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Abstract

What sets artificial intelligence (AI) apart from other fields of science and technology is not
what it has achieved so far, but rather what it set out to do from the very beginning, namely,
to create autonomous self-contained systems that can rival human cognition—machines with
‘human-level general intelligence.’ To achieve this aim calls for a new kind of system that,
among other things, unifies – in a single architecture – the ability to represent causal
relations, create and manage knowledge incrementally and autonomously, and generate its
own meaning through empirical reasoning and control. We maintain that building such
systems requires a shared methodological foundation, and calls for a stronger theoretical
basis than simply the one inherited directly from computer science. This, in turn, calls
for a greater emphasis on the theory of intelligence and methodological approaches for
building such systems. We argue that necessary (but not necessarily sufficient) components
for general intelligence must include the unification of causal relations, reasoning, and
cognitive development. A constructivist stance, in our view, can serve as a good starting
point for this purpose.
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1. The Aim of AI Research

Since its inception as a separate field of science and technology, the field of artificial in-
telligence (AI) always had an ultimate basic research goal (cf. Simon (1995); McCarthy
(1983)): To explain the phenomenon of intelligence in sufficient detail to allow the creation
of machines with that very property. Frequently discussing what is often referred to as
‘human-level intelligence,’ the founding fathers of AI used this term in the 1950s and ‘60s
in precisely the same way as it is used today to describe general-purpose cognitive skills—
autonomous agents capable of learning a variety of things in a variety of environments,
much like a good human employee.

© 2022 K.R. Thórisson & H. Minsky.
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While the public discourse about AI has always included a heavy dose of science fiction
in its narrative (the ‘real AI’ that seems perpetually just-around-the-corner), historically
its primary focus has been squarely on near-term practical applications. This seems to have
been the case from the very beginning (except perhaps at the earliest stages); in 1983, John
McCarthy, then president of the American Association for Artificial Intelligence,1 wrote in
the President’s Quarterly Message:

AI NEEDS MORE EMPHASIS ON BASIC RESEARCH
Too few people are doing basic research in AI relative to the number working on
applications. The ratio of basic/applied is less in AI than in the older sciences
and than in computer science generally. This is unfortunate, because reaching
human level artificial intelligence will require fundamental conceptual advances.

— J. McCarthy (1983, p.5)

The difference between technological application-guided research and scientific (question-
guided) research boils down to what kind of explanation is being sought by the effort: Basic
science seeks the fundamental reasons and principles for why things are the way they are,
while technological development and application primarily seeks to explicate which solutions
can be applied to which ends. While the latter may bring forth many innovations, it very
rarely (if ever) invents new paradigms or uncovers fundamental underlying principles—this
only happens through a concerted effort focusing exclusively on open questions. This is
why only science-focused research can move the field of AI consistently and systematically
forward.

To be sure, artificial intelligence research has contributed to both scientific and tech-
nological progress. Rather than contributing to the development of theories of intelligence,
however, in active dialog with cognitive science, neuroscience, or psychology, the field’s key
contributions have been largely limited to computing (i.e. mathematics) and computation
theory proper (cf. Waltz (1999)), with highlights including e.g. informed search, game play,
speech recognition, computer vision, and more. It does not take an enormous stretch of the
imagination to see that most, if not all, of the touted advances that work in AI has produced
could have sprung forth without a special focus on AI per se; in an alternate universe, time-
sharing, object-oriented programming, A* search, and other products typically classified
as the fruits of AI-focused R&D could very well have been produced by straight-shooting
computer science researchers only mildly inspired by natural intelligence.

Being so intertwined with and seemingly inseparable from computer science, a question
inevitably arises: Why do these contributions deserve a special label, ‘AI’—why aren’t
simultaneous localization and mapping methods, computer vision approaches, robot control
architectures, and speech recognition techniques, simply considered part of the computer
science curriculum, plain and square? This question has been so persistent and nagging as to
eventually having been given its own name – “the AI effect” – which states that as soon as a
computational solution has been found for a particular sub-problem or task in AI, and which
before was considered to require intelligence, it is re-classified a ‘computational problem’
with a known ‘computational solution,’ in no need for ‘intelligence.’ The prototypical and
best-known example being chess. So, what – if anything – is special about AI?

