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Abstract
In this paper, we consider the tensor-on-tensor association detection problem, where the goal is to
detect whether there is an association between the tensor responses to tensor covariates linked via
a low-rank tensor parameter. We first develop tight bounds on the signal-to-noise ratio (SNR) such
that the detection problem is statistically possible. We then provide testing procedures that succeed
when the SNR is above the threshold. On the other hand, the statistical optimal tests often require
computing the largest singular value of a given tensor, which can be NP-hard in general. To com-
plement that, we develop efficient polynomial-time testing procedures with provable guarantees.
We also develop matching lower bounds under the Statistical Query model and show that the SNRs
required by the proposed polynomial-time algorithms are essential for computational efficiency.
We identify a gap that appears between the SNR requirements of the optimal unconstrained-time
tests and polynomial-time tests if and only if the sum of the tensor response order and the tensor
covariate order is no less than three. To our best knowledge, this is the first complete characteriza-
tion of the statistical and computational limits for the general tensor-on-tensor association detection
problem. Our findings significantly generalize the results in the literature on signal detection in lin-
ear regression and low-rank matrix trace regression. Finally, the connection on the computational
hardness of the detection problem and the corresponding estimation problem is discussed.
Keywords: Hypothesis testing, minimax separation rate, computational separation rate, statistical
and computational gap, tensor

1. Introduction

The analysis of tensor or multiway array data has emerged as an active topic of research in machine
learning, statistics, applied mathematics, and signal processing. A general class of problems in
tensor learning aims to characterize the association between covariates and responses in the form of
scalars, vectors, matrices, or high-order tensors. These tasks can be incorporated in the following
tensor-on-tensor regression model (Lock, 2018; Raskutti et al., 2019):

Yi = 〈Xi,A〉∗ + Ei, i = 1, . . . , n. (1)

1. The authors are listed alphabetically.
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Here, Xi ∈ Rp1×···×pd , i = 1, . . . , n are the known order-d (or d-way) tensor covariates. Yi,Ei ∈
Rpd+1×···×pd+m are both order-m tensors and are observations and unknown noise, respectively.
A ∈ Rp1×···×pd×pd+1×···×pd+m is an order-(d + m) tensor parameter of interest. 〈·, ·〉∗ is the con-
tracted tensor inner product defined as 〈Xi,A〉∗ ∈ Rpd+1×···×pd+m ,

(〈Xi,A〉∗)[j1,...,jm] =

pl󰁛

kl=1,
l=1,...,d

Xi[k1,...,kd]A[k1,...,kd,j1,...,jm].

We also stack all responses and errors to Y , E ∈ Rpd+1×···×pd+m×n, where Y[:,...,:,i] = Yi

and E[:,...,:,i] = Ei. Then the tensor-on-tensor regression model can be written succinctly as
Y = X (A) + E , where X : Rp1×···×pd+m → Rpd+1×···×pd+m×n is a linear map such that

X (A)[:,...,:,i] = 〈Xi,A〉∗ for i = 1, . . . , n. (2)

Under different choices for covariate order d and response order m, the generic tensor-on-tensor
regression model covers many special regression models in the literature, such as

• Scalar-on-tensor regression (Zhou et al., 2013; Mu et al., 2014): m = 0, d ≥ 3;

• Tensor-on-vector regression (Li and Zhang, 2017; Sun and Li, 2017): d = 1,m ≥ 3;

• Scalar-on-matrix regression (or matrix trace regression) (Recht et al., 2010): m = 0, d = 2;

• Reduced-rank regression (Izenman, 1975; Reinsel and Velu, 2013): m = 1, d = 1.

There has been a surge of interest in estimating the model parameter A under the generative model
(1) (Lock, 2018; Raskutti et al., 2019; Llosa and Maitra, 2022; Luo and Zhang, 2022b; Gahrooei
et al., 2021; Liu et al., 2021). A natural question prior to estimating A is whether the signal A is
significant enough to detect, i.e., detecting whether A is zero or not. When m = 0 and d = 1 or
2, the statistical limits of the corresponding detection problems have been studied in Ingster et al.
(2010); Verzelen (2012); Arias-Castro et al. (2011) and Carpentier and Nickl (2015), respectively.
However, to our best knowledge, the tensor-on-tensor association detection problem with generic
choices of m and d is still largely unexplored in the literature.

In this paper, we aim to make a first attempt at this problem. Specifically, we focus on testing
whether the observed response tensors and covariate tensors are associated by a rank-one tensor:
i.e., given {Xi,Yi}ni=1, or equivalently (Y ,X ), generated from model (1), consider the hypothesis
testing problem

H0 : A = 0 versus H1 : A ∈ A (λ), (3)

where for λ > 0,

A (λ) = {λ′u1 ⊗ u2 ⊗ · · ·⊗ ud+m|λ′ ≥ λ,uj ∈ Spj−1 for j = 1, . . . , d+m}.

Here Sp−1 denotes the set of all unit vectors in Rp.
Following the existing literature on signal detection in linear regression and low-rank matrix

trace regression (Ingster et al., 2010; Verzelen, 2012; Arias-Castro et al., 2011; Carpentier and Nickl,
2015), we assume the design and the noise are independent Gaussian, i.e., Xi has i.i.d. N(0, 1)

2



TENSOR-ON-TENSOR ASSOCIATION DETECTION

entries and Ei has i.i.d. N(0,σ2) entries. As usual, our results can be extended to the sub-Gaussian
design and noise setting. Moreover, we assume σ is known.

Given any testing procedure φ : (Y ,X ) → {0, 1}, we define its risk as

R(φ) = P0(φ(Y ,X ) = 1) + sup
A∈A (λ)

PA(φ(Y ,X ) = 0),

where P0 is the probability under H0 and PA is the probability under H1 with the signal tensor
A. Given λ > 0, we say φ reliably detects in (3) if for any error tolerance α > 0, R(φ) ≤ α for
sufficiently large n and pjs.

In this work, we aim to study the statistical and computational limits of λ such that reliable
detection for (3) can be achieved by an unconstrained-time algorithm or a polynomial-time algo-
rithm. In particular, in studying the computational limits, we consider the class of Statistical Query
(SQ) algorithms (Kearns, 1998). Denote AllAlgD the class of unconstrained-time algorithms that
includes all testing procedures with unlimited computational resources and PolySQAlgD the class
of SQ testing algorithms that must finish in poly(q) time, where q is the size of the input. As
min{n, p1, . . . , pd+m} → ∞, we call λs the statistical separation rate of the testing problem (3) if

inf
φ∈AllAlgD

R(φ) → 0 when λ/λs → ∞ and inf
φ∈AllAlgD

R(φ) → 1 when λ/λs → 0.

Similarly, we call λc the computational separation rate of the testing problem (3) if

inf
φ∈PolySQAlgD

R(φ) → 0 when λ/λc → ∞ and inf
φ∈PolySQAlgD

R(φ) → 1 when λ/λc → 0.

1.1. Summary of Contributions

In this paper, we identify the statistical and computational separation rates for the generic tensor-
on-tensor association detection problem (3) with every pair of response order m and covariate order
d. See Table 1 for a summary of our results. To the best of our knowledge, this is the first complete
characterization of the statistical and computational limits for the general tensor-on-tensor associ-
ation detection problem. On the statistical side, we extend the statistical lower bounds in Ingster
et al. (2010); Carpentier and Nickl (2015) for m = 0, d = 1, and d = 2 cases to the general setting.
In the reduced-rank regression setting, i.e., m = 1, d = 1, to our knowledge, this is also the first
result on the corresponding detection problem despite its estimation problem has been widely stud-
ied (Izenman, 1975; Reinsel and Velu, 2013). In addition, we find that the statistical lower bounds
for m = 0, m = 1, and m ≥ 2 cases are all different and they require different proof techniques.
We also develop optimal tests which can achieve the corresponding statistical limits in all different
scenarios. These optimal statistical tests require computing the largest singular value of a given
tensor, which is in general computationally intractable (Hillar and Lim, 2013).

Next, we study the computational separation rates for tensor-on-tensor association detection.
We first develop efficient algorithms with optimal guarantees. These tests are based on computing
the moments and U-statistics of the parameter of interest. We also develop matching computational
lower bounds under the Statistical Query (SQ) framework (Kearns, 1998) to show that the SNRs
required by the proposed efficient algorithms are essential. When m and d are even orders, we also
provide the matching SQ upper bounds.

Table 1 shows there is a significant gap between the statistical and computational separation
rates if and only if d+m ≥ 3, i.e., in the setting Xis and Yis are associated by a tensor parameter
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λs/σ λc/σ Stat-Comp Gap
m = 0, d = 1

Θ
󰀓
p1/4√

n
∧ n−1/4

󰀔
Θ
󰀓
p1/4√

n
∧ n−1/4

󰀔 No
(Ingster et al., 2010)

m = 0, d = 2
Θ
󰀓󰁴

p
n ∧ n−1/4

󰀔
Θ
󰀓󰁴

p
n ∧ n−1/4

󰀔 No
(Carpentier and Nickl, 2015)

m = 0, d ≥ 3 Θ
󰀓󰁴

p
n ∧ n−1/4

󰀔
Θ

󰀕󰁴
pd/2

n ∧ n−1/4

󰀖
Yes

m = 1, d = 0 Θ
󰀓
p1/4√

n

󰀔
Θ
󰀓
p1/4√

n

󰀔
No

m = 1, d = 1 Θ
󰀃
( pn)

1/2 ∧ ( pn)
1/4

󰀄
Θ
󰀃
( pn)

1/2 ∧ ( pn)
1/4

󰀄
No

m = 1, d ≥ 2 Θ
󰀃
( pn)

1/2 ∧ ( pn)
1/4

󰀄
Θ

󰀕󰁴
p(d+1)/2

n ∧ ( pn)
1/4

󰀖
Yes

m = 2, d = 0 Θ
󰀓󰁴

p
n

󰀔
Θ
󰀓󰁴

p
n

󰀔
No

m = 2, d ≥ 1 or m ≥ 3 Θ
󰀓󰁴

p
n

󰀔
Θ

󰀕󰁴
p(d+m)/2

n ∧ (p
m

n )1/4
󰀖

Yes

Table 1: Summary of statistical and computational separation rates for the tensor-on-tensor asso-
ciation detection (3). For simplicity, we consider the setting p1 = · · · = pd+m = p and
n, p → ∞.

of order three or higher. This echo with a series of results in the literature that a statistical and com-
putational gap shows up in the high-order tensor problems (Richard and Montanari, 2014; Zhang
and Xia, 2018; Brennan and Bresler, 2020; Luo and Zhang, 2022a; Dudeja and Hsu, 2021; Han
et al., 2022a). But different from these existing works, we consider a supervised problem and both
the response and covariate tensors’ orders are relevant to the statistical-computational gap. It is also
worth noting that although the statistical separation rates for m = 0, m = 1, and m ≥ 2 cases
are different, the computational separation rates under these scenarios share the same expression
Θ
󰀓󰁳

p(d+m)/2/n ∧ (pm/n)1/4
󰀔

for every (m, d) pair.
Finally, on the technical side, we find truncation is critical in proving both sharp statistical and

computational lower bounds. In particular, we develop a new truncation strategy in applying the
second-moment method to show the sharp statistical lower bounds in the m = 1, d ≥ 1 case. The
new strategy involves truncating away a rare “bad” event depending on both covariates and the prior
on the parameter tensor. For the computational limits, we developed the first SQ lower bound for
truncated distribution. Specifically, we demonstrated that “large” χ2 correlations are rare events and
are dominated on average by the “small” ones in computing the statistical dimension.

1.2. Additional Related Work

The tensor-on-tensor association detection problem is also related to several other detection prob-
lems studied in the literature. For example, when m = 1 and d = 0, our problem is related to
the classic signal detection in the Gaussian sequence model (Ermakov, 1991; Ingster et al., 2003;
Baraud, 2002). The difference is that here we also have a scalar covariate in the model. Similarly,
when m ≥ 3, d = 0, our problem is closely related to the widely studied tensor PCA detection
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problem (Montanari et al., 2017; Perry et al., 2020; Jagannath et al., 2020; Kunisky et al., 2022;
Dudeja and Hsu, 2021; Brennan and Bresler, 2020; Brennan et al., 2021). Comparing to these re-
sults in the literature, we find that in both m = 1, d = 0 and m ≥ 3, d = 0 cases, the statistical
and computational separation rates do not change even after introducing an extra random scalar
covariate.

Statistical Query is a common framework for providing rigorous evidence for the computational
barriers in high-dimensional statistical problems (Feldman et al., 2017b; Diakonikolas et al., 2017,
2019; Feldman et al., 2018; Fan et al., 2018; Kannan and Vempala, 2017). The SQ model was in-
troduced by Kearns (1998) in the context of supervised learning as a natural restriction of the PAC
model and has been extensively studied in learning theory. A recent line of work Feldman et al.
(2017a); Feldman (2017b); Feldman et al. (2017b) generalized the SQ framework for search prob-
lems over distributions. The SQ lower bounds have also been established for several tensor-related
problems, such as tensor PCA (Dudeja and Hsu, 2021) and multi-sample hypergraphic planted
clique (Brennan et al., 2021).

2. Notation and Preliminaries

Let [r] = {1, . . . , r} for any positive integer r. Lowercase letters (e.g., a), lowercase boldface letters
(e.g., u), uppercase boldface letters (e.g., U), and boldface calligraphic letters (e.g., A) denote
scalars, vectors, matrices, and order-3-or-higher tensors, respectively. We use bracket subscripts to
denote sub-vectors, sub-matrices, and sub-tensors. For an order-d tensor, the Frobenius norm of

tensor A is defined as 󰀂A󰀂F =
󰀓󰁓

i1,...,id
A2

[i1,...,id]

󰀔1/2
. The mode-k product of A ∈ Rp1×···×pd

with a matrix B ∈ Rrk×pk , denoted by A×kB, is a p1×· · ·×pk−1×rk×pk+1×· · ·×pd-dimensional
tensor, and its definition is given as (A ×k B)[i1,...,ik−1,j,ik+1,...,id] =

󰁓pk
ik=1A[i1,i2,...,id]B[j,ik]. In

addition, we let A×d
k=1 Uk := A×1 U1 × · · ·×d Ud.

For any two sequences {an}, {bn}, we say an = o(bn) if limn→∞ an/bn = 0; we say an =
Θ(bn) if limn→∞ log(an)/ log(n) = log(bn)/ log(n); we say an ≳ bn if an ≥ Cbn for all n with
some large constant C, this C can depend on m, d or some other constants but it do not depend on n
and p. Given any real numbers a, b, denote a ∧ b = min{a, b} and a ∨ b = max{a, b}. Throughout
the paper, let c, C be some absolute constants and Cd, cd be constants that depend on d only, whose
actual values vary from line to line; cm, cd,m, cd,m,α are noted similarly.

The pairwise correlation of two distributions with probability density functions D1, D2 :
Rq → R+ = {u ∈ R : u ≥ 0} with respect to a distribution with density D : Rq → R+,
where the support of D contains the supports of D1 and D2, is defined as χD(D1, D2) :=󰁕
Rm D1(x)D2(x)/D(x)dx− 1. We remark that when D1 = D2, the pairwise correlation is identi-

fied with the χ2-divergence between D1 and D, i.e., χ2(D1, D) :=
󰁕
Rm D1(x)

2/D(x)dx− 1.

3. Statistical Lower Bounds

In this section, we provide statistical lower bounds of the tensor-on-tensor association detection
problem (3) separately for m = 0, m = 1, and m ≥ 2 cases as they are all different and require
distinct proof techniques. Since the results for m = 0, d = 1, or 2 have been established in Ingster
et al. (2010); Carpentier and Nickl (2015), we omit the proof here for simplicity. Throughout this
section, we let p = minj pj .
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Theorem 1 (Statistical Lower Bound (m = 0, d ≥ 2)) If λ/σ = o((p/n)1/2 ∧ n−1/4), we have
limn,p→∞ infφR(φ) = 1.

Theorem 2 (Statistical Lower Bound (m = 1))

• (d = 0) If λ = o(p1/4/
√
n), we have limn,p→∞ infφR(φ) = 1.

• (d ≥ 1) If λ = o((p/n)1/2 ∧ (p/n)1/4), we have limn,p→∞ infφR(φ) = 1.

Theorem 3 (Statistical Lower Bound (m ≥ 2)) If λ/σ = o((p/n)1/2), then
limn,p→∞ infφR(φ) = 1.

Remark 4 (Truncated Second Moment Method) We prove the statistical lower bounds by reduc-
ing the minimax testing risk to a Bayesian testing risk with a uniform prior over the set of param-
eters. Typically, to show the lower bound, one studies the second moment of the likelihood ratio
under the null and proves it tends to 1 when the SNR is below the threshold. However, the second
moment of the likelihood ratio can be dominated by an extremely rare “bad” event, causing it to be
unbounded. In our problem, such bad events exist when proving the lower bounds in the m ≥ 1 and
large λ settings while do not exist in the m = 0 setting considered in Ingster et al. (2010); Carpen-
tier and Nickl (2015). To tackle this challenge, we apply the truncated second-moment technique
(Butucea and Ingster, 2013; Arias-Castro and Verzelen, 2014; Perry et al., 2020) to peel away a
rare “bad” event in computing the second moment of the likelihood ratio and show the truncated
version tends to 1. When m = 1, d = 0 or m ≥ 2, we are able to prove sharp statistical lower
bounds by peeling away a rare bad event depending on the covariates tensor only. While in the
m = 1, d ≥ 1 setting, the existing truncation strategy fails; to obtain a sharp lower bound, we
perform truncation on both the covariates and the prior on the tensor parameter. To our knowledge,
such a truncation strategy on both covariates and the prior on parameters is new. We provide a
proof sketch for Theorem 2 in Section 7 to illustrate this new truncation strategy.

4. Statistical and Computational Upper Bounds

In this section, we introduce the testing procedures that achieve the statistical and computational
upper bounds. We first introduce two search statistics that will be critical in developing the statistical
optimal tests. Let

T1 = sup
vj∈Spj−1,j=1,...,d+m

X ∗(Y)×1 v
⊤
1 × · · ·×d+m v⊤

d+m;

T2 = sup
vj∈Spd+j−1,j=1,...,m,vm+1∈Sn−1

Y ×1 v
⊤
1 × · · ·×m v⊤

m ×m+1 v
⊤
m+1.

Here X ∗ : Rpd+1×···×pd+m×n → Rp1×···×pd+m denotes the adjoint operator of X , i.e., X ∗(Y) :=󰁓n
i=1Y[:,...,:,i] ⊗Xi.
Based on T1 and T2, we introduce the following two testing procedures. Given any pre-specified

error tolerance α > 0, define

• φ1(Y ,X ) = 1

󰀕
T1 ≥ Z1α

󰁴
n(
󰁓d+m

j=1 pj)

󰀖
;
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• φ2(Y ,X ) = 1

󰀕
T2 ≥ Z2α

󰁴
n+

󰁓d+m
j=d+1 pj

󰀖
,

where Z1α, Z2α are some sufficiently large constants that depend only α. Next, we provide guaran-
tees for these testing procedures separately.

