right of
Fig. 2.

Iteration 0 Iteration 1 Iteration 2

Target risk
o
w
o

Iteration 3 Iteration 4 Ground truth

-2 2.
-2-10 1 2-2-10 1 2-2-10 1 2 Iteration

Figure 2: Alg. 2 for limit cycle learning. Left: the first five graphs show trajectories generated from
the learned system after 0-4 iterations of do-while and the last one is the ground truth.
Right: target risk via iterations.

For sampling problem with one-point initial measure, one trajectory length 7' as output is
enough. However, for N > 1, there is usually no uniform trajectory length 7" for all initial points in
practice. We have a modified optimization of (17) over {Tz}fil

1 .
min -~ Wi (g, ==+ Tipln) + o(Th, -+ - T,
Ty, TN 1(H ZzT’Z Zz: ZHTZ) ¢( 1 N)

19)

subject to i | = CE) (‘5006 I Tiﬁ(f*)u’n) fori € {1,---N},

where ,u%_ represents the empirical measure contributed by ‘" trajectory. In the adaptive trajectory-
wise case, we notice that if a trajectory overlaps with other one, the extension of this trajectory
contributes less to the decreasing of W distance since the overlapping part has been collected
through some previous trajectory. Based on this observation, we propose algorithms including
overlapping check to approximately solve (19). We denote M as the set consist of indexes in
which trajectories have the potential to be explored further. Once some trajectory evolves to the
region covered by previous trajectory, the corresponding index is deleted from M and the output
length of this trajectory is labelled as the temporal location of first intersection. Following the above
modification, the advanced version of common trajectory-wise Alg. 1 and 2 are adaptive trajectory-
wise Alg. 3 and 4 respectively. More details about Alg. 3 and 4 can be founded in Appendix.E, and
all four algorithms for different situation are summarized in Table 1.

Example 3 Considering the dynamical system of uniform limit cycle in Example 1, our goal is
to modelling the dynamics over its accessible invariant measure p;,,. Here the Alg. I and 3 are
respectively applied to find the sampling strategy for three starting points A[1.0,1.0], B[-1.0, 1.5],
C[1.5, —1.5]. The output trajectories’ length for A,B,C is 20,25,40 respectively from Alg. 3 and the
target risk of learned model is 0.090, whereas the uniform trajectory length 35 is generated from
Alg. I and the target risk of learned model is 0.113. Each target risk is calculated as the mean of 10
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experiment runs. As shown in Fig. 3, three trajectories generated by Alg. 3 just cover the unit circle
without any overlapping. This illustrates our adaptive trajectory-wise algorithm can substantially
improve the sampling efficiency and model performance compared to the basic one.

2 Sampling result of Alg.1 Sampling result of Alg.3

Figure 3: Alg.1 output and Alg.3 output for limit cycle learning with accessible invariant measure.

Algorithm 2 Adaptive Sampler (u. inaccessible, common trajectory-wise)

0. given: initial samples Dy = {x; ti=1,...,N,j=0,...,Tp} with N starting points {z;},
and trajectory length Tj, simulator of the dynamics, W) relative tolerance ¢ > 0, sampling step
AT € NT; .

1. set: sampling dataset D < Dy, empirical measure i <— D Z 0y, T+ Tp;
’ ’ z€D
do
2. solve empirical risk minimization over ji: 6 <— argmin L N,T(0)§
0cO
3. generate ji, sampler from f(x;6);

4. solve the optimization problem (17) by Alg. 1: 7' < argmin W, (twe, 1) + S(N, T);
T'€[T+AT,00)

5. sample a4, - - - ,xiT from % by the simulator fori =1,..., N;
6. update D <~ DU {af,, - 2k :i=1,...,N}
7. update [i < |’?| Z 00 T T
=
while |W(T_|§,2iw(r[)‘ > €

output: NT samples: D = {x;z: 1,...,N,j=1,...,T}.

Remark 5 When p. is accessible, while one can directly sample N data points IID from ., here
we consider the case where N is fixed, but T' is to be determined. For any finite N, pun T with
T = 1 (data generated from L) need not be the closest empirical distribution to . amongst all
possible 'T' choices (see Appendix.B for a numerical illustration). Thus, Alg.1 and Alg.3 remain
relevant. Treating the sampling of initial conditions and length of the dynamics separately is es-
pecially important in applications where cost of the former is significant compared with latter, e.g.
experimental measurement of complex processes.

