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Abstract
This work considers the problem of finding a first-order stationary point of a non-convex function
with potentially unbounded smoothness constant using a stochastic gradient oracle. We focus on the
class of (L0, L1)-smooth functions proposed by Zhang et al. (ICLR’20). Empirical evidence suggests
that these functions more closely capture practical machine learning problems as compared to the
pervasive L0-smoothness. This class is rich enough to include highly non-smooth functions, such as
exp(L1x) which is (0,O(L1))-smooth. Despite the richness, an emerging line of works achieves
the Õ(1/√T) rate of convergence when the noise of the stochastic gradients is deterministically and
uniformly bounded. This noise restriction is not required in the L0-smooth setting, and in many
practical settings is either not satisfied, or results in weaker convergence rates with respect to the
noise scaling of the convergence rate.

We develop a technique that allows us to proveO(poly log(T )/
√
T) convergence rates for (L0, L1)-

smooth functions without assuming uniform bounds on the noise support. The key innovation behind
our results is a carefully constructed stopping time τ which is simultaneously “large” on average, yet
also allows us to treat the adaptive step sizes before τ as (roughly) independent of the gradients. For
general (L0, L1)-smooth functions, our analysis requires the mild restriction that the multiplicative
noise parameter σ1 < 1. For a broad subclass of (L0, L1)-smooth functions, our convergence rate
continues to hold when σ1 ≥ 1. By contrast, we prove that many algorithms analyzed by prior
works on (L0, L1)-smooth optimization diverge with constant probability even for smooth and
strongly-convex functions when σ1 > 1.

1. Introduction

A fundamental problem in stochastic optimization is to characterize the convergence behavior of the
Stochastic Gradient Descent algorithm:

wt+1 = wt − ηtg(wt), (SGD)

where ηt is the step-size schedule, and g(wt) is a stochastic gradient at iterate wt. Starting from
(Robbins and Monro, 1951), a long line of work has established conditions under which (SGD)
converges to a stationary point. A standard setting since (Polyak and Tsypkin, 1973) used for
this purpose has the following properties: (a) The objective function F (·) is L0-smooth, i.e., has
L0-Lipschitz gradients; (b) F (·) has a finite lower bound, i.e., infw∈Rd F (w) ≥ F ∗ > −∞; (c) For
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each w ∈ Rd, the stochastic gradient g(w) is unbiased and has variance scaling at most affinely with
∥∇F (w)∥2, i.e.,

E [g(w)] = ∇F (w) and E
[
∥g(w)−∇F (w)∥2

]
≤ σ2

0 + σ2
1 ∥∇F (w)∥2 . (Affine-var)

Much of the literature on stochastic optimization, e.g., (Nemirovski and Yudin, 1983; Ghadimi
and Lan, 2013; Bubeck, 2015; Foster et al., 2019), focuses on a special case of (Affine-var) where
the variance is uniformly upper-bounded (σ1 = 0):

E [g(w)] = ∇F (w) and sup
w∈Rd

E
[
∥g(w)−∇F (w)∥2

]
≤ σ2

0. (Bounded-var)

Rates of convergence to a first-order stationary point in these settings are now well-understood.
Under (Bounded-var) regime, Ghadimi and Lan (2013) prove an O(

√
σ2
0L0(F (w1)−F ∗)/

√
T) rate of

convergence with a fixed step-size schedule. Later, Arjevani et al. (2022) show that this rate is
optimal up to constant factors. Further, as noted by Bottou et al. (2018), a minor modification to this
step-size gives nearly the same rate in the more general (Affine-var) setting, i.e., σ1 > 0. This rate is
obtained by making trivial changes to the proof technique of Ghadimi and Lan (2013).

One crucial assumption in these lines of work is L0-smoothness, i.e., L0-Lipschitz gradients
of the loss landscape. However, recent works (Zhang et al., 2020a,b) provide empirical evidence
that this assumption is often not satisfied in practical machine learning problems. For instance, in
large-scale language modeling including BERT (Devlin et al., 2018) and other variants (Radford
et al., 2021; Caron et al., 2021; Liu et al., 2023), the loss landscape of transformer architectures either
does not satisfy the L0-smoothness assumption, or the value of L0 becomes so large that it produces
a significantly weaker rate of convergence (Zhang et al., 2020a,b).

