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Abstract
We study the complexity of learning mixtures of separated Gaussians with common unknown
bounded covariance matrix. Specifically, we focus on learning Gaussian mixture models (GMMs)
on Rd of the form P =

∑k
i=1 wiN (µi,Σi), where Σi = Σ ⪯ I and mini ̸=j ∥µi −µj∥2 ≥ kϵ for

some ϵ > 0. Known learning algorithms for this family of GMMs have complexity (dk)O(1/ϵ). In
this work, we prove that any Statistical Query (SQ) algorithm for this problem requires compexity
at least dΩ(1/ϵ). Our SQ lower bound implies a similar lower bound for low-degree polynomial
tests. Our result provides evidence that known algorithms for this problem are nearly best possible.
Keywords: Gaussian mixtures, Statistical Query model, low-degree polynomial tests

1. Introduction

We study the classical problem of learning Gaussian mixture models (GMMs) in high dimensions.
This problem has a long history, starting with the early work of Pearson Pearson (1894) who intro-
duced the method of moments in this context. Over the past three decades, there has been a vast
literature on learning GMMs in both statistics and theoretical computer science Dasgupta (1999);
Arora and Kannan (2001); Vempala and Wang (2002); Achlioptas and McSherry (2005); Feldman
et al. (2006); Kannan et al. (2008); Brubaker and Vempala (2008); Moitra and Valiant (2010); Belkin
and Sinha (2010); Suresh et al. (2014); Daskalakis and Kamath (2014); Hardt and Price (2015); Di-
akonikolas et al. (2020a); Bakshi et al. (2020); Diakonikolas et al. (2022b); Liu and Moitra (2021);
Bakshi et al. (2022). Here we focus on computational aspects of this problem with a focus on
information-computation tradeoffs in high dimensions.

The learning setup is as follows: We have access to i.i.d. samples from an unknown k-GMM
on Rd, P =

∑k
i=1wiN (µi,Σi), where wi ≥ 0 are the mixing weights satisfying

∑k
i=1wi = 1,

µi ∈ Rd are the unknown component means and Σi are the unknown component covariances.
Roughly speaking, there are two versions of the learning problem: (1) density estimation, where
the goal is to compute a hypothesis distribution H that is close to P in total variation distance, and
(2) parameter estimation1, where the goal is to approximate the target parameters wi,µi,Σi within

1. A related task is that of clustering the sample based on the generating component. Once we have an accurate cluster-
ing, assuming one exists, we can individually learn the individual component parameters.
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small error. While density estimation of k-GMMs on Rd is information-theoretically solvable with
poly(d, k) samples, parameter estimation may require 2Ω(k) samples (even in one dimension) if the
individual components are close to each other Moitra and Valiant (2010). On the other hand, under
the standard separation assumption that the components are “nearly non-overlapping”, parameter
estimation can also be solved with poly(d, k) samples. Here we focus on families of instances
satisfying appropriate separation assumptions. Even though such instances can be learned with
poly(d, k) samples, it is by no means clear that a poly(d, k)-time learning algorithm exists. In other
words, we explore the relevant information-computation tradeoffs — inherent tradeoffs between the
sample complexity and the computational complexity of learning.

A number of recent works have established information-computation tradeoffs in the context of
learning GMMs. The first such result was given in Diakonikolas et al. (2017) and applied to the
class of Statistical Query (SQ) algorithms2. Specifically, Diakonikolas et al. (2017) constructed a
hard family of GMMs (henceforth informally termed as “parallel pancakes”) and showed that any
SQ learner for this family requires super-polynomial time. Interestingly, the class of parallel pan-
cakes is learnable with O(k log d) samples, while any SQ learning algorithm requires dΩ(k) time.
It is worth noting that subsequent work Bruna et al. (2021); Gupte et al. (2022) established compu-
tational hardness for essentially the same class of instances, under widely-believed cryptographic
assumptions.

In this work, we focus on a simpler and well-studied family of GMMs for which significantly
faster learning algorithms are known. (We provide a detailed comparison between the family of
instances we consider and the parallel pancakes construction of Diakonikolas et al. (2017) in Sec-
tion 1.2.) Specifically, we consider GMMs of the form P =

∑k
i=1wiN (µi,Σi), satisfying (a)

miniwi ≥ 0.9/k, (b) Σi ⪯ I, and (c)∥µi − µj∥2 ≥ kϵ, for some ϵ > 0. Condition (a) posits
that the component weights are nearly uniform. (This first condition is relevant for the cluster-
ing/parameter estimation problems, as these tasks require Ω(1/miniwi) samples.) Condition (b)
says that each component covariance is unknown and bounded above by the identity. Finally, con-
dition (c) requires that the component means are pairwise separated by at least kϵ, in ℓ2-distance.
Here the parameter ϵ > 0 is assumed to be sufficiently large so that kϵ ≫

√
log k. This assumption

is required as, even for the uniform weights and identity covariance case (i.e., when wi = 1/k and
Σi = I for all i), the clustering problem can be solved with poly(d, k) samples if and only if the
pairwise mean separation is ∆ ≫

√
log k Regev and Vijayaraghavan (2017).

It is easy to see that the aforementioned family of GMMs is learnable using poly(d, k) samples
(ignoring computational considerations). Two independent works Hopkins and Li (2018); Kothari
et al. (2018) gave SoS-based learning algorithms for this family of GMMs with sample complexity
kO(1)dO(1/ϵ) and computational complexity (dk)O(1/ϵ2). With a more careful analysis, the runtime
can be further improved to (dk)O(1/ϵ) Steurer and Tiegel (2021); Diakonikolas et al. (2022a). Note
that for the important special case that the mean separation is ∆ ≫ logc(k), for some constant c ≥
1/2, these algorithms have quasi-polynomial sample and time complexities, namely (dk)O(log k).

A natural question is whether the aforementioned upper bounds are inherent or can be signifi-
cantly improved. Concretely, we address the following open problem:

Is there a poly(d, k)-time learning algorithm for separated GMMs
with bounded covariance components and mean separation ∆ = polylog(k)?

2. Via a recent reduction Brennan et al. (2021), these SQ lower bounds imply qualitatively similar low-degree testing
lower bounds.
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For the special case of spherical components, namely when each individual Gaussian has identity
covariance (i.e., Σi = I for all i), very recent work Li and Liu (2022) made significant algorithmic
progress on this question. Specifically, they gave a poly(d, k) time learning algorithm that succeeds
as long as ∆ ≫ log1/2+c(k), for any constant c > 0. The algorithm in Li and Liu (2022) crucially
leveraged the assumption that the individual components are known (and equal to the identity). On
the other hand, their upper bound raised the hope that poly(d, k) complexity might be attainable
even for unknown bounded covariance components with similar mean separation.

In this work, we provide evidence that known learning algorithms Hopkins and Li (2018);
Kothari et al. (2018); Steurer and Tiegel (2021); Diakonikolas et al. (2022a) for this subclass of
GMMs are qualitatively best possible. Concretely, we prove an SQ lower bound for this family of
GMMs suggesting the following information-computation tradeoff: For mean separation ∆ = kϵ,
any (SQ) learning algorithm either requires 2d

Ω(1)
time or uses at least dΩ(1/ϵ) samples. In partic-

ular, this implies that the quasi-polynomial upper bounds for mean separation of ∆ = polylog(k)
are best possible for the class of SQ algorithms. Using known results Brennan et al. (2021), this SQ
lower bound implies a qualitatively similar low-degree testing lower bound.

We also provide an interesting implication for the special case of ϵ = 1/2. Specifically, we
establish an SQ lower bound suggesting that any efficient SQ algorithm under separation ∆ ≪ k1/2

requires nearly quadratically many samples (in the dimension d). On the other hand, O(kd) sam-
ples suffice without computational limitations. Recent work Diakonikolas et al. (2022b) developed
an O(dk)-sample and computationally efficient algorithm for learning bounded covariance distribu-
tions (and, consequently, bounded covariance Gaussians) under separation Ω̃(k1/2). A natural open
question is whether this separation bound can be significantly improved while preserving sample
near-optimality. Perhaps surprisingly, we show that this is not possible for SQ algorithms: any
efficient SQ algorithm that works for separation Ck1/2, for a sufficiently small constant C, requires
near-quadratically many samples in d. This gap suggests that the algorithm of Diakonikolas et al.
(2022b) succeeds under the best possible separation within the class of computationally efficient
and sample near-optimal algorithms.

1.1. Our Results

Our main result is a Statistical Query lower bound of dΩ(1/ϵ) for learning the aforementioned sub-
class of Gaussian mixtures with mean separation ∆ ≥ kϵ.

Before we formally state our contributions, we require basic background on the SQ model.

SQ Model Basics Before we state our main result, we recall the basics of the SQ model Kearns
(1998); Feldman et al. (2013). Instead of drawing samples from the input distribution, SQ algo-
rithms are only permitted query access to the distribution via the following oracle:

Definition 1 (VSTAT Oracle) Let D be a distribution on Rd. A statistical query is a bounded
function q : Rd → [0, 1]. For u > 0, the VSTAT(u) oracle responds to the query q with a value
v such that |v − Ex∼D[q(x)]| ≤ τ , where τ = max{1/u,

√
Varx∼D[q(x)]/u}. We call τ the

tolerance of the statistical query.

An SQ lower bound for a learning problem Π is typically of the following form: any SQ algo-
rithm for Π must either make a large number of queries Q or at least one query with small tolerance
τ . When simulating a statistical query in the standard PAC model (by averaging i.i.d. samples to
approximate expectations), the number of samples needed for a τ -accurate query can be as high as
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Ω(1/τ2). Thus, we can intuitively interpret an SQ lower bound as a tradeoff between runtime of
Ω(Q) or a sample complexity of Ω(1/τ2).

Main Result Our main SQ lower bound result for learning GMMs is stated informally below. A
more detailed formal version is provided in Theorem 7.

Theorem 2 (Main Result, Informal) For d, k ∈ Z+ sufficiently large and ϵ > 0 such that kϵ ≫√
log k, any SQ algorithm that correctly distinguishes between N (0, Id) and a k-GMM on Rd with

minimum mixing weight at least 0.99/k, common covariance Σ ⪯ Id for each component, and
pairwise mean separation ∆ ≥ kϵ, either makes 2d

Ω(1)
statistical queries or requires at least one

query to VSTAT(dΩ(1/ϵ)).

As is typically the case, our SQ lower bound applies for the hypothesis testing problem of
distinguishing between the standard Gaussian and an unknown GMM in our family. Hardness for
testing a fortiori implies hardness for the corresponding learning problem (see Corollary 8).

A few additional remarks are in order. First notice that our SQ lower bound applies even for
the special case where the mixing weights are nearly uniform (within a factor of 2, say) and the
component covariances are the same, as long as they are unknown3. As it will become clear from our
construction, the common covariance matrix of each component has only two distinct eigenvalues:
each Gaussian component behaves like a standard Gaussian in all directions that are orthogonal
to a low-dimensional subspace, and along that subspace behaves like a spherical Gaussian with
different variance. Finally, our lower bound applies for a large range of the parameter ϵ > 0, as long
as kϵ is at least a sufficiently large constant multiple of

√
log k. Consequently, it implies that the

quasi-polynomial upper bounds for separation of polylog(k) are best possible SQ algorithms.
The implications of our SQ lower bound to the low-degree polynomial testing model, via the

result of Brennan et al. (2021), are provided in Appendix D.