10
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L accessible | . inaccessible
common trajectory-wise Alg. 1 Alg. 2
adaptive trajectory-wise Alg. 3 Alg. 4

Table 1: Four algorithms for different situations are summarized here.

4. Numerical Experiments

We now illustrate using various numerical examples that the proposed algorithms can efficiently
sample data for learning dynamics. In section 4.1, we show that our algorithms are readily to dy-
namics learning problems with different goals. Next, in section 4.2, through comparisons under
fixed error tolerance and fixed budget, we show our methods improve sampling efficiency sub-
stantially over baseline sampling. Finally in section 4.3, we combine our methods with data-driven
quasi-potential learning (Lin et al. (2022a)) and sparse identification of nonlinear dynamics (SINDy)
(Brunton et al. (2016)), to show our sampling algorithms is flexible to be applied to most learning
methods.

4.1. Adapting to different types of dynamical systems

In this part, we apply our sampling algorithms to learning problems with different goals: (1) re-
covering vector field for Bi-Stable system by Alg. 3; (2) modelling the Von der Pol oscillator over
its inaccessible limit cycle by Alg. 4; (3) modelling dynamics of Lorenz system on its inaccessible
strange attractor by Alg. 2. The hypothesis spaces in this part are generated by fully-connected
neural networks with ReLu activations.

Dynamical systems Target distribution Goal Algorithm
Lorenz 63 inaccessible . prediction over 2
Bi-Stable system accessible uniform . recovering the vector field 3
Van der Pol oscillator inaccessible i prediction over i 4

Table 2: The settings of three dynamics learning numerical experiments.

4.1.1. LORENZ 63

We first apply adaptive sampling to learning dynamics from one long trajectory problem. In the
dynamic learning problem of Lorenz 63: & = 10(y — ),y = x(8/3 — 2) — y, 2 = xy — 28z, the
-1
1
Z L(f)"[10] is inaccessible and our goal is to model the dynamics over
Ty -1

t=T,
the strange attractor from one trajectory, which starts from a single point drawn from the uniform

setting i, =

T
1 . 2
distribution pg over [10,11]3. The target risk L, = / E (fi(:c) — ft(w;Q)) dpo.
Ty -1 =

Here we take 77 = 190, 175 = 200. Sampling results similar to Example 3 can be found in Fig. 4,
in which our algorithm captures the strange attractor gradually.

11
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2 3
Iteration

Figure 4: Alg. 2 for Lorenz 63 learning. Left: the first five graphs show trajectories generated from
the learned system after 0-4 iterations and the last graph shows the sampling result based
on the ground truth. Right: target risk via iterations.

4.1.2. BI-STABLE SYSTEM

In the dynamics learning of the following system

{ i=tx(1-2% +y(l+sinz) 20)

y=—y+2z(1—2?) (1+sinz).

with two stable states (—1,0),(1,0), our goal is to recover the right hand side vector field. The
accessible f, is taken as ﬁ]l s where the region of interest S = [—3,3]? and the target risk L, =

1 R 2
5] / ( fu(x) = f(=; 0)) 1g dx. 5 starting points are drawn from the uniform distribution on the

domain S: A [-2,2], B [0,1.5], C' [2.0,—2.0], D [1.0,—2.0], F [-2.0,—2.0]. Alg. 3 is applied
here to find the sampling strategy and the output length for A, B,C, D, F is 14, 33, 20, 16, 15
respectively. From the sampling result in the right of Fig. 5, we can see trajectories converge faster
to the left stationary point than the right one. After 20 steps of exploration from A, C, D, F, these
trajectories are close to the left stable stationary and contribute less to the descent of W;, which
leads to earlier stop compared the one from B. This demonstrates that our algorithm can efficiently
save sampling cost.