Aiming to address these issues, there has been a recent surge of interest in relaxing the standard
L0-smoothness assumption and characterizing the rate of convergence. One appealing relaxation
proposed by Zhang et al. (2020b) is that of (L0, L1)-smoothness1:∥∥∇2F (w)

∥∥ ≤ L0 + L1 ∥∇F (w)∥ . (Generalized-smooth)

While every L0-smooth function is also (L0, 0)-smooth, this relaxation admits functions that grow
significantly faster than a quadratic function, e.g., F (w) = wd is (d(d−1)/Ld−2

1 , (d− 1)L1)-smooth
for any L1 > 0, and F (w) = exp(L1w) is (0, L1)-smooth. With regards to convergence, recent
works (Zhang et al., 2020b; Crawshaw et al., 2022) establish anO(1/√T) rate in the (L0, L1)-smooth
setting, as long as the noise of the stochastic gradients has uniformly-bounded support, i.e.,

E [g(w)] = ∇F (w) and sup
w∈Rd

∥g(w)−∇F (w)∥2
a.s.
≤ B2. (Bounded-supp)

The algorithms achieving the rate O(1/√T) in this setting use adaptive step size schedules –
i.e., variants of (SGD) with ηt chosen as a function of {g(ws)}s∈[t]. (Bounded-supp) is a common
assumption in these analyses (Zhang et al., 2020b,a; Crawshaw et al., 2022). It is typically introduced
to reason about the direction of −ηtg(wt) relative to the true descent direction. In the analysis

1. For convenience, we state this assumption in terms of a bound on the hessian of F . The requirement that the hessian
exists everywhere can be relaxed to a condition on the gradients (Zhang et al., 2020a). This relaxation is the one we
use for our main results, see Assumption 2.
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of standard SGD, the fixed step-size schedule does not depend upon the stochastic gradients, so
E [−ηtg(wt)] = −ηtE [∇F (wt)]. This, however, is not the case for adaptive methods, since ηt
depends on g(wt). Thus, it is understandable why prior works (Zhang et al., 2020b,a) assume
(Bounded-supp) to simplify this issue. Further, (Bounded-supp) is natural in settings where the
stochastic gradients satisfy g(w) = ∇F (w) + ξ, where the random vector ξ has bounded support
(or bounded second moment in the related setting of (Bounded-var)).

In many real-world scenarios, the (Bounded-supp) assumption does not hold. For instance,
when running SGD in standard least-squares regression settings, the stochastic gradients have
multiplicative noise, as noted in (Dieuleveut et al., 2017; Flammarion and Bach, 2017; Jain et al.,
2018; Jofré and Thompson, 2019). Similar noise assumptions have also been considered, e.g., in
convergence of stochastic proximal gradient methods (Rosasco et al., 2020), Hilbert-valued stochastic
subgradient methods (Barty et al., 2007), and adaptive gradient methods (Faw et al., 2022). Moreover,
multiplicative noise naturally arises in machine learning problems with (additive or multiplicative)
feature noise (Loh and Wainwright, 2011; Hwang, 1986; Carroll et al., 2006). Thus, we believe that
characterizing (L0, L1)-smooth functions under (Affine-var) is an important step in extending the
theory of non-convex stochastic optimization beyond the standard L0-smooth setting.

1.1. Contributions

A major challenge in the analysis of adaptive stochastic gradient descent is the correlation between
the stochastic gradients and the step-size. Here, we develop a technique to simplify this challenge.
Our key innovation is a recursively-defined stopping time which satisfies two crucial properties: (i)
before the stopping time is reached, the step sizes behave roughly independently of the gradients, and
(ii) on average, the stopping time is at least a constant fraction of the time horizon. As a consequence,
instead of analyzing over the entire time horizon, we conduct the analysis over this sub-interval
over which we exploit this convenient almost-independent property. This tool allows us to prove the
first Õ(1/√T) rate of convergence for (L0, L1)-smooth functions beyond the (Bounded-supp) setting.
Our main contributions are three-fold:

(a) Convergence for (L0, L1)-smoothness when σ1 < 1. We show in Section 4 that AdaGrad-
Norm converges at a rate Õ(1/√T) when the stochastic gradient oracle satisfies (Affine-var) with
σ0 ≥ 0 and σ1 ∈ [0, 1). This is the first convergence rate for any algorithm even under (Bounded-var)
(i.e., σ1 = 0) for general (L0, L1)-smooth optimization. Note that the scaling of this bound with T
matches (up to poly-logarithmic factors) the best-known rate for L0-smooth functions – with a minor
caveat that σ1 < 1 is not needed in the L0-smooth setting. Also, we show that the rate improves to
Õ(1/T) in the “small variance” regime when σ0, σ1 → 0 even without tuning the step-size.