1. Founded in 1979, the name of AAAI was changed in 2007 to ‘Association for the Advancement of Artificial
Intelligence.’
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2. What is Special About Artificial Intelligence

There are undoubtedly many ways to define intelligence in ways that help distinguish it
from other fields of research, including computer science, but fewer definitions may exist
that lead to a clear, concise, and unequivocal separation of AI from the full set of psychol-
ogy, biology, neurology and computer science. Here we will highlight one that meets that
criterion: Cognitive autonomy.

Autonomous general learning – i.e. general self-supervised learning – involves the au-
tonomous creation of knowledge structures about phenomena unfamiliar to a learner (cf.
Swan et al. (2022); Wang (2020); Sheikhlar et al. (2020); Thórisson (2020)). This is a process
involving actions, measurements, and systematic construction of structured and composi-
tional information; the knowledge thus generated by a learner – without outside teaching
assistance of any kind – is produced through an interaction between the learner’s knowledge
acquisition mechanisms and its environment, resulting in compositional information struc-
tures that builds up explainable perception, explainable action, and explainable learning.

A theory of cognitive autonomy – the ability of a system to learn to operate in an envi-
ronment starting with only general operating principles and knowledge at ‘birth’ – should
be a fundamental focus in AI (cf. Swan et al. (2022)). In 1999 the President of AAAI David
Waltz asked: “The study of intelligence is an ill-posed problem: What is intelligence? A bet-
ter question is What is intelligence for?” (Waltz, 1999, p.20). Intelligence is not just one
approach (of many) to achieve the immediate application of actionable information to (com-
plex) problems,2 it is in fact necessary for the production of new solutions to new problems
and situations in light of active goals (cf. Wang (2020)). This has sometimes been called
‘common sense’ (cf. Panton et al. (2022)) but we prefer to call it simply ‘understanding’
(Thórisson and Kremelberg (2018); Thórisson et al. (2016)).3

Understanding a task cannot simply mean the ability to achieve it, because then any
machine that performs according to its specifications would ‘understand’ (does a thermostat
really understand room temperature? We think not). No, to really understand something
means not only the ability to achieve goals with respect to it (Thórisson et al. (2016)) but
also an ability to explain any relevant aspects of that something (cf. Thórisson (2021)).

The task of AI research is to enable the creation of systems that can do this of their
own accord : Formulate new solutions to problems, new and old alike, and explain the
principles behind those solutions.

Or, more precisely, the top-level task of scientific progress in AI involves analyzing and
explicating the principles by which a system becomes intelligent; the top-level task of AI

2. A common definition of AI used by its researchers is “achieving complex goals in complex environments”
(cf. Legg and Hutter (2020)), yet it is not very clear what is meant by “complex” and “problems.”

3. This does not mean that ‘understanding’ and ‘common sense’ should be considered synonyms, quite the
contrary (Thórisson and Kremelberg (2018)); the latter concept brings with it a lot of anthropomorphic
implications (that has diffused the discussion of these phenomena and probably slowed down progress in
AI for decades). ‘Understanding’ seems, to us, not simply a less burdened term but also more obviously
related to general intelligence than “common sense,” which neither seems sensical nor very common.
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engineering is to apply those principles in the creation of useful intelligent systems.4 What
AI researchers should focus on, over and above anyone who is not interested in AI specifi-
cally, is the creation of machines that can operate on their own accord, autonomously: learn
by themselves, seek explanations by themselves, and thus deepen not only their skill set but
also their own understanding.

What is special about artificial intelligence is thus, not what it has achieved so far,
but rather what it set out to do, namely, to create autonomous self-contained systems
that can rival human cognition—‘human-level intelligence.’

At its core, the field of AI strives towards a deeper understanding of the phenomenon of
intelligence. This cannot be done by slicing and dicing its subject matter into bits and pieces
and working on each one completely independently of the others; there must be a concerted
effort to include all necessary and sufficient ingredients to create such machines. Although
the ability to classify is necessary for intelligence, to move AI beyond its current state and
enable machines that can produce new solutions for new problems – and do so increasingly
autonomously – we must also include control in our set of necessary topics. This requires
knowledge of cause and effect (cf. Thórisson and Talbot (2018)), because effective control
in complex task environments cannot be achieved based on solely correlational informa-
tion. This necessitates appropriate machinery to enable an AI to represent cause and effect,
and use this a key component in its reasoning processes, including hypothesizing about the
causal relationships of novel phenomena.