4.1.3. VAN DER POL OSCILLATOR
In the dynamic learning problem of Van der Pol oscillator,
T=y
{y=<1—z2>y—xy=<1—x2>y—x, @y
our goal is to model the dynamics over the inaccessible limit cycle. The target risk L, is taken as
. 2
/ ( ful@) — f(z 9)) dftiny. Three initial points are taken as A [2.0, 2.0], B [~2.0,2.0], C [~2.0, 2.0]

and Alg. 4 is applied to find trajectories sampling strategy. The output trajectory length for A, B, C
is 22, 28, 44 respectively. From the sampling results in the right of Fig. 4, we can the invariant set
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Sampling result for Bi-Stable system Sampling results for Van der Pol oscillator
3

e« A

B

- C 0
D
E

B -25 0.0 25 -25 0.0 25 -25 00 25

Figure 5: Left: sampling results by Alg. 3 for Bi-Stable system. The distance between points is two
steps. Right: sampling results by Alg. 4 for Van der Por oscillator.

converges to the limit cycle gradually and finally three trajectories exactly right cover the limit cycle,
which illustrates Alg. 4 is able to both capture the inaccessible target measure and be trajectory-wise
adaptive for saving cost.

4.2. Out-performing baseline methods

In this part, we compare the sampling strategies generated from our algorithms and passive baseline
sampling methods with fixed number of initial points /N and trajectory length 7. Random feature
model with Gaussian kernel is also applied here. First, we fix the sampling budget NT" to compare
the target risks we defined before. For baseline sampling, we assume there are two different cases.
One case has short trajectories and many initial points, i.e, large N, and small T'. The other case
deals with long trajectories with few initial points, i.e., small /N and large 7.

Dynamical systems
Fully connected neural network

Adaptive sampler Small 7" large N Large 7" small N

Lorenz 63 0.2471+ 0.0614 0.4758+ 0.0179 0.2471+£ 0.0614
Bi-Stable system 0.0396+ 0.0065 0.1048+ 0.0271  0.0863+ 0.0471
Van der Pol oscillator 0.0108+0.0072  0.03404+0.0093  0.0810+0.0102
Random feature model

Lorenz 63 0.4230+ 0.1114  0.65874+ 0.0109 0.4230£0.1114
Bi-Stable system 0.0470+ 0.0021 0.07414+ 0.0361  0.0919+ 0.0572
Van der Pol oscillator 0.0840+£0.0070  0.050240.0093  0.0661+0.0151

Table 3: Results of target risks with fixed budget N7T' from 10 experiment runs. The target risk
in column 2 is generated by our adaptive algorithms, while the target risk in column 3
(column 4) is generated by passive sampling with small 7" and large N (large 1" and small
N).

Next, we do comparison under fixed risk tolerances, i.e., calculate the budget N'1' (number of
data points) to achieve the target fixed error. From Table 4, we can see long and few trajectories can-

13



ZHAO LI

not learn the Bi-Stable system with respect to uniform distribution while short and many trajectories
cannot learn Van der Pol oscillator with respect to the invariant distribution.

Dynamical systems/ error tolerance ~ Adaptive sampler Small 7" large N Large T' small N

Fully connected neural network

Lorenz 63 (0.5) 130+ 30 170430 350+ 70
Bi-Stable system (0.05) 200+ 20 — 350420
Van der Pol oscillator (0.05) 120 + 20 200+ 30 —
Random feature model

Lorenz 63 (0.5) 170+ 40 240450 1704 40
Bi-Stable system (0.05) 270+ 20 — 330+20
Van der Pol oscillator (0.05) 310 + 30 4004 30 —

Table 4: Results of numbers of required data points with fixed errors’ tolerances from 10 exper-
iment runs. The budget in column 2 is generated by our adaptive algorithms, while the
budget in column 3 (column 4) is generated by passive sampling with small 7" and large
N (large T and small N).

4.3. Effective combination with existing learning models
4.3.1. LORENZ SYSTEMS IDENTIFYING BY SINDY

Here we first apply our adaptive samplers and sparse identification of nonlinear dynamical systems
(SINDy) method to Lorenz 63 learning for two different tasks. The SINDy method approximates f
by a generalized linear model of some candidate nonlinear functions, such as constant, polynomial,
and trigonometric functions. Here the first task is the long time prediction. Two starting points are

drawn from uniform distribution of S = [—20, 20]? x [10, 40] and target distribution is combination
-1
1
of multi-step push-forward measure of 112 o: ug}) =TT Z L(f *)t(ﬂzo)- Here we take 77 =
2 — 11
t=T1