(b) Convergence for all σ1. We establish a sufficient condition under which AdaGrad-Norm
converges at a rate Õ(1/√T) when σ1 ≥ 1, see Section 5. This condition allows us to analyze a broad
subset of (L0, L1)-smooth functions that includes all L0-smooth functions as well as fixed-degree
polynomials without any restrictions on σ1. This simultaneously generalizes the result and simplifies
a key proof technique of Faw et al. (2022) for L0-smooth functions.

(c) Negative results for known algorithms. We prove a set of negative results in Section 6 for
most algorithms analyzed under (L0, L1)-smoothness and (Bounded-supp). We construct an oracle
for Clipped and Normalized SGD (Zhang et al., 2020b,a) and Sign SGD with Momentum (Crawshaw
et al., 2022) that leads to failure with constant probability in a wide parameter regime. We also prove
that AdaGrad-Norm can diverge with constant probability if the step-size is not carefully tuned in the
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“large variance” regime for (L0, L1)-smooth functions. By contrast, no parameter tuning is needed in
the L0-smooth setting in this noise regime.

2. Related Works

Stochastic gradient descent. (SGD) has been well-studied for many decades (Robbins and Monro,
1951). Polyak and Tsypkin (1973) proved almost-sure convergence to a first-order stationary point
of (SGD) for non-convex and L0-smooth functions with F (w) ≥ F ∗ with stochastic gradient
oracle satisfying (a slightly weaker condition than) (Affine-var). Bertsekas and Tsitsiklis (2000)
extended the result to a setting where F (w) does not have a uniform lower-bound. Ghadimi
and Lan (2013) proved that (SGD) with step-size ηt = η = min

{
1/L0,

√
2(F (w1)−F ∗)/(L0σ2

0T )

}
achieves a convergence rate to a first-order stationary point of O

(√
L0σ2

0(F (w1)−F ∗)/T
)

, assuming
L0-smoothness and (Bounded-var). Drori and Shamir (2020) proved that this is the optimal rate for
(SGD) without further assumptions. Recently, Arjevani et al. (2022) proved that the convergence rate
of (Ghadimi and Lan, 2013) is optimal among all first-order methods, not just SGD.

AdaGrad step-sizes. This paper builds on a long line of work studying (variants of) the
AdaGrad step size schedule introduced by Duchi et al. (2011); McMahan and Streeter (2010). In
particular, we focus on the so-called AdaGrad-Norm step-size, which was introduced in Streeter
and McMahan (2010). While these works focused on the setting of online convex optimization,
Ward et al. (2020) demonstrated that AdaGrad-Norm converges at a rate Õ(1/√T) in the context of
L0-smoothness, (Bounded-var), and M -Lipschitzness, i.e., supw∈Rd ∥∇F (w)∥ ≤M . Around the
same time, Li and Orabona (2019) proved that AdaGrad-Norm achieves an Õ(1/√T) rate without
M -Lipschitzness. But their analysis needs tuning of the step-size with respect to the smoothness
constant L0. Later, Kavis et al. (2022) proved that AdaGrad-Norm converges at rate Õ(1/√T)
without tuning the step-size (as in Li and Orabona (2019)) or assuming M -Lipschitz objective (as in
Ward et al. (2020)). However, their analysis holds only when the noise of the stochastic gradients
is uniformly sub-Gaussian. In a concurrent work, Faw et al. (2022) proved that AdaGrad-Norm
achieves Õ(1/√T) in a setting identical to standard SGD (i.e., L0-smooth objective with stochastic
gradients satisfying (Affine-var)), and without tuning the step-size with respect to L0, σ0, or σ1. This
work thus established that AdaGrad-Norm is parameter-free and enjoys nearly the same convergence
rate as SGD in the standard non-convex setting.