Unifying the necessary and sufficient set of system properties, to create machines like
these, is virtually impossible without a proper theoretical foundation. No amount of wishful
thinking can bring isolated sub-systems together, built on incompatible theoretical assump-
tions, following differing methodological approaches. Systems built in a piece-wise, feature-
isolation manner inevitably end up with severe shortcomings in their cognitive functionality.

This was McCarthy’s (1983) call to arms, and what Newell (1994) continued a decade
later to call for. To move AI forward we need more basic research—a greater emphasis on
theory, cognitive autonomy, and proper methodologies. Without a renewed focus on these,
the field will continue to move along at a snail’s pace, continuing to relegate real AI to
science fiction.

3. Ten Defeasible “Axioms of Intelligence”

We have identified ten important tenets that summarize our view on the subject, to more
generally help set an agenda for AI research in the coming decades. These tenets can be
thought of as working hypotheses about the phenomenon of intelligence, formulated in a way
intended to help those who are interested in working towards general machine intelligence
and break the current stand-still when it comes to common theoretical and methodological
foundations for the field. These are not the “ten commandments of AI,”—they should be
debated, scrutinized, improved, and eventually replaced, once something better comes along.

4. A frequent confusion between the scientific pursuit of artificial intelligence and the industrial application
of intelligent systems has lead to a muddled and unfocused discourse between the media and the public;
see for instance Ray (2022) for a clear example of this.
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§ H0 Intelligence is a systemic phenomenon, requiring the unification and
coordination of many known and undiscovered information processing principles.

Creating intelligent machines is a scientific and engineering challenge, requiring both theo-
retical and technical advances in autonomous systems design. There exists no single principle
or “golden algorithm” that will “solve intelligence” and make it possible to reach “human-
level” intelligence or general machine intelligence in one fell swoop (contrary to what some
research has hypothesized, cf. Silver et al. (2021)). “Solving intelligence” will require dis-
covering and unifying many principles and ideas that must be implemented in a single
system.

§ H1 To achieve autonomy, and be capable of general learning, an agent in the
physical world must be able to learn incrementally and modify its existing knowledge
in light of new information.

If we want our future AIs to operate effectively and efficiently, independently, in the phys-
ical world, learning must be incremental. For an intelligent agent acting in a complex
ever-changing environment, no hypothetical or realistic scenario exists under which every
conceivable piece of potentially relevant information is available to the agent up front—
whether before entering the world or any time thereafter. This extends to any and all
information: perceptions, actions, predictions, implications, plans, and so on. Learning has
traditionally been divided up into a variety of smaller bits and pieces; the concept of ongoing
(always-on) learning has been called many names, including ‘lifelong’, ‘perpetual’, ‘never-
ending’, ‘incremental’, ‘online’, and ‘continual’ learning (cf. Mitchell et al. (2018); Zhan and
Taylor (2015); Zhang (2018); Fontenla-Romero et al. (2013); Silver et al. (2013)), based on
definitions of terms which have partial overlap (at best) and are invariably are based on
ontologically incompatible principles. Old-new unification is in our view a key concept for
cumulative learning, but has seldom been put in the foreground of AI research, with very
few exceptions (cf. Swan et al. (2022); Nivel et al. (2013)).

We see cumulative learning as a unified mechanism that combines online/always-on,
incremental, reasoning-based acquisition of increasingly useful information about how things
work.5 The requirement of unification is important, because from this unification comes its
power and potential for enabling general intelligence. Cumulative learning is not yet a major
focus in AI research.

§ H2 To enable incremental buildup and modification of knowledge, cumulative
(i.e. incremental, continual) learning requires compositional knowledge
representation. When facing novel phenomena, such knowledge creation must be
based on informed, contextual, focused, and defeasible (Pollock (2010)) hypothesis
generation.

5. Our definition of ‘cumulative learning’ follows Thórisson et al. (2019; 2018). The term has appeared
elsewhere (cf. Chen and Liu (2016); Fei et al. (2016); Baldassare et al. (2009)) with partial overlap in
definition.
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The kind of compositional knowledge representation we envision would mirror the compo-
sitional nature of the physical world, making it relatively straight forward, conceptually
at least, to see how a modeling process unfolds during learning, where logic is used to
unify new information with old, and less useful models are improved when new evidence
for their improvement becomes available. The appropriate representation would support
easy comparisons of wholes and parts, reducing storage requirements for any self-similar
environment, lending support to features of a human mind like analogy making.