Quadratic SQ Lower Bound for Ω(
√
k) Separation Our second result concerns the special case

where the mean separation is proportional to k1/2, namely Ck1/2 for a sufficiently small univer-
sal constant C (taking C = 1/3 suffices for our purposes). For this setting, we establish a nearly
quadratic tradeoff between the sample complexity of the learning problem and the sample complex-
ity of any efficient SQ algorithm for the problem. Specifically, we show the following:

Theorem 3 (Quadratic SQ Lower Bound, Informal) Let d, k ∈ Z+ with d sufficiently large and
2 ≤ k ≪ log d. Any SQ algorithm that correctly distinguishes between N (0, Id) and a k-GMM
on Rd with uniform weights, common covariance Σ ⪯ Id for each component, and pairwise mean
separation ∆ ≥

√
k/3, either makes 2d

Ω(1)
statistical queries or requires at least one query to

VSTAT(d1.99).

A more detailed formal version is provided in Theorem 11. The natural interpretation of the
above result is as follows: any SQ algorithm for this class of instances either uses Ω(d1.99) many
samples or requires at least 2d

Ω(1)
many statistical queries (time). On the other hand, without com-

putational constraints, O(kd) samples information-theoretically suffice.
Using different techniques, Davis et al. (2021) established a low-degree testing lower bound for

the k = 2 case with constant separation, suggesting a sample complexity tradeoff of Ω̃(d2).

3. Recall that known algorithms do not require these assumptions. The runtime upper bound of (dk)O(1/ϵ) holds as
long as the minimum weight is at least 1/poly(k) and even if the component covariances are different.
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1.2. Overview of Techniques

The best comparison to our results is the prior work of Diakonikolas et al. (2017). Both works
prove SQ lower bounds for learning mixtures of separated, common covariance Gaussians. The
major difference is that the Diakonikolas et al. (2017) result requires large separation relative to the
smallest eigenvalue of the covariance (or, more accurately, relative to the quadratic form defined
by the inverse covariance matrix), while our result requires large separation relative to the largest
eigenvalue. As we will see, this seemingly small distinction leads to significant differences.

Underlying both SQ lower bound results is the hidden-direction non-Gaussian component analy-
sis construction of Diakonikolas et al. (2017) (or, in our case, the generalization to hidden subspaces
given in Diakonikolas et al. (2021b)). The high-level idea is that if one can find a distribution A (de-
fined in a small number of dimensions) that matches its first t moments with the standard Gaussian,
then distinguishing the standard Gaussian from a distribution D that behaves like A along a hidden
subspace and is standard Gaussian in the orthogonal directions requires SQ complexity dΩ(t). This
generic result has been leveraged to establish SQ lower bounds for a wide range of high-dimensional
statistical tasks, see, e.g., Diakonikolas et al. (2017, 2019, 2020b); Goel et al. (2020); Diakonikolas
and Kane (2022); Diakonikolas et al. (2021b, 2022c, 2018, 2021a, 2020c); Chen et al. (2022). The
main difficulty in each case is, of course, to construct the desired moment-matching distributions.

In our context, this means that for either result one needs to exhibit a distribution A, which is a
mixture of k separated Gaussians, so that A matches many moments with the standard Gaussian. By
letting A be a discrete distribution with support size k convolved with a narrow Gaussian, it suffices
to find a distribution A′ supported on k pairwise separated points so that A′ matches t moments
with a standard Gaussian.

At this point, the difference in the underlying separation assumptions becomes critical. In the
parallel pancakes construction of Diakonikolas et al. (2017), one only needs the points in the support
of A′ to have some minimal separation so that after convolving with a very narrow Gaussian, the
resulting components of A are still well separated in total variation distance. This fact allows them
to use Gaussian quadrature and construct a one-dimensional distribution A′ which matches its first
t = 2k moments with N (0, 1). This construction leads to an SQ lower bound of dΩ(k). It should
be noted that each unknown GMM in this old construction consists of k “skinny” Gaussians whose
mean vectors all lie in the same direction. Moreover, each pair of components will have total
variation distance very close to 1 and their mean vectors are separated by Ω(1/

√
k).

In our setting however, we require much stronger separation assumptions. In particular, we
require that the elements in the support of A′ be separated by some relatively large separation
∆ on the order of kϵ ≫

√
log(k). Unfortunately, it is provably impossible to find a moment-

matching construction with this kind of separation in one dimension. Intuitively, this holds because
the standard Gaussian G ∼ N (0, 1) is highly concentrated about the origin. If A′ behaves similarly
to G, it must also have most of its mass near the origin; but this is clearly impossible if the points of
its support are pairwise separated by ∆. More rigorously, one can show that the indicator function
of an interval can be reasonably well-approximated by a constant-degree polynomial with respect
to the Gaussian distribution (see, e.g, Diakonikolas et al. (2010)). This implies that any distribution
over R that matches constantly many moments with G must be relatively close to G in Kolmogorov
distance, which is impossible for any discrete distribution with a widely separated support.

To circumvent this issue, we instead produce a distribution A′ over Rm, for some m on the order
of ∆2 (Proposition 9). Intuitively, this makes sense because Gaussian random points on Rm have
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pairwise separation approximately
√
m = ∆; this motivates us to use points drawn from N (0, Im)

to construct the support of A′ (see Proposition 10, we will describe the construction in more detail
in the next paragraph). Unfortunately, this choice comes with a tradeoff. As the dimension of the
space of degree-t polynomials on Rm is approximately mt, we will need the support of A′ to be
of size roughly mt in order to have enough degrees of freedom to be able to match all of these
moments. In particular, this means that the parameter k needs to be on the order of ∆2t, and since
we are considering separation ∆ = kϵ, we need to choose t to be on the order of 1/ϵ. Thus, the
resulting SQ lower bound will be on the order of dΩ(t) = dΩ(1/ϵ). Note that we cannot hope to do
better, as the algorithms of Hopkins and Li (2018); Kothari et al. (2018) can be formalized as SQ
algorithms with similar complexity.

It remains to explain how to construct A′. We want a distribution over a small support that
matches t moments with the standard Gaussian over Rm and also has large pairwise separation of
its support points. The simple idea behind our construction is that picking a uniformly random set
of points as our support should both ensure the separation with high probability, and also produce
a set that is well-representative of a Gaussian. We achieve this as follows: we pick an appropriate
number of i.i.d. Gaussian random points in Rm and, using linear programming duality, show that
with high probability there exists a moment-matching distribution supported on these points (cf.
Proposition 10).

For the case ϵ = 1/2 (corresponding to pairwise mean separation of ∼
√
k), the above analysis

is suboptimal because it shows an SQ lower bound of dΩ(1/ϵ) with the constant inside the big-Ω
being rather large. In order to obtain a quadratic SQ lower bound for that case, we instead provide
an explicit distribution over Rm matching three moments with the standard Gaussian (cf. Section 5).

2. Preliminaries

We record the minimum preliminaries necessary for the main body of this paper, with the full
version being provided in Appendix A.

Basic Notation We use Z+ for positive integers, [n] def= {1, . . . , n} and ∥v∥2 for the ℓ2-norm of a
vector v. We use Id to denote the d × d identity matrix. For a matrix A, we use ∥A∥F and ∥A∥op
to denote the Frobenius and spectral (or operator) norms respectively. We use N (µ,Σ) to denote
the Gaussian with mean µ and covariance matrix Σ. For a set S, we use U(S) for the uniform
distribution on S. We use ϕm(x) for the pdf of the standard Gaussian in m-dimensions N (0, Im),
and ϕ(x) the pdf of N (0, 1). Slightly abusing notation, we will use the same letter for a distribution
and its pdf, e.g., we will denote by P (x) the pdf of a distribution P .

Hermite Analysis We use hk for the normalized probabilist’s Hermite polynomials, which com-
prise a complete orthogonal basis of all functions f : R → R with Ex∼N (0,1)[f

2(x)] < ∞. When
using multi-indices a ∈ Zd as subscripts, we refer to the multivariate Hermite polynomials.

Ornstein-Uhlenbeck Operator For a ρ ∈ (0, 1), we define the Ornstein-Uhlenbeck (or Gaussian
noise) operator Uρ as the operator that maps a distribution F on Rm to the distribution of the
random variable ρx+

√
1− ρ2z, where x ∼ F and z ∼ N (0, Im) independently of x. A standard

property of the Uρ operator is that it operates diagonally with respect to Hermite polynomials, i.e.,
Ex∼UρF [ha(x)] = ρ|a|Ex∼F [ha(x)], where |a| =

∑
i ai.
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2.1. Background on the Statistical Query Model

We record the definitions from the SQ framework of Feldman et al. (2013) that we will need: For
a distribution D and a family of distributions D, we define the decision problem over distribu-
tions B(D, D) as the hypothesis testing problem of distinguishing between D and a member of
D. We define the pairwise correlation between two distributions D1 and D2 as χD(D1, D2) =∫
Rd D1(x)D2(x)/D(x) dx−1. We say that a set of s distributions D={Di}si=1 is (γ, β)-correlated

relative to a distribution D if |χD(Di, Dj)| ≤ γ for all i ̸= j, and |χD(Di, Dj)| ≤ β for i = j.

Definition 4 (Statistical Query Dimension) Let β, γ > 0. Consider a decision problem B(D, D),
where D is a fixed distribution and D is a family of distributions. Define s to be the maximum integer
such that there exists a finite set of distributions DD ⊆ D such that DD is (γ, β)-correlated relative
to D and |DD| ≥ s. The Statistical Query dimension with pairwise correlations (γ, β) of B is
defined to be SD(B, γ, β) := s.

Lemma 5 (Corollary 3.12 in Feldman et al. (2013)) Let B(D, D) be a decision problem. For
γ, β > 0, let s = SD(B, γ, β). For any γ′ > 0, any SQ algorithm for B requires queries of
tolerance at most

√
γ + γ′ or makes at least sγ′/(β − γ) queries.

Lemma 6 (Corollary 2.4 in Diakonikolas et al. (2021b)) Let A be a distribution over Rm such
that the first t moments of A match the corresponding moments of N (0, Im). Let G(x)=A(x)/ϕm(x)
be the ratio of the corresponding probability density functions. For matrices U,V ∈ Rm×d such
that UU⊤ = VV⊤ = Im, define PA,U and PA,V to be distributions over Rd with probabil-
ity density functions G(Ux)ϕd(x) and G(Vx)ϕd(x), respectively. Then, the following holds:
|χN (0,Im)(PA,U, PA,V)| ≤ ∥UV⊤∥t+1

op χ2(A,N (0, Im)).