Theorem 5 (Guarantee of φ1) Suppose n ≳ (
󰁓d+m

j=1 pj). Then for sufficiently large Z1α, if

λ/σ > 4Z1α

󰁴
(
󰁓d+m

j=1 pj)/n, we have R(φ1) ≤ α.

Theorem 6 (Guarantee of φ2) Suppose n ≳ 1. Then for sufficiently large Z2α, if λ/σ >

2
√
2Z2α

󰁴
1 +

󰁓d+m
j=d+1

pj
n , we have R(φ2) ≤ α.

We note that the test φ1 utilizes the information on Y only while test φ2 utilizes the informa-
tion on the interaction between Yis and Xis. We will see later that each of them individually is
suboptimal; but the combination of them, φ1 ∨ φ2, achieves the statistical upper bound.

On the other hand, when d+m ≥ 3 (or m+1 ≥ 3), the statistic T1 (or T2) relies on computing
the leading singular value of the tensor X ∗(Y) (or Y), for which is NP-hard in general (Hillar and
Lim, 2013). Thus, computing φ1 or φ2 can be computationally infeasible. This motivates us to
develop the following two computationally efficient tests analogous to φ1 and φ2:

• φ3(Y ,X ) = 1(T3 ≥ Z3α/
󰁴

n
󰁔d+m

j=d+1 pj), where T3 =
󰁓n

i=1 󰀂Yi󰀂2F/(n
󰁔d+m

j=d+1 pj)− 1;

• φ4(Y ,X ) = 1
󰀓
T4 ≥ Z4α(

󰁔d+m
j=1 pj)

1/2/n
󰀔

, where T4 =
2

n(n−1)

󰁓
1≤i<j≤n〈Yi⊗Xi,Yj⊗

Xj〉.

Here the Kronecker product “⊗” between two tensors satisfies (Yi ⊗ Xi)[z1,··· ,zd+m] =
Yi[zd+1,··· ,zd+m]Xi[z1,··· ,zd].

We note that T3 can be viewed as a moment estimator for λ2 and T4 is a H0-centered U-statistic
for estimating the tensor parameter A. Next, we provide guarantees for testing procedures φ3 and
φ4.

Theorem 7 (Guarantee of φ3) Suppose n ≳ 1. Then for sufficiently large Z3α, if λ/σ >
8Z3α((

󰁔d+m
j=d+1 pj)/n)

1/4, we have R(φ3) ≤ α.

Theorem 8 (Guarantee of φ4) Suppose n ≳ (
󰁔d

j=1 pj)
1/2. Then for sufficiently large Z4α, if

λ/σ >
󰁴

2Z4α(
󰁔d+m

j=1 pj)1/2/n, we have R(φ4) ≤ α.

The testing procedure φ4(Y ,X ) has appeared in the literature for solving the detection prob-
lems in the linear regression and low-rank matrix trace regression (Ingster et al., 2010; Carpentier
and Nickl, 2015), but analyzing φ4(Y ,X ) in tensor-on-tensor association detection is much more
involved as the response Yi here is a tensor with highly correlated entries. In addition, it is crucial
to emphasize the significance of leveraging the tensor structure present in Yi. Tests that treat each
entry separately often result in reduced power for hypothesis testing. Specifically, tests φ1,φ2,φ4

effectively utilize the tensor structure of Yi and remain invariant to shuffling the entries within Yi.
On the other hand, test φ3 maintains validity when considering each entry of Yi independently, but
it alone may provide suboptimal results.

Next, we show that combinations of tests φ1-φ4 can achieve the statistical and computational
upper bounds listed in Table 1. In the following, we assume n ≳ 1.
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Corollary 9 (Optimal Unconstrained-time and Polynomial-time Tests for m = 0, d ≥ 3) (1) If
λ/σ ≳ ((

󰁓d+1
j=1 pj/n)

1/2 ∧ n−1/4), the unconstrained-time test φ1 ∨ φ2 ∨ φ3 satisfies R(φ1 ∨ φ2 ∨
φ3) ≤ α; (2) if λ/σ ≳

󰀓
n−1/4 ∧ ((

󰁔d
j=1 pj)

1/2/n)1/2
󰀔

, the polynomial-time test φ3 ∨ φ4 satisfies
R(φ3 ∨ φ4) ≤ α.

Corollary 10 (Optimal Test for m = 1, d = 0) If λ/σ ≳
󰁴

p
1/2
1 /n, R(φ4) ≤ α.

Corollary 11 (Optimal Test for m = 1, d = 1) If λ/σ ≳ (((p1p2)
1/2/n)1/2∧(p2/n)1/4), R(φ3∨

φ4) ≤ α.

Corollary 12 (Optimal Unconstrained-time and Polynomial-time Tests for m = 1, d ≥ 2) (1)
If λ/σ ≳ ((

󰁓d+1
j=1 pj/n)

1/2 ∧ (pd+1/n)
1/4), we have the unconstrained-time test φ1 ∨ φ2 ∨ φ3

satisfies R(φ1 ∨ φ2 ∨ φ3) ≤ α; (2) if λ/σ ≳
󰀕
(pd+1/n)

1/4 ∧
󰁴

(
󰁔d+1

j=1 pj)
1/2/n

󰀖
, we have the

polynomial-time test φ3 ∨ φ4 satisfies R(φ3 ∨ φ4) ≤ α.

Corollary 13 (Optimal Test for m = 2, d = 0) If λ/σ ≳
󰁳

(p1p2)1/2/n, we have the
polynomial-time test φ4 satisfies R(φ4) ≤ α.

Corollary 14 (Optimal Unconstrained-time and Polynomial-time Tests for m ≥ 2, d ≥ 1 or m ≥ 3)
(1) If λ/σ ≳

󰁴
(
󰁓d+m

j=1 pj)/n, the unconstrained-time test φ1 ∨ φ2 satisfies R(φ1 ∨ φ2) ≤ α;

(2) if λ/σ ≳
󰀕
((
󰁔d+m

j=d+1 pj)/n)
1/4 ∧

󰁴
(
󰁔d+m

j=1 pj)1/2/n

󰀖
, the polynomial-time test φ3 ∨ φ4 sat-

isfies R(φ3 ∨ φ4) ≤ α.

For readers’ convenience, we provide a summary of statistically and computationally optimal
testing procedures for different (m, d) pairs in Table 2. From Corollaries 9, 12 and 14, we can see
that the efficient test procedures we develop here require a strictly stronger SNR than the statistical
optimal tests to solve the tensor-on-tensor association detection problem if and only if d+m ≥ 3.

5. Statistical Query Lower and Upper Bounds

5.1. Statistical Query Lower Bound

In this section, we demonstrate that the stronger SNRs required by the proposed polynomial-time
tests when d+m ≥ 3 are also required by a fairly broad class of Statistical Query (SQ) algorithms.
We start by providing some preliminaries.

Definition 15 (Decision Problem over Distributions) We denote by B(D, D) the decision (or hy-
pothesis testing) problem in which the input distribution D′ is promised to satisfy either (a) D′ = D
or (b) D′ ∈ D, and the goal of the algorithm is to distinguish between these two cases.

We define SQ algorithms as algorithms that do not have direct access to samples from the
distribution but instead have access to an SQ oracle. We consider the following standard oracle.

8
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Statistically Optimal Test Computationally Optimal Test
m = 0, d ≥ 3 φ1 ∨ φ2 ∨ φ3 φ3 ∨ φ4

m = 1, d = 0 φ4 φ4

m = 1, d = 1 φ3 ∨ φ4 φ3 ∨ φ4

m = 1, d ≥ 2 φ1 ∨ φ2 ∨ φ3 φ3 ∨ φ4

m = 2, d = 0 φ4 φ4

m = 2, d ≥ 1 or m ≥ 3 φ1 ∨ φ2 φ3 ∨ φ4

Table 2: Summary of optimal testing procedures for different (m, d) pairs. In the Statistically
Optimal Test column, we provide the optimal unconstrained-time testing procedures that
achieve the statistical upper bounds and in the Computationally Optimal Test column, we
provide the optimal polynomial-time testing procedures (supported by matching SQ lower
bounds given in Section 5) that achieve the computational upper bounds.

Definition 16 (VSTAT Oracle) Let D be a distribution over a domain X . For a sample size
parameter n > 0 and any bounded function f : Rq → [0, 1], VSTAT(n) returns a value v ∈
[Ex∼D[f(x)]− τ,Ex∼D[f(x)] + τ ], where τ = max{ 1

n ,

󰁴
Ex∼D[f(x)](1−Ex∼D[f(x)]

n }.

One can prove lower bounds on the complexity of SQ algorithms via an appropriate notion
of Statistical dimension. Such a complexity measure was introduced in Blum et al. (1994) for PAC
learning of Boolean functions and has been generalized to the unsupervised setting in Feldman et al.
(2017a); Feldman (2017b). For technical reasons to be mentioned in Remark 22, here we use the
definition of statistical dimension from Brennan et al. (2021).

Definition 17 (Statistical Dimension) Suppose the distributions in D are indexed by u ∈ U . Let
µ be a uniform distribution on U . The statistical dimension SDA(n) for the B(D, D) is defined as
follows:

SDA(n) = max{q ∈ N : Eu,v∼µ

󰀅
|χD0(Du, Dv)− 1|

󰀏󰀏E
󰀆
≤ 1

n
for all events E s.t. Pu,v∼µ[E ] ≥

1

q2
}.

If one can bound below the SDA of the given problem, then it implies an unconditional lower
bound on the complexity of any SQ algorithm for the problem using the following standard result.

Lemma 18 (Theroem 1.3 in Brennan et al. (2021) and Theorem 2.7 in Feldman et al. (2017a))
Let B(D, D) be a decision problem, where D is the reference distribution and D is a class of dis-

tributions. Any SQ algorithm for solving B requires at least SDA(n) queries to the VSTAT(1/3n)
oracle.

Next, we provide a lower bound on the SQ dimension for the tensor-on-tensor association de-
tection problem.

Theorem 19 (Statistical Query Lower Bound) Given any 0 < 󰂃 < 1/4 and sufficiently large p.
Suppose λ/σ ≤ 1/2 for m = 0, λ/σ ≤ c1p

1/4−󰂃 for m = 1 and λ/σ ≤ c1p
1/2−2󰂃 for m ≥ 2 with

9
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sufficiently small constant c1 > 0. Then if n ≤ c2((σ/λ)
2p(1/2−2󰂃)(d+m) + (σ/λ)4p(1−4󰂃)m) for

some sufficiently small constant c2 > 0, we have the statistical query dimension of tensor-on-tensor
association detection problem is at least exp(cp2󰂃) for some c > 0.

By Lemma 18 and the interpretation for the VSTAT oracle, Theorem 19 shows that for any
0 < 󰂃 < 1

4 , if n ≤ c2((σ/λ)
2p(1/2−2󰂃)(d+m) + (σ/λ)4p(1−4󰂃)m), then we need at least super

polynomial many queries to solve the tensor-on-tensor association detection problem via the SQ
algorithm. Since the number of queries is a proxy for runtime, this is equivalent to say efficient

SQ algorithms require SNR at least λ/σ ≥ C
󰀓󰁴

p(d+m)/2/n ∧ (pm/n)1/4
󰀔

. Finally, our SQ
lower bound also implies a computational lower bound for the detection problem restricted to the
class of low-degree polynomial algorithms based on the recent work Brennan et al. (2021). For
completeness, we provide details in Appendix A.

Remark 20 (Optimality of the SQ Lower Bound) Our SQ lower bound is proved under the SNR
condition λ/σ ≤ 1/2 for m = 0, λ/σ ≤ c1p

1/4−󰂃 for m = 1 and λ/σ ≤ c1p
1/2−2󰂃 for m ≥ 2.

This is the best we can hope for as when λ ≫ 1, λ ≫ p1/4 and λ ≫ p1/2 for m = 0, m = 1 and
m = 2, respectively, we can query the statistical optimal test given in Table 2 via VSTAT(4), then SQ
can solve the detection problem with only O(1) samples as suggested in statistical separation rates
given in Table 1, while these test can not be computed efficiently in general as we have mentioned
in Section 5.2. Such a restriction (also termed “one-shot problem” versus “multi-sample problem”
issue in Brennan et al. (2021)) has also appeared when we try to prove SQ lower bounds for planted
clique and tensor PCA problems (Brennan et al., 2021) for the same reason that when the SNR is
large, SQ algorithms can query a high-degree function and solve the problem with only one sample,
but that high-degree function can not be computed efficiently.

Remark 21 (Proof Techniques) To prove the sharp SQ lower bound, we again apply truncation
technique. This choice is motivated by the fact that the pairwise correlation between different dis-
tributions tends to escalate rapidly for large values of λ. To our best knowledge, this work is the
first SQ lower bound specifically designed for truncated distributions. To bound the statistical di-
mension, we embark on a two-step process. Initially, we identify the set that attains the largest
SDA and subsequently illustrate that occurrences of “large” χ2 correlations are infrequent and are
predominantly overshadowed by the prevalence of “smaller” correlations on average. We believe
that these techniques can be adapted and applied effectively in other contexts, particularly when
instances of pairwise correlation intermittently exhibit substantial amplification.

Remark 22 (Comparisons on Different Statistical Dimensions) We also investigated a more
straightforward way to show SQ lower bounds via other statistical dimension notions based on
the averaged pairwise correlation or pairwise correlation, as suggested in the seminal paper Feld-
man et al. (2017a). However, we succeeded in proving the sharp SQ lower bound only when
λ/σ = O(Poly(log p)), which is strictly suboptimal compared to the ones in Theorem 19 when
m ≥ 1. It is interesting to explore whether there is some gap between the notion of statistical
dimension in Definition 17 and the ones in Feldman et al. (2017a). For readers’ reference, in Ap-
pendix B, we provide a simpler proof for the SQ lower bound based on pairwise correlation when
λ/σ ≤ 1/2.

10
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5.2. Statistical Query Upper Bound

In this section, we assume d and m are even numbers and the class of tensor parameters of interest
has the form A = {λu⊗(d+m),u ∈ Sp−1}. Then we show that we can provide a matching SQ
upper bound for the corresponding tensor-on-tensor association detection problem.

In showing the SQ upper bound, we will use the following two statistics:

• T5(Y1,X1) =
󰁓p

j1,...,jm=1Y2
1[j1,...,jm];

• T6(Y1,X1) =
󰁓p

j1,...,j d+m
2

=1(Y1 ⊗X1)[j1,j1,j2,j2,...,j d+m
2

,j d+m
2

].

Notice that T5(Y1,X1) and T6(Y1,X1) are one-sample versions of statistics T3 and T4. The target
quantity we would like to estimate via the SQ algorithm is φ5 ∨ φ6, where

φ5 = 1(T5(Y1,X1) ≥ pm + λ2/2) and φ6 = 1(T6(Y1,X1) ≥ λ/2).

Then we have the following guarantee on the SQ upper bound.

Theorem 23 (Statistical Query Upper Bound) Suppose

n = C

󰀣󰀣
σ2p(d+m)/2

λ2
∧ σ4pm

λ4

󰀤
∨ 1

󰀤
log2 n (4)

for large C > 0.Then there exists a statistical query algorithm that distinguishes H0 from H1

by estimating φ5 ∨ φ6 with O(log(nB/(λ2 ∧ λ4))) number of queries to VSTAT(n), where B :=
max(2λ2 + pd/2λ2 + p(d+m)/2, 2p2m + 2pmλ2 + 4λ2 + 3λ4).

Theorem 23 shows that when d and m are even and A = λu⊗(d+m) for some u ∈ Sp−1, there
exists an efficient SQ algorithm for solving the tensor-on-tensor association detection problem (3)
if λ/σ = Θ

󰀓󰁳
p(d+m)/2/n ∧ (pm/n)1/4

󰀔
.

Remark 24 We note the current SQ lower and upper bounds are only matched in the special setting
considered in this section. When d or m are not even, we conjecture the actual SQ lower and upper
bounds might be slightly higher than the one in (4), even though we believe the computational
separate rates given in Table 1 are still correct, i.e., SQ algorithms are suboptimal when d or m are
not even. Similar issues have also appeared when we try to provide tight SQ lower and upper bounds
for tensor PCA, where Dudeja and Hsu (2021) showed that SQ algorithms require an unnecessarily
larger SNR when the tensor order is odd and provided a matching SQ lower bound based on the
Fourier analytic approach (Feldman et al., 2018; Li et al., 2019).

5.3. Connection of Detection and Estimation

In this section, we establish a connection between the testing problem (3) and its corresponding
estimation problem, which revolves around the estimation of A. We aim to investigate how and
under what conditions we can effectively estimate A. Typically, the computational hardness of an
estimation problem is studied by examining the computational hardness of its corresponding testing
problem. However, in the case of hypothesis testing problem (3), we find that it is actually easier
than the corresponding estimation problem. As the noise level σ approaches zero, the hypothesis

11
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testing problem (3) becomes trivial, while the estimation problem remains highly nontrivial. This
disparity arises due to the varying entrywise variances of Y under the null and alternative hypothe-
ses, which allows simple tests to succeed.

Given this intriguing observation, it becomes compelling to explore the computational limits
when we match the first two moments of the null and alternative distributions. How does this
modification impact the computational complexity? In the subsequent discussion, we present an SQ
lower bound for a variant of the testing problem (3) where the first two moments of Y are matched,
specifically considering the case when m = 0.

Without loss of generality, we assume σ2 ∈ [0, 1) (see Appendix E.3 for an explanation) and
consider the following hypothesis testing problem for m = 0:

H0 : (Xi, yi)
n
i=1

i.i.d.∼ (N(0, 1)⊗p⊗d
, N(0, 1))

H1 : (Xi, yi)
n
i=1

i.i.d.∼ yi = 〈A,Xi〉+ εi, with A = a⊗d, 󰀂A󰀂2F = 1− σ2,a ∈ Rp, and εi
i.i.d.∼ N(0,σ2).

(5)

Note that for the testing problem in (5), the first and second moments of yis under null and alterna-
tive are matched. Then we have the following SQ lower bound.

Theorem 25 (SQ Hardness for (5)) For any 0 < 󰂃 < 1
2 , any SQ algorithm with VSTAT(n)

oracle distinguishing H0 and H1 in (5) needs either 2Ω(p󰂃) number of queries or requires a query
with n ≥ C

󰀓
󰀂A󰀂2F+σ2

󰀂A󰀂2F
pd(1/2−󰂃)

󰀔
for some C > 0.

We also have the following matching SQ upper bound when d is even.

Theorem 26 (SQ Upper Bound for (5)) Suppose n󰀂A󰀂2F/
󰀃
(󰀂A󰀂2F + σ2)pd/2 log2(n)

󰀄
→ ∞.