Swan et al. (2022) and Thórisson et al. (2020; 2019; 2018) describe frameworks for
autonomous cumulative modeling that allows an artificial agent to generate causal networks
automatically, through experience, that can be evaluated along the above dimensions, and
subsequently use them in its further learning. The approach has been tested on complex
tasks involving human-robot interaction (Thórisson et al. (2014)) and as of yet, is the only
known approach demonstrating autonomous general learning along these lines.

The handling of novelty requires hypothesis generation, whether explicit or implicit.6 In-
formed hypothesis generation is a necessary (but not sufficient) mechanism for dealing with
the unexpected (the most expensive method for handling it is random search—which doesn’t
scale for a general learner in a complex world). How this informed hypothesis generation
can be implemented is an important topic for future AI research.

§ H3 To keep track of arguments for and against knowledge hypotheses, a capacity
for (self-)explanation is necessary. This explanation capacity is based on reasoning
processes, including deduction, abduction, induction, and analogy.

Given a particular perceived circumstance (i.e. measurement), desired target state, fact,
situation, or process, an explanation for its validity (e.g. in light of active goals) may be
generated through a process of logical argument, whereby seemingly relevant but compet-
ing models of causal (and other) relations are compared and contrasted, in an effort to
identify the proper context with relevant given assumptions, that – if absent – would lead
(or would have lead) to a different outcome. Keeping track of the history of such internal
arguments (and recursively the argumentation itself) in which participating mental pro-
cesses may be included, requires general methods for comparison, contrasting statements,
and evaluation. This process is generally called ‘explanation’ (cf. Thórisson (2021)). It is
also one of the main reasons why we hypothesize that reflection is a key component of any
general intelligence (see H5 below).

§ H4 To achieve existential autonomy in a world with limited resources (time,
knowledge, etc.), informed (self-)control of available resources is necessary, whether
learned or pre-programmed.

In world with a external clock, deadlines are common. To achieve complex tasks under
these constraints calls for planning. Creating plans takes time, and since this step must

6. Explicit hypothesis generation would require reification of hypotheses and the processes used to com-
pare them, allowing an agent to reflect on the hypothesis generation and evaluation using its learning
mechanisms; an implicit approach would thus be simpler to implement, as it does not give the learning
system explicit access to the generation and argumentation processes; see H3.
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be done before the resulting plan is executed, it must either have a fixed predictable time,
or a way to be characterized such that its percentage of the whole time available can be
reliably predicted. In a system whose knowledge and cognitive machinery is developing and
changing over time, this can only be done by modeling not only tasks and environments and
learning from these but also modeling the cognitive processes at hand (Nivel and Thórisson
(2013)). Modeling of what is not known at the time of planning is another important
requirement. This, then, would provide the minimum information for sufficient (self-)control
of planning and plan execution processes.

Another process worth mentioning in this context is memory access—bringing useful
knowledge to a task at any point in time. For a narrow AI system this is typically not an
issue, as such systems are assumed to be situated in their target role at all times; a general
learner with a diverse set of top-level and sub-goals, however, could be facing a wide variety
of situations, sub-tasks, unexpected events, etc. Accessing the most useful knowledge in a
timely manner is absolutely key for such learners. This is intricately linked to the point
about informed hypothesis generation mentioned in H2.

§ H5 If one or more of the above hypotheses H2 to H4 are correct, transparent
operational semantics are necessary for general learning, as well as for achieving
cognitive growth (see H7 below). Achieving true autonomous artificial intelligence
(including “human-level,” “general machine intelligence,” or any other reasonable
conceptualization of a truly intelligent machine), is therefore highly likely to require
reflection. Autonomous general learners must therefore be capable of reflection.

The requirement for reflection comes from two primary sources. Firstly, because various
particular thought processes at a particular time and place (such as your first thought
when I tell you that ‘summer is coming’) and categories of thought processes (e.g. the
class of predicting other people’s utterances, or the class of methods for recalling what you
yourself did yesterday), are regularly reified when we think about our actions and learn
about the world (these made-up examples of thought process categories are a proof in
point). Operations on reified thought serve an important role in our everyday planning
and in growing our knowledge. Secondly, if the machinery of thought is going to develop –
i.e. change systematically, based in part on experience, what we call ‘cognitive growth’ – the
processes targeted for change must be measured and/or compared, calling for operations
that require reification of (some of) their parts. On both counts, some kind of reflection is
called for.