(L0, L1)-smoothness in the (Bounded-supp) regime. Recent work by Zhang et al. (2020b)
argued that the L0-smoothness assumption is not realistic for many practical machine learning
tasks, e.g., large-scale natural language processing using transformer architectures. Instead, they
demonstrated that (L0, L1)-smooth functions (Generalized-smooth) better capture the loss landscape,
and proved that the gradient clipping algorithm converges at a rate O(1/√T) in the (Bounded-supp)
regime. Zhang et al. (2020a) later proved convergences for a generalized class of gradient clipping
algorithms. They used a slightly weaker definition of (L0, L1)-smoothness, which we use in
Assumption 2. Very recently, Crawshaw et al. (2022) considered a “coordinate-wise” generalization
of (L0, L1)-smoothness, and proved that a “generalized SignSGD” algorithm converges at a rate
Õ(1/√T). By contrast, they proved that gradient descent with fixed step-sizes must scale linearly
in ML1, where M = sup {∥∇F (w)∥ : F (w) ≤ F (w1)} is the largest gradient in the sublevel set
F (w) ≤ F (w1). Interestingly, this line of work establishes that adaptive step-size schedules can
avoid this dependence on M .
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Stopping time arguments in optimization. Within the stochastic approximation literature, there
have been a significant number of works using stopping times either as an analytical tool (Bertsekas
and Tsitsiklis, 2000; Patel, 2022; Patel et al., 2022; Patel and Berahas, 2022), or as a part of the
algorithm design (Sielken Jr, 1973; Stroup and Braun, 1982; Curtis and Scheinberg, 2020; Patel,
2022). Throughout the majority of these works, the stopping times are designed to test for closeness
to a stationary point or for a sufficient decrease in objective. The main exceptions are (Patel et al.,
2022; Patel and Berahas, 2022), where stopping times are instead used to determine when a local
descent inequality can be applied. The stopping time used in our analysis (see Definition 9) serves
a significantly different role – its main purpose is to effectively decorrelate the AdaGrad-Norm
step-sizes from the gradients.

Concurrent work. In a concurrent work also appearing in COLT’23, Wang et al. (2023)
establish, using different techniques, a Õ(1/√T) rate of convergence for AdaGrad-Norm under
(L0, L1)-smoothness and (Affine-var) without the constraint of σ1 < 1 or the alternative restriction
in Definition 4. Their proof relies on a very interesting observation: the bias between the stochastic
gradient and step-size can essentially be upper-bounded by an auxiliary function that allows for a
telescoping cancellation. This leads to a descent lemma (a stronger version of Lemma 8) that holds
over all times t ∈ [T ]. Our main results (Theorems 3 and 5), by contrast, rely on a stopping-time
argument which effectively allows us to decorrelate the step-sizes from the gradients (see (3)). This
technique can enable one to obtain a convergence rate in other settings (such as Lemma 8) where the
descent inequality might not always hold; instead, it could hold only over a (large enough) random
subset of [T ].

3. Problem Setting

We are interested in finding a first-order stationary point of a non-convex function, given access to a
stochastic gradient oracle, using (SGD). For compactness, let gt := g(wt). Our objective function
F (w) satisfies the following:

Assumption 1 (Lower-boundedness) There exists an F ∗ > −∞ such that infw∈Rd F (w) ≥ F ∗.

Assumption 2 ((L0, L1)-smooth objective) The objective function F (w) is (L0, L1)-smooth, i.e.,
for every w,w′ ∈ Rd such that ∥w −w′∥ ≤ 1/L1∥∥∇F (w)−∇F (w′)

∥∥ ≤ (L0 + L1

∥∥∇F (w′)
∥∥) ∥∥w −w′∥∥ .

We note that (L0, L1)-smoothness was originally defined in (Zhang et al., 2020b) as a bound on
the Hessian of F (·), as in (Generalized-smooth). Following (Zhang et al., 2020a, Remark 2.3), we
choose to adopt the alternative condition in Assumption 2 for two reasons. First, Assumption 2 is
strictly weaker than L0-smoothness, since (L0, 0)-smoothness implies the gradients are L0-Lipschitz.
Second, whenever the objective is twice-differentiable, Assumption 2 implies (Generalized-smooth)
(up to constant factors in the definitions of L0 and L1):

Proposition 1 A function satisfying (L0, L1)-smoothness according to (Generalized-smooth) is
also (2L0, (e− 1)L1)-smooth according to Assumption 2. If F (·) is twice continuously differentiable
and (L0, L1)-smooth according to Assumption 2, then it is also (L0, L1)-smooth according to
(Generalized-smooth).
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Let Ft be the sigma-algebra generated by the interaction between the algorithm and stochastic
gradient oracle for t rounds, i.e., Ft := σ {w1, g1, . . . ,wt, gt,wt+1}. We impose the following
conditions on the stochastic gradients:

Assumption 3 (Unbiased gradients) The stochastic gradients satisfy E [gt | Ft−1] = ∇F (wt).

Assumption 4 (Affine variance) There exist constants σ0, σ1 ≥ 0 such that the variance of each
stochastic gradient gt is bounded above as: E

[
∥gt −∇F (wt)∥2 | Ft−1

]
≤ σ2

0 + σ2
1 ∥∇F (wt)∥2 .