Note that in the statement above, PA,V can be rewritten in the following form:

PA,V(x) = A(Vx)
ϕd(x)

ϕm(Vx)
= A(Vx)(2π)−

(d−m)
2 e−

1
2
∥x−V⊤Vx∥22 = A(Vx)ϕd−m (ProjV⊥(x)) ,

(1)

where ProjV⊥(x) = x −V⊤Vx is the projection of x to the subspace that is perpendicular to the
subspace V spanned by the rows of V. Therefore, Equation (1) demonstrates that PA,V coincides
with the distribution A in the subspace spanned by the rows of V and is standard Gaussian in every
orthogonal direction.

3. Statistical Query Lower Bound

In this section we prove the following mored detailed version of our main result (Theorem 2).

Theorem 7 (SQ Lower Bound: Hypothesis Testing Hardness) Let d, k ∈ Z+, ϵ > 0 and C be
a sufficiently large absolute constant. Assume k > (C/ϵ)1/ϵ, d > kCϵ, and kϵ > C

√
log k. Let the

following hypothesis testing problem regarding a distribution P on Rd:

• (Null Hypothesis) P = N (0, Id).

• (Alternative Hypothesis) P belongs to a family P , every member of which is a mixture of
Gaussians

∑k
i=1wiN (µi,Σ) for some weights wi > 0.99/k, mean vectors with pairwise

separation ∥µi−µj∥2 ≥ kϵ for all distinct i, j ∈ [k], and common covariance matrix Σ ⪯ Id.
Moreover, dTV(P,N (0, Id)) > 0.99 and dTV(P, P

′) > 0.99 for all distinct P, P ′ ∈ P .
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Any algorithm with statistical query access to P that distinguishes correctly between the two cases,
does one of the following: Performs 2d

Ω(1)
statistical queries, or performs at least one statistical

query with tolerance d−Ω(1/ϵ)eO(k2ϵ).

Before moving to the proof, we state the implications of the above to the hardness of the corre-
sponding density estimation problem.

Corollary 8 (SQ Lower Bound: Density Estimation Hardness) Under the assumptions of The-
orem 7 and the additional assumption kϵ <

√
log(d)/(Cϵ), let A be an SQ algorithm that given

access to a mixture of Gaussians P =
∑k

i=1wiN (µi,Σ) for some unknown weights wi > 0.99/k,
mean vectors µi ∈ Rd for i ∈ [k] with pairwise separation ∥µi − µj∥2 ≥ kϵ and common covari-
ance matrix Σ ⪯ Id, finds a distribution Q with dTV(P,Q) < 1/4. Then A necessarily does one
of the following: Performs 2d

Ω(1)
statistical queries, or performs at least one statistical query with

tolerance τ = d−Ω(1/ϵ)eO(k2ϵ).

Proof The reduction from the hypothesis testing problem of Theorem 7 to the corresponding learn-
ing problem is fairly standard, see e.g., Lemma 8.5 in Diakonikolas and Kane (2023). To check the
applicability of that lemma we note that dTV(P,N (0, Id)) > 0.99 > 2(τ+1/4), where the inequal-
ity uses the assumption kϵ <

√
log(d)/(Cϵ) for bounding the query tolerance τ by a constant.

The main ingredient towards proving Theorem 7 is Proposition 9, which establishes the ex-
istence of a low-dimensional spherical k-GMM with well separated means, that matches its first
Ω(1/ϵ) moments with the standard Gaussian. We prove this result in Section 4. In this section, we
show how Theorem 7 follows from Proposition 9.

Proposition 9 Let ϵ > 0, d, k ∈ Z+, c > 0 be a sufficiently small constant and C be a sufficiently
large constant. If k > (C/ϵ)1/ϵ, d > kCϵ, and kϵ > C

√
log k there exists a distribution A over Rm

with m := k2ϵ that satisfies the following:

(i) A is a mixture of k spherical Gaussians in Rm with variance δ = ck−2.5/m and minimum
mixing weight at least 0.99/k.

(ii) A matches its first t = Θ(1/ϵ) moments with N (0, Im).

(iii) The means µi,µj of any two distinct components have separation ∥µi − µj∥2 ≥ kϵ.

(iv) For every U,V ∈ Rm×d with UU⊤ = VV⊤ = Id and ∥UV⊤∥F = O(d−
1
10 ), it holds

dTV(PA,U, PA,V)>0.99. Moreover, for all V∈Rm×d it holds dTV(PA,V,N (0, Id)) > 0.99.

(v) χ2(A,N (0, Im) ≤ δ−m/2eO(m).

To prove Theorem 7, we create a family of distributions of the form of Equation (1) by embed-
ding the k-GMM onto many nearly orthogonal subspaces. The resulting distributions in Rd will be
the k-GMMs described in our main theorem’s statement. We then use the properties established in
Proposition 9 to argue that this family has a large SQ dimension, making it hard to learn.

Proof (Proof of Theorem 7) Recall the definition of decision problems (Definition 14). Let the
decision problem B(D, D) where D = N (0, Id) and D is defined to be the set of all distributions
of the form PA,V as in Equation (1). We now lower bound the SQ dimension (Definition 4) of
B(D, D). Let S be the set from the fact below.

8
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Fact 1 (See, e.g., Lemma 17 in Diakonikolas et al. (2021b) ) Let m, d ∈ N with m < d1/10.
There exists a set S of 2d

Ω(1)
matrices in Rm×d such that every U ∈ S satisfies UU⊤ = Im

and every pair U,V ∈ S with U ̸= V satisfies ∥UV⊤∥F ≤ O(d−1/10).

Let DD := {PA,V}V∈S . Using Fact 1 and Lemma 6, we have that for any distinct V,U ∈ S

|χN (0,Im)(PA,U, PA,V)| ≤
∥∥∥UV⊤

∥∥∥t+1

op
χ2(A,N (0, Im)) ≤ Ω(d)−(t+1)/10χ2(A,N (0, Im)) ,

where we used that ∥A∥op ≤ ∥A∥F for any matrix A. On the other hand, when V = U, we have
that |χN (0,Im)(PA,U, PA,V)| ≤ χ2(A,N (0, Im)). Thus, the family DD is (γ, β)-correlated with
γ = Ω(d)−(t+1)/10χ2(A,N (0, Im)) and β = χ2(A,N (0, Im)) with respect to D = N (0, Im).
This means that SD(B(D, D), γ, β) ≥ exp(dΩ(1)).

Recall that t = Θ(1/ϵ). Applying of Lemma 5 with γ′ := γ = Ω(d)−(t+1)/10χ2(A,N (0, Im)),
we obtain that any SQ algorithm for Z requires at least exp(dΩ(1))d−O(t) = exp(dΩ(1))d−O(1/ϵ)

calls to

STAT
(
Ω(d)−Ω(1/ϵ)

√
χ2(A,N (0, Im))

)
.

Finally, using Proposition 9, χ2(A,N (0, Im)) ≤ kO(1) exp(O(m)) = kO(1) exp(O(k2ϵ)) ≤
exp(O(k2ϵ)) where we also used our assumption that kϵ is much bigger than

√
log k. Also, the

number of calls exp(dΩ(1))d−O(1/ϵ) mentioned before can be lower bounded by exp(dΩ(1)) by
using our assumptions that d > kCϵ > (C/ϵ)C .

4. Proof of Proposition 9

In Section 4.1 we provide the basis for Proposition 9, which shows the existence of a low-dimensional
discrete distribution using an LP-duality argument. Then, in Section 4.2 we complete the proof of
Proposition 9.

4.1. Existence via LP Duality

Proposition 10 Let a sufficiently large absolute constant C. For any m, t ∈ Z+ with m > Ct2,
there exists a discrete distribution D on Rm such that (let supp(D) denote the support of D):

(i) |supp(D)| = m13t,

(ii) D gives mass at least 0.99/|supp(D)| to every point in its support,

(iii) D matches its first t moments with N (0, Im), i.e., Ex∼D[p(x)] = Ex∼N (0,I)[p(x)], for every
polynomial p : Rd → R of degree at most t,

(iv) 0.9
√
m ≤ ∥x∥2 ≤ 1.1

√
m for all x ∈ supp(D).

(v) for any distinct x,y ∈ supp(D) it holds ∥x− y∥2 ≥
√
m.

9
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Proof Let a set S = {x1, . . . ,xN} of N = m13t points drawn from N (0, Im). We will show
that with non-trivial probability, taking D to be the uniform distribution over S satisfies the desired
properties. The proof is based on an LP duality argument. Proving Items (ii) and (iii) is equivalent
to proving that the linear program below (with unknowns {µi}i∈[N ]) admits a solution. Let α :=
0.99/N , the desired lower bound for all weights. The LP is the following:

Find: µ1, . . . , µN

s.t.:
∑
i∈[n]

µip(xi) = E
x∼N (0,Im)

[p(x)], for any at most t-degree polynomial p

µi ≥ α, for all i ∈ [N ]

(2)

Note that the first constraint for p being the constant polynomial p = 1 means that the µi’s form a
valid distribution. By standard LP duality, the above is feasible unless there exists a linear combina-
tion of constraints that produces the contradiction 0 < −1. Concretely, we start by introducing mul-
tipliers, also known as dual variables, for each constraint. For the final constraint, these will be some
variables βi ≥ 0 for i ∈ [N ]. Regarding the first constraint, a multiplier from R is assigned to every
polynomial with a degree of at most t. However, since the first constraint applies to all such polyno-
mials and the set is closed under multiplication, these dual variables can be absorbed into the poly-
nomials and will not be explicitly written. After multiplying and summing the constraints, we obtain∑

i∈[N ]

µi (−βi + p(xi)) ≤ E
x∼N (0,Im)

[p(x)]− α
∑
i∈[N ]

βi . (3)

To derive the dual LP, we set the coefficients of µi equal to zero and ask for the right-hand side
of Equation (3) to be negative. This means that the primal LP (2) is feasible unless LP (4) on
the left part below has a solution, where LP (4) is further equivalent to LP (5) on the right part:

Find: β1, . . . , βN ∈ R+,

p at most t-degree polynomial

s.t.: −βi + p(xi) = 0, ∀i ∈ [N ]

E
x∼N (0,Im)

[p(x)] < α
∑
i∈[N ]

βi

(4)

Find: p at most t-degree polynomial

s.t.: p(xi) ≥ 0, ∀i ∈ [N ]

E
x∼N (0,Im)

[p(x)] < α ·N· E
x∼U(S)

[p(x)]

(5)

For verifying the equivalence of the two LPs it suffices to note that
∑

i∈[N ] βi =
∑

i∈[N ] p(xi) =

N Ex∼U(S)[p(x)]. By scaling (homogeneity), we can assume in the above that Ex∼N (0,Im)[p
2(x)] =

1. Recall that the points x1, . . . ,xN are samples from N (0, Im). Since, we are proving the propo-
sition via probabilistic argument, it remains to show that with non-trivial probability these points
will be such that LP (5) is infeasible (and thus LP (2) is feasible). We prove this by contradiction:
Assume that LP (5) is feasible. Let U(S) be the uniform distribution over S. We show that, in fact,
U(S) approximates the first four moments of any polynomial with a degree at most t (the proof is
given in Appendix B.1). Formally:

Claim 1 Let a set S = {x1, . . . ,xN} of i.i.d. samples xi ∼ N (0, Im). If N > 10m12t/η2 , then
with probability at least 0.6 for any polynomial p : Rm → R of degree at most t, it holds

10
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(i) Ex∼U(S)[p(x)] ≤ Ex∼N (0,Im)[p(x)] + η,

(ii) Ex∼U(S)[p
2(x)] ≥ Ex∼N (0,Im)[p

2(x)]− η, and

(iii) Ex∼U(S)[p
4(x)] ≤ Ex∼N (0,Im)[p

4(x)] + η.