§ H6 Knowledge abstraction is a key feature of general autonomous
cognition—without it, handling complex information at multiple levels of detail
becomes intractable.

Rather than programming AI systems with heuristics, we need systems that can come up
with new heuristics on their own, when producing new solutions to new problems. People
do this all the time, on demand (e.g. ‘there is too much traffic downtown at this hour to
take that route;’ ‘every time I use this browser my online order fails’), and after all, the
concept of heuristics is itself a creation of our own minds. Our AI systems should also be
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able to come up with concepts such as ‘infinitely small point’ and ‘perfect circle.’ This
capacity cannot be programmed in the seed (i.e. provided a-priori; see H7)—to serve the
same role as abstraction does in human thought, it must spring forth from first principles
of the cognitive apparatus itself.

§ H7 Existential autonomic learning means freedom from a teacher,7 which means
that the learner must be provided with a program (a ‘seed’ ), up-front (at ‘birth’ ), that
contains actionable principles for bootstrapping its learning, and the development
and growth of the cognitive apparatus over time. The more general this knowledge,
the more flexible can the learning get, albeit at the cost of taking more time.

Cognitive growth is the dynamically-steered development of the learning apparatus it-
self. Whether measured in hours, days, years, or decades, to be capable of such growth, a sys-
tem must be able to program itself (cf. Nivel and Thórisson (2013)). Seed-programmed learn-
ing and cognitive growth have not been studied extensively in AI (Thórisson (2020)). Progress
in research on autonomy and general learning depends on discovering principles for knowl-
edge bootstrapping and growth control: How top-level goals (drives) relate to early learning,
and how these develop as knowledge grows. Can the case of a ‘newborn’ be seen as a special
case of learning anything in light of novelty?

§ H8 A holistic stance and approach to the phenomenon of intelligence – that is, a
research program that does not dismember the topic under study, transforming it in
the process to a mere facsimile of itself – is by far more likely than other
methodologies to deepen our understanding of intelligence and enable the creation of
truly intelligent machines.

Any complex system made up of many parts at several levels of detail unavoidably contains
multiple non-linear relations between its parts. In the absence of a reasonably accurate
blueprint, which is certainly the case for intelligence, they must be studied as a whole, lest
we risk decoupling important relations and changing the system into something other than
what we really intended to study.

§ H9 A constructivist view, with an emphasis on self-guidance and self-originated
meaning, is a useful methodological stance (and one of possibly only very few) to help
focus on the issue of holistic systems and unify all of the above principles in a single
system.

The basic principle from which constructivist thinking sprung is very compatible with the
need for a stronger focus on autonomy in AI research. Whether a constructivist stance is
taken simply as inspiration, or more concretely as prescriptive, we consider a good theo-
retical and methodological foundation of utmost importance in AI research. To be sure,

7. We define existential autonomy as the ability of a system to act without dependence on explicit outside
assistance, whether from a human teacher or, in the case of general machine intelligence, the system
designer (Thórisson (2020)).
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constructivism is not the only theoretically motivated approach aimed at allowing us to
break out of the allonomic methodological mold (Thórisson (2012a)), but in our view few
others seem as useful or obvious.

While the above ten tenets go a long way in communicating what we see as important
points for the future of AI research, we want to mention two key foundations that we consider
useful going forward. The first is control theory, the second is constructivist psychology. But
first we will spend a few thousand keystrokes on the topic of theory.

4. The Need For Explicit Theoretical Foundations

The field of AI, in our view, should have the aim of producing solid engineering principles for
creating any kind of intelligent machine, founded on proper scientific theoretical foundations
of thought and intelligence, including how general learning, reasoning, and full cognitive
autonomy can be achieved in unified ways in a single system. Since few (if any) other fields
of research seek the creation of machines with such capabilities, the field of AI must make
its explicit subject matter the theory of intelligence.

