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Abstract

Recent interest in the ‘Large Language Models’ of deep learning has led to widespread con-
jecture that artificial general intelligence (AGI) is thereby imminent. At the other end of
the spectrum, it has also been claimed that ‘general’ intelligence cannot exist at all. In this
extended abstract, we argue that both of these perspectives are misconceived. We provide
a pragmatic definition of general intelligence, grounded in fundamental business and engi-
neering requirements. We explain why a ‘deployed regression model’ (such as deep learning)
cannot meet this criterion for generality of intelligence. We then proceed to describe the
Holon system, designed and implemented to meet this criterion.
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1. Introduction

The recent notable successes of machine learning (ML) has lead some to conjecture that
it might be the appropriate technology for delivering general intelligence. The framework
of machine learning has demonstrated undoubted economic value. However, we argue here
that is nonetheless fundamentally at odds with any reasonable notion of intelligence. In
a recent book (Swan et al., 2022) we argue that AI requires a fundamental change in
perspective, mirroring that which took place in the philosophy of science in the mid-20th
century (Popper, 1963). The essence of this change in perspective is to give primary emphasis
to compositionality. Although this term is increasingly used within the machine learning
community, this usage typically lacks the strong guarantees of the mathematical sense of
the term. Informally, compositionality means that properties of aggregate structures can
be reasoned about as a function of properties of their parts. A key requirement here is the
ability to perform reflective reasoning —a system cannot be said to be compositional if it has
no means of determining whether some desired property can be preserved. This has obvious
implications for safety and alignment. In this extended abstract, we outline the principles
underlying the design of Holon, a system which performs principled compositional reasoning,
a reference implementation of which is described in Swan et al. (2022). This is achieved via
hybrid symbolic-numeric inference mechanisms based on universal constructions from the
mathematical discipline of category theory.

© 2022 B. Steunebrink, J. Swan & E. Nivel.



AGI as ‘Work on Command’

Philosophical considerations aside, intelligent machines are ultimately tools for implement-
ing a new leap in automation, with generality being the metric of expected benefit. To that
end, Holon delivers the following value proposition:

The Value Proposition for General Intelligence

For all practical purposes, general intelligence is a necessary property of a system which:

■ Performs ‘Work on Command’.

■ Can operate in environments which are not artificially constrained.

■ Can adapt to novel (i.e., ‘out-of-distribution’) scenarios without incurring the man-
ual labor/downtime of comprehensive re-training.

■ Respects safety constraints.

■ Is explainable and auditable.

The following sections provide a short and informal summary of key aspects.

2. ‘Work on Command’

Since the very definition of intelligence and the nature (or even existence) of generality
are the subject of much debate, it is helpful to start with an informal example. Consider
tasking a system (which is currently tasked with assembling some widget X) as follows:

“Stop assembling X immediately: here’s a specification of Y, and here are most
of your old and a few new effectors. Now start assembling Y, avoiding such and
such kinds of defects and wastage.”

We say that a system which can respond immediately to such a request is performing ‘Work
on Command’, more specifically characterized as:

• The ability of a system to respond, at any time, to changes in task specification and/or
operating environment.

• Changes can be both positive (goals to be achieved) and negative (constraints to be
respected).

• The ability to leverage all relevant knowledge from prior tasks with little effort.

‘Work on Command’ affords a means of framing intelligence in the only practical context
that matters: that of increased automation. The essential missing ingredient in automa-
tion via contemporary approaches is this immediate responsiveness to change. In contrast,
contemporary machine learning yields a deployed artifact which simply performs a matrix-
vector multiplication of the input vector on a matrix of weights. This matrix is fixed at
the end of pre-deployment training, unchanging thereafter regardless of how many out-of-
sample inputs it is subsequently exposed to. For any finite learning mechanism, this cannot
accord with a meaningful definition of intelligence, which intuitively sees the importance
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of appropriately timely responses to an ever-changing world. We therefore take the prag-
matic stance that generality of intelligence is synonymous with the degree to which ‘Work
on Command’ is possible. ‘Work on Command’ can be shown to generalize the framework
traditionally used to describe Reinforcement Learning problems.1