150 and 7> = 200, and apply Alg. 4 for this task. The second task is recovering vector filed over
S = [-20,20]? x [10, 40], so ,ug) is taken as 1s/|S| and Alg. 3 is applied. The library of candidate
functions in SINDy is constructed with polynomial terms up to third order. As shown in Fig. 6, for
the same dynamics learning with different goals, trajectories generated by our adaptive samplers
have significant differences. From 10 experiment runs, the target risk of task 1 is 0.1346 £ 0.0231
while the risk the baseline sampling with 7" = 200 is 0.1267 4= 0.0194. The target risk of task 2 is
0.7846 +£ 0.1780 while risk of the baseline sampling with NV = 16 and 7" = 50 is 0.6756 + 0.0821.
All information of the strange attractor is collected through only two trajectories which are fully
explored, and too much overlapping is also avoided by the property of trajectory-wise adaptability.
In the task of recovering vector, IV is taken as 16. We randomly partition them into four subsets and
apply Alg. 3 independently to each subset. The sampling result of one subset is shown in the right
graph and all trajectories are no longer than 50. The two tasks illustrate that our sampling can be
adaptive to the same dynamics learning with different goals.

Next, we show that our method can handle learning higher dimensional dynamical systems with
non-trivial attractor sets. We use SINDy to identify the Lorenz 96 model (?) whose equation is

14
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Sampling result by Alg.4 Sampling result by Alg.3

Figure 6: Left: sampling result by Alg. 4 for task 1. Center: sampling result by Alg. 3 for task 2.
Right: sub-sampling result for quasipotential computing by Alg. 3.

given by
&y = (Tip1 — Ti—2) Ti—1 —x; + F (22)

fori =1,2,...,m, whereitis assumed that z_1 = z;,—1,Z0 = T, 1 = Tm+1. The forcing term
F'is set as 8 and the dimension m is set as 5. The task is set as modeling the long time behavior of

the chaotic dynamics. Two starting points are drawn from [—4, 4] x [8, 10]* and target distribution is

Tp—1

1
combination of multi-step push-forward measure of ps o: ug) =TT Z L(f) (p2,0). Here
2 — 11

t=T1
we take 77 = 80 and 75 = 100, and apply Alg. 4 for this task. The library of candidate functions in
SINDy is constructed with polynomial terms up to third order. The target risk of adaptive sampling
is 0.737 £ 0.142 while the risk of baseline sampling with N = 2,T = 200 is 0.614 &£ 0.052. This

demonstrates the effectiveness of our method in learning high dimensional chaotic systems.

4.3.2. RECOVERING VECTOR FILED BY QUASIPOTENTIAL COMPUTATION

Instead of directly approximating the right hand side vector field, the data-driven quasipotential
computing method learns an orthogonal decomposition of the vector field f(z). More specifically,
f(z) can be decomposed as f(z) = —VV(z) + g(x) with VV(z)Tg(z) = 0. Then two V()
and g(z) are parameterized by two neural networks Vp(z) and go(z). Considering the following
dynamics,

. 10U . 10U

with the quasipotential U(z,y) = [(z — a)* + (z — a)(y — b) + (y — b)* — %}2 Alg. 3 is applied
is to recover the right hand side vector field. Here a = 1,b = 2.5 and p. is taken as the uniform
distribution of the set S = [—0.5,2.5] x [1,4]. Quasipotential computing needs much more data
points to enforce the orthogonal condition, compared with other methods in this paper. Each time we
IID draw 2 points from the uniform distribution over S and apply Alg. 3 to generate two trajectories
as shown in Fig. 6. After repeating the above sub-sampling 100 times, we feed all data into the
quasipotential model. From 10 experiment runs, for adaptive sampling the target risk is 0.7297 £
0.1332 and the budget is 3730 &£ 635 while the risk of baseline sampling with NV = 100 and T’ = 60
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is 0.6313 £ 0.0720. This illustrate our methods can be applied to learning methods with complex
structures.