Perhaps because the majority of research to date has prioritized application over deep
theory, the nature of intelligence has yet to be properly revealed in an encompassing scien-
tific account. Few attempts at producing overarching and unifying theories of intelligence
have come forth since the field’s inception in 1956 (cf. Moor (2006)). The best-known excep-
tions (cf. Minsky (1988); Newell (1994); Anderson et al. (2004); Wang (2006)) show little
overlap or synergy, as they each rest on philosophical and methodological grounds that
remain to be unified through foundational laws or common principles. By ‘explicit theo-
retical foundations’ we mean targeted research on unification, in line what Newell (1994)
and others have called for in AI, as perhaps best exemplified by the field of physics over
the past 200 years, which saw the expansion of the idea of the atom into a rigorous system
explaining forces, energy, friction, etc.8

Does all this mean we should start writing more philosophical papers? Papers describing
implemented systems can certainly, at the very least, be provided with a more thorough the-
oretical context in general. Should we turn to speculation over implementation? Absolutely
not! Progress of an empirical research field is dependent on both theory and experimenta-
tion. Achieving this clearly requires more than simply speculating—working, implemented
systems must be built, accompanied by the theoretical foundations that enable and explain
them. Any methodology we follow must include both theory and practice, with techniques
for each one iteratively informing the other.

Commonalities in methodological approaches and tools will be difficult, if not impossible,
to achieve and coordinate without a common theoretical foundation. This can only be built
through a shared vocabulary and working definitions. To date, the field of AI has proceeded
mainly by addressing cognitive features observed in humans and other animals as separate
and unconnected; examples include reasoning, learning, prediction (anticipation), planning,

8. Cf. https://en.wikipedia.org/wiki/Atomic theory – accessed Nov. 21st, 2022. Note that our call to
physics does not translate to letting mathematics dictate our theories (we cannot let the tools lead
the way!). Only a solid philosophical foundation can provide the stability needed for formalization to
prosper; we must avoid the pitfalls of premature formalization (Thórisson (2013)).
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and perception, while largely ignoring others, e.g. resource control (attention), imagination,
understanding (“sense-making”), reflection, and cognitive growth. These must ultimately
all be brought together in a single theory.

The aim of AI research should neither be exclusively (or even mostly) speculation,
nor limited to building simplified simulacra of isolated cognitive functions. Any theoreti-
cal construct aimed at advancing our understanding of how to implement unified cognitive
functions and control – captured in a single system – should ultimately be judged on its
potential to guide implementation: systems implemented according to the theory should
allow us to conclude, through appropriate means, that it can lead to reasonably complete
AI architectures that explain, in a unified way, a large portion of observed characteristics
of general intelligence. ‘Appropriate means’ here involves of course experimental evaluation
in target environments, especially that these systems can scale up to complex, real-world
situations. With respect to autonomy, scaling up includes decreasing a system’s need for
calling home—for e.g. being reprogrammed or re-engineered in part by its developers; with
respect to learning, scaling up means the ability of the systems to continue learning, re-
siliently, a variety of tasks in a variety of environments in light of a variety of obstacles,
and efficiently and effectively handle novelty. It probably also involves the ability of these
systems to explain and hypothesize about the world, themselves, and interactions between
these.

To achieve the kind of autonomy that we envision, a learning system must be able to
create its own meaning from its own experiences in the world. This viewpoint is a central
theme of the constructivist learning school of thought in psychology (Piaget (2013)), and
should therefore be of great interest in general intelligence: it forces us to think about how a
system can manage its own cognition, including perceiving, making sense of, learning, and
planning. This cannot happen, of course, without the system knowing (or learning) what
to pay attention to—and when, how things hang together, and – perhaps most importantly
– how to handle novelty.

5. The Role of Control

To get anything done requires some form of control, a principle and concept that has not
exactly been front and center throughout AI’s research history. To address control system-
atically includes characterization of the kinds of worlds, environments and tasks that we
want the AI to handle—this defines the outer bounds of a system’s operation, both physi-
cal and cognitive. Any moderately complex task-environment that includes several levels of
spatio-temporal detail will provide enormous combinatorics—in this respect, the physical
world can be assumed to present infinite compositionality. Most of these compositions can-
not be documented (by any means) beforehand, and much of it cannot even be foreseen a
priori. An autonomous learner must be able to create knowledge about such things on its
own, and reason about them.

It’s not just the manipulation of the immediate surroundings that an AI must have a
handle on, the acquisition of knowledge itself also requires some form of process control,
including sensory uptake, filtering, and processing of sense data; the unification of new
knowledge with old knowledge requires control (a problem that gest exponentially larger
with the amount and diversity of knowledge); the application of actionable knowledge re-
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quires control; the management of resources in light of limited time, knowledge and energy
requires control; the use of acquired knowledge for making plans requires control; learning
to classify requires control; the creation of novel analogies requires control; the generation
of hypotheses about new phenomena requires control: in short, everything that a generally
intelligent agent may want to do in the physical world requires some form of control. To
make progress towards general autonomous learning systems, these forms of control must
be capable of (meta-)coordination.