Then there exists a statistical query algorithm that distinguishes H0 and H1 in (5) with vanish-
ing type I+II error by estimating T6(y1,X1) :=

󰁓
j1,...,jd/2∈[p](y1X1)[j1,j1,j2,j2,...,jd/2,jd/2] with

O(log(nB log2 n)) number of queries to VSTAT(n), where B = pd/2 + 2(1− σ2).

Notably, the computational lower bound of the sample complexity predicted by the SQ argu-
ment for solving (5) matches the existing upper bound of efficient algorithms for the corresponding
estimation problem, as demonstrated in (Zhang et al., 2020; Han et al., 2022b; Luo and Zhang,
2021). This alignment between the predicted lower bound and the existing upper bounds provides
further support for the validity and accuracy of the SQ argument.

When comparing the sample complexities of the SQ lower bounds for two testing problems,
namely (3) with m = 0 and (5), we observe a significant increase in the required sample complexity.
Specifically, the sample complexity for (3) is on the order of Θ(p

d/2σ2

󰀂A󰀂2F
∧ σ4

󰀂A󰀂4F
), while for (5), it

becomes Θ(
󰀂A󰀂2F+σ2

󰀂A󰀂2F
pd/2).

When m ≥ 1, the situation becomes more intricate since the variances of each entry in the tensor
response differ, making it challenging to determine which null hypothesis should be considered. As
a result, we leave this aspect as a topic for future exploration and investigation.

6. Conclusion and Discussions

In this work, we study the tensor-on-tensor association detection problem and provide the first
complete characterization of the statistical and computational separation rates for it with all different
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(m, d) pairs. We show a gap between the statistical and computational separation rates appears if
and only if d + m ≥ 3. These results significantly extend the results in the literature on signal
detection in linear regression and low-rank matrix trace regression.

7. A Proof Sketch for Theorem 2

Preliminaries. To prove the statistical lower bound for a hypothesis testing problem, such as the
one in (3), a common strategy is to first reduce it to a Bayesian hypothesis testing problem, then
apply the classic Neyman-Pearson Lemma.

Lemma 27 (Neyman-Pearson Lemma, e.g. see Theorem 6.1 in Shao (2006)) Let µ be a proba-
bility measure on A , and let {PA : A ∈ A } be a family of probability measures indexed by
A ∈ A on the domain X . Then, for any probability measure P0 on X ,

inf
φ

󰀕
P0(φ = 1) + sup

A∈A
PA(φ = 0)

󰀖
≥ 1− TV(Pµ,P0),

where Pµ the mixture probability measure Pµ =
󰁕
A PAµ(dA) and infφ is the infimum over all

{0, 1}-valued statistics.

Oftentimes, working directly with TV distance can be hard and a common strategy is to further
bound it by the χ2-divergence:

2TV(Pµ,P0) = EP0(|Dµ/D0 − 1|) ≤
󰀃
EP0

󰀃
(Dµ/D0 − 1)2

󰀄󰀄1/2
=

󰁴
χ2(Dµ, D0), (6)

where Dµ and D0 denote the density function of Pµ and P0, respectively. Thus, we can see it
suffices to choose a suitable measure µ on A to bound χ2(Dµ, D0) by a small enough value in order
to obtain a desirable lower bound on the minimax risk. Since χ2(Dµ, D0) + 1 = EP0

󰀃
(Dµ/D0)

2
󰀄
,

the second moment of the likelihood ratio under the null, this strategy is also called “second-moment
method” in the literature.

For proving our lower bound, we consider the special parameter space A = {A : A = λu1 ⊗
· · · ⊗ ud+m,u1, . . . ,ud+m ∈ Sp−1}. Moreover, without loss of generality, we assume the noise
tensor has i.i.d. N(0, 1) entries. This is because σ is assumed to be known, we can rescale the data
by dividing σ and replace λ by λ/σ in the end.

Naive second-order moment method fails even in m = 1, d = 0. In m = 1, d = 0, we
have yi = axi + ei for i ∈ [n], or compactly Y = ax⊤ + E ∈ Rp×n, where a = λu and
x = (x1, . . . , xn)

⊤. Let C := {u ∈ Rp : ui ∈ {1/√p,−1/
√
p}, i ∈ [p]}, a natural prior, µ, on

the parameter space would be a = λu where u is generated uniformly at random from C. Then by
Lemma 38 Eq. (47) in Appendix F, we have

χ2(Dµ, D0) = Eu,v∼Unif[C]
󰀃
Ex(exp(λ

2〈u,v〉󰀂x󰀂22))
󰀄

= Eu,v∼Unif[C]

󰀕󰁝
1

(2π)n/2
exp((λ2〈u,v〉 − 1

2
)󰀂x󰀂22)dx1 · · · dxn

󰀖
.

Notice that the inner expectation Ex(exp(λ
2〈u,v〉󰀂x󰀂22)) is infinite if λ2〈u,v〉 > 1/2. To avoid

this, we peel away a rare “bad” event when 󰀂x󰀂22 is large. By the property of TV distance, truncating

13



DIAKONIKOLAS KANE LUO ZHANG

away a rare event only affects TV(Pµ,P0) by o(1). In this example, we let the good event be
A := {|󰀂x󰀂22 − n| < n/2}. By the concentration of χ2

n, we know the “bad” event Ac happens with
probability at most exp(−cn) for some c > 0. Finally, condition on the good event A, we are able
to show χ2(Dµ, D0) = o(1) when λ = o(p1/4/

√
n) and the conclusion follows by (6).

Truncation on both covariate and prior is needed when m = 1, d ≥ 1. In this setting, we
first show that to prove the lower bound in m = 1, d ≥ 1, it is enough to show it for the special
m = 1, d = 1 case, i.e., yi = λ〈xi,u1〉u2 + ei for i = 1, . . . , n or compactly Y = λu2u

⊤
1 X

⊤ +
E ∈ Rp×n. A natural prior on the parameter space would be A = λu1u

⊤
2 , where u1 and u2 are

independently drawn from Unif[C]. Similar to the m = 1, d = 0 case, we find a bad event exists
here as well. Moreover, since the xis and u1 are entangled together, we need to truncate away a bad
event depending jointly on X and u1. Specifically, we find a proper good event is the following:

A = A1

󰁟
A2 = {X,u1 : 󰀂X⊤X󰀂2F ≤ C1(n ∨ p)2(n ∧ p), 󰀂X󰀂 ≤ C2

√
n ∨ p, 󰀂Xu1󰀂2 ≤ C3

√
n},

where A1 = {X : 󰀂X⊤X󰀂2F ≤ C1(n∨p)2(n∧p), 󰀂X󰀂 ≤ C2
√
n ∨ p}, A2 := {󰀂Xu1󰀂2 ≤ C3

√
n}

and C1, C2, C3 are some sufficiently large constants. Here the motivation of this good event comes
from the latter part analysis when we apply the Hansen-Wright inequality. By the concentration
theory for random matrices, we have A happens with probability at least 1 − exp(−c(n ∧ p)). By
Jensen’s inequality and (6), we are able to show

TV(Pµ,P0)

≤

󰁹󰁸󰁸󰁷1

4

󰀣
EX

󰀥
1A1

󰀣
1 +

󰁝 exp Cn2λ4

p

1
Pu1

󰀃
|u⊤

1 X
⊤Xu1| ≥ ∆

󰀄
dz

󰀤󰀦
− PX,u1(A)

󰀤
+ exp(−c(n ∧ p)),

where ∆ :=
󰁳

p log z/(cλ4). Next, we apply the Hansen-Wright inequality

Pu1∼Unif[C]

󰀓
|u⊤

1 X
⊤Xu1| ≥ ∆

󰀔
≤ exp

󰀕
−c(

∆2p2

󰀂X⊤X󰀂2F
∧ ∆p

󰀂X⊤X󰀂)
󰀖

and with this we can show condition on event A1, when λ = o((p/n)1/2 ∧ (p/n)1/4), we have

󰁝 exp Cn2λ4

p

1
Pu1∼Unif[C]

󰀣
|u⊤

1 X
⊤Xu1| ≥

󰁵
p log z

cλ4

󰀤
dz = o(1).

This further implies TV(Pµ,P0) = o(1) as PX(A1) → 1,PX,u1∼Unif[C](A) → 1 as n, p → ∞.

Acknowledgments

I. Diakonikolas is supported by NSF Medium Award CCF-2107079, NSF Award CCF-1652862
(CAREER), a Sloan Research Fellowship, and a DARPA Learning with Less Labels (LwLL) grant;
D. M. Kane is supported by NSF Award CCF-1553288 (CAREER) and a Sloan Research Fellow-
ship; A.R. Zhang and Y. Luo are in part supported by NSF Award DMS-220374 (CAREER). This
work was started while the authors were visiting the Simons Institute and the authors would like to
thank the institute for its hospitality and support. Y. Luo would like to thank Chao Gao for helpful
discussions during the project.

14



TENSOR-ON-TENSOR ASSOCIATION DETECTION

References

Ery Arias-Castro and Nicolas Verzelen. Community detection in dense random networks. The
Annals of Statistics, 42(3):940–969, 2014.

Ery Arias-Castro, Emmanuel J Candès, and Yaniv Plan. Global testing under sparse alternatives:
Anova, multiple comparisons and the higher criticism. The Annals of Statistics, 39(5):2533–2556,
2011.

Yannick Baraud. Non-asymptotic minimax rates of testing in signal detection. Bernoulli, pages
577–606, 2002.

Avrim Blum, Merrick Furst, Jeffrey Jackson, Michael Kearns, Yishay Mansour, and Steven Rudich.
Weakly learning dnf and characterizing statistical query learning using fourier analysis. In Pro-
ceedings of the twenty-sixth annual ACM symposium on Theory of computing, pages 253–262,
1994.

Matthew Brennan and Guy Bresler. Reducibility and statistical-computational gaps from secret
leakage. In Conference on Learning Theory, pages 648–847. PMLR, 2020.

Matthew S Brennan, Guy Bresler, Sam Hopkins, Jerry Li, and Tselil Schramm. Statistical query
algorithms and low degree tests are almost equivalent. In Conference on Learning Theory, pages
774–774. PMLR, 2021.

Cristina Butucea and Yuri I Ingster. Detection of a sparse submatrix of a high-dimensional noisy
matrix. Bernoulli, 19(5B):2652–2688, 2013.

Alexandra Carpentier and Richard Nickl. On signal detection and confidence sets for low rank
inference problems. Electronic Journal of Statistics, 9(2):2675–2688, 2015.
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Appendix A. Hardness Against Low-Degree Polynomials

In this section, we leverage the recent result on the connection of SQ model and low-degree poly-
nomials (Brennan et al., 2021) and give the low-degree hardness of the tensor-on-tensor association
detection problem in the conjectured hard regime. To this end, we consider a simpler tensor-on-
tensor association detection problem with a uniform prior under the alternative.

Problem 28 We consider the following hypothesis testing problem:
H0: (Xi,Yi)

i.i.d.∼ D0 := (N(0, 1)⊗p⊗d
, N(0, 1)⊗p⊗m

) and Yi is independent of Xi.
H1: First, a vector u is chosen uniformly at random from Sp−1. Xi ∈ Rpd+m

has i.i.d. N(0, 1)
entries. Yi = 〈Xi,λu

⊗(d+m)〉∗ + Ei; Ei has i.i.d. N(0,σ2) entries. We denote this distribution by
Du.
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Next, we introduce a few preliminaries about low-degree polynomials and we refer readers to
Brennan et al. (2021) for more details.

Notation. For a distribution D, we denote by D⊗n the joint distribution of n independent samples
from D. For f : R → R and g : R → R and a distribution D on R, we define the inner product
〈f, g〉D = EX∼D[f(X)g(X)] and the norm ||f ||D =

󰁳
〈f, f〉D.

Definition 29 (n-sample 󰂃-distinguisher) We say that the polynomial p : (Rpd+pm)⊗n → R
is an n-sample 󰂃-distinguisher for the hypothesis testing Problem 28 if |EX∼D⊗n

0
[p(X)] −

Eu∼µEX∼D⊗n
u

[p(X)]| ≥ 󰂃
󰁴

VarX∼D⊗n
0

[p(X)]. We call 󰂃 the advantage of the distinguisher. If

󰂃 > 1, we call p a good distinguisher.

Let V be the linear space of polynomials with degree at most k. The best possible advantage
achieved by polynomials in this class is given by the low-degree likelihood ratio (see (Brennan et al.,
2021, Fact 2.1))

max
p∈V,E

X∈D⊗n
0

[p2(X)]≤1

󰀏󰀏󰀏EX∼D⊗n
0

[p(X)]− Eu∼µEX∼D⊗n
u

[p(X)]
󰀏󰀏󰀏 =

󰀐󰀐󰀐Eu∼µ

󰁫
(D̄⊗n

u )≤k
󰁬
− 1

󰀐󰀐󰀐
D⊗n

0

,

where D̄u := Du/D0 denotes the likelihood ratio and the notation f≤k denotes the orthogonal
projection of f onto V .

Another notation we will use regarding a finer notion of degrees is the following: we say that
the polynomial f({Xi,Yi}ni=1) : (Rpd+pm)⊗n → R for Problem 28 has samplewise degree-(r, k)
if it is a polynomial, where each monomial uses at most k different samples from {Xi,Yi}ni=1

and uses degree at most r for each of them. Note that a function of samplewise degree-(r, k) has
degree at most rk. In analogy to what was stated for the best degree-k distinguisher, the best unit
norm distinguisher of samplewise degree-(r, k) achieves advantage

󰀐󰀐Eu∼µ

󰀅
(D̄⊗n

u )≤r,k
󰀆
− 1

󰀐󰀐
D⊗n

0
,

where the notation f≤r,k now means the orthogonal projection of f onto the space of all samplewise
degree-(r, k) polynomials.

A.1. Hardness of Tensor-on-tensor Association Detection Against Low-degree Polynomials

In this section, we establish the following result.

Theorem 30 Consider the hypothesis testing Problem 28 with sufficiently large p. Given any 0 <
󰂃 < 1/4 and sufficiently large p. Suppose λ/σ ≤ 1/2 for m = 0, λ/σ ≤ c1p

1/4−󰂃 for m = 1 and
λ/σ ≤ c1p

1/2−2󰂃 for m ≥ 2 with sufficiently small c1 > 0. Then if n ≤ c2((σ/λ)
2p(1/2−2󰂃)(d+m)+

(σ/λ)4p(1−4󰂃)m) for some sufficiently small c2 > 0, then there is no n-sample good distinguisher
with samplewise degree-(r, k) for any r ∈ N and any even integer k < p󰂃.

Since evaluating a degree rk polynomial with n samples is a proxy for running time O((pd+mn)rk),
Theorem 30 provides strong evidence for the hardness of solving the hypothesis testing Problem 28.

To prove Theorem 30, we need the following two results from Brennan et al. (2021).

Fact 31 (Brennan et al., 2021, Fact 2.2) If
󰀐󰀐Eu∼µ

󰀅
(D̄⊗n

u )≤r,k
󰀆
− 1

󰀐󰀐
D⊗n

0
≤ 󰂃, then the hypothesis

testing Problem 28 has no n-sample 󰂃-distinguisher in polynomials with samplewise degree-(r, k).
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Theorem 32 (Brennan et al., 2021, Theorem 4.1) Let S be a hypothesis testing problem on RN

with respect to null hypothesis D0. Let n, k ∈ N with k even. Suppose that for all 1 ≤ n′ ≤ n,
SDA(S, µ, n′) ≥ 100k · (n/n′)k. Then for all r ∈ N,

󰀐󰀐Eu∼µ

󰀅
(D̄⊗n

u )≤r,Ω(k)
󰀆
− 1

󰀐󰀐
D⊗n

0
≤ 1.

Proof [Proof of Theorem 30] First notice SDA(S, µ, n′) ≥ SDA(S, µ, n) for n′ ≤ n. So by
taking q = 100k(n/n′)k with k < p󰂃, n ≤ c2((σ/λ)

2p(1/2−2󰂃)(d+m) + (σ/λ)4p(1−4󰂃)m), we have
SDA(S, µ, n′) ≥ 100k(n/n′)k by Theorem 19. This further implies

󰀐󰀐󰀐Eu∼µ

󰁫
(D̄⊗n

u )≤r,Ω(k)
󰁬
− 1

󰀐󰀐󰀐
D⊗n

0

≤ 1

for all r ∈ N by Theorem 32. Thus the result follows from Fact 31.

Appendix B. A Simpler Proof of Statistical Query Lower Bound via Pairwise
Correlation with Suboptimal Dependence on λ

In this section, we provide a simpler proof of the statistical query lower bound via the statistical
dimension defined by pairwise correlation comparing the proof of Theorem 19, but we will see the
dependence on λ is suboptimal.

Definition 33 We say that a set of s distributions D = {D1, . . . , Ds} over Rq is (γ,β)-correlated
relative to a distribution D if |χD(Di, Dj)| ≤ γ for all i ∕= j, and |χD(Di, Dj)| ≤ β for i = j.

We are now ready to define the SQ dimension based on pairwise correlation. To distinguish it
with the one in Definition 17, we use notation SD for it.

Definition 34 (Statistical Query Dimension Based on Pairwise Correlation) For β, γ > 0, a
decision problem B(D, D), where D is a fixed distribution and D is a family of distributions over
Rq, let s be the maximum integer such that there exists a finite set of distributions DD ⊆ D such
that DD is (γ,β)-correlated relative to D and |DD| ≥ s. We define the Statistical Query dimension
with pairwise correlations (γ,β) of B to be s and denote it by SD(B, γ,β).

If one can bound below the SD of the given problem, then it also implies an unconditional lower
bound on the complexity of any SQ algorithm for the problem using the following result.

Lemma 35 (Corollary 3.12 in Feldman et al. (2017a)) Let B(D, D) be a decision problem,
where D is the reference distribution and D is a class of distributions. For γ,β > 0, let
s = SD(B, γ,β). For any γ′ > 0, any SQ algorithm for solving B requires at least s · γ′/(β − γ)
queries to the VSTAT(1/(3(γ + γ′))) oracle.

Next, we provide a lower bound on the SQ dimension for the tensor-on-tensor association de-
tection problem when λ/σ ≤ 1/2.

Theorem 36 (Statistical Query Lower Bound) Suppose λ/σ ≤ 1/2. Given any 0 < c < 1
2 , the

statistical query dimension of the tensor-on-tensor association detection with pairwise correlation
(c0((λ/σ)

2p(c−1/2)(d+m) + (λ/σ)4p2(c−1/2)m), (1− 2(λ/σ)2)−1/2 − 1) for some constants c0 > 0

is at least O(2Ω(pc)), where p = minj pj .
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Proof We consider a subclass of parameters A = {A = λud+m,u ∈ Sp−1} and without loss of
generality assume σ = 1. Recall we use notation Du to denote the joint distribution of (Yi,Xi)
with tensor parameter A = λu⊗(d+m); and notation D0 to denote the distribution of (Yi,Xi) under
H0. Our goal is to bound the χ2-divergence between Du and D0 and to find a large collection of
distributions {Du}u∈U with weak pairwise correlation.