For our case, we assumed that LP (5) is feasible thus Ex∼N (0,Im)[p(x)] < aN Ex∼U(S)[p(x)].
We use Claim 1 with accuracy η = 3−t/200, so the sample complexity from that claim becomes
40000 · 9tm12t. Since we assumed that m > 6000, the number of samples that we use is N =
m13t > 40000 · 9tm12t and thus satisfies the requirement of the claim. The claim thus yields

E
x∼U(S)

[p(x)] ≤ E
x∼N (0,Im)

[p(x)] + η < aN E
x∼U(S)

[p(x)] + η ,

which means that

E
x∼U(S)

[p(x)] <
η

1− aN
≤ 3−t/200

1− 0.99
=

3−t

2
. (6)

On the other hand, for every t ≥ 1 we have that

E
x∼U(S)

[p(x)] ≥
Ex∼U(S)[p

2(x)]3/2√
Ex∼U(S)[p4(x)]

≥ (1− η)3/2√
Ex∼N (0,Im)[p4(x)] + η

≥ 0.7√
32t + 3−t/2

≥ 3−t

2
, (7)

where the penultimate inequality uses Gaussian hypercontractivity (Fact 5). Comparing Equa-
tions (6) and (7) we have obtained a contradiction.

We now show the lower bound of Item (iv). Using the concentration of the norm of a Gaussian
vector (Fact 3 with β =

√
m/10), we have that

Pr
x1,...,xN∼N (0,Im)

[∃i : |∥xi∥2 −
√
m| < 0.1

√
m] ≤ 2Ne−m/1600 = 2m13te−m/1600 < 0.1 . (8)

where we used that t <
√
m/16000 < m/1600−ln(20)

13 lnm for m > 30000.
Regarding Item (v), it is a standard property of the Gaussian all pairs of points are nearly-

orthogonal with high probability (Fact 4 with α = 0.1),

Pr
x1,...,xN∼N (0,Im)

[∃i ̸= j : |⟨xi,xj⟩| > m−0.1] ≤ N2e−m0.8/5 ≤ m26te−m0.8/5 < 0.1 , (9)

where the last inequality uses that t <
√
m/16000 < m0.8/5−ln(10)

26 lnm for m > 30000. Conditioning
on the two bad events of Equations (8) and (9) not happening, we have that for any distinct i, j ∈
[N ], it holds ∥xi − xj∥22 = ∥xi∥22 + ∥xj∥22 − 2⟨xi,xj⟩ ≥ 1.62m− 2m−0.1 ≥ m, for m > 2.

4.2. Proof of Proposition 9

We use the following throughout the proof: Let D be the distribution from Proposition 10 with
parameters m = k2ϵ, and t = 1/(26ϵ) (note that because of our assumption k > (C/ϵ)1/ϵ the
requirement of Proposition 10 is satisfied and thus the proposition is applicable). Let A = Uρ(D),

11
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where Uρ denotes the Ornstein-Uhlenbeck operator. We choose ρ =
√
1− δ and δ = ck−2.5/m for

a sufficiently small positive constant C. We prove each part of Proposition 9 separately.
Proof (Proof of Item (i)) The fact that A is a mixture of Gaussians with each component having
variance δ follows immediately by the definition of A as the distribution D after Gaussian smoothing
via the Ornstein-Uhlenbeck operator with parameter ρ =

√
1− δ. We can also check that the

number of components is k: By Proposition 10 we have that the number of components is m13t.
Recall that we have further selected m = k2ϵ. Thus, the number of components is m13t = k26ϵt.
This is equal to k by our choice of t = 1/(26ϵ). The fact that we have mass 0.99/k for each
Gaussian component follows from Item (ii) of Proposition 10.

Proof (Proof of Item (ii)) For any a ∈ Nm with |a| ≤ t, we have

E
x∼Uρ(D)

[ha(x)] = ρ|a| E
x∼D

[ha(x)] = ρ|a| E
x∼N (0,Im)

[ha(x)] = E
x∼N (0,Im)

[ha(x)] ,

where the first equality uses Fact 2, the next one uses Item (iii) of Proposition 10, and the last one is
due to the property of Hermite polynomials Ex∼N (0,I)[ha(x)] = 1 if |a| = 0 and zero otherwise.

Proof (Proof of Item (iii)) Using Item (v) of Proposition 10 combined with our choice m = k2ϵ and
the fact that the Ornstein-Uhlenbeck operator scales all the means by a factor of ρ =

√
1− δ > 1/2,

we will have that the pairwise means separation in our construction is at least ρkϵ > kϵ/2.

Proof (Proof of Item 2) We first prove the claim that dTV(PA,U, PA,V) > 0.99. Since it al-
ways holds dTV(PA,U, PA,V) = 1 −

∫
z∈Rd min{PA,U(z), PA,V(z)}dz, we will focus on upper

bounding IU,V :=
∫
z∈Rd min{PA,U(z), PA,V(z)}dz. Let vi,ui be the rows of V and U re-

spectively. Extend v1, . . . ,vm to an orthonormal basis v1, . . . ,vm, . . . ,v2m of the space spanned
by v1, . . . ,vm,u1, . . . ,um. Let x be an orthonormal coordinate system of dimension m that is
aligned with the vectors v1, . . . ,vm and let y be another coordinate system aligned with the vectors
vm+1, . . . ,v2m. Similarly, let x′ be the coordinate system aligned with the vectors u1, . . . ,um and
y′ be the one for the orthogonal directions. Since, PA,U, PA,V are both standard Gaussians in the
subspace perpendicular to both U and V, the contribution to their total variation there is zero and
we are left with the integral over the two subspaces U and V,

IU,V :=

∫
z∈Rd

min{PA,U(z), PA,V(z)}dz =

∫∫
x∈Rm,y∈Rm

min{A(x)ϕm(y), A(x′)ϕm(y′)}dxdy .

First, note that ϕm(·) ≤ (2π)−2m ≤ 1 pointwise thus we can focus on the factors in the integral.
We can then write out what these coordinates x′ and y′ that appear in the integral are in terms of
x,y, and then perform a change of variables from x,y to x,x′. The steps so far are summarized in
the following claim which we prove formally in Appendix B.2.

Claim 2 Let U,V ∈ Rm×d matrices with UU⊤ = VU⊤ = Id and rows v1, . . . ,vm and
u1, . . . ,um respectively. Let the extension v1, . . . ,v2m of the rows of V to an orthonormal ba-
sis of the space spaned by v1, . . . ,vm,u1, . . . ,um. Denote RV2 = [vm+1 . . .v2m]⊤. Then,

IU,V :=

∫
z∈Rd

min{PA,U(z), PA,V(z)}dz ≤ 1

det(URV
⊤
2 )

∫∫
x∈Rm,x′∈Rm

min{A(x), A(x′)}dxdx′ .

12
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We now claim that this determinant is close to one because V and U are nearly-orthogonal
and thus the singular values of the matrix URV

⊤
2 are all close to one. We defer the proof to

Appendix B.2. The requirement d > mC below holds by assumption.

Claim 3 If d > mC for a sufficiently large absolute constant C, then det(URV
⊤
2 ) ≥ 1/2.

We are now ready to further bound our integral IV,U. First, by writing the distribution A as a
mixture

∑
i∈[k] λiAi(x), we can break IV,U into contributions from every pair of components (the

proof is straight forward but included in Appendix B.2 for completeness).

Claim 4 The following bound holds: IV,U ≤ 2kmaxi,j∈[k]
∫∫

x,x′∈Rm min{Ai(x), Aj(x
′)}dxdx′.

Recall that each component Ai of the mixture distribution A is by definition Gaussian with
variance δ := ck−2.5/m in all directions. Let R := C ′√δm log(1/δ) for a sufficiently large constant
C ′ so that: Prz∼N (0,2δIm)[∥z∥2 > R] ≤ δ (this follows by standard Gaussian norm concentration,
see Claim 6 in Appendix B.2).

We can thus break the integral appearing in Claim 4 into parts based on whether x and x′ fall
within or outside a ball of radius R around the mean of the component (recall that R is the radius
used in Equation (17)). For each individual integral we will use Claim 6 to bound the mass of the
distribution outside of the ball and bound the mass inside the ball by the volume of that ball. Then
by upper bounding that volume and after some algebra we can bound all terms by the following
(again, the proof is deffered to Appendix):

Claim 5 IV,U ≤ Cmkδ0.4m for a sufficiently large absolute constant C.

The total variation distance is thus dTV(PA,U, PA,V) = 1−
∫
z∈Rd min{PA,V(z), PA,V(z)}dz ≥

1 − Cmkδ0.4m ≥ 0.99, where the last step uses that δ = ck−2.5/m for an appropriately small con-
stant c > 0. The remaining part of the claim that dTV(PA,V,N (0, Id)) > 0.99 can be handled with
similar arguments, and is deferred to Claim 7 in Appendix.

Proof (Proof of Item (v)) The bound is fairly standard and deferred to Claim 8 in Appendix B.2.

5. Beating Separation of Ω(
√
k) : Proof of Theorem 3

In this section, we prove the following result which is the formal version of Theorem 3.

Theorem 11 (Quadratic SQ Lower Bound for Separation ∼ k1/2) Let C > 0 be a sufficiently
large absolute constant. Let d, k ∈ Z+ and c ∈ (0, 2/9) with d > (1/c)C/c, 2 ≤ k ≤ (c/C) log d .
Consider the following hypothesis testing problem regarding a distribution P on Rd:

• (Null Hypothesis) P = N (0, Id).

• (Alternative Hypothesis) P belongs to a family P , every member of which is a mixture of Gaus-
sians

∑k
i=1wiN (µi,Σ) with uniform weights wi = 1/k, mean vectors with pairwise separation

∥µi − µj∥2 ≥
√
k/3 for all i ̸= j ∈ [k], and common covariance matrix Σ ⪯ Id. Moreover,

dTV(P,N (0, Id)) > 0.99 and dTV(P, P
′) > 0.99 for all distinct P, P ′ ∈ P .

13
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Any algorithm with statistical query access to P that distinguishes correctly between the two cases,
does one of the following: it performs 2Ω(d2c) statistical queries, or it uses at least one statistical
query to VSTAT(Ω(d2−9c)).

We start with a brief overview of the new ideas required for the proof.
First, it is instructive to explain why Theorem 7 and its proof do not suffice for our purposes.