We need shared methodologies – unifying principles and techniques used by communi-
ties of researchers – that allow experimentation in implementing autonomous learning and
cognitive control across a reasonably wide range of ideas. A constructivist stance presents a
useful, and to some extent unifying, starting point when posing questions related to repre-
sentation, e.g. what kinds representations can be used for autonomnous learning about new
environmental phenomena, by emphasizing the need for autonomic processes (in essence,
cognitive metaprocesses). It also bears on the form and function representations need have
to be amenable to online realtime automatic modification and manipulation in support of
cognitive growth—autonomous self-programming.

A key functionality that such representations must capture is the ability to model cause
and effect. Acting efficiently and effectively in a world where data is overabundant and pro-
cessing power is scarce (what Wang (2009) calls an ‘assumption of insufficient knowledge and
resources’ – AIKR) requires knowledge of causal relations. Here we need to beef up current
efforts to cover the “last mile” from human-level intelligence (e.g. Pearl’s (2012) do-calculus)
down to the autonomic (informed, self-managed) creation of hypotheses about causal rela-
tions, and verification of these from experience (cf. Sheikhlar et al. (2021); Thórisson and
Talbot (2018)).

Compared to their natural counterparts – besides a long list of missing features – the
greatest shortcoming of all techniques, technologies, and systems produced by AI research
so far is this: their inability to achieve independence from their creators. This is due to
their lack of methods for autonomous control. The vast majority of programming languages
developed to date, and paradigms created for software development in general, require
human-level intelligence from the outset – the very phenomenon we are striving to figure out
how to implement. Self-guided learning and cognitive growth – autonomic seed-programmed
learning – requires transparent operational semantics to enable self-programming; how to
achieve this is yet another question that begs to be answered. Questions regarding theoretical
scalability issues loom large, and for this we need appropriate methodologies.

6. Which Methodology?

The key overarching methodology employed at present in AI research is inherited wholesale
from computer science and software engineering, with the same exact programming meth-
ods and “algorithmic thinking” leading the way (Thórisson (2017)). Like in any standard
software development, AI researchers build their knowledge-based systems by hand, like
construction workers laying down the bricks of a house. This constructionist (not to be
confused with constructivist) approach leads system development along the path familiar
to every software developer: the task to be performed, and its execution environment, is
defined and dissected by the human designers, solutions to it are proposed (by humans),
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algorithms for dealing with them subsequently developed (by humans), and the resulting
system behavior evaluated (by humans), when these are the very tasks that any generally
intelligent system should be expected to do.

Virtually all available methodologies for AI (and they aren’t very numerous) are of
the constructionist kind. What is lost in this approach, among other things, are principles
for self-adaptation, self-control, and self-generated meaning—in short, existential auton-
omy. Can something be done to beef up our methodological stance on these matters?

Methodological considerations are co-dependent on theoretical ones: If stars are ‘holes
in the heavens’ we might find no reason to develop better telescopes; if creatures too small
to see with our own eyes are ‘a mere fantasy,’ we see no need to invent a microscope. With
a relentlessly myopic focus on practical ideas, many researchers in AI may not see much
opportunity – or reason – to discuss methodology at all. The choice of an appropriate
methodology is, however, a primary determinant of scientific progress, so there is a lot to
be gained by starting off on the right foot.

While we wait for an accepted holistic theory of intelligence, an increased focus on
methodological foundations could help bootstrap a new phase of research on general (ma-
chine) intelligence. The indications that initially helped researchers settle on a theory of
microscopic creatures were much more coarse-grained than the phenomenon itself: statis-
tics describing increased numbers of infections when certain procedures for cleanliness were
ignored. In other words, the methodology came first, based on a rudimentary analysis of
the phenomenon at hand. Similarly, we may be able to make some sensible methodological
choices in AI by analyzing the key features of our subject matter. A good start is to list the
requirements for the phenomenon we are interested (cf. Sloman (2000); Laird and Wray III
(2010))—the features of the phenomenon that we consider necessary and sufficient.