First by Lemma 38, we have

χ2(Du, D0) + 1 = (1− 2λ2)−1/2,

as λ ≤ 1/2 by assumption.
Moreover, for u ∕= v, we have

χD0(Du(Yi,Xi), Dv(Yi,Xi)) + 1

=

󰁝
Du(Yi,Xi)Dv(Yi,Xi)

D0(Yi,Xi)
dYidXi

Lemma 38
= EXi exp

󰀓
λ2〈u,v〉m〈Xi,u

⊗d〉〈Xi,v
⊗d〉

󰀔

(a)

≤
󰀓
1− 〈u,v〉d+mλ2

󰀔−1/2
·
󰀕
1− λ2〈u,v〉d+m − λ4〈u,v〉2m

1− λ2〈u,v〉d+m

󰀖−1/2

(b)

≤
󰀓
1 + c0(λ

2〈u,v〉d+m + λ4〈u,v〉2m)
󰀔
,

(7)

where (a) is because of Lemma 38 Eq. (49) and the fact when λ ≤ 1/2, we have λ2 ≤ 1/4,
so 1 − td − λ2tm(1 − t2d) = (1 − td)(1 − λ2tm(1 + td)) > 0 and td + λ2tm(1 − t2d) + 1 =
(1 + td)(1 + λ2tm(1− td))) > 0, i.e., |td + λ2tm(1− t2d)| < 1, where t = 〈u,v〉; (b) is because
λ ≤ 1/2 and Lemma 41.

By Lemma 45, for any 0 < c < 1/2 we can construct at least N = 2Ω(pc) number of unit vectors
U = {u(1),u(2), . . . ,u(N)} such that maxu ∕=v∈U |u⊤v| ≤ O(p−1/2+c). This further implies that

max
u ∕=v∈U

χD0(Du(Y ,X ), Dv(Y ,X )) ≤ c0(λ
2p(−1/2+c)(d+m) + λ4p(−1/2+c)(2m)).

This shows the statistical query dimension of the tensor-on-tensor association detection with pair-
wise correlation (c0((λ/σ)

2p(c−1/2)(d+m) + (λ/σ)4p2(c−1/2)m), (1− 2(λ/σ)2)−1/2 − 1) for some
constants c0 > 0 is at least O(2Ω(pc)).

We note that no truncation is performed in the proof of Theorem 36. If we perform truncation, then
we can improve λ/σ to be of scale up to Poly(log p), but it is unclear for us how to show the sharp
SQ lower bound when λ/σ scales up polynomially in p.

Appendix C. Proofs in Section 3

C.1. Proof of Theorem 1

Consider the special class of parameters A = {λu⊗(d+m),u ∈ C} and we consider the
following prior on A : A = λud+m with u uniformly at random chosen from C. Then
based on Lemma 27, it is enough to show χ2(Dµ(Y ,X ), D0(Y ,X )) = o(1), or equivalently
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χ2(Dµ(Y ,X ), D0(Y ,X )) + 1 = 1 + o(1), to prove our results, where Dµ and D0 denote the
density function under the mixture model and null, respectively.

Then

χ2(Dµ(Y ,X ), D0(Y ,X )) + 1

=

󰁝
[Eu∼Unif[C]Du(Y ,X )]2

D0(Y ,X )
dYdX

= Eu∼Unif[C],v∼Unif[C]

󰁝
Du(Y ,X )Dv(Y ,X )

D0(Y ,X )
dYdX

Lemma 38
= Eu∼Unif[C],v∼Unif[C]EX exp

󰀣
λ2

n󰁛

i=1

〈Xi,u
⊗d〉〈Xi,v

⊗d〉
󰀤

(a)

≤ Eu∼Unif[C],v∼Unif[C] exp(nλ
2〈u⊗d,v⊗d〉)(1 + C0c

2)

= Eu∼Unif[C],v∼Unif[C] exp(nλ
2〈u,v〉d)(1 + C0c

2)

(b)

≤ g(
nλ2

p
)(1 + C0c

2) → 1 + o(1),

where in (a), we use the fact λ ≤ cn−1/4 for some small enough c > 0 and Lemma 39, moreover
C0 > 0 here is some universal constant; (b) is by Lemma 40 as d ≥ 2 and λ = o(

󰁳
p/n); the final

conclusion follows from the assumption that λ = o(
󰁳

p/n), the function g satisfies g(0+) = 1 and
the fact we can let c goes to zero as λ = o(n−1/4) by assumption. This finishes the proof of this
theorem.

C.2. Proof of Theorem 2

We divide the proof into two steps, in Step 1, we prove the lower bound for m = 1, d = 0 case and
in Step 2, we prove the lower bound for m = 1, d ≥ 1.

Step 1. We follow the idea described in Section 7. Recall, we have model Y = λux⊤ +
E ∈ Rp×n. Denote Dµ(Y,x) and D0(Y,x) as the density function of the data (Y,x) under
distribution Pµ and P0, respectively. Similarly, let Dµ(Y|x) and D0(Y|x) to denote the conditional
density of Y given x. For notation simplicity, we use notation TV(Dµ(Y,x), D0(Y,x)) to mean
TV(Pµ,P0), similarly for TV(Dµ(Y|x), D0(Y|x)).

First, recall the good event is A := {|󰀂x󰀂22 − n| < n/2}, then

TV(Dµ(Y,x), D0(Y,x)) =
1

2

󰁝
|Dµ(Y,x)−D0(Y,x)|dYdx

= ExTV(Dµ(Y|x), D0(Y|x))
= Ex ((1A + 1Ac)TV(Dµ(Y|x), D0(Y|x)))
(a)

≤ exp(−cn) + Ex1ATV(Dµ(Y|x), D0(Y|x)),

(8)

here (a) is because TV distance is at most 1 and the probability of event Ac is at most exp(−cn).
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Next, we show condition on A, TV(Dµ(Y|x), D0(Y|x)) is small:

TV(Dµ(Y|x), D0(Y|x))
(6)
≤ 1

2

󰁴
χ2(Dµ(Y|x), D0(Y|x))

≤ 1

2

󰁶

Eu,v∼Unif[C]

󰀗󰁝
Du(Y|x)Du(Y|x)

D0(Y|x) dY

󰀘

(a)

≤ 1

2

󰁹󰁸󰁸󰁷Eu,v∼Unif[C] exp(λ2(

n󰁛

i=1

x2i )〈u,v〉)− 1

(b)

≤ 1

2

󰁴
Eu,v∼Unif[C] exp(3nλ2〈u,v〉/2)− 1

(c)

≤ 1

2

󰁳
exp(Cn2λ4/p)− 1

(d)→ o(1),

(9)

here (a) is by Lemma 38 Eq. (46); (b) is because we condition on event A; (c) is because 〈u,v〉
follows a sub-Gaussian distribution with sub-Gaussian norm 1/

√
p and the bound for the moment

generating function for the sub-Gaussian random variable, see (Vershynin, 2010, Eq. (5.12)); (d) is
because λ4n2/p = o(1) by assumption.

By plugging (9) into (8), we have TV(Dµ(Y,x), D0(Y,x)) = o(1) when λ4n2/p = o(1) and
the result follows from Lemma 27.

Step 2. First, we claim that to prove the lower bound for m = 1, d ≥ 1, it is enough to consider
the m = 1, d = 1 case. The reason is the following: suppose under H1, the model is

yi = 〈λu1 ⊗ · · ·⊗ ud+1,Xi〉∗ + Ei
(51)
= 〈λud ⊗ ud+1,X ×d−1

i=1 u⊤
i 〉∗ + Ei;

if there is an oracle tells us u1, . . . ,ud−1, then X ×d−1
i=1 u⊤

i still has i.i.d. N(0, 1) entries. So we
can view X ×d−1

i=1 u⊤
i as the new covariate, and the model is the same as the model in H1 when

m = 1, d = 1 case.
To prove the result in the m = 1, d = 1 case, we assume the following prior A = λu1u

⊤
2 ,

where u1,u2 are generated independently and uniformly at random from C. We denote this prior
by µ. By stacking {yi,xi}s together, we have Y = λu2u

⊤
1 X

⊤ + E ∈ Rp×n, where each column
of Y is equal to yi for i = 1, . . . , n.

We also need the truncation argument as in Step 1, but now we not only need to truncate X, but
also u1. Denote the good event as

A = A1

󰁟
A2 = {X,u1 : 󰀂X⊤X󰀂2F ≤ C1(n ∨ p)2(n ∧ p), 󰀂X󰀂 ≤ C2

√
n ∨ p, 󰀂Xu1󰀂2 ≤ C3

√
n},

where A1 = {X : 󰀂X⊤X󰀂2F ≤ C1(n ∨ p)2(n ∧ p), 󰀂X󰀂 ≤ C2
√
n ∨ p} and A2 := {󰀂Xu1󰀂2 ≤

C3
√
n}. Then

PX,u1(A
c)

≤ PX,u1(󰀂X⊤X󰀂2F > C1(n ∨ p)2(n ∧ p)) + PX,u1(󰀂X󰀂 > C2
√
n ∨ p) + PX,u1(󰀂Xu1󰀂2 > C3

√
n)

≤ exp(−c(n ∧ p)),

(10)
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here we use a few facts to prove this inequality, the first two quantities are bounded by the fact
that 󰀂X󰀂 > C

√
n ∨ p with probability at most exp(−c(n ∧ p)) by Corollary 5.35 of Vershynin

(2010) and X⊤X has rank at most n ∧ p; the final quantity is bounded by the fact Xu1 has i.i.d.
N(0, 1) entries, 󰀂Xu1󰀂22 ∼ χ2

n and the concentration bound for the χ2
n distribution (Vershynin,

2010, Proposition 5.16).

Next, we bound TV(Dµ(Y,X), D0(Y,X)).

TV(Dµ(Y,X), D0(Y,X))

= EXTV(Dµ(Y|X), D0(Y|X))

= EXEu1∼Unif[C] ((1A + 1Ac)TV(Du1,µ2(Y|X), D0(Y|X)))

(10)
≤ EXEu1∼Unif[C] (1ATV(Du1,µ2(Y|X), D0(Y|X))) + exp(−c(n ∧ p))

= EXEu1∼Unif[C]1A (TV(Du1,µ2(Y|X), D0(Y|X))) + exp(−c(n ∧ p))

= EX1A1Eu1∼Unif[C]1A2 (TV(Du1,µ2(Y|X), D0(Y|X))) + exp(−c(n ∧ p)),

(11)

here the notation Du1,µ2 denotes the distribution of the data (Y,X) when u1 is fixed while u2 ∼
Unif[C].

Then we have

TV(Du1,µ2(Y|X), D0(Y|X))
(6)
≤ 1

2

󰁴
χ2(u1,µ2(Y|X), D0(Y|X))

(a)

≤ 1

2

󰁴
Eu2,u′

2∼Unif[C] exp(λ2〈u2,u′
2〉u⊤

1 X
⊤Xu1)− 1

(b)

≤ 1

2

󰁶

exp

󰀕
cλ4

p
(u⊤

1 X
⊤Xu1)2

󰀖
− 1,

(12)

where (a) is by a similar argument as in (50) and (b) is because 〈u2,u
′
2〉 follows a sub-Gaussian

distribution with sub-Gaussian norm 1/
√
p

Based on (12) and the Jensen’s inequality, we have

󰀃
EXEu1∼Unif[C] {1A11A2 (TV(Du1,µ2(Y|X), D0(Y|X)))}

󰀄2

≤EXEu1∼Unif[C]

󰁱
1A11A2 (TV(Du1,µ2(Y|X), D0(Y|X)))2

󰁲

(12)
≤ 1

4
EXEu1∼Unif[C]1A11A2

󰀕
exp

󰀕
cλ4

p
(u⊤

1 X
⊤Xu1)

2

󰀖
− 1

󰀖

=
1

4
EX1A1Eu1∼Unif[C]1A2

󰀕
exp

󰀕
cλ4

p
(u⊤

1 X
⊤Xu1)

2

󰀖
− 1

󰀖
.

(13)
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Since exp
󰀓
cλ4

p (u⊤
1 X

⊤Xu1)
2
󰀔

is a nonnegative random variable, we have given on X,

Eu1∼Unif[C]1A2

󰀕
exp

󰀕
cλ4

p
(u⊤

1 X
⊤Xu1)

2

󰀖󰀖

=

󰁝 ∞

0
Pu1∼Unif[C]

󰀕
1A2 exp

󰀕
cλ4

p
(u⊤

1 X
⊤Xu1)

2

󰀖
≥ z

󰀖
dz

(a)
=

󰁝 exp Cn2λ4

p

0
Pu1∼Unif[C]

󰀕
1A2 exp

󰀕
cλ4

p
(u⊤

1 X
⊤Xu1)

2

󰀖
≥ z

󰀖
dz

≤
󰁝 exp Cn2λ4

p

0
Pu1∼Unif[C]

󰀕
exp

󰀕
cλ4

p
(u⊤

1 X
⊤Xu1)

2

󰀖
≥ z

󰀖
dz

= 1 +

󰁝 exp Cn2λ4

p

1
Pu1∼Unif[C]

󰀕
exp

󰀕
cλ4

p
(u⊤

1 X
⊤Xu1)

2

󰀖
≥ z

󰀖
dz

= 1 +

󰁝 exp Cn2λ4

p

1
Pu1∼Unif[C]

󰀣
|u⊤

1 X
⊤Xu1| ≥

󰁵
p log z

cλ4

󰀤
dz

(b)

≤ 1 +

󰁝 exp Cn2λ4

p

1
exp

󰀕
−c(

∆2p2

󰀂X⊤X󰀂2F
∧ ∆p

󰀂X⊤X󰀂)
󰀖
dz,

(14)

here (a) is because on event A2, we have |u⊤
1 X

⊤Xu1|2 = 󰀂Xu1󰀂42 ≤ Cn2; (b) is by the Hanson-

Wright inequality (Rudelson and Vershynin, 2013) with ∆ :=
󰁴

p log z
cλ4 and entries of u1 are i.i.d.

sub-Gaussian random variable with sub-Gaussian norm 1/
√
p.

Thus condition on event A1, from (14) we have

Eu1∼Unif[C]1A2

󰀕
exp

󰀕
cλ4

p
(u⊤

1 X
⊤Xu1)

2

󰀖󰀖

≤ 1 +

󰁝 exp Cn2λ4

p

1
exp

󰀕
−c(

∆2p2

󰀂X⊤X󰀂2F
∧ ∆p

󰀂X⊤X󰀂)
󰀖
dz

≤ 1 +

󰁝 exp Cn2λ4

p

1
exp

󰀕
−c′

󰀕
∆2p2

(n ∨ p)2(n ∧ p)
∧ ∆p

n ∨ p

󰀖󰀖
dz

(a)

≤ 1 +

󰁝 exp Cn2λ4

p

1
exp

󰀕
−c′

󰀕
∆2p2

(n ∨ p)2(n ∧ p)

󰀖󰀖
dz

= 1 +

󰁝 exp Cn2λ4

p

1
exp

󰀕
−c′

󰀕
p3 log z

(n ∨ p)2(n ∧ p)λ4

󰀖󰀖
dz

= 1 +

󰁝 exp Cn2λ4

p

1
z

󰀕
−c′

󰀕
p3

(n∨p)2(n∧p)λ4

󰀖󰀖

dz

(b)
= 1 + o(1),

(15)

25



DIAKONIKOLAS KANE LUO ZHANG

here (a) is because when z ≤ exp(Cn2λ4

p ), we have ∆2p2

(n∨p)2(n∧p) ≤ c ∆p
n∨p ; (b) is be-

cause when λ = o((p/n)1/2 ∧ (p/n)1/4), we have −c′
󰀓

p3

(n∨p)2(n∧p)λ4

󰀔
→ −∞ and thus

󰁕 exp Cn2λ4

p

1 z

󰀕
−c′

󰀕
p3

(n∨p)2(n∧p)λ4

󰀖󰀖

dz = o(1).
By plugging (15) into (13), we have

󰀃
EXEu1∼Unif[C]1A11A2 (TV(Du1,µ2(Y |X ), D0(Y |X )))

󰀄2

(15)
≤ 1

4

󰀃
EX1A1(1 + o(1))− EXEu1∼Unif[C]1A

󰀄 (a)→ o(1),

here (a) is because both event A and A1 holds with probability goes to 1 when n, p → ∞ by
(10). This concludes that EXEu1∼Unif[C]1A11A2 (TV(Du1,µ2(Y |X ), D0(Y |X ))) = o(1) when
λ = o((p/n)1/2 ∧ (p/n)1/4) and the result follows by considering (11) and Lemma 27.

C.3. Proof of Theorem 3

We first consider an easier hypothesis testing problem. Suppose other than the data {Xi,Yi}ni=1,
the oracle provides the following additional information: under H0, it provides {xi}ni=1, where
xi := 〈Xi,v

⊗d〉 for some arbitrary v; under H1, suppose A = λu⊗(d+m), then the oracle provides
{xi}ni=1 where xi := 〈Xi,u

⊗d〉. Since under H1, Yi = λu⊗m〈Xi,u
⊗d〉 + Ei, given xi, Yi is

conditionally independent of Xi, an easier hypothesis testing problem comparing the original one
is the following: given i.i.d. data {Yi, xi}ni=1, Yi = xiA′ + Ei where xi and Ei has i.i.d. N(0, 1)
entries, we would like to test

H0 : A′ = 0 versus H1 : A′ ∈ A (λ), (16)

where for λ > 0, A (λ) = {λu⊗m : u ∈ Sp−1}. This is the original testing problem with
m ≥ 2, d = 0. In summary, to prove the original statement, we only need to show there is no
reliable testing procedure when λ/σ = o((p/n)1/2) in the d = 0,m ≥ 2 case.

Let the good event be A := {|
󰁓n

i=1 x
2
i − n| < n/2}, where xi

i.i.d.∼ N(0, 1), and by the
same argument as in (8), if we can show TV(Dµ(Y |X ), D0(Y |X )) is small on event A when
λ/σ = o((p/n)1/2), where µ is the prior on A chosen in the same way as in the proof of Theorem
1, then we are done.