We further demonstrate the scalability of our method to high dimensional systems, possibly
with a large number of initial sample points. We apply our adaptive sampling algorithm to learn the
quasi-potential of a discretized partial differential equation, which corresponds to a 50 dimensional
dynamical system. This is a standard numerical example for data-driven quasipotential computation
methods in (Lin et al. (2022a)). After discretization of the Ginzburg-Landau equation u; = du,, —
6~ 1V'(u), we have a 50 dimensional system of ODEs:

du; e 2u; + uig

dt h2 — 6"V (u;), 1<i<50, (24)

where the double-well potential V' = %(1 — u?)2, and § is taken as 0.1. The state of the system is
denoted by u = (u1,...,us—1). The numerical details of discretization and initial state generation
can be founded in Appendix D. The task here is to model the dynamics around two stable points
+1 and the target measure is set as the uniform distribution of § = {u € R%| ju + 1| < 1}.
Here N (= 100) initial states are generated and Alg. 1 is applied here to find the length of trajectory
for each initial state independently. The baseline sampling is directly collecting 100 trajectories of
lengths 7' = 200. The baseline target risk is 7.642 x 1072 & 9.302 x 10~3. To achieve this target
risk using Alg. 1, we require a sampling budget of 14735 + 1590, which corresponds to a 26.3%
reduction in the number of required state samples. This demonstrates that our sampling algorithms
can be scaled to handle high dimensional systems with a large volume of trajectory data.

4.4. Computation cost of adaptive samplers

The computation cost of Wasserstein distance calculation by Sinkhorn is O(N3T?3) with respect
to the number of initial points N and the (maximum) length of trajectories 7". However N can be
selected in advance and then fixed in our algorithms, which means the parameter N is controllable.
For N >> 1, we can randomly partition the dataset of initial points into small subsets with size < N
then apply our algorithms for each subsets independently, such as the examples of quasipotential
computation in section 4.3.2. For 7' > 1, we can increase the time step to reduce the size of samples
used in Wasserstein distance calculation. With the sub-sampling method, our algorithms can scale
to handle high dimensional problems with a very large number of initial points and long trajectories.

5. Conclusion

In this paper, we propose adaptive sampling algorithms for learning dynamics. This work is mo-
tivated by the gap between model evaluation of generalization performance and sampling strategy.
After formulating the learning target risk in an integral expression according to our learning goals,
we find the model performance can be bounded by the 1-Wasserstein distance between the sampling
empirical measure and the target measure. Based on this finding, we propose several adaptive algo-
rithms with regard to the accessibility of the target measure and trajectory-wise adaptivity. Through
numerical experiments, we show our algorithms have robustness to different dynamics with differ-
ent learning goals, is more effective compared to baseline passive sampling methods, and can be
readily applied in conjunction with many existing learning algorithms for data-driven dynamical
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systems modelling. In future work, we plan to study adaptive sampling algorithms for such dynam-
ical systems. Another direction of future investigation is establishing the theoretical guarantee of
the proposed sampling methods.
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Appendix A. Proof of multi-step risk bound (11).
Proof With p > 1 and Lip( f ) < K, we have

L20) = 177'0) + [ a (@), F7@i6) i
gLZ{—l(9>+p/[d( T o T o f) +d (FT o £ T o £)] di

<LINO) +p [ d (SN d(ftie) + KT L)
(25)
< [ (ST ot + ) + oKL

T-1
< / d(f., ) d <Z R'T“fl#u*> ,
=0

where the operator F is defined as F|v] = ( f. + I)#v for any measure v with bounded support in
R™.
|
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Appendix B. Numerical example for remark 5.

Here we give a numerical illustration on learning the Lorenz 63 system with SINDy. We compare
the one-step sampling strategy directly from a accessible p, (i.e. 7' = 1) with multi-step strategies.
Here, we take pi, = 15/|S|, where S = [—20,20]? x [10,40], and we fix N = 50. In Fig.7, we
plot the target risks of models learned from sample trajectories of varying lengths 7. We can see
that multi-step sampling strategies perform much better than one-step sampling.

1.00

Target risk
o
~
o
S

2 4 6 8 10 12 14 16 18
Length of trajectories

Figure 7: SINDy on Lorenz 63 system: target risk of models learned from trajectories with different
lengths 7" and fixed N (= 50).

Appendix C. Proof of Proposition 4.

Proof For 6, € argmin L, (6) and § € argmin Ly 7(6),
0coO 0cO

L)~ L0 = [ d (o). i) d — [ d (@) i) e 20
— [a(r@.f@d)) du ~ [ a (). Fw0)) dive @D
+ /d (fo@), F(2:0)) danr /d (fe(@), fl@:0.)) dun 28)
+ [a (@ fws0)) duvr - [a (o). Fw00)) due 29)

The approximation error is L, (6, ), generalization error (caused by distribution shift) is the term
(27) and (29), optimization error is the term (28).