Whatever our methodology involves, it should include approaches and techniques for
representing causal relations, as already mentioned, explicit manipulation of subsets of
knowledge, and its compositionality. Some might be tempted to call this a ‘symbolic’ ap-
proach (Nilsson (2007)), while we see it as both less than that and more than that: less, in
that the term ‘symbolic’ tends to come with all kinds of (assumed) inherited features and
assumptions from good-old-fashioned AI (Haugeland (1985)), many of which are outdated
and irrelevant for systems that learn on their own accord, and more in that the knowledge
of general learners must go beyond present approaches by allowing autonomic dissection,
analysis, and manipulation of self-acquired knowledge, along the lines of what Abel (2008)
calls ‘the cybernetic cut.’

To handle heterogeneous task-environments in an informed and systematic way requires
reasoning. A persistent focus on statistics-based knowledge representation throughout the
history of AI (cf. Rosenblatt (1958); Sanger (1994)) has relegated reasoning and symbolic
representation to the fringes of the field and making its comeback all but an afterthought
(cf. Garcez et al. (2015)).9 An agent with the proper hierarchical and causal knowledge data
structures can construct useful new knowledge by trying to answer the right questions, if it

9. We see this as a clear example of letting the tools lead the way, at the cost of pushing fundamental ques-
tions aside. No good theoretical arguments can be found for why our approaches to general intelligence
should require artificial neural nets that are so different form natural neural nets (Schaeffer et al. (2022))
and when there is no solution in sight for how they could break out of the human-centric methodological
(constructionist) approach and into an autonomic one (Thórisson (2012b)).
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can effectively join together existing high-quality islands of knowledge it already has con-
structed internally (cf. Nivel and Thórisson (2013); Mueller and Minsky (2015); Thórisson
(2020)), using inference and mental simulation (‘sub-activation’ in Drescher’s (1989) termi-
nology). We consider this one of the highest levels of reasoning processing worth aiming for
in a generally intelligent system.

In line with the conceptual foundations of constructivist psychology, we see construc-
tivist AI (Drescher (1989); Thórisson (2012a)) to be a theoretical/methodological stance
that seeks to create increasingly autonomous systems that can learn on their own from expe-
rience, generating their own knowledge without outside help, and modify their own internal
structures to improve their own operational characteristics, based on experience. Thórisson
(2012a) proposes principles for extending a constructivist viewpoint to serve a broader ba-
sis for creating appropriate conceptual tools to address the many challenges standing in
the way of a unified foundational methodology for studying and creating general machine
intelligence.

7. Conclusions

As we have argued elsewhere (cf. Thórisson and Helgason (2012)), future general machine
intelligence (GMI), to deserve the label, must be capable of learning a wide variety of
tasks and adapt to a wide range of conditions, none of which can be known at design
time. This requires some minimum level of existential autonomy – the ability of a system
to act without needing explicit outside assistance, whether from a human teacher or, in the
case of GMI, the system designer. Existential autonomy calls for unplanned and unforeseen
changes to a system’s own cognitive structures; designing systems capable of this means
we need appropriate methodologies for imparting this second-order control. To be capable
of cognitive growth – whether measured in minutes, days, years, or decades – involves yet
another level of control. Both categories of machines must ultimately be able to program
themselves. Provided with (minimal) bootstrap knowledge, general machine intelligence
involves systems that operate in in a way that, while initially limited in their knowledge
and abilities, are capable of facing novel situations in their environment – simple at first –
and grow their intelligence as experience accumulates. Given scalable principles, a system
will continuously grow to ever-increasing levels of cognitive sophistication. The creation of
such systems requires both theoretical and methodological advances beyond the present-
day; the sooner we address these issues head-on, the sooner will we see machines with real
intelligence.

Key ingredients that we see as necessary (but not sufficient) that we have emphasized in
this paper, are the ability to handle novelty, the ability to manage experience autonomously,
and the ability to represent causal relations. In our view, the last one has still some way to
go, while a constructivist approach to AI provides a useful starting point for addressing the
first two.
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Sánchez, and Diego Peteiro-Barral. Online machine learning. Efficiency and Scalability
Methods for Computational Intellect, pages 27–54, 2013.

Artur d’Avila Garcez, Tarek R. Besold, Luc de Raedt, Peter Földiak, Pascal Hitzler, Thomas
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Thórisson Minsky

Rylan Schaeffer, Mikail Khona, and Ila Rani Fiete. No free lunch from deep learning in
neuroscience: a case study through models of the entorhinal-hippocampal circuit. In
Neural Information Processing Systems, 2022. doi: https://doi.org/10.1101/2022.08.07.
503109.
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