In particular, to use Theorem 7 in order to obtain an SQ lower bound of 2d
Ω(1)

queries vs a query
to VSTAT(d2), we need to set the parameter ϵ (where the separation is ∆ = kϵ) sufficiently small.
This is because in that theorem, ϵ appears inside a big-Ω notation in the query tolerance and a closer
examination of our proofs reveals that the hidden constant in that big-Ω is rather large (in the order
of hundreds). Thus, Theorem 7 cannot yield a super-linear SQ lower bound for the ϵ = 1/2 case,
which corresponds to pairwise separation of ∼

√
k.

In more detail, the constant factor in front of ϵ in Theorem 7 is large for two reasons: (i) The
number of Gaussian components in our construction (c.f. Proposition 9) was k26ϵt, meaning that
we had to match t = 1/(26ϵ) many moments in order to end-up with k components, and (ii)
the fact about random matrices being nearly orthogonal (Fact 1) that we used was suboptimal. In
particular, while the corresponding fact for vectors states that any pair of random unit vectors has
inner product very close to O(d−1/2), the generalization of that to matrices by Fact 1 stated that
the pairs of random matrices U,V have ∥UV⊤∥F ≤ O(d−1/10). The constant in the exponent is
crucial here because it also appears in front of ϵ in the final SQ lower bound.

In this section, we overcome both of these issues by providing a tighter construction and analysis
for the ϵ = 1/2 case. In particular, we replace the existential LP-duality argument of Proposition 9
by Lemma 12 below, which provides a discrete distribution matching the first three moments with
the standard Gaussian. The proof is constructive and can be found in Appendix C.

Lemma 12 (Moment Matching) There exists a discrete distribution D on Rm such that: (i) D is
supported on 2m points, (ii) D matches the first three moments with N (0, Im), and (iii) for every
pair of distinct points x,y in the support of D, it holds ∥x− y∥2 ≥

√
m.

Moreover, we provide a tight version of Fact 1 via an improved analysis (see Appendix C for
the proof).

Lemma 13 Let C be a sufficiently large absolute constant. Let c ∈ (0, 1/4) and m, d ∈ N with
d > (1/c)C/c and m < dc/5/C. There exists a set S of 2Ω(d2c) matrices in Rm×d such that every
A ∈ S satisfies AA⊤ = Im and every pair A,A′ ∈ S with A ̸= A′ satisfies ∥A′A⊤∥op ≲
d−1/2+2c.

Given the above lemma, the proof of Theorem 11 follows in a similar way to Theorem 7, and is
thus deferred to Appendix C.
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Appendix A. Additional Preliminaries

A.1. Additional Notation

We use Z for the set of integers and Z+ for positive integers. For n ∈ Z+, we denote [n]
def
=

{1, . . . , n} and use Sd−1 for the d-dimensional unit sphere. We use Sd−1(R) to denote the d di-
mensional sphere with radius R and center the origin. For a vector v, we let ∥v∥2 denote its ℓ2-norm.
We use Id to denote the d × d identity matrix. We will drop the subscript when it is clear from the
context. For a matrix A, we use ∥A∥F and ∥A∥op to denote the Frobenius and spectral (or operator)
norms respectively. If a = (a1, . . . , am) ∈ Zm

+ is a multi-index, we denote |a| =
∑m

i=1 ai
We use a ≲ b to denote that there exists an absolute universal constant C > 0 (independent of

the variables or parameters on which a and b depend) such that a ≤ Cb.
We use the notation x ∼ D to denote that a random variable x is distributed according to the

distribution D. For a random variable x, we use E[x] for its expectation. We use N (µ,Σ) to denote
the Gaussian distribution with mean µ and covariance matrix Σ. For a set S, we use U(S) to denote
the uniform distribution on S and use x ∼ S as a shortcut for x ∼ U(S). We denote by ϕm(x)
the probability density function (pdf) of the standard Gaussian in m-dimensions N (0, Im), and by
ϕ(x) the pdf of the univariate standard Gaussian N (0, 1). We slightly abuse notation by using the
same letter for a distribution and its pdf, e.g., we will denote by P (x) the pdf of a distribution P .
We use dTV(P,Q) for the total variation distance between two distributions P,Q.

We will prefer to use capital letters for constants that are assumed to be sufficiently large and
small letters for constants that need to be sufficiently small.

A.2. Hermite Analysis

Hermite polynomials form a complete orthogonal basis of the vector space L2(R,N (0, 1)) of all
functions f : R → R such that Ex∼N (0,1)[f

2(x)] < ∞. There are two commonly used types
of Hermite polynomials. The physicist’s Hermite polynomials, denoted by Hk for k ∈ Z satisfy
the following orthogonality property with respect to the weight function e−x2

: for all k,m ∈ Z,∫
RHk(x)Hm(x)e−x2

dx =
√
π2kk!1(k = m). The probabilist’s Hermite polynomials Hek for

k ∈ Z satisfy
∫
RHek(x)Hem(x)e

−x2/2dx = k!
√
2π1(k = m) and are related to the physicist’s

polynomials through Hek(x) = 2−k/2Hk(x/
√
2). We will mostly use the normalized proba-

bilist’s Hermite polynomials hk(x) = Hek(x)/
√
k!, k ∈ Z for which

∫
R hk(x)hm(x)e−x2/2dx =√

2π1(k = m). These polynomials are the ones obtained by Gram-Schmidt orthonormalization
of the basis {1, x, x2, . . .} with respect to the inner product ⟨f, g⟩N (0,1) = Ex∼N (0,1)[f(x)g(x)].
Every function f ∈ L2(R,N (0, 1)) can be uniquely written as f(x) =

∑
i∈Z aihi(x) and we have

limn→∞Ex∼N (0,1)[(f(x) −
∑n

i=0 aihi(x))
2] = 0 (see, e.g., Andrews et al. (1999)). Moreover,

we have the following explicit expression of hi(·) (see, for example, Andrews et al. (1999); Szegö
(1989)):

hi(x) =
√
i!

⌊i/2⌋∑
j=0

(−1)j

j!(i− 2j)!

xi−2j

2j
. (10)

Extending the normalized probabilist’s Hermite polynomials to higher dimensions, an orthonormal
basis of L2(Rd,N (0, Id)) (with respect to the inner product ⟨f, g⟩ = Ex∼N (0,Id)[f(x)g(x)]) can be
formed by all the products of one-dimensional Hermite polynomials, i.e., ha(x) =

∏d
i=1 hai(xi),
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for all multi-indices a ∈ Zd (we are now slightly overloading notation by using multi-indices as
subscripts). The total degree of ha is |a| =

∑d
i=1 ai.

Ornstein-Uhlenbeck Operator For a ρ > 0, we define the Gaussian noise (or Ornstein-Uhlenbeck)
operator Uρ as the operator that maps a distribution F on Rm to the distribution of the random vari-
able ρx+

√
1− ρ2z, where x ∼ F and z ∼ N (0, Im) independently of x. A standard property of

the Uρ operator is that it operates diagonally with respect to Hermite polynomials:

Fact 2 (see, e.g., Proposition 11.37 in O’Donnell (2014)) For any multivariate Hermite polyno-
mial ha, any F on R, and ρ ∈ (0, 1), that Ex∼UρF [ha(x)] = ρ|a|Ex∼F [ha(x)], where |a| =

∑
i ai.

A.3. Background on the Statistical Query Model

Definition 14 (Decision Problem over Distributions) Let D be a fixed distribution and D be a
distribution family. We denote by B(D, D) the decision (or hypothesis testing) problem in which the
input distribution D′ is promised to satisfy either (a) D′ = D or (b) D′ ∈ D, and the goal is to
distinguish between the two cases.

Definition 15 (Pairwise Correlation) The pairwise correlation of two distributions with proba-
bility density functions D1, D2 : Rd → R+ with respect to a distribution with density D : Rd →
R+, where the support of D contains the supports of D1 and D2, is defined as χD(D1, D2) =∫
Rd D1(x)D2(x)/D(x) dx− 1.

Definition 16 We say that a set of s distributions D = {D1, . . . , Ds} is (γ, β)-correlated relative
to a distribution D if |χD(Di, Dj)| ≤ γ for all i ̸= j, and |χD(Di, Dj)| ≤ β for i = j.

A.4. Miscallenious Facts

We require the standard concetration of the norm of Gaussian vectors (see, e.g., Theorem 3.1.1 of
Vershynin (2018) or Theorem 4.7 of Wegner (2021)):

Fact 3 (Gaussian Norm Concentration) For every 0 ≤ β ≤ σ
√
d we have that

Pr
X∼N (0,σ2Id)

[|∥x∥2 − σ
√
d| > β] ≤ 2 exp

(
− β2

16σ2

)
.

We also require the following result stating the random Gaussian vectors are nearly-orthogonal.

Fact 4 (Cai et al. (2013), also see Corollary D.3 in Diakonikolas et al. (2017)) Let θ be the an-
gle between two random unit vectors uniformly distributed over Sd−1. Then, we have that Pr[| cos θ| ≥
d−α] ≤ e−d1−2α/5, for any 0 ≤ α ≤ 1/2.

Fact 5 (Gaussian Hypercontractivity Bogachev (1998); Nelson (1973)) If p : Rm → R is a
polynomial of degree at most k, for every t ≥ 2,

E
x∼N (0,Im)

[
|p(x)|t

] 1
t ≤ (t− 1)k/2

√
E

x∼N (0,Im)
[p2(x)] .
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Fact 6 (Volume of d-Ball) For any R > 0 let Sd−1(R) = {x ∈ Rd : ∥x∥2 ≤ R}. Then,

Vol(Sd−1) = O

(
1√
πd

(
2πe

d

)d/2

Rd

)
.

Fact 7 The following holds for the chi-square divergence between two univariate Gaussians:

χ2(N (µ1, σ
2
1),N (µ2, σ

2
2)) =

σ2
2

σ1
√
2σ2

2 − σ2
1

exp

(
(µ1 − µ2)

2

2σ2
2 − σ2

1

)
− 1 .

Appendix B. Omitted Proofs from Section 4

B.1. Concentration of Gaussian Polynomials

We restate and prove the following:

Claim 1 Let a set S = {x1, . . . ,xN} of i.i.d. samples xi ∼ N (0, Im). If N > 10m12t/η2 , then
with probability at least 0.6 for any polynomial p : Rm → R of degree at most t, it holds

(i) Ex∼U(S)[p(x)] ≤ Ex∼N (0,Im)[p(x)] + η,

(ii) Ex∼U(S)[p
2(x)] ≥ Ex∼N (0,Im)[p

2(x)]− η, and

(iii) Ex∼U(S)[p
4(x)] ≤ Ex∼N (0,Im)[p

4(x)] + η.

The proof follows by applying the lemma below for the polynomials p, p2 and p4 which are of
degree k = t, 2t and 4t respectively.