‘Work on Command’ can be seen as a specialization of a large body of previous work
on ‘goal-directed2 operation’ (e.g., Akaishi and Hoshi (2017); Bhat and Mohan (2018);
Fikes and Nilsson (1972)). For example, Ingham et al. (2006) describe a goal as “a con-
straint on the value history of a state variable over a time interval.” The distinction is that
‘Work on Command’ additionally stipulates three things: specification, dynamic coupling,
and responsivity. Specification of goals/constraints uses a language grounded in the state
space, which is more general than Ingham’s formulation, in that it can express relations in
a hierarchical manner, including relations synthesized by the system itself and hence not
known apriori to the system designer. The dynamic coupling of causal (i.e., task-agnostic)
world knowledge and goals/constraints is to compute plans and control signals. Respon-
sivity means the system responds immediately to change happening at any time (in both
knowledge and goals/constraints) by redoing the coupling. Hence, while previous work on
‘goal-directed operation’ is similar in spirit, we use the term ‘Work on Command’ to refer
to this additional functionality.

2.1. Second-Order Automation Engineering

In adopting the ‘Work on Command’ perspective, intelligence is naturally considered as the
process of acquiring and adapting knowledge to serve time-bounded goals, in the presence
of limited resources (Nivel et al., 2013). This recovers the intuitive notion of intelligence
as the ability to make a dynamic trade-off between competing priorities.3 By considering
‘intelligence’ and ‘generality’ as context-dependent processes rather than nouns, it becomes
evident that those who argue that “even humans don’t exhibit general intelligence”4 are
taking an overly-static perspective.

The ubiquitous task of Automation Engineering (AE) is the coupling of the physical
world (chemical plants, assembly lines, logistics pipelines, smart cities, etc.) to a com-
putational model which can be used for prediction and control. This typically requires
considerable human expertise: in the past, it was the task of mathematicians to devise
models (e.g., in the form of differential equations or constraints to be optimized over) which
are then implemented computationally. More recently, Deep Learning has enjoyed consid-
erable success in skipping the mathematical modeling phase and learning ‘digital twins’
of systems from vast quantities of operational data. However, it is typical that such data
needs to be made amenable to the learning process, so there is still a requirement for human
labor in the form of data science expertise. Despite this success, a deployed system trained
via Deep Learning cannot accommodate change—whether in the problem to be solved or a
significant drift in the distribution of inputs presented to it. Hence any significant change
in the business requirements or operating environment means that the business will incur

1. See Swan et al. (2022), Chapter 6.
2. A.k.a. ‘goal-oriented.’
3. Which includes at least some ability to discount the future cost of making the trade-off.
4. Online comment by Yann LeCun— accessed 9th August 2022.
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costs: through the need for human expertise in retraining the system and/or the associated
downtime.

In order to eliminate these costs and downtime (the latter being mission-critical in ‘just
in time’ scenarios) it is necessary to automate automation, i.e., to enable control systems to
self-reconfigure when they encounter such change. To this end, Second-Order Automation
Engineering (2OAE) is our operational characterization of ‘Work on Command’. 2OAE
therefore necessarily imposes stringent requirements on the adaptive learning procedure,
which should:

1. Adapt on-the-job to change in mission or environment.
2. Meet real-time task deadlines in real-world environments.
3. Generalize from and leverage existing knowledge.
4. Not incur ‘catastrophic forgetting’, in which learning a new task degrades competence

at other tasks.
Given that both computational and physical resources (e.g., processing power and raw

materials in an assembly-line scenario) are finite, an intelligent system must operate accord-
ing to principles of ‘bounded rationality’ (Nivel et al., 2015), which requires that the system
can perform a continual trade-off between solution quality and ability to meet deadlines.
An intelligent system must therefore perform a ‘continual refactoring’ of its own knowledge
and plans. It must balance its agency (i.e., the need to exert control over its environment to
perform required tasks) against the limitations of its physical embodiment (e.g., computa-
tional resources and sensor-effector capabilities). This implies the following key properties
of the learning architecture:

Self-interpretability

A learning process which is predominantly driven by sampling cannot scale to the long
tails of real-world domains. Philosophically, sampling is in the ‘empiricist’ tradition of
the scientific method. In contrast, what is needed is something closer in spirit to the
mid-20th century revolution in the philosophy of science due to Karl Popper (Popper,
1963): the ability to introspect upon the structure of world models in order to reason
beyond training examples. World models are thus continually revised in order to maintain
coherence (Thórisson, 2021), both with respect to their internal structural relationships and
how sensors and effectors relate to the external world. This continual maintainance, together
with a bias towards ‘simple, relevant’ causal relationships (Steunebrink et al., 2013), means
that these relationships are far more likely to be generalized statements about the world.
By this means, there is a bias towards the abstraction of aspects of the world model which
are relevant across recent tasks5, which helps to address the 2OAE requirement to avoid
‘catastrophic forgetting.’

Compositionality

The mathematical discipline for the study of compositionality is category theory (MacLane,
1971), which arose from the study of algebraic topology as a mathematical Rosetta stone,
allowing properties of objects to be transferred between different reasoning contexts. It takes
an operational perspective, in which entities are characterized by the manner in which they

5. More details on mechanisms for abstraction can be found in Chapter 9 of Swan et al. (2022)
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interact with other entities, and in particular which structural properties are preserved
via these interactions. Holon uses the methods of category theory to provide a principled
approach to:

• Safety: the reasoning process can ensure that composition preserves safety proper-
ties (e.g., not entering some forbidden region of a factory floor, or ensuring that a
controlled process remains at a certain setpoint).

• Generalization: given the ability to decompose a collection of observations into a col-
lection of component parts, it is then more likely that these parts can be recombined
to match unseen situations, whilst still retaining as many of the previously observed
consistencies as possible. This then acts in support of 2OAE generalization require-
ments.

Endogenously Situated

The death of symbolic AI was heralded by Brook’s ‘Physical Grounding Hypothesis,’ whereby
it became common culture within the AI community that systems must be situated in order
to gain meaning (Brooks, 1990). However, the appreciation of what this actually requires
has lessened over time. A system is situated (Wang, 2009/06) when:

• It operates in the real world (i.e., complex, noisy, asynchronous environments).
• It has an end-to-end causal model of the sensor-effector mapping.
• This mapping is updated via feedback from the environment.

It is endogenously situated when the causal model also includes observations of the system’s
own internal capabilities (e.g., memory capacity, battery life, sensor sampling rate, lifting
capacity, etc.). The combination of a causal feedback loop with an introspectable self-model
means that prediction and control receive strong guidance from the joint constraints of the
environment and the system’s own representations of its reasoning. These constraints form
a hierarchy, which then allows reasoning at a range of granularities and hence time-scales,
thereby supporting the 2OAE requirement for real-time responsiveness.

2.2. Semantically Closed Learning

The requirements and desiderata above make it clear that what is needed for 2OAE is a
system that can reason so as to “let its hypotheses die in its stead” (Popper, 1972), i.e.,
having the ability to internally envisage the consequences of an action rather than having
to physically enact it by sampling the environment. This means that it must be possible
for the system to reason directly about its representation of the world. This is achieved via
proven methods of static analysis developed over decades of work in system verification.
We use the term ‘Semantically Closed Learning’ (SCL) to refer to a system which:

• Can learn hierarchical structure which represents a compressed description of the
world. This can be seen as a ‘domain-specific language’ pertinent to the task at hand.

• Can learn how to interpret that language for the purposes of prediction and control.

• Learns how to feed back information from the world in the vocabulary of that language.
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More concretely, a semantically closed learner is a system equipped with a stateful inter-
preter for the learned representation language, such that:

• The next step in the state trajectory of the system is determined via the application
of the interpreter.

• In the event of a prediction failure (e.g., unexpected success or wrong prediction), a
‘repair’ to the interpreter is achieved by updating interpreter state as a function of
the discrepancy between predicted and actual states.

• As a result of this learning, the interpreter tends to be a better predictor.

Taken at face value, the above notion of ‘repair’ could be considered to be equivalent
to traditional mechanisms of backpropagation. However, the essential distinction is that
the repair can be mediated in a hybrid numeric-symbolic manner via a learned denota-
tional semantics for the representation language, and hence be compositionally applied at
increasingly hierarchical levels. The ability to respond to environmental surprises with rep-
resentation change at such arbitrary scale can be seen as a form of abductive reasoning (for
more detail, see Section 9.4 of Swan et al. (2022)).