Assumptions 3 and 4 imply the following bound on the stochastic gradients in terms of the true
gradient:

E
[
∥gt∥2 | Ft−1

]
≤ σ2

0 + (1 + σ2
1) ∥∇F (wt)∥2 . (1)

We are interested in studying algorithms which require as little hyper-parameter tuning as possible
and, simultaneously, can handle potentially unbounded smoothness constant. To achieve this, we
analyze AdaGrad-Norm (Streeter and McMahan, 2010), a step-size sequence ηt for (SGD) which, at
each time t, depends on the current and past stochastic gradients {gs}s∈[t]:

ηt =
η

bt
, where b2t = b20 +

t∑
s=1

∥gs∥2 = b2t−1 + ∥gt∥
2 . (AG-Norm)

As is increasingly common in the analysis of (variants of) (SGD) with adaptive step-sizes (Ward et al.,
2020; Faw et al., 2022; Défossez et al., 2022), our analysis will rely on a “decorrelated” step-size η̃t.
The key property of η̃t is that it is independent of gt when conditioned on the filtration Ft−1.

Definition 2 (Decorrelated step-sizes) For each step-size ηt at time t ≥ 1, the decorrelated step
size η̃t is defined to be η̃t := η/̃bt, where b̃2t := b2t−1+∥∇̃t∥2, b20 > 0, and ∥∇̃t∥2 := σ2

0+∥∇F (wt)∥2.

This “decorrelated” step-size serves as a proxy in our analysis for the true step-size ηt. The main
reason for its introduction is that, although E [ηtgt] ̸= E [ηt∇F (wt)] (since ηt depends on gt), the
proxy satisfies E [η̃tgt | Ft−1] = η̃t∇F (wt).

4. Convergence of AdaGrad-Norm on (L0, L1)-smooth functions

Our main results, Theorems 3 and 5, both establish Õ(1/√T) convergence rates for (AG-Norm) in
the (L0, L1)-smooth regime under (Affine-var). Theorem 3 holds for any (L0, L1)-smooth function
under a mild restriction that σ1 < 1. It is easy to extend this result for σ1 ≥ 1 by computing
mini-batch gradients with a batch size B ≈ σ2

1 , refer Fact 19 for a proof. Despite the restriction of
Theorem 3 to σ1 < 1, we emphasize that, prior to our work, no proof of convergence even for the
(Bounded-var) setting (i.e., σ1 = 0) was known for a general class of (L0, L1)-smooth functions.
Besides, Theorem 5 holds for all σ1 and a subclass of (L0, L1)-smooth functions, i.e., excluding
functions like exp(L1w).

Theorem 3 (Informal statement of Theorem 26) Fix any constants ε, ε′, ε′′, ε′′′ ∈ (0, 1) such
that ε + ε′ + ε′′ + ε′′′ < 1. Consider (AG-Norm) with any parameters η ≤ 2ε′/5L1 and b20 > 0,
running on an objective function satisfying Assumption 2, and given access to a stochastic gradient
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oracle satisfying Assumptions 3 and 4. Assuming that σ1 ≤ (1− (ε+ ε′ + ε′′ + ε′′′)), then for any
T ≥ 1 and δ′ ∈ (0, 1), with probability at least 1− δ′, the iterates of (AG-Norm) satisfy

min
t∈[T ]
∥∇F (wt)∥2 ≲

σ0

(δ′)2
√
T
h(T ) +

σ1
√
σ0

(δ′)2.25
√
T
h(T )

3/2 +
σ1
√
(1 + σ2

1)

(δ′)2.5
√
T

h(T )2

+
1

(δ′)2T
h(T )2 +

b0
(δ′)2T

h(T ) +
σ1
√
b0 + ηL0h(T )

1.5

(δ′)2T
,

where h(T ) ∝ 1

ε′′′

(
F (w1)− F ∗

η
+

ε′′σ0
1 + σ2

1

+
(σ0
ε

+ ηL0

)
log(g(T ))

)
,

g(T ) ∝
T (1 + σ2

1)
(
σ0
ε + ηL0

)
ε′′b0

.

To extend our convergence proofs beyond σ1 < 1, we consider a subclass of (L0, L1)-smooth
functions which satisfy the following additional assumption:

Definition 4 A function F (·) is k-polynomially bounded for k ≥ 2 if ∀w,w′ ∈ Rd, then there are
constants ck ≥ 1 and c′k, L0 > 0 such that:

∥∇F (w)∥ − ck
∥∥∇F (w′)

∥∥ ≤ max
{
c′k
∥∥w −w′∥∥k−1

, L0

∥∥w −w′∥∥} .