Given A,

TV(Dµ(Y |X ), D0(Y |X )) ≤ 1

2

󰁴
χ2(Dµ(Y |X ), D0(Y |X ))

(a)

≤ 1

2

󰁹󰁸󰁸󰁷Eu,v∼Unif[C] exp(λ2(

n󰁛

i=1

x2i )〈u,v〉m)− 1

(b)

≤ 1

2

󰁴
Eu,v∼Unif[C] exp(3nλ2〈u,v〉m/2)− 1

(c)

≤ 1

2

󰁳
g(Cnλ2/p)− 1

(c)→ o(1),

(17)

here (a) is by Lemma 38 Eq. (46); (b) is because we condition on event A; (c) is by Lemma 40 and
λ/σ = o((p/n)1/2). This finishes the proof of this theorem.
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Appendix D. Proofs in Section 4

Throughout the proof in this section, we will again assume σ = 1 without loss of generality and
we consider A = λ′u1 ⊗ · · · ⊗ ud+m with λ′ = λ as detection only gets easier as λ′ increases.
Moreover, the following representation for the model (1) is used a lot in the proof. By Lemma 44
Eq. (53), we have Yi = λ〈Xi,u1 ⊗ · · ·⊗ ud〉ud+1 ⊗ · · ·⊗ ud+m + Ei. So under H1, we can write
Y = λ󰀂w󰀂ud+1 ⊗ · · ·⊗ ud+m ⊗w/󰀂w󰀂+ E where

w = (〈X1,u1 ⊗ · · ·⊗ ud〉, · · · , 〈Xn,u1 ⊗ · · ·⊗ ud〉)⊤. (18)

D.1. Proof of Theorem 5

First, we control the type I error,

P0 (φ1(Y ,X ) = 1) = P0

󰀳

󰁃T1 ≥ Z1α

󰁹󰁸󰁸󰁷n(

d+m󰁛

j=1

pj)

󰀴

󰁄
Lemma 43(b)

≤ exp(−cα(

d+m󰁛

j=1

pi)) ≤ α/4,

here the last inequality holds by picking Z1α to be large enough.
Now, let us compute the type II error. Suppose A = λu1⊗· · ·⊗ud+m. Recall Y = A (X )+E ,

then

PA (φ1(Y ,X ) = 0) = PA

󰀳

󰁃T1 ≤ Z1α

󰁹󰁸󰁸󰁷n(

d+m󰁛

j=1

pj)

󰀴

󰁄

= PA

󰀳

󰁃 sup
vj∈Spj−1,j=1,...,d+m

X ∗(Y)×i=1 v
⊤
1 × · · ·×d+m v⊤

d+m ≤ Z1α

󰁹󰁸󰁸󰁷n(

d+m󰁛

j=1

pj)

󰀴

󰁄

= PA

󰀳

󰁃 sup
vj∈Spj−1,j=1,...,d+m

〈X ∗(Y),v1 ⊗ · · ·⊗ vd+m〉 ≤ Z1α

󰁹󰁸󰁸󰁷n(

d+m󰁛

j=1

pj)

󰀴

󰁄

≤ PA

󰀳

󰁃〈Y ,X (u1 ⊗ · · ·⊗ ud+m)〉 ≤ Z1α

󰁹󰁸󰁸󰁷n(

d+m󰁛

j=1

pj)

󰀴

󰁄

≤ PA

󰀳

󰁃λ󰀂X (u1 ⊗ · · ·⊗ ud+m)󰀂2F ≤ Z1α

󰁹󰁸󰁸󰁷n(

d+m󰁛

j=1

pj) + |〈E ,X (u1 ⊗ · · ·⊗ ud+m)〉|

󰀴

󰁄

(a)

≤ PA

󰀳

󰁃λ󰀂X (u1 ⊗ · · ·⊗ ud+m)󰀂2F ≤ 2Z1α

󰁹󰁸󰁸󰁷n(

d+m󰁛

j=1

pj)

󰀴

󰁄+ α/4

(b)

≤ PA
󰀃
󰀂X (u1 ⊗ · · ·⊗ ud+m)󰀂2F/n− 1 ≤ −1/2

󰀄
+ α/4

(c)

≤ 2 exp(−cn) + α/4 ≤ 3α/4,
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where (a) is because we have shown in the H0 case that Z1α is chosen such that

|〈E ,X (u1 ⊗ · · ·⊗ ud+m)〉| ≤ Z1α

󰁹󰁸󰁸󰁷n(

d+m󰁛

j=1

pj)

holds with probability at least 1− α/4; (b) is because λ > 4Z1α

󰁵
󰁓d+m

j=1 pj
n by our assumption; (c)

is because by Lemma 44 Eq. (53), we have

󰀂X (u1 ⊗ · · ·⊗ ud+m)󰀂2F =

n󰁛

i=1

󰀂〈Xi,u1 ⊗ · · ·⊗ ud+m〉∗󰀂2F =

n󰁛

i=1

〈Xi,u1 ⊗ · · ·⊗ ud〉2,

and by the fact of Lemma 42. The last inequality holds by choosing n to be large enough. This
finishes the proof of this theorem.

D.2. Proof of Theorem 6

First, we have

P0 (φ2(Y ,X ) = 1) = P0

󰀳

󰁃T2 ≥ Z2α

󰁹󰁸󰁸󰁷n+

d+m󰁛

j=d+1

pj

󰀴

󰁄
Lemma 43(a)

≤ exp(−cα(n+

d+m󰁛

j=d+1

pj)) ≤ α/4.

Here the last inequality can be hold if we take Z2α to be large enough.
Under the H1, we use the representation Y = λ󰀂w󰀂ud+1 ⊗ · · ·⊗ ud+m ⊗w/󰀂w󰀂+ E where

w is presented in (18). Then

PA (φ2(Y ,X ) = 0)

=PA

󰀳

󰁃 sup
vj∈Spd+j−1,j=1,...,m,vm+1∈Sn−1

Y × v⊤
1 × · · ·×m v⊤

m ×m+1 v
⊤
m+1 ≤ Z2α

󰁹󰁸󰁸󰁷n+

d+m󰁛

j=d+1

pj

󰀴

󰁄

≤PA

󰀳

󰁃Y ×1 u
⊤
d+1 × · · ·×m u⊤

d+m ×m+1 w
⊤/󰀂w󰀂 ≤ Z2α

󰁹󰁸󰁸󰁷n+

d+m󰁛

j=d+1

pj

󰀴

󰁄

=PA

󰀳

󰁃λ󰀂w󰀂+ E ×1 u
⊤
d+1 × · · ·×m u⊤

d+m ×m+1 w
⊤/󰀂w󰀂 ≤ Z2α

󰁹󰁸󰁸󰁷n+

d+m󰁛

j=d+1

pj

󰀴

󰁄

(a)

≤PA

󰀳

󰁃λ󰀂w󰀂 ≤ 2Z2α

󰁹󰁸󰁸󰁷n+

d+m󰁛

j=d+1

pj

󰀴

󰁄+ α/4

(b)

≤PA

󰀳

󰁃λ
󰁳

n/2 ≤ 2Z2α

󰁹󰁸󰁸󰁷n+

d+m󰁛

j=d+1

pj

󰀴

󰁄+ 2 exp(−cn) + α/4

(c)

≤0 + 2 exp(−cn) + α/4 ≤ 3α/4.
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Here (a) is because under H0, Z2α is chosen such that |E×1u
⊤
d+1×· · ·×mu⊤

d+m×m+1w
⊤/󰀂w󰀂| ≤

Z2α

󰁴
n+

󰁓d+m
j=d+1 pj holds with probability at least 1 − α/4; (b) is because 󰀂w󰀂 ≥

󰁳
n/2 with

probability at least 1 − 2 exp(−cn) by Lemma 42; (c) is because λ > 2
√
2Z2α

󰁴
1 +

󰁓d+m
j=d+1

pj
n

by our assumption. The last inequality holds by taking n to be large enough. This finishes the proof
of this theorem.

D.3. Proof of Theorem 7

First, with a little abuse of notation, we let the entries of Ei to be Ei,l for l = 1, . . . , (
󰁔d+m

j=d+1 pj).
Under H0, we have

P0 (φ3(Y ,X ) = 1) = P0

󰀳

󰁃
n󰁛

i=1

󰀂Yi󰀂2F/(n
d+m󰁜

j=d+1

pj)− 1 ≥ Z3α/

󰁹󰁸󰁸󰁷n

d+m󰁜

j=d+1

pj

󰀴

󰁄

= P0

󰀳

󰁅󰁃
n󰁛

i=1

󰁔d+m
j=d+1 pj󰁛

l=1

(E2
i,l − 1) ≥ Z3α

󰁹󰁸󰁸󰁷n

d+m󰁜

j=d+1

pj

󰀴

󰁆󰁄 ≤ α/6,

where in the last inequality, we use the Bernstein inequality for the sum of sub-exponential random
variables and let Z3α to be large enough.

Now let us compute the type II error. Denote ∆1 =
󰁓n

i=1〈X ,u1 ⊗ · · · ⊗ ud〉2 and ∆2 =󰁓n
i=1〈Xi,u1 ⊗ · · ·⊗ ud〉〈Ei,ud+1 ⊗ · · ·⊗ ud+m〉.

Let A be the event A := {|∆1/n − 1| ≤ 1/2}. By Lemma 42, we know event A holds with
probability at least 1 − 2 exp(−cn). And we assume 2 exp(−cn) is less than α/6 by taking large
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enough n. Then we have

PA (φ3(Y ,X ) = 0)

=PA

󰀳

󰁃
n󰁛

i=1

󰀂Yi󰀂2F/(n
d+m󰁜

j=d+1

pj)− 1 < Z3α/

󰁹󰁸󰁸󰁷n

d+m󰁜

j=d+1

pj

󰀴

󰁄

=PA

󰀳

󰁅󰁃
λ2

n
󰁔d+m

j=d+1 pj
∆1 −

Z3α󰁴
n
󰁔d+m

j=d+1 pj

<
−2λ

n
󰁔d+m

j=d+1 pj
∆2 −

󰁓n
i=1

󰁓󰁔d+m
j=d+1 pj

l=1 (E2
i,l − 1)

n
󰁔d+m

j=d+1 pj

󰀴

󰁆󰁄

≤PA

󰀳

󰁅󰁃
λ2

2
󰁔d+m

j=d+1 pj
− Z3α󰁴

n
󰁔d+m

j=d+1 pj

<
−2λ

n
󰁔d+m

j=d+1 pj
∆2 −

󰁓n
i=1

󰁓󰁔d+m
j=d+1 pj

l=1 (E2
i,l − 1)

n
󰁔d+m

j=d+1 pj
, A

󰀴

󰁆󰁄+ α/6

(a)

≤PA

󰀳

󰁅󰁃
λ2

4
󰁔d+m

j=d+1 pj
+

Z3α󰁴
n
󰁔d+m

j=d+1 pj

<
−2λ

n
󰁔d+m

j=d+1 pj
∆2 −

󰁓n
i=1

󰁓󰁔d+m
j=d+1 pj

l=1 (E2
i,l − 1)

n
󰁔d+m

j=d+1 pj
, A

󰀴

󰁆󰁄+ α/6

(b)

≤PA

󰀣
λ2

4
󰁔d+m

j=d+1 pj
<

󰀏󰀏󰀏󰀏󰀏
2λ

n
󰁔d+m

j=d+1 pj
∆2

󰀏󰀏󰀏󰀏󰀏 , A
󰀤

+ PA

󰀳

󰁅󰁃
Z3α󰁴

n
󰁔d+m

j=d+1 pj

<

󰀏󰀏󰀏󰀏󰀏󰀏󰀏

󰁓n
i=1

󰁓󰁔d+m
j=d+1 pj

l=1 (E2
i,l − 1)

n
󰁔d+m

j=d+1 pj

󰀏󰀏󰀏󰀏󰀏󰀏󰀏

󰀴

󰁆󰁄

+ α/6.

(19)

Here (a) is because λ2

4
󰁔d+m

j=d+1 pj
≥ 2Z3α󰁴

n
󰁔d+m

j=d+1 pj
by the assumption on λ; (b) is by the union bound.

Next, we bound the last two probabilities at the end of (19) one by one. First,

PA

󰀳

󰁅󰁃
Z3α󰁴

n
󰁔d+m

j=d+1 pj

<

󰀏󰀏󰀏󰀏󰀏󰀏󰀏

󰁓n
i=1

󰁓󰁔d+m
j=d+1 pj

l=1 (E2
i,l − 1)

n
󰁔d+m

j=d+1 pj

󰀏󰀏󰀏󰀏󰀏󰀏󰀏

󰀴

󰁆󰁄 = PA

󰀳

󰁅󰁃Z3α

󰁹󰁸󰁸󰁷n

d+m󰁜

j=d+1

pj <

󰀏󰀏󰀏󰀏󰀏󰀏󰀏

n󰁛

i=1

󰁔d+m
j=d+1 pj󰁛

l=1

(E2
i,l − 1)

󰀏󰀏󰀏󰀏󰀏󰀏󰀏

󰀴

󰁆󰁄

≤ α/3

(20)

by the choice of Z3α and n discussed in H0 case.
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Second,

PA

󰀣
λ2

4
󰁔d+m

j=d+1 pj
<

󰀏󰀏󰀏󰀏󰀏
2λ

n
󰁔d+m

j=d+1 pj
∆2

󰀏󰀏󰀏󰀏󰀏 , A
󰀤

= PA

󰀕
λn

8
< |∆2| , A

󰀖

= EX

󰀕
PA

󰀕
λn

8
< |∆2| , A

󰀖 󰀏󰀏󰀏{Xi}ni=1

󰀖

(a)

≤ EX

󰀳

󰁃PA

󰀳

󰁃Z3αn
3/4(

d+m󰁜

j=d+1

pj)
1/4 < |∆2| , A

󰀴

󰁄
󰀏󰀏󰀏{Xi}ni=1

󰀴

󰁄

(b)

≤ EX

󰀳

󰁃PA

󰀳

󰁃Z3αn
3/4(

d+m󰁜

j=d+1

pj)
1/4

󰁳
2∆1/(3n) < |∆2|

󰀴

󰁄
󰀏󰀏󰀏{Xi}ni=1

󰀴

󰁄

(c)

≤ 2 exp

󰀣
−
Z2
3αn

3/2(
󰁔d+m

j=d+1 pj)
1/22∆1/(3n)

2∆1

󰀤
≤ α/3,

(21)

where (a) is by the assumption on λ; (b) is by the property of event A ;(c) is because condition on
{Xi}ni=1, we can apply the Hoeffding inequality on the weighted sum of Gaussian random variables
{〈Ei,ud+1⊗ · · ·⊗ud+m〉}ni=1 in ∆2 with weights {〈Xi,u1⊗ · · ·⊗ud〉}ni=1, and the last inequality
holds if we take n to be large enough.

By plugging (20) and (21) into (19), we prove that the type II error is bounded by 5α/6 and this
finishes the proof of this theorem.

D.4. Proof of Theorem 8

The proof is long and involved. The main idea of the proof is to compute the expectation and
variance of the statistic T4 under both H0 and H1 and then use the Chebyshev inequality to bound
the type I and type II errors. We decompose the proof into several steps. In Step 1, we compute
E0T4, EAT4, Var0T4 and bound the type I error; in Step 2, we prepare for bounding VarAT4; in
step 3, we compute a few key quantities in bounding VarAT4; in the last step, we get the bound for
VarAT4 and the type II error. In this proof, we assume A = λu1 ⊗ · · ·⊗ ud+m.

Recall

(Yi ⊗Xi)[z1,...,zd+m] = Yi[zd+1,...,zd+m]Xi[z1,...,zd]

〈Yi ⊗Xi,Yj ⊗Xj〉 =
󰁛

z1,...,zd+m

Yi[zd+1,...,zd+m]Yj[zd+1,...,zd+m]Xi[z1,...,zd]Xj[z1,...,zd].
(22)
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Step 1. It is easy to check E0T4 = 0 and EAYi ⊗Xi = A. So we have EAT4 = λ2. Next

Var0T4 = E0T
2
4 =

4

n2(n− 1)2
E0

󰀳

󰁃
󰁛

i<j

〈Yi ⊗Xi,Yj ⊗Xj〉

󰀴

󰁄
2

=
2

n(n− 1)
E0 (〈Yi ⊗Xi,Yj ⊗Xj〉)2

=
2
󰁔d+m

j=1 pj

n(n− 1)
.

Then by Chebyshev inequality, we have

P0 (φ4(Y ,X ) = 1) = P0

󰀳

󰁃T4 ≥ Z4α(

d+m󰁜

j=1

pj)
1/2/n

󰀴

󰁄 ≤ E0T
2
4

(Z4α(
󰁔d+m

j=1 pj)1/2/n)2
≤ α/2,

where in the last inequality, we take Z4α to be large enough.
Step 2. In this step, we do preparation for computing VarAT4. For simplicity, we introduce a

few new notation. Given any kz ∈ [pd+z] for z = 1, . . . ,m, let A(k1,...,km) = A[:,...,:,k1,...,km] ∈
Rp1×···×pd , Y(k1,...,km)

i = Yi[k1,...,km] and E(k1,...,km)
i = Ei[k1,...,km]. With this notation, we have

Y(k1,...,km)
i = 〈A(k1,...,km),Xi〉+ E(k1,...,km)

i , for i = 1, . . . , n.

Also we use notation A(k1,...,km)
l and Xi,l to denote the lth entry in the vectorization of A(k1,...,km)

and Xi, respectively.
Denote

K((Xi,Yi), (Xj ,Yj)) =
󰁛

k1,...,km

〈Y(k1,...,km)
i Xi −A(k1,...,km),Y(k1,...,km)

j Xj −A(k1,...,km)〉

δ(Xi,Yi) =
󰁛

k1,...,km

〈Y(k1,...,km)
i Xi −A(k1,...,km),A(k1,...,km)〉.

Notice that K((Xi,Yi), (Xj ,Yj)) and δ(Xi,Yi) are centered, moreover simple calculation yields

T4 =
2

n(n− 1)

󰁛

1≤i<j≤n

󰀃
K((Xi,Yi), (Xj ,Yj)) + δ(Xi,Yi) + δ(Xj ,Yj) + 󰀂A󰀂2F

󰀄

=
2

n(n− 1)

󰁛

1≤i<j≤n

K((Xi,Yi), (Xj ,Yj)) +
2

n

n󰁛

i=1

δ(Xi,Yi) + λ2.

Notice that K((Xi,Yi), (Xj ,Yj)) for different (i, j) pairs are uncorrelated under H1; similarly
K((Xi,Yi), (Xj ,Yj)) is uncorrelated with δ(Xi,Yi) and δ(Xi,Yi) is uncorrelated with δ(Xj ,Yj)
for i ∕= j. Thus the variance of T4 has the following formula:

VarA(T4) =
4

n2(n− 1)2
· n(n− 1)

2
E(K((X1,Y1), (X2,Y2))

2) +
4

n2
nEA(δ2(X1,Y1))

=
2

n(n− 1)
VarA(K((X1,Y1), (X2,Y2))) +

4

n
VarA(δ(X1,Y1)).

(23)
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Next, we bound VarA(δ(X1,Y1)) and VarA(K((X1,Y1), (X2,Y2))) separately. We will use
the notation EX and VarX to denote the expectation and variance computed under the marginal
distribution of the covariate tensor X and notation EX

A and VarXA to denote the expectation and
variance taken under the conditional distribution of Y given X with parameter A. Finally, we will
also use the notation pd to denote

󰁔d
j=1 pj for simplicity.

The key formula in bounding the variance of VarA(δ(X1,Y1)) and
VarA(K((X1,Y1), (X2,Y2))) is that for any random variable f(X ,Y),

VarA(f(X ,Y)) = EX (VarXA(f(X ,Y))) + VarX (EX
A(f(X ,Y))). (24)

Next, we bound VarA(δ(X1,Y1)) and VarA(K((X1,Y1), (X2,Y2))) separately in Step 3.1 and
Step 3.2.