In common with modern control theory, we adopt a state-space perspective. However
(and in contrast to contemporary ML) the dimensions of the state-space can vary at any
time: whether through the addition/deletion of sensors or effectors or through the sys-
tem’s own synthesis of new dimensions, for example to denote abstractions. Although the
motivation for the term ‘Semantic Closure’ takes inspiration variously from Rene Thom’s
‘General Theory of Models’ (Thom, 1972) and Patee’s treatment of open-ended evolution
(Pattee, 1995), we are pragmatically concerned here with a system that can perform useful
work. Hence we take the perspective of ‘AI as tool’ rather than ‘AI as organism’: the more
exploratory aspects of intrinsically-motivated learning are biased towards goal-relevance by
user-imposed deadlines. For a more detailed explanation of the mechanics of SCL the reader
is directed to Chapter 9 of Swan et al. (2022).

A Hybrid Architecture

There is increasing acknowledgement that symbolic approaches can complement the proven
strengths of Deep Learning and there have been a number of recent approaches which at-
tempt to ‘get the best of symbolic AI and ML’ (e.g., Csordás and Schmidhuber (2019);
Paaßen et al. (2020); Franke et al. (2018)). In general, such approaches proceed quite liter-
ally, essentially re-implementing reasoning (and the necessary supporting representations)
in the terms and components of ML. We proceed differently. Three aspects of SCL are of
particular relevance to the reconciliation of ML and symbolic AI:

• Strong typing. Analogous to physics, in which different dimensions such as ‘time’ and
‘electrical charge’ are incommensurate.

• Fine-grained, open-ended, continual, and compositional inference.

• Emergent resource-aware and goal-directed attention.
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We claim that these principles combine the strengths of both approaches: whilst SCL
can be provided with prior domain knowledge in any desired form, it is not subject to the
problems which plagued symbolic AI, since the ability to reflectively reason at the type level
allows the sustained and progressive learning of invariants from the environment.

3. Conclusion

There has been much academic debate about the meaning (and even the very existence)
of ‘general’ intelligence. We propose a practical, grounded definition via the ability to
perform ‘Work on Command’ and describe its realization via the Holon system. In this
extended abstract, we introduce the notion of ‘Second-Order Automation Engineering’ as
the discipline of ‘automating automation’, and explain how this is facilitated via a situated,
self-interpretable system which continually updates the compositional knowledge of its world
model.
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René Thom. Structural stability and morphogenesis - an outline of a general theory of
models. W. A. Benjamin, 1972. ISBN 0-201-40685-3.

Kristinn R. Thórisson. The ‘explanation hypothesis’ in general self-supervised learn-
ing. Proceedings of Machine Learning Research, International Workshop on Self-
Supervised Learning 2021, 159:5–27, 2021. URL https://proceedings.mlr.press/

v159/thorisson22b.html.

127

https://www.sciencedirect.com/science/article/pii/S0094576506000257
https://www.sciencedirect.com/science/article/pii/S0094576506000257
http://arxiv.org/abs/1312.6764
https://doi.org/10.1007/978-3-319-21365-1_13
https://doi.org/10.1007/978-3-319-21365-1_13
https://arxiv.org/abs/2009.06342
https://arxiv.org/abs/2009.06342
https://doi.org/10.1007/978-3-642-39521-5_13
https://doi.org/10.1007/978-3-031-08020-3
https://doi.org/10.1007/978-3-031-08020-3
https://proceedings.mlr.press/v159/thorisson22b.html
https://proceedings.mlr.press/v159/thorisson22b.html


Steunebrink Swan Nivel

Pei Wang. Embodiment: Does a laptop have a body? In Proceedings of the 2nd Conference
on Artificial General Intelligence (2009). Atlantis Press, 2009/06. ISBN 978-90-78677-
24-6. doi: https://doi.org/10.2991/agi.2009.44. URL https://doi.org/10.2991/agi.

2009.44.

128

https://doi.org/10.2991/agi.2009.44
https://doi.org/10.2991/agi.2009.44

	Introduction
	`Work on Command'
	Second-Order Automation Engineering
	Semantically Closed Learning

	Conclusion