Notice that, whereas Assumption 2 is a local constraint on the objective, Definition 4 enforces a
global polynomial growth constraint – thus ruling out such (L0, L1)-smooth functions as exponentials,
while capturing a significantly broader class of functions than L0-smoothness. We refer the interested
reader to Proposition 28 for some properties of this class of functions. Using this definition, we are
able to prove the following:

Theorem 5 (Informal statement of Corollary 32) Fix any constants ε, ε′, ε′′, ε′′′ ∈ (0, 1) such
that ε + ε′ + ε′′ + ε′′′ < 1. Consider (AG-Norm) with any parameters η ≤ 2ε′/L1(4+σ2

1) and
b20 > 0, running on an objective function satisfying Assumption 2 and Definition 4 for some
constants k ≥ 2, ck ≥ 1, c′k > 0, and given access to a stochastic gradient oracle satisfying
Assumptions 3 and 4 for any σ0, σ1 ≥ 0. Then, for any T ≥ 1 and δ′ ∈ (0, 1), with probability at
least 1− δ′ − Õ(1/T), the iterates of (AG-Norm) satisfy

min
t∈[T ]
∥∇F (wt)∥2 ≲

σ0

(δ′)2
√
T
h̃(T ) +

σ1

√
σ0(1 + c2k)

(δ′)2.25
√
T

h̃(T )
3/2 +

σ1(1 + c2k)
√
(1 + σ2

1)

(δ′)2.5
√
T

h̃(T )2

+
σ1

√
1 + c2k

4
√

(1 + σ2
1)cB1h̃(T )

1.5

(δ′)2.25T 3/4

+

(
b0 +

√
(1 + σ2

1)cB1

)
h̃(T )

(δ′)2T
+

σ1

√
(1 + c2k)(b0 + ηL0)h̃(T )

1.5

(δ′)2T
+

(1 + c2k)h̃(T )
2

(δ′)2T
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where h̃(T ) = h(T ) + comp(T )/ε′′′η, where h(T ) is the function defined in Theorem 3, and

comp(T ) ∝ ησ1ck

(
∥∇F (w1)∥ ℓ1(T ) + (c′kη

k−1 + L0η) (4c
3
kσ1/ε′′′)

k−1
ℓk(T )

)
cB1 ∝ (c′kη

k−1 + ηL0)
2(1 + c3kσ1/ε′′′)2k−1ℓ2k−1(T ) + c2k ∥∇F (w1)∥2 (1 + c3kσ1/ε′′′)ℓ1(T )

ℓk(T ) ∝

(k + 1)σ2
1 log

(
e+ 8e

σ2
0T

2+(1+σ2
1)(T

2c2k∥∇F (w1)∥2+(c′kη
k−1+ηL0)2T 2k−1)

b20δ
′

)
(1− (ε+ ε′ + ε′′ + ε′′′))2


k

There are several notable takeaways from the above results.
Noise adaptivity. Both Theorems 3 and 5 provide “noise-adaptive” convergence rates, in a

sense that as σ0, σ1 → 0, the convergence rates automatically improve from Õ(1/√T) to Õ(1/T)
without any additional hyperparameter tuning. To the best of our knowledge, (AG-Norm) is the first
algorithm for (L0, L1)-smooth optimization with this property.

Less hyperparameter tuning. These rates hold without tuning the algorithm’s parameters with
respect to σ0 or L0, unlike all prior algorithms for (L0, L1)-smoothness that we are aware of (Zhang
et al., 2020b,a; Crawshaw et al., 2022)2. Unlike in the L0-smooth setting, however, (AG-Norm)
requires some hyperparameter tuning. In a concurrent work, (Wang et al., 2023, Theorem 9)
establishes that (AG-Norm) can diverge if η > 9

√
5/2L1. Further, as we prove in Lemma 34, η must

also depend on σ1, at least in the “large variance” regime. Indeed, we show that, when η ≥ 1/L1
√
σ1

and σ1 = poly log(T ), then (AG-Norm) can diverge with constant probability. By contrast, no
tuning is necessary for this algorithm to converge for L0-smooth functions at the Õ(1/√T) rate in
this noise regime.