Since § € argmin Ly 7(0), (28) < 0. The model bias L.(f.) = 0 since A is a universal
0cO
approximator. By the dual representation of 1-Wasserstein distance, (27)(29) can be bounded by the

1-Wasserstein distance W1 (s, pon,7). We have

L.(0) < 20 Wi (s, pon,7) (30)

where C, = sup {C] C =Lip (d(f*(),f( ;0))}. [

0cO
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Appendix D. Numerical details of the discretized PDE in 4.3.

Consider the Ginzburg-Landau equation
g = 0u., — 6 V' (u), ze€[0,1] (31)

with the boundary conditions u(0,¢) = u(1,¢) = 0 and the initial condition u(z, 0) = u"(z), where
Viu) = 3(1- u2)2 is a double-well potential and ¢ is set as 0.1. We partition the interval [0, 1]
using [ + 1 grid points zo, ..., z7, where z; = ih and h = 1/I. Then, we approximate the spatial

derivatives in (31) using the central finite difference and obtain the following system of ODEs:

du; Uil — 2Ui +Uip1 gy 4

dt:(s 2 -0V (), 1<i<I-1 (32)
with ug = u; = 0 and the initial condition u;(0) = u° (2;) for 1 < i < I — 1, where u; denotes the
approximate solution at the grid point z;. The state of the system is denoted by u = (u1,...,ur_1).
The number of discretization points is taken as / = 51. The initial states are generated from
ud(z) = a- i) where u(z) = Zé:l Uy sin(kmz) and {ﬂk}ﬁzl ,a are drawn from the uni-

maxy [4(y)|
form distributions: uy ~ U(—1,1),a ~U (0,3).

Appendix E. Adaptive algorithm 3 and 4.

20



ADAPTIVE SAMPLING METHODS FOR LEARNING DYNAMICAL SYSTEMS

Algorithm 3 Adaptive Sampler (i, accessible, adaptive trajectory-wise)

0. given: initial samples Dy = {x; ti=1,...,N,j=0,...,Tp} with N starting points {z;},
and trajectory length Ty, simulator of the dynamics, target distribution g, sampler, stopping-
criterion parameter W > 0, sampling step AT € N7, index set M = [N], overlapping tolerance

€9.
1

1. set: sampling dataset D <— Dy, empirical measure ji D]

2. do

Zém,T%To;

€D

sample wZT FETRERN a:aﬂ a7 from ac%ﬂ by the simulator for i € M;

overlapping check:
for i € M do
for j < ido
for T; € [0,7] do
if |sz1 - x;f’] < e for some T} then
| delete 7 from M, and label i*" point T;.
end
end

end
end

while stopping criterion not met;
update D <~ DU{xl -, @b, ap i € MPU{ah - ,xiTi tie M°;
1
update [i < ﬁ25x,T<—T+AT;
z€D

3. output: sampling strategy 7} for it" point, i € [N].
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Algorithm 4 Adaptive Sampler (u, inaccessible, adaptive trajectory-wise)

0. given: initial samples Dy = {:z:; ti=1i¢€ M,j=0,...,Tp} with N starting points {z;},
and trajectory length 7g, simulator of the dynamics, stopping-criterion parameter W > 0, sampling
step AT € NT;
1. set: sampling dataset D <— Dy, empirical measure ji |’i| Z 0y, T+ Tp;

€D
do

2. solve empirical risk minimization over ji: 6 < argmin Ly 7(6);
0co

3. generate 1, sampler from f(x;6);

4. solve the optimization problem 17 by Alg 1: 7'+  argmin WA (s, ft) + (N, T");
A T'€[T+AT,00)

5. sample x%, FETRRR x"T from z7, by the simulator for i =i € M;

8. overlapping check:
for : € M do
for j < ido
for T; € [0,7] do
if |27 — x]T]] < € for some T} then
| delete i from M, and label i*" point T;.
end

end
end

end

6. update D < DU {af -~ ok ri=i € MyU{ah, - 2, i € M}

1 o
7. update fi < DI Z Op, T T
| | z€D
while stopping criterion not met;

output: sampling strategy 7 for i'* point, i € [N].
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