Lemma 17 For any ϵ > 0, if a set S of N > 10σ2m3k/ϵ2 samples is drawn i.i.d. from N (0, Im),
then with probability at least 0.9 we have that for all polynomials p : Rm → R with Ex∼N (0,Im)[p

2(x)] ≤
σ2 and degree at most k it holds that∣∣∣∣ E

x∼U(S)
[p(x)]− E

x∼N (0,Im)
[p(x)]

∣∣∣∣ ≤ ϵ .

Proof First, using Chebyshev’s inequality, we have the following concentration for every normalized
probabilist’s Hermite polynomial:

Pr
x1,...,xN∼N (0,Im)

[∣∣∣∣ E
x∼U(S)

[hJ(x)]− E
x∼N (0,Im)

[hJ(x)]

∣∣∣∣ > ϵ

mkσ

]
≤ σ2m2k

Nϵ2
Var

x∼N (0,Im)
[hJ(x)]

=
σ2m2k

Nϵ2
E

x∼N (0,Im)
[h2J(x)]

=
σ2m2k

Nϵ2
≤ 0.1

mk
, (11)

where the last line used that N > 10σ2m3k/ϵ2. In what follows we condition on the event that
|Ex∼U(S)[hJ(x)] − Ex∼N (0,Im)[hJ(x)]| ≤ ϵ for all J ∈ Nm : |J| ≤ k, which, by a union bound
and Equation (11) holds with probability at least 0.9. We expand p(x) on the basis of the normalized
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probabilist’s Hermite polynomials p(x) =
∑

J∈Nm:|J|≤k aJhJ(x), and note that |aJ| ≤ σ for all
these coefficients (because by Parseval’s identity

∑
J a

2
J ≤ σ2). Therefore, we conclude that∣∣∣∣ E

x∼U(S)
[p(x)]− E

x∼N (0,Im)
[p(x)]

∣∣∣∣ ≤ ∑
J∈Nm:|J|≤k

|aJ|
∣∣∣∣ E
x∼U(S)

[hJ(x)]− E
x∼N (0,Im)

[hJ(x)]

∣∣∣∣
≤ σmkϵ/(mkσ) = ϵ .

B.2. Omitted Details from Proof of Item 2

Claim 2 Let U,V ∈ Rm×d matrices with UU⊤ = VU⊤ = Id and rows v1, . . . ,vm and
u1, . . . ,um respectively. Let the extension v1, . . . ,v2m of the rows of V to an orthonormal ba-
sis of the space spaned by v1, . . . ,vm,u1, . . . ,um. Denote RV2 = [vm+1 . . .v2m]⊤. Then,

IU,V :=

∫
z∈Rd

min{PA,U(z), PA,V(z)}dz ≤ 1

det(URV
⊤
2 )

∫∫
x∈Rm,x′∈Rm

min{A(x), A(x′)}dxdx′ .

Proof We start with some notation. Denote by V the subspace spanned by {v1, . . . ,vm}, and U =
span{u1, . . . ,um}. Extend the set v1, . . . ,vm to an orthonormal basis v1, . . . ,vm,vm+1, . . . ,v2m

of the vector space spanned by the vectors {v1, . . . ,vm,u1, . . . ,um}. Furthermore, let the vectors
v1, . . . ,v2m . . . ,vd be the extension to an orthonormal basis of the entire Rd. Let the matrices
RV1 = [v1 . . .vm]⊤ (note that RV1 coincides with V in this notation), RV2 = [vm+1 . . .v2m]⊤,
and RV3 = [v2m+1 . . .vd]

⊤. Let RV = [R⊤
V1

R⊤
V2

R⊤
V3

]⊤.
We also define similar notation regarding U. Namely, extend the set u1, . . . ,um to an orthonor-

mal basis u1, . . . ,um,um+1, . . . ,u2m of the vector space spanned by the vectors {v1, . . . ,vm,
u1, . . . ,um}. Let u1, . . . ,u2m . . . ,ud be its extension to an orthonormal basis of the entire Rd.
Let the matrices RU1 = [u1 . . .um]⊤, RU2 = [um+1 . . .u2m]⊤, and RU3 = [u2m+1 . . .ud]

⊤.
Let RU = [R⊤

U1
R⊤

U2
R⊤

U3
]⊤. Since RU3 and RV3 are meant to be orthonormal bases of the same

space, we pick RU3 = RV3 .
We now focus on the our integral:

IV,U
def
=

∫
z∈Rd

min{PA,V(z), PA,U(z)}dz , (12)

where PA,V and PA,U are defined as in Equation (1) (where recall that ϕk denotes the pdf of the k-
dimensional standard Gaussian). Using that definition for PA,V and the notation that we introduced
earlier, we write

PA,V(z) = A(Vz)ϕd−m (ProjV⊥(z))

= A(Vz)ϕd−m

(
[R⊤

V2
R⊤

V3
]⊤z
)

= A(Vz)ϕm (RV2z)ϕd−2m (RV3z) ,

where in the last equality we separated the standard Gaussian into two components. Using a similar
rewriting for PA,U(z) along with RU3 = RV3 (see first paragraphs), our integral is

IV,U =

∫
z∈Rd

min{A(Vz)ϕm (RV2z)ϕd−2m (RV3z) , A(Uz)ϕm (RU2z)ϕd−2m (RV3z)}dz .
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We rotate the space using the unitary matrix R⊤
V. Hence, Equation (12) becomes

IV,U =

∫
z∈Rd

min{A(VR⊤
Vz)ϕm(RV2R

⊤
Vz)ϕd−2m(RV2R

⊤
Vz),

A(UR⊤
Vz)ϕm

(
RU2R

⊤
Vz
)
ϕd−2m

(
RV3R

⊤
Vz
)
}dz . (13)

By definition of these matrices, it holds that VR⊤
V = [Im×m 0m×(d−m)]. Similarly it holds

RV2R
⊤
V = [0m×m Im×m 0m×(d−2m)], and RV3R

⊤
V = [0(d−2m)×2m I(d−2m) ×(d−2m)]. Using

the notation x1...k = (x1, . . . , xk) to denote the first k coordinates of a vector x ∈ Rd with d ≥ k,
we have that VR⊤

Vz = z1...m, and similarly RV2R
⊤
Vz = zm+1...2m, RV3R

⊤
Vz = z2m+1...d. Using

that simplification and renaming x = z1...m, y = zm+1...2m, w = z2m+1...d, the first part of the
min operator in Equation (13) can be rewritten as A(VR⊤

Vz)ϕm(RV2R
⊤
Vz)ϕd−2m(RV2R

⊤
Vz) =

A(x)ϕm(y)ϕd−2m(w). Using a similar reasoning for the second part of the min, we have that

IV,U =

∫
min{A(x)ϕm(y)ϕd−2m(w),

A(UR⊤
V1

x+UR⊤
V2

y)ϕm(RU2R
⊤
V1

x+RU2R
⊤
V2

y)ϕd−2m(w)}dxdydw

=

∫
z∈Rd

min{A(x)ϕm(y), A(UR⊤
V1

x+UR⊤
V2

y)ϕm(RU2R
⊤
V1

x+RU2R
⊤
V2

y)}dxdy ,

(14)

where the last line takes ϕd−2m(w) as common factor and uses that its integral with respect to w
equals to one. We now do the following change of integration variables:[

x
x′

]
=

[
I 0

UR⊤
V1

UR⊤
V2

] [
x
y

]
.

The Jacobian of the inverse transformation is 1/det(URV
⊤
2 ) (where we used the fact that det(A−1) =

1/ det(A) as well as the fact that due to the identity block of the matrix the determinant ends up
being only that of the bottom right block).

Performing this change of variables in Equation (14), and using the pointwise upper bound
ϕm(·) ≤ (2π)−m/2 ≤ 1 we obtain

IV,U ≤ 1

det(URV
⊤
2 )

∫
x∈Rm

∫
x′∈Rm

min{A(x), A(x′)}dxdx′ . (15)

Claim 3 If d > mC for a sufficiently large absolute constant C, then det(URV
⊤
2 ) ≥ 1/2.

Proof To prove this claim, we show that the singular values of the matrix URV
⊤
2 are close to 1.

Recall that we have assumed that UU⊤ = VV⊤ = Id and ∥UV⊤∥F ≲ d−1/10. We have that

m = ∥U∥2F = ∥URV
⊤∥2F ≤ ∥URV

⊤
1 ∥2F + ∥URV

⊤
2 ∥2F

= ∥UV⊤∥2F + ∥URV
⊤
2 ∥2F ≤ Cd−1/5 + ∥URV

⊤
2 ∥2F ,
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where C is some absolute positive constant. Hence, we have that ∥URV
⊤
2 ∥2F ≥ m − Cd−1/5.

Moreover, we also have that ∥URV
⊤
2 ∥op ≤ 1, which means that the maximum singular value of

URV
⊤
2 is at most 1. Assume that the minimum singular value of URV

⊤
2 is σmin. Then, we have

that
m− 1 + σ2

min ≥ ∥URV
⊤
2 ∥2F ≥ m− Cd−1/5 .

Hence, σ2
min ≥ 1 − Cd−1/5 and therefore, all the singular values of URV

⊤
2 are at least (1 −

Cd−1/5)1/2. Therefore, we have det(URV
⊤
2 ) ≥ (1 − Cd−1/5)m/2 ≥ 1 − C(m/2)d−1/5 ≥ 1/2

for d > (Cm)5 (which is true by assumption). This completes the proof of Claim 3.

Claim 6 If R := C ′√δm log(1/δ) for a sufficiently large absolute constant, then we have that
Prz∼N (0,2δIm)[∥z∥2 > R] ≤ δ.

Proof We have the series of inequalities

Pr
z∼N (0,2δIm)

[∥z∥2 > R] = Pr
z∼N (0,2δIm)

[∥z∥2 > C ′√δm log(1/δ)]

≤ Pr
z∼N (0,2δIm)

[∥z∥2 −
√
δm > (C ′/2)

√
δ log(1/δ)] (16)

≤ 2 exp

(
−(C ′/2)2δ log(1/δ)

32δ

)
≤ δ , (17)

where Equation (16) uses the fact that C ′√δm log(1/δ) −
√
δm =

√
δm(C ′√log(1/δ) − 1) ≥

(C ′/2)
√

δm log(1/δ) ≥ (C ′/2)
√
δ log(1/δ) with the penultimate step being true because C ′ large

enough and δ < 0.1. The last step in Equation (17) uses Fact 3 with β = (C ′/2)
√

δ log(1/δ).

Claim 4 The following bound holds: IV,U ≤ 2kmaxi,j∈[k]
∫∫

x,x′∈Rm min{Ai(x), Aj(x
′)}dxdx′.