Generalization of prior work. We remark that Theorem 5 strictly generalizes the result
of (Faw et al., 2022) beyond the uniform L0-smooth setting, since every L0-smooth function
satisfies Definition 4 with k = 2, ck = 1, and c′k = L0. Further, our stopped analysis simplifies
their “recursive improvement” technique (Faw et al., 2022, Lemma 13) which they used to prove
that E

[∑
t∈[T ] ∥∇F (wt)∥2

]
= Õ(T ), a key step in obtaining both their and our convergence

guarantees. Their proof of this lemma crucially relied on the fact that, under L0-smoothness,
∥∇F (wt)∥2 = O(t2) deterministically, and O(t log(t/δ)) with probability at least 1 − δ. Indeed,
they highlight this in Step 2 of their proof sketch of Lemma 13 (p. 14) and in the proof of their
Lemma 33. Our analysis circumvents these complications by analyzing the convergence only until
a stopping time τT+1(δ). As we show in Lemma 10 and (3), this time essentially allows us to
decorrelate the step size from the gradients. As a result, we obtain essentially the same bound on the
expected sum of gradients while completely sidestepping the “recursive improvement” argument or
bounds on ∥∇F (wt)∥2 implied by L0-smoothness.

5. Key technical ideas

As discussed earlier, the main technical tool we use to obtain our convergence rates in Theorems 3
and 5 is a recursively-defined stopping time. Before we are ready to define this time and discuss its
utility, we first give a brief overview of the main initial steps of our analysis.

2. This feature, however, manifests into a worse dependence on L1 unlike (Zhang et al., 2020a; Crawshaw et al., 2022).
Interestingly, while their algorithms (in the (Bounded-supp) regime) do not need to be explicitly tuned with respect to
L1, they do require tuning with respect to T , L0, and σ0. Further, their results hold only for sufficiently large T (as
determined, in part, by L1).
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The standard first step in the analysis of SGD-like algorithms for L0-smooth non-convex opti-
mization is to prove that, at least on average, each update makes sufficient progress. This argument
typically relies on the following inequality for L0-smooth functions: for any w,w′ ∈ Rd,

F (w′)− F (w) ≤
〈
∇F (w),w′ −w

〉
+

L0

2

∥∥w′ −w
∥∥2 .

This inequality is no longer true for (L0, L1)-smooth functions. Indeed, it is clearly not satisfied for
all w,w′ on the (0, L1)-smooth function exp(L1w). However, Zhang et al. (2020b,a) note that a
similar variant holds “locally” for ∥w −w′∥ ≤ 1/L1 (see Lemma 17). Using this variant, we obtain
the following inequality, which is our first tool for studying the convergence of (AG-Norm).

Lemma 6 Fix any ε, ε′ ∈ (0, 1). Suppose that η ≤ 2ε′

L1(4+σ2
1)

. Then, for any t,

E [F (wt+1)− F (wt) | Ft−1] ≤ −η̃t
(
1− ε− ε′ − σ1biast

)
∥∇F (wt)∥2 + c̃0E

[
∥gt∥2/b2t | Ft−1

]
,

where c̃0 =
ησ0

2ε + η2L0+σ0L1
2 and biast =

√
E
[
∥gt∥2/b2t | Ft−1

]
.

Notice that Lemma 6 only guarantees that the algorithm makes progress on average moving from
wt to wt+1 when σ1biast < 1, and is essentially vacuous otherwise. To handle this issue, we use the
notion of “good times” from (Faw et al., 2022):

Definition 7 (Good times) A time t ∈ [T ] is “good” if, for fixed parameters ε, ε′, ε′′, ε′′′ ∈ (0, 1)
satisfying ε+ ε′ + ε′′ + ε′′′ < 1, 1− ε− ε′ − ε′′ − σ1biast ≥ ε′′′. We denote, for any stopping time
τ with respect to (Fs−1)s≥1, Sgood(τ) = {1 ≤ t < τ : t is “good”} as the set of all such “good”
times before τ , and Sgood(τ)

c = [τ − 1] \ Sgood(τ) to be the remaining “bad” times before τ .

Intuitively, the “good” times are those times when Lemma 6 is non-vacuous. Using Definition 7,
we sum the expression Lemma 6 until any stopping time τ to obtain the following more useful form.

Lemma 8 (Descent lemma) Fix any ε, ε′, ε′′, ε′′′ ∈ (0, 1) such that ε + ε′ + ε′′ + ε′′′ < 1. For
any (L0, L1)-function, if we run AdaGrad-Norm with parameters η ≤ 2ε′

L1(4+σ2
1)

and b20 > 0 for

T time steps, then, for any stopping time τ ∈ [2, T + 1] with respect to (Fs−1)s≥1, and any
S̃(τ) ⊆ Sgood(τ):

ε′′′E

 ∑
t∈S̃(τ)

η̃t ∥∇F (wt)∥2
 ≤ F (w1)− F ∗ + 2c̃0 log

(
(2 + σ2

1)c̃0E [τ − 1]