Step 3.1 (Bound for VarA(δ(X1,Y1))). Let δij be the Kronecker delta. Then

δ((X1,Y1)) =
󰁛

k1,...,km

pd󰁛

j=1

A(k1,...,km)
j

󰀳

󰁃E(k1,...,km)
1 X1,j +

pd󰁛

l=1

A(k1,...,km)
l (X1,jX1,l − δjl)

󰀴

󰁄 .

(25)
Then we have

EX
A(δ((X1,Y1))) =

󰁛

k1,...,km

pd󰁛

j=1

pd󰁛

l=1

A(k1,...,km)
j A(k1,...,km)

l (X1,jX1,l − δjl)

=

pd󰁛

j=1

pd󰁛

l=1

󰀳

󰁃
󰁛

k1,...,km

A(k1,...,km)
j A(k1,...,km)

l

󰀴

󰁄 (X1,jX1,l − δjl)

and

VarXA(δ((X1,Y1))) =VarXA(
󰁛

k1,...,km

pd󰁛

j=1

A(k1,...,km)
j E(k1,...,km)

1 X1,j)

=
󰁛

k1,...,km

󰁛

k′1,...,k
′
m

pd󰁛

j=1

pd󰁛

l=1

A(k1,...,km)
j A(k1,...,km)

l EX
A(X1,jX1,lE(k1,...,km)

1 E(k′1,...,k
′
m)

1 )

(a)
=

󰁛

k1,...,km

pd󰁛

j=1

pd󰁛

l=1

A(k1,...,km)
j A(k1,...,km)

l X1,jX1,l

=

pd󰁛

j=1

pd󰁛

l=1

󰀳

󰁃
󰁛

k1,...,km

A(k1,...,km)
j A(k1,...,km)

l

󰀴

󰁄X1,jX1,l,

where in (a) the nonzero part appears when (k1, . . . , km) = (k′1, . . . , k
′
m).
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Thus

VarXEX
A(δ((X1,Y1)))

=

pd󰁛

j=1

pd󰁛

l=1

pd󰁛

r=1

pd󰁛

s=1

󰀳

󰁃
󰁛

k1,...,km

A(k1,...,km)
j A(k1,...,km)

l

󰀴

󰁄

󰀳

󰁃
󰁛

k1,...,km

A(k1,...,km)
r A(k1,...,km)

s

󰀴

󰁄

× EX (X1,jX1,l − δjl)(X1,rX1,s − δrs)

(a)

≤2

pd󰁛

j=1

󰀳

󰁃
󰁛

k1,...,km

A(k1,...,km)2
j

󰀴

󰁄
2

+ 2
󰁛

1≤j,r≤pd,j ∕=r

󰀳

󰁃
󰁛

k1,...,km

A(k1,...,km)
j A(k1,...,km)

r

󰀴

󰁄
2

(b)

≤2

󰀳

󰁃
pd󰁛

j=1

󰁛

k1,...,km

A(k1,...,km)2
j

󰀴

󰁄
2

+ 2
󰁛

1≤j,r≤pd,j ∕=r

(
󰁛

k1,...,km

A(k1,...,km)2
j )(

󰁛

k1,...,km

A(k1,...,km)2
r )

≤2󰀂A󰀂4F + 2

󰀳

󰁃
pd󰁛

j=1

󰁛

k1,...,km

A(k1,...,km)2
j

󰀴

󰁄
2

= 4󰀂A󰀂4F,

(26)

where in (a), we use the fact

EX (X1,jX1,l − δjl)(X1,rX1,s − δrs) =

󰀻
󰀿

󰀽

2, if j = l = r = s
1, if j = r ∕= l = s or j = s ∕= l = r
0, otherwise.

(27)

In (b) we use the Cauchy-Schwarz inequality.

Finally,

EXVarXA(δ((X1,Y1))) = EX

pd󰁛

j=1

pd󰁛

l=1

󰀳

󰁃
󰁛

k1,...,km

A(k1,...,km)
j A(k1,...,km)

l

󰀴

󰁄X1,jX1,l

(a)
=

pd󰁛

j=1

󰀳

󰁃
󰁛

k1,...,km

A(k1,...,km)2
j

󰀴

󰁄 = 󰀂A󰀂2F.

(28)

Here (a) is because the nonzero part appears when j = l.

Based on (26), (28) and (24), we have

VarA(δ((X1,Y1))) ≤ 4󰀂A󰀂4F + 󰀂A󰀂2F = 4λ4 + λ2. (29)
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Step 3.2 (Bound for VarA(K((X1,Y1), (X2,Y2)))). First, we have the following decompo-
sition for K((X1,Y1), (X2,Y2)) under H1,

K((X1,Y1), (X2,Y2))

=
󰁛

k1,...,km

pd󰁛

j=1

󰀳

󰁃E(k1,...,km)
1 X1,j +

pd󰁛

r=1

A(k1,...,km)
r (X1,jX1,r − δrj)

󰀴

󰁄

×

󰀳

󰁃E(k1,...,km)
2 X2,j +

pd󰁛

s=1

A(k1,...,km)
s (X2,jX2,s − δsj)

󰀴

󰁄

=
󰁛

k1,...,km

pd󰁛

j=1

E(k1,...,km)
1 X1,jE(k1,...,km)

2 X2,j +
󰁛

k1,...,km

pd󰁛

j=1

pd󰁛

s=1

E(k1,...,km)
1 X1,jA(k1,...,km)

s (X2,jX2,s − δsj)

+
󰁛

k1,...,km

pd󰁛

j=1

pd󰁛

r=1

A(k1,...,km)
r (X1,jX1,r − δrj)E(k1,...,km)

2 X2,j

+
󰁛

k1,...,km

pd󰁛

j=1

󰀳

󰁃
pd󰁛

r=1

A(k1,...,km)
r (X1,jX1,r − δrj)

󰀴

󰁄

󰀳

󰁃
pd󰁛

s=1

A(k1,...,km)
s (X2,jX2,s − δsj)

󰀴

󰁄 .

(30)

Thus we have

EX
A(K((X1,Y1), (X2,Y2)))

=
󰁛

k1,...,km

pd󰁛

j=1

pd󰁛

r=1

pd󰁛

s=1

A(k1,...,km)
r (X1,jX1,r − δrj)A(k1,...,km)

s (X2,jX2,s − δsj)

=

pd󰁛

j=1

pd󰁛

r=1

pd󰁛

s=1

󰀳

󰁃
󰁛

k1,...,km

A(k1,...,km)
r A(k1,...,km)

s

󰀴

󰁄 (X1,jX1,r − δrj)(X2,jX2,s − δsj)
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By noticing that each summation term in the last equality of (30) are uncorrelated to each other
given {Xi}ni=1, we have

VarXA(K((X1,Y1), (X2,Y2)))

=
󰁛

k1,...,km

󰁛

k′1,...,k
′
m

pd󰁛

j=1

pd󰁛

l=1

EX
A(E(k1,...,km)

1 E(k1,...,km)
2 E(k′1,...,k

′
m)

1 E(k′1,...,k
′
m)

2 X1,jX2,jX1,lX2,l)

+
󰁛

k1,...,km

󰁛

k′1,...,k
′
m

pd󰁛

j=1

pd󰁛

s=1

pd󰁛

l=1

pd󰁛

r=1

EX
A(E(k1,...,km)

1 E(k′1,...,k
′
m)

1 X1,jX1,lA(k1,...,km)
s A(k′1,...,k

′
m)

r (X2,jX2,s − δsj)(X2,lX2,r − δrl))

+
󰁛

k1,...,km

󰁛

k′1,...,k
′
m

pd󰁛

j=1

pd󰁛

r=1

pd󰁛

l=1

pd󰁛

s=1

EX
A(E(k1,...,km)

2 E(k′1,...,k
′
m)

2 X2,jX2,lA
(k′1,...,k

′
m)

s A(k1,...,km)
r (X1,jX1,r − δrj)(X1,lX1,s − δsl))

(a)
=

󰁛

k1,...,km

pd󰁛

j=1

pd󰁛

l=1

X1,jX2,jX1,lX2,l

+
󰁛

k1,...,km

pd󰁛

j=1

pd󰁛

s=1

pd󰁛

l=1

pd󰁛

r=1

X1,jX1,lA(k1,...,km)
s A(k1,...,km)

r (X2,jX2,s − δsj)(X2,lX2,r − δrl))

+
󰁛

k1,...,km

pd󰁛

j=1

pd󰁛

r=1

pd󰁛

l=1

pd󰁛

s=1

X2,jX2,lA(k1,...,km)
s A(k1,...,km)

r (X1,jX1,r − δrj)(X1,lX1,s − δsl)),

where in (a) the nonzero part appears when (k1, . . . , km) = (k′1, . . . , k
′
m).
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Thus, we have

VarX (EX
A(K((X1,Y1), (X2,Y2))))

=

pd󰁛

j=1

pd󰁛

r=1

pd󰁛

s=1

pd󰁛

l=1

pd󰁛

u=1

pd󰁛

v=1

󰀳

󰁃
󰁛

k1,...,km

A(k1,...,km)
r A(k1,...,km)

s

󰀴

󰁄

󰀳

󰁃
󰁛

k1,...,km

A(k1,...,km)
u A(k1,...,km)

v

󰀴

󰁄

× EX (X1,jX1,r − δrj)(X1,uX1,l − δul)EX (X2,vX2,l − δvl)(X2,jX2,s − δsj)

(27)
≤

pd󰁛

j=1

4

󰀳

󰁃
󰁛

k1,...,km

A(k1,...,km)2
j

󰀴

󰁄
2

+ 2
󰁛

j=u=l=r ∕=s=v

󰀳

󰁃
󰁛

k1,...,km

A(k1,...,km)
j A(k1,...,km)

s

󰀴

󰁄
2

+
󰁛

s=r=l ∕=u=j=v

󰀳

󰁃
󰁛

k1,...,km

A(k1,...,km)2
r

󰀴

󰁄

󰀳

󰁃
󰁛

k1,...,km

A(k1,...,km)2
u

󰀴

󰁄

+
󰁛

j=l ∕=r=u,s=v ∕=l

󰀳

󰁃
󰁛

k1,...,km

A(k1,...,km)
r A(k1,...,km)

s

󰀴

󰁄
2

(a)

≤4󰀂A󰀂4F + 3
󰁛

1≤j,s≤pd,j ∕=s

󰀳

󰁃
󰁛

k1,...,km

A(k1,...,km)2
j

󰀴

󰁄

󰀳

󰁃
󰁛

k1,...,km

A(k1,...,km)2
s

󰀴

󰁄

+ 2

pd󰁛

j=1

󰁛

s ∕=j,r ∕=j

󰀳

󰁃
󰁛

k1,...,km

A(k1,...,km)2
r

󰀴

󰁄

󰀳

󰁃
󰁛

k1,...,km

A(k1,...,km)2
s

󰀴

󰁄

≤4󰀂A󰀂4F + 3(

pd󰁛

j=1

󰁛

k1,...,km

A(k1,...,km)2
j )2 + pd(

pd󰁛

r=1

󰁛

k1,...,km

A(k1,...,km)2
r )2

≤3(

d󰁜

j=1

pj)󰀂A󰀂4F = 3(

d󰁜

j=1

pj)λ
4.

(31)

Here in (a) we apply the Cauchy-Schwarz inequality to the second and fourth summation terms and
combine the second summation term with the third summation term.
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Moreover

EX (VarXA(K((X1,Y1), (X2,Y2))))

=(

d+m󰁜

j=d+1

pj)EX (

pd󰁛

j=1

pd󰁛

l=1

X1,jX2,jX1,jX2,l)

+ 2

pd󰁛

j=1

pd󰁛

s=1

pd󰁛

l=1

pd󰁛

r=1

󰀳

󰁃
󰁛

k1,...,km

A(k1,...,km)
s A(k1,...,km)

r

󰀴

󰁄EX (X1,jX1,l(X2,jX2,s − δsj)(X2,lX2,r − δrl))

(a)
=

d+m󰁜

j=1

pj + 2

pd󰁛

j=1

pd󰁛

s=1

pd󰁛

r=1

󰀳

󰁃
󰁛

k1,...,km

A(k1,...,km)
s A(k1,...,km)

r

󰀴

󰁄EX ((X2,jX2,s − δsj)(X2,jX2,r − δrj))

(b)

≤
d+m󰁜

j=1

pj + 4

pd󰁛

j=1

pd󰁛

s=1

󰀳

󰁃
󰁛

k1,...,km

A(k1,...,km)2
s

󰀴

󰁄

=

d+m󰁜

j=1

pj + 4(

d󰁜

k=1

pk)󰀂A󰀂2F =

d+m󰁜

j=1

pj + 4(

d󰁜

k=1

pk)λ
2.

(32)

Here (a) is because the nonzero part appears when j = l and (b) is because the nonzero part appears
when s = r and EX ((X2,jX2,s − δsj)(X2,jX2,s − δsj)) ≤ 2.

Combining (31), (32) and (24), we have

VarA(K((X1,Y1), (X2,Y2))) ≤ 3(

d󰁜

j=1

pj)λ
4 +

d+m󰁜

j=1

pj + 4(

d󰁜

k=1

pk)λ
2. (33)

Step 4. By plugging (29) and (33) into (23), we have

VarA(T4) ≤
2

n(n− 1)
(3(

d󰁜

j=1

pj)λ
4 +

d+m󰁜

j=1

pj + 4(

d󰁜

k=1

pk)λ
2) +

4

n
(4λ4 + λ2). (34)

By Chebyshev inequality, we have

PA(φ4(Y ,A ) = 0) = PA

󰀳

󰁃T4 < Z4α(

d+m󰁜

j=1

pj)
1/2/n

󰀴

󰁄

≤ PA

󰀳

󰁃T4 − EAT4 < Z4α(

d+m󰁜

j=1

pj)
1/2/n− EAT4

󰀴

󰁄

(a)

≤ PA
󰀃
T4 − λ2 < −λ2/2

󰀄

≤ VarA(T4)

λ4/4

(b)

≤ α/2.

Here (a) is by the assumption on λ and (b) is by (34) and the assumptions on λ and n ≥
Cα(

󰁔d
k=1 pk)

1/2. This finishes the proof of this theorem.
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D.5. Proofs for Corollary 9 - Corollary 14

The proofs for these corollaries are similar. Here we provide the proof for Corollary 14 and omit
others for simplicity.

Let us first consider the guarantee for φ1 ∨ φ2. First,

P0 (φ1(Y ,X ) ∨ φ2(Y ,X ) = 1) ≤ P0 (φ1(Y ,X ) = 1) + P0 (φ2(Y ,X ) = 1) ≤ α/2

for proper choices of C ′
α as we have shown Theorems 5 and 6.

Under H1, when n ≥ Cα,d,m(
󰁓d+m

j=1 pj), by Theorem 5, we have if λ satisfies the condition in
the statement, then

PA(φ1(Y ,X ) ∨ φ2(Y ,X ) = 0) ≤ PA(φ1(Y ,X ) = 0) ≤ α/2.

When n ≤ Cα,d,m(
󰁓d+m

j=1 pj), then we have
󰁓d+m

j=1 pj/n ≥ cα,d,m. So by picking C ′
α large enough.

The assumption on λ implies that the requirement of λ in Theorem 6 holds. So we have

PA(φ1(Y ,X ) ∨ φ2(Y ,X ) = 0) ≤ PA(φ2(Y ,X ) = 0) ≤ α/2.

This finishes the proof for the statistical upper bound part.
Now let us consider the guarantee for φ3 ∨ φ4. Under H0, we still have

P0 (φ3(Y ,X ) ∨ φ4(Y ,X ) = 1) ≤ P0 (φ3(Y ,X ) = 1) + P0 (φ4(Y ,X ) = 1) ≤ α/2

for proper choices of C ′
α as we have shown Theorems 7 and 8.

Under H1, when n ≥ Cα
󰁔d+m

j=d+1 pj , we have
󰁴

(
󰁔d+m

j=1 pj)1/2/n ≤ cα((
󰁔d+m

j=d+1 pj)/n)
1/4,

by Theorem 8, we have if λ ≥ C ′
α

󰁴
(
󰁔d+m

j=1 pj)1/2/n, we have

PA(φ3(Y ,X ) ∨ φ4(Y ,X ) = 0) ≤ PA(φ4(Y ,X ) = 0) ≤ α/2.

When n ≤ Cα
󰁔d+m

j=d+1 pj , then we have
󰁴

(
󰁔d+m

j=1 pj)1/2/n ≥ cα((
󰁔d+m

j=d+1 pj)/n)
1/4. So when

λ ≥ C ′
α((

󰁔d+m
j=d+1 pj)/n)

1/4, by Theorem 7, we have

PA(φ3(Y ,X ) ∨ φ4(Y ,X ) = 0) ≤ PA(φ3(Y ,X ) = 0) ≤ α/2.

This finishes the proof for the computational upper bound part.

Appendix E. Proofs in Section 5

We will follow the convention introduced at the beginning of Appendix C and consider the special
setting p1 = p2 = · · · = pd+m and σ = 1 without loss of generality.
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E.1. Proof of Theorem 19

Here we provide a unified proof for m = 0, m = 1 and m ≥ 2 together, although we note the
truncation strategy we introduced below is actually not needed in the m = 0 case.

We consider a subclass of parameters A = {A = λud+m,u ∈ Sp−1}. The prior we put
on the alternative is u ∼ Unif(Sp−1). Recall we use notation Du to denote the joint distribution
of (Yi,Xi) with tensor parameter A = λu⊗(d+m); and notation D0 to denote the distribution of
(Yi,Xi) under H0. Based on the definition of the statistical dimension, it is critical to understand
the behavior of |χD0(Dv, Du)|. By Lemma 38 Eq. (49), we can see this term can easily blow up
when λ ≫ 1, which will happen in m = 1 or m ≥ 2. Thus, here we need to perform truncation
under H1. Given (Yi,Xi) ∼ Du, we keep the data if |〈Xi,u

⊗d〉| ≤ M := C
√
log p for sufficiently

large C and resample otherwise. Let C∗ be the normalization factor 1/C∗ := P
󰀃
|〈Xi,u

⊗d〉| ≤ M
󰀄
.

Notice that C∗ ≈ 1 for large enough C. Let us denote this truncated distribution as 󰁨Du. It is easy to
check TV(Du, 󰁨Du) = p−C , which goes to zero as p → ∞. If we denote the risk for this modified
hypothesis testing problem

H0 : (Yi,Xi) ∼ D0 v.s. H1 : (Yi,Xi) ∼ 󰁨Du for u ∼ Unif(Sp−1) (35)

as R′, then we have for any test φ, R(φ) ≥ R′(φ) + o(1) as p → ∞. Thus to show the SQ lower
bound for the original hypothesis testing problem, it is enough to show the same lower bound hold
for the hypothesis testing problem (35).