Proof We have the following series of inequalities (see below for step-by-step explanations):

IV,U ≲
∫∫

x,x′∈Rm

min{A(x), A(x′)}dxdx′

=

∫∫
x,x′∈Rm

min

∑
i∈[k]

λiAi(x),
∑
j∈[k]

λjAj(x
′)

dxdx′

≤
∑

i,j∈[k]

∫∫
x,x′∈Rm

min{λiAi(x), λjAj(x
′)}dxdx′ (18)

≤
∑

i,j∈[k]

∫∫
x,x′∈Rm

max{λi, λj}min{Ai(x), Aj(x
′)}dxdx′

≤
∑

i,j∈[k]

∫∫
x,x′∈Rm

λimin{Ai(x), Aj(x
′)}dxdx′ +

∑
i,j∈[k]

∫∫
x,x′∈Rm

λj min{Ai(x), Aj(x
′)}dxdx′ (19)

= k
∑

i,j∈[k]

∫∫
x,x′∈Rm

(λi/k)min{Ai(x), Aj(x
′)}dxdx′+

∑
i,j∈[k]

∫∫
x,x′∈Rm

(λj/k)min{Ai(x), Aj(x
′)}dxdx′
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≤ 2k max
i,j∈[k]

∫∫
x,x′∈Rm

min{Ai(x), Aj(x
′)}dxdx′ , (20)

where Equation (18) uses that min(a + b, c) ≤ min(a, c) + min(b, c), Equation (19) uses that
max(a, b) ≤ a + b, and for the last step, one can view the double sumation in the first term of
the penultimate line as an expectation over the random choice of the indices i, j according to the
distribution that selects j uniformly at random from [k] and makes i equal to ℓ with probability λℓ.
Similar argument can be used for the second term of the penultimate line. Since the expectation is
always smaller than the maximum value the last line follows.

Claim 5 IV,U ≤ Cmkδ0.4m for a sufficiently large absolute constant C.

Proof Let
∫∫

x,x′∈Rm min{Ai(x), Aj(x
′)} = I1 + I2 + I3 + I4, where

1. I1 =
∫∫

∥x− µi∥2 > R and ∥x′ − µj∥2 ≤ R min{Ai(x), Aj(x
′)}dxdx′,

2. I2 =
∫∫

∥x− µi∥2 ≤ R and ∥x′ − µj∥2 > R min{Ai(x), Aj(x
′)}dxdx′,

3. I3 =
∫∫

∥x− µi∥2 > R and ∥x′ − µj∥2 > R min{Ai(x), Aj(x
′)}dxdx′,

4. I4 =
∫∫

∥x− µi∥2 ≤ R and ∥x′ − µj∥2 ≤ R min{Ai(x), Aj(x
′)}dxdx′.

We start with the first term. Recall that Ai is an m-dimensional Gaussian with mean µi and variance
δ in all directions. We have the following:

I1 ≤
∫
∥x−µi∥2>R

√
Ai(x)dx

∫
∥x′−µj∥2≤R

√
Aj(x′)dx′ (using min(a, b) ≤

√
ab)

≤
∫
∥x−µi∥2>R

(2πδ)−m/4e−
∥x−µi∥

2
2

4δ dx

∫
∥x′−µj∥2≤R

(2πδ)−m/4e−
∥x′−µj∥

2
2

4δ dx′

≤ (2πδ)m/4

∫
∥x−µi∥2>R

(2πδ)−m/2e−
∥x−µi∥

2
2

4δ dx

∫
∥x′−µj∥2≤R

(2πδ)−m/4e−
∥x′−µj∥

2
2

4δ dx′

≤ (2πδ)m/4δ · δ−m/4Vol(Sd−1(R)) (using Equation (17) for the first inegral)

≤ (2π)m/4δ

(
1√
πm

(
2πe

m

)m/2

Rm

)
(by Fact 6)

≤ Cm
1 m−m/2δ1+m/2mm/2(log(1/δ))m/2 (using R = C ′√δm log(1/δ))

≤ Cm
1 δ1+m/2(log(1/δ))m/2 (21)

for a sufficiently large constant C1. The same bound can be derived for I2. For I3 we use Equa-
tion (17) for both integrals to obtain I3 ≤ (2πδ)m/2δ2. Finally, for the last term I4 we have
that I4 ≤ δ−m/2(Vol(Sd−1(R)))2 ≤ Cm

2 δ−m/2m−mδmmm(log(1/δ))m ≤ Cm
2 δm/2(log(1/δ))m,

where the first step used min{Ai(x), Aj(x)} ≤ δ−m/2 and that both integrals are over a ball of
radius R. Putting everything together, we have shown that

IV,U ≤ Cm
3 kδm/2(log(1/δ))m ≤ Cm

4 kδ0.4m . (22)
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Claim 7 In the setting of Proposition 9 it holds dTV(PA,V,N (0, Id)) > 0.99.

Proof Let v1, . . . ,vm denote the rows of V and extend this set to an orthonormal basis v1, . . . ,vm, . . . ,vd

of the entire Rd. Let V⊥ be the matrix having vm+1, . . . ,vd as rows and R be the matrix having
v1, . . . ,vm, . . . ,vd as rows. Using the definition from Equation (1) (and recalling that ϕd(x) de-
notes the pdf of N (0, Id),

PA,V(z) = A(Vz)ϕd−m (ProjV⊥(z)) = A(Vz)ϕd−m

(
V⊥z

)
.

As before, we examine the integral I :=
∫
z∈Rd min {PA,V(z), ϕd(z)} dz for which we have the

following:

I =

∫
z∈Rd

min {PA,V(z), ϕd(z)} dz

=

∫
z∈Rd

min
{
A(Vz)ϕd−m

(
V⊥z

)
, ϕm (ProjV(z))ϕd−m (ProjV⊥(z))

}
dz

=

∫
z∈Rd

min
{
A(Vz)ϕd−m

(
V⊥z

)
, ϕm (Vz)ϕd−m

(
V⊥z

)}
dz

=

∫
z∈Rd

min
{
A(VR⊤z)ϕd−m

(
V⊥R⊤z

)
, ϕm

(
VR⊤z

)
ϕd−m

(
V⊥R⊤z

)}
dz

(by rotating space by R⊤)

=

∫
z∈Rd

min {A(z1, . . . , zm)ϕd−m (zm+1, . . . , zd) , ϕm (z1, . . . , zm)ϕd−m (zm+1, . . . , zd)}dz

(using the definition of matrices V,V⊥,R)

=

∫
(z1,...,zm)∈Rm

min {A(z1, . . . , zm), ϕm (z1, . . . , zm)} dz1 · · · dzm

=

∫
x∈Rm

min {A(x), ϕm (x)}dx (by renaming x = (z1, . . . , zm))

=

∫
x∈Rm

min

{
k∑

i=1

λiAi(x), ϕm (x)

}
dx (A =

∑
i∈[k] λiAi)

≤
k∑

i=1

∫
x∈Rm

min {λiAi(x), ϕm (x)}dx (using min(a+ b, c) ≤ min(a, c) + min(b, c))

≤ kmax
i∈[k]

∫
x∈Rm

min {Ai(x), ϕm (x)} dx , (23)

where the last step uses that λi ≤ 1. Now, Ai = N (µi, δIm) with ∥µi∥2 ≥ 0.9
√
m by Item (iv)

of Proposition 10 and δ is smaller than 1, thus we have that
∫
x∈Rm min {Ai(x), ϕm (x)} dx =

1−dTV(N (µi, δIm),N (0, Im)) ≤ 1−dTV(N (µi, Im),N (0, Im)). By a rotation argument similar
to what we did earlier, the contribution comes only from the error along the direction that connects
the origin to the point µi

1− dTV (N (µi, Im),N (0, Im)) = 1− dTV (N (∥µi∥2, 1),N (0, 1)) = erfc

(
∥µi∥2
2
√
2

)
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≤ erfc
(√

m/4
)
≤ 1

100k
,

where the last step requires m > C log(k), which is true since m = k2ϵ and we have assumed
kϵ > C

√
log k. Putting everything together and combining with the bound of Equation (23) we

conclude that dTV(PA,V,N (0, Id)) = 1−
∫
z∈Rd min {PA,V(z), ϕd(z)}dz ≥ 1−k/(100k) = 0.99.

Claim 8 In the setting of Proposition 10, it holds χ2(A,N (0, Im) ≤ δ−m/2eO(m).

Proof We first focus on a single component Ai, which is an isotropic Gaussian with mean µi =
(µi,1, . . . , µi,m) and variance δ. Because both Ai and the standard Gaussian are product distributions
in m dimensions, the integral in the definition of the χ2(Ai,N (0, Im) is separable and we can use
Fact 7 for each coordinate. Concretely, let ϕ denote the pdf of N (0, 1):

1 + χ2(Ai,N (0, Im)) =

∫
x∈Rm

A2
i (x)

ϕ(x1) · · ·ϕ(xm)
dx =

m∏
j=1

∫
xj∈R

1
2πδ exp

(
− (xj−µi,j)

2

δ

)
ϕ(xj)

dxj

=
m∏
j=1

(1 + χ2(N (µi,j , δ),N (0, 1)) =
1

(δ(2− δ))m/2
exp

(
∥µi∥22
2− δ

)
≤ δ−m/2e1.21m ,

where the last line uses that δ < 1 and ∥µi∥2 ≤ 1.1
√
m by Item (iv) of Proposition 9. Denote by wi

the weights in the mixture A =
∑k

i=1wiAi. Also, by using ϕm(x) to denote the pdf of N (0, Im)
we have that

1 + χ2(A,N (0, Im)) =
k∑

i=1

k∑
j=1

wiwj

∫
x∈Rm

Ai(x)Aj(x)

ϕm(x)
dx

≤
k∑

i=1

k∑
j=1

wiwj

√∫
x∈Rm

Ai(x)2

ϕ(x)
dx

∫
x∈Rm

Aj(x)2

ϕm(x)
dx

=
k∑

i=1

k∑
j=1

wiwj

√
(1 + χ2(Ai,N (0, Im))) (1 + χ2(Aj ,N (0, Im)))

≤ δ−m/2e1.21m
k∑

i=1

k∑
j=1

wiwj = δ−m/2e1.21m ,

where the second line uses Cauchy–Schwartz inequality, and the last line uses the upper bound for
1 + χ2(Ai,N (0, Im)) that we showed in the beginning.
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Appendix C. Omitted Proofs from Section 5

Lemma 12 (Moment Matching) There exists a discrete distribution D on Rm such that: (i) D is
supported on 2m points, (ii) D matches the first three moments with N (0, Im), and (iii) for every
pair of distinct points x,y in the support of D, it holds ∥x− y∥2 ≥

√
m.

Proof Let ei for i ∈ [m] denote the i-th vector of the standard basis of Rm, i.e., the vector having 1
in the i-th coordinate and zero everywhere else. Let the set of vectors S = {x1, . . . ,x2m} defined
as xi =

√
m/2 ei for i = 1, . . . ,m, and xi = −

√
m/2 ei−m for i = m+ 1, . . . , 2m.

It is easy to verify that D = U(S), the uniform distribution on these points, matches the first
three moments with N (0, Im): Let p be a polynomial of degree at most 3, i.e., p(x1, . . . , xm) =
xa1x

b
2x

c
3, with a+b+c ≤ 3 (without loss of generality, we assumed that the coordinates from [m] with

non-zero power are the first three). If either of a, b, c is equal to 1 or 3, then Ex∼U(S)[p(x)] = 0,
because we made S symmetric about the origin. This only leaves the case p(x1, . . . , xm) = x21,
where we have Ex∼U(S)[p(x)] = 1, because the first coordinate is equal to

√
m/2 and −

√
m/2

only for two points in S and zero for every other one. This completes the proof.