We divide the rest of the proof into two steps. In step 1, we provide a good bound for
|χD0(

󰁨Dv, 󰁨Du)| based on different values of |u⊤v| and in the second step we bound the statisti-
cal dimension.

Step 1. Given any u,v ∈ Sp−1,u ∕= v, let t := u⊤v. If |λ2tm| ≤ 1/4, then we can easily
check |(1 − t2d)λ2tm + td| ≤ (1 − |td|2)/4 + |td| < 1 as |td| < 1, and we have |λ2td+m| ≤ 1/4.
Then by Lemma 38 Eq. (49), we have

|χD0(
󰁨Dv, 󰁨Du)| ≤ C2

∗ |χD0(Dv, Du)|

≤ C2
∗

󰀏󰀏󰀏󰀏
󰀓
(1− td+mλ2)2 − λ4t2m

󰀔−1/2
− 1

󰀏󰀏󰀏󰀏
Lemma 41

≤ C2
∗ |1− c(t2(d+m)λ4 − 2td+mλ2 − λ4t2m)− 1|

≤ C
󰀏󰀏󰀏td+mλ2 + λ4t2m

󰀏󰀏󰀏 .

At the same time, for any u,v ∈ Sp−1,u ∕= v, we also have the following bound by truncation:

|χD0(
󰁨Dv, 󰁨Du)|

Lemma 38
= C2

∗EXi:|〈Xi,u⊗d〉|≤M,|〈Xi,v⊗d〉|≤M

󰀓
exp(λ2tm〈Xi,u

⊗d〉〈Xi,v
⊗d〉)

󰀔

≤C2
∗ exp

󰀃
λ2M2|t|m

󰀄
.

In summary, we have

|χD0(
󰁨Dv, 󰁨Du)| ≤

󰀝
C|td+mλ2 + λ4t2m|, if |λ2tm| ≤ 1/4;
C2
∗ exp

󰀃
λ2M2|t|m

󰀄
, otherwise .

(36)

Step 2. By the definition of the statistical dimension, we find given any positive integer q, and
event A such that Pu,v∼Unif(Sp−1)(A) ≥ 1/q2, to maximize Eu,v∼Unif(Sp−1)

󰀓
|χD0(

󰁨Dv, 󰁨Du)||A
󰀔

:
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(1) incorperating positive t is better than negative t where t = u⊤v; (2) for positive t, the upper
bound of |χD0(

󰁨Dv, 󰁨Du)| is an increasing function with respect to t, i.e., choosing large positive t is
better than small positive t.

Given any 0 < 󰂃 < 1/4, let the event A∗ := {u,v ∈ Sp−1 : u
⊤v > p−1/2+󰂃}. First by Lemma

46, we known (u⊤v + 1)/2 ∼ Beta
󰀓
p−1
2 , p−1

2

󰀔
. Then by Zhang and Zhou (2020) Theorem 8, we

have there exist C ′ > c′ > 0 such that

exp(−C ′p2󰂃) ≤ Pu,v∼Unif(Sp−1)(A
∗) ≤ exp(−c′p2󰂃). (37)

We set 1/q2 = Pu,v∼Unif(Sp−1)(A
∗), i.e., q ≥ exp(−c′p2󰂃/2). If we can show

Eu,v∼Unif(Sp−1)

󰁫
|χD0(

󰁨Dv, 󰁨Du)|
󰀏󰀏󰀏A∗

󰁬
≤ 1

n
, (38)

then we are done as for any other event A with Pu,v∼Unif(Sp−1)(A) ≥ 1/q2, we will have

Eu,v∼Unif(Sp−1)

󰁫
|χD0(

󰁨Dv, 󰁨Du)|
󰀏󰀏󰀏A∗

󰁬
≥ Eu,v∼Unif(Sp−1)

󰁫
|χD0(

󰁨Dv, 󰁨Du)|
󰀏󰀏󰀏A

󰁬

for the reason we have mentioned before and this implies the statistical dimension is at least q which
is greater or equal to exp(−c′p2󰂃/2).

Next, we show (38). Let us define two more events

A∗∗ := {u,v|u⊤v > p−1/2+2󰂃} and A∗∗∗ := {u,v|p−1/2+󰂃 < u⊤v < p−1/2+2󰂃}.

Then

Eu,v∼Unif(Sp−1)

󰁫
|χD0(

󰁨Dv, 󰁨Du)|
󰀏󰀏󰀏A∗

󰁬

= Eu,v∼Unif(Sp−1)

󰁫
|χD0(

󰁨Dv, 󰁨Du)|1A∗

󰁬
/Pu,v∼Unif(Sp−1)(A

∗)

= Eu,v∼Unif(Sp−1)

󰁫
|χD0(

󰁨Dv, 󰁨Du)|(1A∗∗ + 1A∗∗∗)
󰁬
/Pu,v∼Unif(Sp−1)(A

∗).

(39)

Next, we bound Eu,v∼Unif(Sp−1)

󰁫
|χD0(

󰁨Dv, 󰁨Du)|1A∗∗

󰁬
and Eu,v∼Unif(Sp−1)

󰁫
|χD0(

󰁨Dv, 󰁨Du)|1A∗∗∗

󰁬

separately below.
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First,

Eu,v∼Unif(Sp−1)

󰁫
|χD0(

󰁨Dv, 󰁨Du)|1A∗∗

󰁬

(36)
≤ Eu,v∼Unif(Sp−1)C

2
∗
󰀅
exp(λ2|t|mM2)1A∗∗

󰀆

(a)
= C

󰁝 1

p−1+4󰂃

exp(λ2bm/2M2)
b−1/2(1− b)(p−3)/2Γ(p/2)

Γ(1/2)Γ((p− 1)/2)
db

(b)

≤Cp1−2󰂃

󰁝 1

p−1+4󰂃

exp(λ2bm/2M2)(1− b)(p−3)/2db

=Cp1−2󰂃

󰁝 1

p−1+4󰂃

exp(λ2bm/2M2 − p− 3

2
log

1

1− b
)db

(c)

≤Cp1−2󰂃

󰁝 1

p−1+4󰂃

exp(λ2bm/2M2 − p− 3

2
b)db

(d)

≤

󰀻
󰁁󰀿

󰁁󰀽

Cp1−2󰂃 exp(λ2M2)
󰁕 1
p−1+4󰂃 exp(−p−3

2 b)db, if m = 0

Cp1−2󰂃
󰁕 1
p−1+4󰂃 exp(λ

2b1/2M2 − cpb)db, if m = 1

Cp1−2󰂃
󰁕 1
p−1+4󰂃 exp(λ

2bM2 − cpb)db, if m ≥ 2

(e)

≤Cp1−2󰂃pC
󰁝 1

p−1+4󰂃

exp(−c′pb)db

≤CpC+1−2󰂃 exp(λ2M2)

󰀕
exp(−c′p)

−c′p
− exp(−c′p · p−1+4󰂃)

−c′p

󰀖
(f)

≤ exp(−cp4󰂃).

(40)

here (a) is because B := (u⊤v)2 ∼ Beta(12 ,
p−1
2 ) by Lemma 46 and we change the integration

variable to B; (b) is because Γ(p/2)/(Γ(1/2)Γ((p − 1)/2)) ≤ C
√
p by the property of Gamma

function and we bound b−1/2 by p1/2−2󰂃; (c) is because log 1
1−b ≥ b; (d) is because b ∈ (0, 1); (e)

is because

• (for m = 1) λ2b1/2M2

cpb = λ2M2

cpb1/2
≤ λ2M2

cp·p−1/2+2󰂃 = λ2M2

p1/2+2󰂃 = o(1) as λ ≤ c1p
1/4−󰂃,

• (for m ≥ 2) λ2bM2

cpb = λ2M2

cp = o(1) as λ ≤ c1p
1/2−2󰂃;

and (f) holds when p is sufficiently large.
Next, on event A∗∗∗, let us first check |λ2tm| ≤ 1/4 holds in all m = 0, m = 1 and m ≥ 2 cases.

First, it is true in m = 0 case as λ ≤ 1/2. When m = 1, |λ2t| ≤ c21p
1/2−2󰂃 · p−1/2+2󰂃 ≤ c1 ≤ 1/4

as long as c1 ≤ 1/2. Finally for m ≥ 2, |λ2tm| ≤ |λ2t2| ≤ c21p
1−4󰂃 · p−1+4󰂃 ≤ 1/4 as long as

c1 ≤ 1/2.
Thus on event A∗∗∗, we can bound |χD0(

󰁨Dv, 󰁨Du)| via C|td+mλ2 + λ4t2m| by (36). Thus

Eu,v∼Unif(Sp−1)

󰁫
|χD0(

󰁨Dv, 󰁨Du)|1A∗∗∗

󰁬

≤Eu,v∼Unif(Sp−1)

󰁫
C|td+mλ2 + λ4t2m|1A∗∗∗

󰁬

≤C(p(−1/2+2󰂃)(d+m)λ2 + λ4p2m(−1/2+2󰂃))Pu,v∼Unif(Sp−1)(A
∗∗∗)

≤C(p(−1/2+2󰂃)(d+m)λ2 + λ4p2m(−1/2+2󰂃))Pu,v∼Unif(Sp−1)(A
∗).

(41)

42



TENSOR-ON-TENSOR ASSOCIATION DETECTION

By plugging (40) and (41) into (39), we have

Eu,v∼Unif(Sp−1)

󰁫
|χD0(

󰁨Dv, 󰁨Du)|
󰀏󰀏󰀏A∗

󰁬

(37)
≤ C · exp(−cp4󰂃) · exp(C ′p2󰂃) + C(p(−1/2+2󰂃)(d+m)λ2 + λ4p2m(−1/2+2󰂃)) ≤ 1

n
,

where the last inequality holds as p is sufficiently large and n ≤ c2(λ
2p(1/2−2󰂃)(d+m)+λ4p(1−4󰂃)m)

for some sufficiently small c2. This finishes the proof of this theorem.

E.2. Proof of Theorem 23

One key property regarding the SQ algorithm we will use is the following one.

Lemma 37 (Theorem 1.4 of Feldman (2017a)) Let D be a distribution over the domain X . There
exists a statistical query algorithm that given n, ξ, B > 0, ϕ : X → R satisfying Ex∼D[ϕ

2(x)] ≤ B
and access to VSTAT(n), outputs an estimate of Ex∼D[ϕ(x)], denoted by Êx∼D[ϕ(x)], such that

󰀏󰀏󰀏Êx∼D[ϕ(x)]− Ex∼D[ϕ(x)]
󰀏󰀏󰀏 ≤ 8 log(n)

󰁵
Varx∼D(ϕ(x))

n
+ ξ

after making at most 3 log(4nB/ξ2) queries.

Recall we use the following two critical statistics to design the test:

• T5(Y1,X1) =
󰁓p

j1,...,jm=1Y2
1[j1,...,jm];

•

T6(Y1,X1)

=

p󰁛

j1,...,j d+m
2

=1

(Y1 ⊗X1)[j1,j1,j2,j2,...,j d+m
2

,j d+m
2

]

=

󰀳

󰁃
p󰁛

j(d+1)/2,...,j(d+m)/2=1

Y1[j(d+1)/2,j(d+1)/2,...,j(d+m)/2,j(d+m)/2]

󰀴

󰁄 ·

󰀳

󰁃
p󰁛

j1,...,jd/2=1

X1[j1,j1,...,jd/2,jd/2]

󰀴

󰁄

Under H0, we have

E0(T5(Y1,X1)) = pm, Var0(T5(Y1,X1)) = 2pm, E0(ϕ
2
1(Y1,X1)) ≤ 3p2m;

E0(T6(Y1,X1)) = 0, Var0(T6(Y1,X1)) = p(d+m)/2, E0(ϕ
2
2(Y1,X1)) = pd+m.

Under H1, we have Y1 = λ〈X1,u
⊗d〉u⊗m+E1. We use the notation EX1 and VarX1 to denote

the expectation and variance computed under the marginal distribution of the covariate tensor X1

and notation EX1
A and VarX1

A to denote the expectation and variance taken under the conditional
distribution of Y1 given X1 with parameter A.
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Since T5(Y1,X1)|X1 ∼ χ2
pm(λ

2〈X1,u
⊗d〉2), we have

EA(T5(Y1,X1)) = EX1(p
m + λ2〈X1,u

⊗d〉2) = λ2 + pm;

VarA(T5(Y1,X1)) = EX1(Var
X1
A (T5(Y1,X1))) + VarX1(E

X1
A (T5(Y1,X1)))

= EX1(2(p
m + 2λ2〈X1,u

⊗d〉2)) + VarX1(p
m + λ2〈X1,u

⊗d〉2)
= 2pm + 4λ2 + 2λ4;

EA(ϕ2
1(Y1,X1)) ≤ p2m + 2pmλ2 + 2pm + 4λ2 + 3λ4 ≤ 3p2m + 2pmλ2 + 4λ2 + 3λ4.

Moreover, under H1, denote ξ1 =
󰁓p

j1,...,jm/2=1Y1[j1,j1,...,jm/2,jm/2] and ξ2 =
󰁓p

j1,...,jd/2=1X1[j1,j1,...,jd/2,jd/2], then T6(Y1,X1) = ξ1ξ2. ξ1|X1 ∼ N(λ〈X1,u
⊗d〉, pm/2), so

ξ1 ∼ N(0,λ2 + pm/2). In addition ξ2 ∼ N(0, pd/2) and

EA(T6(Y1,X1)) = EA(ξ1ξ2) = λ,

thus ξ1, ξ2 follow the joint normal distribution (ξ1, ξ2)
⊤ ∼ N

󰀕
0,

󰀗
λ2 + pm/2 λ

λ pd/2

󰀘󰀖
. So we can

write ξ1 = λξ2/p
d/2 + Z where Z ∼ N(0, pm/2 + λ2 − λ2/pd/2). Thus

EA(ϕ2
6(Y1,X1)) = E(ξ21ξ22) = E((λξ2/pd/2 + Z)2ξ22) = 2λ2 + pd/2λ2 + p(d+m)/2,

VarA(ϕ2
6(Y1,X1)) = EA(ϕ2

6(Y1,X1))− (EA(T6(Y1,X1)))
2 = λ2 + pd/2λ2 + p(d+m)/2.

Take B := max(2λ2 + pd/2λ2 + p(d+m)/2, 3p2m + 2pmλ2 + 4λ2 + 3λ4), by Lemma 37, we
have if

n ≥ C
max(Var0(T5(Y1,X1)),VarA(T5(Y1,X1)))

(EA(T5(Y1,X1))− E0(T5(Y1,X1)))2
log2 n,

i.e., n ≥ C 2pm+4λ2+2λ4

λ4 log2 n, and set ξ = (EA(T5(Y1,X1))− E0(T5(Y1,X1)))/4, we have the
test φ5 = 1(T5(Y1,X1) ≥ pm + λ2/2) can detect by calling O(log(nB/λ4)) number of queries to
VSTAT(n). Similarly, if

n ≥ C
max(Var0(T6(Y1,X1)),VarA(T6(Y1,X1)))

(EA(T6(Y1,X1))− E0(T6(Y1,X1)))2
log2 n, ,

i.e., n ≥ C λ2+pd/2λ2+p(d+m)/2

λ2 log2 n, and set ξ = (EA(T6(Y1,X1)) − E0(T6(Y1,X1)))/4, we
have the test φ6 = 1(T6(Y1,X1) ≥ λ/2) can detect by calling O(log(nB/λ2)) number of queries
to VSTAT(n).

In summary, if n ≥ C
󰀓
(2p

m+4λ2+2λ4

λ4 ∧ λ2+pd/2λ2+p(d+m)/2

λ2 ) ∨ 1
󰀔
log2 n, the test φ5 ∨ φ6

achieves reliable detection by calling O(log(nB/(λ2 ∧ λ4))) number of queries to VSTAT(n).
Finally,

• if λ ≤ 1, 2pm+4λ2+2λ4

λ4 ∧ λ2+pd/2λ2+p(d+m)/2

λ2 ≍ pm

λ4 ∧ p(d+m)/2

λ2 ;

• if 1 ≤ λ ≤ pm/4, 2pm+4λ2+2λ4

λ4 ∧ λ2+pd/2λ2+p(d+m)/2

λ2 ≍ pm

λ4 ∧ p(d+m)/2

λ2 ;

• if λ ≥ pm/4, 2pm+4λ2+2λ4

λ4 ∧ λ2+pd/2λ2+p(d+m)/2

λ2 ≤ 1;

thus
󰀓
2pm+4λ2+2λ4

λ4 ∧ λ2+pd/2λ2+p(d+m)/2

λ2

󰀔
∨ 1 ≍

󰀓
pm

λ4 ∧ p(d+m)/2

λ2

󰀔
∨ 1 for all ranges of λ and this

finishes the proof of this theorem.
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E.3. An Equivalence Formulation For Scalar-on-tensor Regression

In this section, we show without loss of generality, we can assume εi
i.i.d.∼ N(0,σ2) with 0 ≤ σ2 <

1, Xi
i.i.d.∼ N(0, 1) and 󰀂A󰀂F + σ2 = 1 in establishing the computational lower bound for the

testing problem (5). Consider yi = 〈A,Xi〉+ εi and suppose we are in a simpler setting that 󰀂A󰀂F
and σ are known. Then we can rescale the problem by multiplying

󰁳
1/(󰀂A󰀂F + σ2) on both sides

of the equation and get

y′i = 〈A′,X ′
i 〉+ ε′i, i = 1, . . . , n, (42)

where y′i = yi/
󰁳

󰀂A󰀂F + σ2 ∼ N(0, 1), A′ = A has i.i.d. N(0, 1) entries and A′
=

A/
󰁳

󰀂A󰀂F + σ2, ε′i follows i.i.d. N(0,σ2/
󰁳

󰀂A󰀂F + σ2) satisfying 󰀂A′󰀂2F + Var(ε′i) = 1.
Then the new null and alternative are exactly the ones in (5). Thus, without loss of generality, we
can assume εi

i.i.d.∼ N(0,σ2) with 0 ≤ σ2 < 1, Xi
i.i.d.∼ N(0, 1) and 󰀂A󰀂F + σ2 = 1.

E.4. Proof of Theorem 25

We will first show the claim: for any 0 < 󰂃 < 1
2 , the pairwise-correlation-based statistical dimension

(see Definition in (34)) with pairwise correlation (O((1−σ2)p(󰂃−
1
2
)d), 1

σ2−1) of the testing problem
(5) is at least 2Ω(p󰂃). The Theorem 25 follows from Lemma 35 by picking γ′ = γ.

Next we prove the claim. Take the distribution of (X , y) generated from H0 as the reference
distribution and denote it by D0. Denote the distribution of (X , y) generated from H1 with tensor
parameter A = a⊗d as Da.

First, it is easy to check for (X , y) ∼ Da, we have (vec(X ), y) ∼ N(0,Σa) with Σa =

Ipd+1 + eā⊤ + āe⊤ =

󰀗
Ipd vec(a⊗d)

vec(a⊗d)⊤ 1

󰀘
, where vec(·) denotes the vectorization of the

input tensor, e =

󰀗
0pd
1

󰀘
and ā =

󰀗
vec(a⊗d)

0

󰀘
. Notice

Σa +Σb −ΣaΣb = I+ eā⊤ + āe⊤ + I+ eb̄⊤ + b̄e⊤ − (I+ eā⊤ + āe⊤)(I+ eb̄⊤ + b̄e⊤)

= I+ eb̄⊤ + b̄e⊤ − eb̄⊤ − b̄e⊤ − āb̄⊤ − 〈ā, b̄〉ee⊤

= I− āb̄⊤ − 〈ā, b̄〉ee⊤,
(43)

and

det(I− āb̄⊤ − 〈ā, b̄〉ee⊤) = (1− 〈ā, b̄〉) · det(I− vec(a⊗d)vec(b⊗d)⊤)

(Meyer, 2000,Eq.6.2.2)
= (1− 〈ā, b̄〉)2.

(44)

At the same time, we have 0 ≺ Σa,Σb ≺ 2Ipd+1, the first “≺” is because Σa and Σb are
covariance matrices and they are full rank as σ2 < 1; the second “≺” is because 2Ipd+1 − Σa is
also a covariance matrix of (vec(X ), y) where their correlation is specified by −vec(a⊗), similarly
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for 2Ipd+1 −Σb. Then by (Diakonikolas and Kane, 2021, Lemma 4),

χD0(Da, Db) = χN(0,I)(N(0,Σa), N(0,Σb))

Lemma 4 of DiakonikolasandKane (2021)
= (det(Σa +Σb −ΣaΣb))

−1/2 − 1

(43)
= (det(I− āb̄⊤ − 〈ā, b̄〉ee⊤))−1/2 − 1

(44)
= (1− 〈ā, b̄〉)−1 − 1 = (1− (a⊤b)d)−1 − 1.

This implies χD0(Da, Da) = 1/σ2−1 since 󰀂a⊗d󰀂2F = 󰀂a󰀂2d2 = 1−σ2. Moreover, by Lemma
45, we can construct N = 2Ω(p󰂃) vectors {a1, . . . ,aN} such that 󰀂ai󰀂d2 = 1− σ2, ∀i ∈ [N ] and for
any distinct i, j ∈ [N ], |a⊤i aj | ≤ O((1− σ2)p󰂃−1/2). Thus for distinct i, j ∈ [m],

|χD0(Dai , Daj )| ≤
|(a⊤i aj)|d

1− (a⊤i aj)
d
≤ O((1− σ2)p(󰂃−1/2)d) (45)

E.5. Proof of Theorem 26

To estimate the quantity T6(y1,X1) via SQ, we need to compute the mean and second moment of
this quantity under the null and alternative hypothesis. First, under H0, we have E[T6(y1,X1)] = 0
and

E[T 2
6 (y1,X1)] = E

󰀳

󰁃
󰁛

j1,...,jd/2∈[p]
(y1X1)[j1,j1,...,jd/2,jd/2]

󰀴

󰁄
2

=
󰁛

j1,...,jd/2∈[p]
E(y21(X1)

2
[j1,j1,...,jd/2,jd/2]

) = pd/2.

Under the alternative, we have

E[T6(y1,X1)] = E

󰀳

󰁃
󰁛

j1,...,jd/2∈[p]
(y1X1)[j1,j1,...,jd/2,jd/2]

󰀴

󰁄

=
󰁛

j1,...,jd/2∈[p]
E
󰀓
(y1X1)[j1,j1,...,jd/2,jd/2]

󰀔

=
󰁛

j1,...,jd/2∈[p]
E
󰀓
(〈A,X1〉+ ε)X1[j1,j1,...,jd/2,jd/2]

󰀔

=
󰁛

j1,...,jd/2∈[p]
A[j1,j1,...,jd/2,jd/2]

=
󰁛

j1,...,jd/2∈[p]
a2j1 · · ·a

2
jd/2

= 󰀂a󰀂d2 = 󰀂A󰀂F =
󰁳

1− σ2,

and T6 = y1ξ2, where ξ2 =
󰁓p

j1,...,jd/2=1X1[j1,j1,...,jd/2,jd/2]. Notice y1 ∼ N(0, 1), ξ2 ∼
N(0, pd/2) and EA(T6(Y1,X1)) = EA(ξ1ξ2) =

√
1− σ2, thus y1, ξ2 follow the joint normal

distribution

(y1, ξ2)
⊤ ∼ N

󰀕
0,

󰀗
1

√
1− σ2

√
1− σ2 pd/2

󰀘󰀖
.
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So we can write y1 =
√
1− σ2ξ2/p

d/2+Z where Z ∼ N(0, 1− (1−σ2)/pd/2) and is independent
of ξ2. Thus E[T 2

6 (y1,X1)] = E(y21ξ22) = E((
√
1− σ2ξ2/p

d/2 + Z)2ξ22) = pd/2 + 2(1− σ2).
By setting B = pd/2 + 2(1 − σ2) and ξ = 1/ log(n) in Lemma 37, we have when

n(1 − σ2)/(pd/2 log2(n)) → ∞, with O(log(4nB/ξ2)) queries to VSTAT(n), there exists an
SQ algorithm such that

󰀏󰀏󰀏Êx∼D[T6(y1,X1)]− Ex∼D[T6(y1,X1)]
󰀏󰀏󰀏 /

√
1− σ2 → 0 as n → ∞ un-

der both null and alternative hypothesis. So the test 1(Ê(y,X )∼D(T6(y1,X1)) >
√
1− σ2/2) can

achieve vanishing type I+II error in solving the hypothesis testing problem (5).

Appendix F. Technical Lemmas

In this section, we collect a series of technical lemmas to be used in the main technical proofs of
this paper.

Lemma 38 (χ2-divergence and pairwise correlation) Consider the tensor-on-tensor regression
model (1) with A = λ ·u⊗(d+m), i.e., Yi = 〈Xi,λ ·u⊗(d+m)〉∗ +Ei, where u ∈ Sp−1. Suppose Xi

and Ei are independent and have i.i.d. N(0, 1) entries. Denote the joint density of (Yi,Xi) as Du

and the joint distribution of (Yi,Xi) with λ = 0 as D0. We also use Du(Yi|Xi) and D0(Yi|Xi) to
denote the conditional density of Yi given Xi when (Yi,Xi) ∼ Du or D0, respectively. Then given
any u,v ∈ Sp−1, we have

χ2(Du(Yi|Xi), D0(Yi|Xi)) + 1 = exp(λ2〈Xi,u
⊗d〉2),

χD0(Du(Yi|Xi), Dv(Yi|Xi)) + 1 = exp(λ2tm〈Xi,u
⊗d〉〈Xi,v

⊗d〉),
(46)

where t := u⊤v. Thus

χ2(Du, D0) + 1 = EXi

󰀓
exp(λ2〈Xi,u

⊗d〉2)
󰀔
,

χD0(Du, Dv) + 1 = EXi

󰀓
exp(λ2tm〈Xi,u

⊗d〉〈Xi,v
⊗d〉)

󰀔
,

(47)

In particular, if λ < 1/2, we have

χ2(Du, D0) + 1 = (1− 2λ2)−1/2. (48)

If |(1− t2d)λ2tm + td| < 1, we have

χD0(Du, Dv) + 1 =

√
1− t2d󰁳

1− (1− t2d)2(λ2tm + td/(1− t2d))2

=
󰀓
1− td+mλ2

󰀔−1/2
·
󰀕
1− λ2td+m − λ4t2m

1− λ2td+m

󰀖−1/2

.

(49)

Proof of Lemma 38. Let us first prove the result for χD0(Du(Yi,Xi), Dv(Yi,Xi))+1 in (46), the
expression for χ2(Du(Yi,Xi), D0(Yi,Xi)) + 1 can be obtained by setting u = v. By Lemma 44
(53), we know Yi = λ〈Xi,u

⊗d〉u⊗m + Ei. Thus, vec(Yi|Xi) ∼ N(vec(λ〈Xi,u
⊗d〉u⊗m), Ipm).
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Then

χD0(Du(Yi,Xi), Dv(Yi,Xi)) + 1

=

󰁝
Du(Yi|Xi)Du(Yi|Xi)

D0(Yi|Xi)
dYi

=

󰁝
1

(2π)pm/2

exp(−1
2󰀂Yi − λ〈Xi,u

⊗d〉u⊗m󰀂2F − 1
2󰀂Yi − λ〈Xi,v

⊗d〉v⊗m󰀂2F)
exp(−1

2󰀂Yi󰀂2F)
dYi

=exp(λ2〈u,v〉m〈Xi,v
⊗d〉〈Xi,u

⊗d〉).

(50)

Next let us prove (48). Let us do a change of variable, set

vec(󰁩Xi) = [v1,v1⊥]
⊤vec(Xi),

where v1 = vec(u⊗d) ∈ Rpd and v1⊥ ∈ Rpd×(pd−1) is the orthogonal complement of v1. By doing
so, we have

χ2(Du, D0) + 1 = EXi

󰀓
exp(λ2〈Xi,u

⊗d〉2)
󰀔

=

󰁝
1√
2π

exp(λ2󰁨x21 − 󰁨x21/2)d󰁨x1,

= (1− 2λ2)−1/2,

where 󰁨x1 is the first element in vec(󰁩Xi) and in the last inequality, we use the fact λ2 < 1/2 and the
integral of a Gaussian random variable.

Finally, we compute χD0(Du, Dv) + 1. Notice that |(1 − t2d)λ2tm + td| < 1 implies t < 1.
Again we perform the change of variables in the integration

vec(󰁩Xi) = [v1,v2,v12⊥]
⊤vec(Xi),

where v1 = vec(u⊗d) ∈ Rpd ,v2 = vec(v⊗d) ∈ Rpd and v12⊥ ∈ Rpd×(pd−2) is the orthogonal
complement of [v1,v2]. Then

χD0(Du, Dv) + 1 = EXi

󰀓
exp(λ2tm〈Xi,u

⊗d〉〈Xi,v
⊗d〉)

󰀔

=

󰁝
exp(λ2tm󰁨x1󰁨x2)

1

|Σ|1/2
exp(−1

2
(󰁨x1, 󰁨x2)Σ−1(󰁨x1, 󰁨x2)⊤)d󰁨x1d󰁨x2

=

󰁝
1√

1− t2d
exp

󰀕
−1

2
(󰁨x1, 󰁨x2)󰁨Σ

−1
(󰁨x1, 󰁨x2)⊤

󰀖
d󰁨x1d󰁨x2

(a)
=

|󰁨Σ|1/2√
1− t2d

=

√
1− t2d󰁳

1− (1− t2d)2(λ2tm + td/(1− t2d))2

=
󰀓
1− td+mλ2

󰀔−1/2
·
󰀕
1− λ2td+m − λ4t2m

1− λ2td+m

󰀖−1/2

here | · | denotes the determinant of a given matrix, Σ =

󰀗
1 td

td 1

󰀘
is the covariant matrix between

󰁨x1 and 󰁨x2 and

󰁨Σ
−1

=

󰀗
1 −(1− t2d)(λ2tm + td/(1− t2d))

−(1− t2d)(λ2tm + td/(1− t2d)) 1

󰀘
/(1− t2d).
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In (a), we use the fact that 󰁨Σ is a positive definite matrix when |(1 − t2d)λ2tm + td| < 1 and the
integration for the multivariate Gaussian random variable. This finishes the proof of this lemma.
□

Lemma 39 (Lemma 11 of Carpentier et al. (2019)) Assume that the matrix X ∈ Rn×p has i.i.d.
N(0, 1) entries. Then for any n ≥ 1, there exists a universal c0 > 0 such that for all θ, θ′ ∈ Rp with
󰀂θ󰀂2, 󰀂θ′󰀂2 ≤ cn−1/4 and c ∈ (0, c0) we have EX exp(〈Xθ,Xθ′〉) ≤ exp(n〈θ, θ′〉)(1 + C0c

2),
where C0 > 0 is also a universal constant.

Lemma 40 (Lemma 8 of Luo and Zhang (2022a)) Let C denotes the set of all unit vectors in Rp

with {1/√p,−1/
√
p} entries. Then for d ≥ 2, there exits a function g : (0, c0) → (1,∞) with

c0 > 0 is a fixed small constant and the left limit of g at 0 is 1, i.e., g(0+) = 1, such that for any
c < c0, we have Eu,v∈Unif(C) exp(h〈u,v〉d) ≤ g(c) given h = cp.

Lemma 41 For any 0 < δ < 1, then

1

1− x
≤ exp

󰀣󰁵
2

1− δ
x

󰀤
, and

1

1 + x
≤ exp(− x

1 + δ
) ∀ 0 ≤ x ≤ δ.

Proof of Lemma 41 . We first prove the first inequality. By Taylor expansion, we have

1

1− x
= 1 + x+ x2 + x3 + x4 + · · ·

≤ 1 + x+
x2

1− x

(a)

≤ 1 + x+
x2

1− δ
.

Here (a) is because 0 ≤ x ≤ δ. At the same time,

exp

󰀣󰁵
2

1− δ
x

󰀤
= 1 +

󰁵
2

1− δ
x+

(
󰁴

2
1−δx)

2

2!
+ · · · ≥ 1 +

󰁵
2

1− δ
x+

x2

1− δ
≥ 1

1− x

To show the second inequality, we just need to show 1 + x ≥ exp( x
1+δ ). By Taylor expansion,

we have

exp(
x

1 + δ
) = 1 +

x

1 + δ
+ (

x

1 + δ
)2/2! + · · · ≤ 1 +

x

1 + δ
+ (

x

1 + δ
)2 + (

x

1 + δ
)3 + · · ·

≤ 1 + (
x

1 + δ
)/(1− x

1 + δ
) ≤ 1 + (

x

1 + δ
)/(1− δ

1 + δ
)

= 1 + x.

□

Lemma 42 Suppose Xi ∈ Rp1×···×pd for i = 1, . . . , n are independent and has i.i.d. N(0, 1)
entries. Then for any fixed vj ∈ Spj−1 for j = 1, . . . , d, we have P(|

󰁓n
i=1〈Xi,v1⊗· · ·⊗vd+m〉2−

n| ≥ n/2) ≤ 2 exp(−cn) for some c > 0 and every positive integer n.
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Proof Notice that {〈Xi,v1⊗ · · ·⊗vd+m〉} are i.i.d. with N(0, 1). So 〈Xi,v1⊗ · · ·⊗vd+m〉2− 1
for i = 1, . . . , n are i.i.d. centered sub-exponential random variables. Then the results follow
by applying Bernstein’s inequality for the concentration of the sum of sub-exponential random
variables, see (Vershynin, 2010, Proposition 5.16).

Lemma 43 (Concentration for Random Tensors) (a) Suppose E ∈ Rp1×···×pd is an order-d ran-
dom tensor with i.i.d. N(0, 1) entries. Then

P

󰀳

󰁃 sup
vj∈Spj−1,j=1,...,d

E ×d
j=1 vj ≥ C

󰁹󰁸󰁸󰁷
d󰁛

j=1

pj

󰀴

󰁄 ≤ exp(−C ′(
d󰁛

j=1

pj)).

(b) Suppose X ∗ is the adjoint operator of the linear operator X defined in (2) and Xi for
i = 1, . . . , n has i.i.d. N(0, 1) entries. If E ∈ Rpd+1×···×pd+m×n has i.i.d. N(0, 1) entries and
n ≥ Cd,m(

󰁓d+m
j=1 pj) for some sufficiently large Cd,m, then

P

󰀳

󰁅󰁃 sup
vj ,j=1,...,d+m

X ∗(E)×d+m
j=1 vj ≥ c

󰁹󰁸󰁸󰁸󰁷n

󰀳

󰁃
d+m󰁛

j=1

pj

󰀴

󰁄

󰀴

󰁆󰁄 ≤ exp(−c′(
d+m󰁛

j=1

pj)).

Proof Part (a) can be found in (Zhang and Xia, 2018, Lemma 5) and part (b) is proved in (Luo and
Zhang, 2022b, Theorem 4, part 1).

The next lemma 44, which reveals a few useful properties of the contracted tensor inner product
defined in (1).

Lemma 44 (Properties of Contracted Tensor Inner Product (Lemma 12 of Luo and Zhang (2022b)))
Let X ∈ Rp1×···×pd×pd+1×···×pd+m , Z ∈ Rp1×···×pd , W ∈ Rp1×···×pk−1×qk×pk+1×···×pd be tensors

with d ≥ k ≥ 1, m ≥ 0. For any A ∈ Rqk×pk , we have

〈X ×k A,W〉∗ = 〈X ,W ×k A
⊤〉∗. (51)

For any B ∈ Rqd+j×pd+j with 1 ≤ j ≤ m, we have

〈X ,Z〉∗ ×j B = 〈X ×d+j B,Z〉∗. (52)

In particular, given uj ∈ Rpj for 1 ≤ j ≤ d+m, we have

〈u1⊗ · · ·⊗ud,Z〉 ·ud+1⊗ · · ·⊗ud+m = 〈u1⊗ · · ·⊗ud,Z〉∗×d+m
j=d+1uj = 〈u1⊗ · · ·⊗ud+m,Z〉∗.

(53)

The following lemma is important in showing the SQ hardness for tensor-on-tensor association
detection.

Lemma 45 ((Diakonikolas et al., 2017, Lemma 3.7)) For any 0 < c < 1/2, there is a set S′ of
at least 2Ω(pc) unit vectors in Rp such that for each pair of distinct u,u′ ∈ S′, it holds |u⊤u′| ≤
O(pc−1/2).
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The next lemma provides the distribution for the inner of two unit vectors drawn uniformly from
the sphere.

Lemma 46 Let u,v be two random vectors drawn uniformly at random from Sp−1. Then (u⊤v+

1)/2 follows Beta
󰀓
p−1
2 , p−1

2

󰀔
and (u⊤v)2 follows Beta

󰀓
1
2 ,

p−1
2

󰀔
.

Proof Let Z = u⊤v, then by Cho (2009) Theorem 1, we have fZ(z) ∝ (1 − z2)(n−3)/2, this
implies that fY (y) ∝ (y − y2)(n−3)/2 for Y = (u⊤v + 1)/2. This is the density function for
Beta

󰀓
p−1
2 , p−1

2

󰀔
up to the normalization constant. This proves the first statement.

For the second statement, since the distribution of u⊤v does not change if we rotate them by the
same orthogonal matrix. Without loss of generality we can assume v = (1, 0, . . . , 0)⊤. Moreover,

it is well known that u follows the same distribution as Z1/
󰁴

(
󰁓p

i=1 Z
2
i ) where Zi

i.i.d.∼ N(0, 1).

Thus (u⊤v)2 ∼ Z2
1/(

󰁓p
i=1 Z

2
i ) and this is Beta

󰀓
1
2 ,

p−1
2

󰀔
as Z2

1/(
󰁓p

i=1 Z
2
i ) can be written as

X/(X + Y ) where X ∼ χ2
1, Y ∼ χ2

p−1 and X is independent of Y .
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