Lemma 13 Let C be a sufficiently large absolute constant. Let c ∈ (0, 1/4) and m, d ∈ N with
d > (1/c)C/c and m < dc/5/C. There exists a set S of 2Ω(d2c) matrices in Rm×d such that every
A ∈ S satisfies AA⊤ = Im and every pair A,A′ ∈ S with A ̸= A′ satisfies ∥A′A⊤∥op ≲
d−1/2+2c.

Proof We will use the following basic fact:

Fact 8 For any 0 < c < 1/2, there exists a set S′ of 2Ω(d2c) unit vectors in Rd, such that any pair
u,v ∈ S′ with u ̸= v satisfies |u⊤v| ≲ d−1/2+c.

Let S′ = {u1, . . . ,u|S′|} be the set of vectors from the fact above. Let S′′ be the set of matrices

{Bi}|S
′|/m

i=1 for where Bi is defined to have as rows the vectors uj for j = (i− 1) ·m+ 1, . . . i ·m.
Note that |S′|/m = 2Ω(d2c) for any d > (1/c)C/c where C is a sufficiently large constant. Finally,
let S be the set of matrices {Ai}|S

′|/m
i=1 where for each Bi ∈ S′′ we consider the Singular Value

Decomposition Bi = UiΣiV
⊤
i and we let Ai be the matrix obtained by replacing the diagonal

matrix Σi with identity (i.e., changing all singular values to 1). We will show that S is the set of
matrices satisfying the desideratum of Lemma 13.

In particular, we claim the following. Let C be a sufficiently large absolute constant, then:

(i) For every i ∈ |S′′|, all singular values of Bi belong in [1−Cm2d−1/2+c, 1+Cm2d−1/2+c].

(ii) For every i ∈ |S′′|, it holds ∥Ai −Bi∥F ≲ m2.5d−1/2+c.

(iii) For every i, j = 1, . . . , |S′′|, it holds ∥BiB
⊤
j ∥op ≲ m2d−1/2+c.

Given the above, the proof of Lemma 13 follows immediately by noting that

∥AiA
⊤
j ∥op = ∥(Bi +Ai −Bi)(Bj +Aj −Bj)

⊤∥op

≤ ∥BiB
⊤
j ∥op + ∥Bi(Aj −Bj)

⊤∥op + ∥(Ai −Bi)B
⊤
j ∥op + ∥(Ai −Bi)(Aj −Bj)

⊤∥op
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≤ ∥BiB
⊤
j ∥op + ∥Bi∥op∥Aj −Bj∥F + ∥B⊤

j ∥op∥Ai −Bi∥F + ∥Ai −Bi∥F∥Aj −Bj∥F

≲ m2d−1/2+c +m3d−1/2+c +m5d−1/4+2c

≲ d−1/2+2c ,

where the second line uses triangle inequality, the third line uses the sub-multiplicative property of
the operator norm , i.e., that ∥UV∥op ≤ ∥U∥op∥V∥op as well as the fact ∥V∥op ≤ ∥V∥F, the fourth
line uses our three claims (that we show later on) and the last line uses our assumption m ≪ dc/5.

We now prove the three claims. For Item (i), consider the matrix BiB
⊤
i (which is a square

m×m matrix). Using Fact 8, the sum of the absolute values of its non-diagonal entries is

R =
∑
k ̸=ℓ

|u⊤
(i−1)m+ku(i−1)m+ℓ| ≲ m2d−1/2+c .

The diagonal entries of BiB
⊤
i are all equal to one. Thus, by the Gershgorin’s disc theorem ??, every

eigenvalue of BiB
⊤
i , i.e., singular value of Bi, lies the interval [1−R, 1 +R].

For proving Item (ii), we note that

∥Ai −Bi∥F =

√√√√ m∑
k=1

(σk(Bi)− 1)2 ≤
√
m · (R− 1)2 ≲ m2.5d−1/2+c .

Finally, regarding Item (iii), for every i, j ∈ [|S′′|] with i ̸= j, we have that

∥BiB
⊤
j ∥op ≤ sup

z∈Sm−1

z⊤BiB
⊤
j z ≤ sup

z∈Sm−1

〈∑
k∈[m]

zku(i−1)m+k,
∑
ℓ∈[m]

zℓu(j−1)m+ℓ

〉

≤ sup
z∈Sm−1

∑
k,ℓ∈[m]

zkzℓ
〈
u(i−1)m+k,u(j−1)m+ℓ

〉
≲ d−1/2+c sup

z∈Sm−1

∑
k,ℓ∈[m]

zkzℓ ≲ m2d−1/2+c ,

where the last line uses Fact 8.

Given the above lematta, we can now conclude with the proof of Theorem 11.
Proof [Proof of Theorem 11] Let C be a sufficiently large constant. Let D be the distribution from
Lemma 12 with m := k/2 and A = UρD for δ = k−2.5/m/C, where Uρ denotes the Ornstein-
Uhlenbeck operator with parameter ρ. We choose ρ =

√
1− δ.

The above means that A is a mixture of k equally weighted spherical Gaussians in Rm, each with
variance δ in every direction. By Lemma 12, the mean separation is ρ·

√
k/2 =

√
1− k−2.5/k/C

√
k/2 ≥√

k/3 for any k ≥ 2.
The following can be shown by repeating mutatis-mutandis the same steps we followed while

proving Proposition 9:

1. The first 3 moments of A match with those of N (0, Im).

2. For every U,V ∈ Rm×d with UU⊤ = VV⊤ = Id and ∥UV⊤∥F = O(d−1/2+2c), it holds
dTV(PA,U, PA,V) > 0.99. Moreover, for all V ∈ Rm×d it holds dTV(PA,V,N (0, Id)) > 0.99.
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3. χ2(A,N (0, Im) ≤ eO(k).

Now by also following the same steps as in the proof of Theorem 7, but replacing Fact 1 by
Lemma 13, we obtain that every SQ algorithm for solving our hypothesis testing problem, either
needs 2Ω(d2c) queries or at least one query to

VSTAT(Ω(d2−8c)/χ2(A,N (0, Im))) .

We note that Ω(d2−8c)/χ2(A,N (0, Im)) ≥ Ω(d2−8c)e−O(k) ≥ Ω(d2−9c), where the last inequality
uses our assumption k < (c/C) log d. Also note that Lemma 13 was indeed applicable, since its
requirement m < dc/5/C is satisfied because we have m := k/2 < 0.5(c/C) log d < dc/5/C,
where the first inequality is one of our assumptions and the second follows by our other assumption
d > (1/c)C/c. This completes the proof of Theorem 11.

Appendix D. Lower Bounds for Low-Degree Polynomial Tests

Problem 18 Let a distribution A on Rm. For a matrix V ∈ Rm×d, we let PA,V be the distribution
as in Equation (1), i.e., the distribution that coincides with A on the subspace spanned by the rows
of V and is standard Gaussian in the orthogonal subspace. Let S be the set of nearly orthogonal
vectors from Fact 1. Let S = {PA,v}u∈S . We define the simple hypothesis testing problem where the
null hypothesis is N (0, Id) and the alternative hypothesis is PA,V for some V uniformly selected
from S.

We now describe the model in more detail. We will consider tests that are thresholded poly-
nomials of low-degree, i.e., output H1 if the value of the polynomial exceeds a threshold and H0

otherwise. We need the following notation and definitions. For a distribution D over X , we use D⊗n

to denote the joint distribution of n i.i.d. samples from D. For two functions f : X → R, g : X → R
and a distribution D, we use ⟨f, g⟩D to denote the inner product EX∼D[f(X)g(X)]. We use ∥f∥D
to denote

√
⟨f, f⟩D. We say that a polynomial f(x1, . . . , xn) : Rn×d → R has sample-wise degree

(r, ℓ) if each monomial uses at most ℓ different samples from x1, . . . , xn and uses degree at most
r for each of them. Let Cr,ℓ be linear space of all polynomials of sample-wise degree (r, ℓ) with
respect to the inner product defined above. For a function f : Rn×d → R, we use f≤r,ℓ to be
the orthogonal projection onto Cr,ℓ with respect to the inner product ⟨·, ·⟩D⊗n

0
. Finally, for the null

distribution D0 and a distribution P , define the likelihood ratio P
⊗n

(x) := P⊗n(x)/D⊗n
0 (x).

Definition 19 (n-sample τ -distinguisher) For the hypothesis testing problem between D0 (null
distribution) and D1 (alternate distribution) over X , we say that a function p : X n → R is an
n-sample τ -distinguisher if |EX∼D⊗n

0
[p(X)] − EX∼D⊗n

1
[p(X)]| ≥ τ

√
VarX∼D⊗n

0
[p(X)]. We

call τ the advantage of the polynomial p.

Note that if a function p has advantage τ , then the Chebyshev’s inequality implies that one can
furnish a test p′ : X n → {D0, D1} by thresholding p such that the probability of error under the
null distribution is at most O(1/τ2). We will think of the advantage τ as the proxy for the inverse of
the probability of error (see Theorem 4.3 in Kunisky et al. (2022) for a formalization of this intuition
under certain assumptions) and we will show that the advantage of all polynomials up to a certain
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degree is O(1). It can be shown that for hypothesis testing problems of the form of Problem 18, the
best possible advantage among all polynomials in Cr,ℓ is captured by the low-degree likelihood ratio
(see, e.g., Brennan et al. (2021); Kunisky et al. (2022)):∥∥∥∥ E

v∼U(S)

[(
P

⊗n
A,V

)≤r,ℓ
]
− 1

∥∥∥∥
D⊗n

0

,

where in our case D0 = N (0, Id).
To show that the low-degree likelihood ratio is small, we use the result from Brennan et al.

(2021) stating that a lower bound for the SQ dimension translates to an upper bound for the low-
degree likelihood ratio. Therefore, given that we have already established in previous section
that SD(B({PA,V}V∈S ,N (0, Id)), γ, β) = 2d

c
for γ = Ω(d)(t+1)/10χ2(A,N (0, Id)) and β =

χ2(A,N (0, 1)), we one can obtain the corollary:

Theorem 20 Let a sufficiently small positive constant c. Let the hypothesis testing problem of
Problem 18 the distribution A matches the first t moments with N (0, Im). For any d ∈ Z+ with
d = tΩ(1/c), any n ≤ Ω(d)(t+1)/10/χ2(A,N (0, Im)) and any even integer ℓ < dc, we have that∥∥∥∥ E

v∼U(S)

[(
P

⊗n
A,V

)≤∞,ℓ
]
− 1

∥∥∥∥
D⊗n

0

≤ 1 .

The interpretation of this result is that unless the number of samples used n is greater than
Ω(d)(t+1)/10/χ2(A,N (0, Im)), any polynomial of degree roughly up to dc fails to be a good test
(note that any polynomial of degree ℓ has sample-wise degree at most (ℓ, ℓ)).
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