ηε′′b0

)
+

2ηε′′σ0
(2 + σ2

1)
+ comp(τ),

where comp(τ) := E

[ ∑
t∈Sgood(τ)c

(σ1 − (1− ε− ε′))η̃t ∥∇F (wt)∥2 −
∑

t′∈Scomp(τ)

ε′′′η̃t′ ∥∇F (wt′)∥2
]

,

the set Scomp(τ) := Sgood(τ) \ S̃(τ) consists of the “good” times used to compensate for the bad
times Sgood(τ)

c, and c̃0 = ησ0

2ε + η2L0+σ0L1
2 . In particular, whenever σ1 ≤ 1 − (ε + ε′), then

comp(τ) ≤ 0, and when σ1 ≤ 1− (ε+ ε′ + ε′′ + ε′′′), then additionally Sgood(τ) = [τ − 1].

9
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5.1. Using the descent lemma when σ1 < 1

Let us first analyze Lemma 8 in the simpler setting where σ1 ≤ 1− (ε+ ε′ + ε′′ + ε′′′). Recall from
Lemma 8 that this implies comp(τ) ≤ 0 and we can take S̃(τ) = Sgood(τ) = [τ−1]. Thus, Lemma 8

loosely becomes E
[∑

t<τ η̃t ∥∇F (wt)∥2
]
≲ log(T ). At this point, if we choose η̃t ≈ 1/

√
T and

τ = T + 1, then we could conclude that E
[
1
T

∑
t∈[T ] ∥∇F (wt)∥2

]
≲ log(T )/

√
T . Unfortunately, as

we discussed earlier, the first step of our analysis relies on the inequality ∥wt+1 −wt∥ = ∥ηtgt∥ ≤
1/L1 – a condition which is clearly no longer satisfied when ηt is a fixed constant independent of the
gradients. We thus need a different idea to make use of Lemma 8.

We leverage the fact that Lemma 8 holds for any stopping time τ ∈ [2, T+1] as follows. Suppose
there were some stopping time τ ∈ [2, T + 1] such that:

E

[∑
t<τ

η̃t ∥∇F (wt)∥2
]
≥ E [η̃τ ]E

[∑
t<τ

∥∇F (wt)∥2
]
. (2)

Notice that this inequality would imply that, until τ , we may treat η̃t and ∥∇F (wt)∥2 as roughly
uncorrelated. If (2) were true, we could apply Jensen’s inequality and Assumption 4 to obtain:

E

[∑
t<τ

η̃t ∥∇F (wt)∥2
]
≥

E
[∑

t<τ ∥∇F (wt)∥2
]

√
E
[
b20 + σ2

0T + (1 + σ2
1)E

[∑
t<τ ∥∇F (wt)∥2

]] .

This, combined with Lemma 8, yields a quadratic inequality in
√
E
[∑

t<τ ∥∇F (wt)∥2
]
, which

can be solved to obtain E
[∑

t<τ ∥∇F (wt)∥2
]
≲ (1 + σ2

1) log(T )
2 + log(T )

√
b20 + σ2

0T . Thus, if
we additionally knew that E [τ ] = Ω(T ), then a straightforward application of Markov’s inequality
would imply that, with constant probability, mint∈[T ] ∥∇F (wt)∥2 ≲ Õ(1/

√
T).

It turns out that constructing a time τ (roughly) satisfying (2) is possible – however, there is a
tension in simultaneously satisfying this and E [τ ] = Ω(T ), as the following construction reveals.

Definition 9 (Nice stopping) Fix any δ ∈ (0, 1], and consider the following sequence of random
times τt(δ) defined recursively as follows: let X0(δ) = 1, and define, for every t ≥ 1 (denoting
cL = 2(1 + ηL1)

2):

τt(δ) = min {t,min {s ≥ 0 : Xs(δ) = 0}}

St(δ) =

τt(δ)−1∑
s=1

∥gs∥2 + cL ∥∇F (ws)∥2 and Xt(δ) = Xt−1(δ)1{St(δ) ≤ E[St(δ)]/δ}.

Notice that τ1(δ) = 1, S1(δ) = 0, X1(δ) = 1, and τ2(δ) = 2 deterministically. Further, one can
show that St(δ), Xt(δ), and τt+1(δ) are Ft−1-measurable for every t ≥ 1. Intuitively, τT+1(δ) is
the first time that the sum of stochastic gradient norms is significantly larger than its expectation,
where the expectation is crucially over the random summation range (refer to Remark 24 for a further
discussion). The following result shows the utility of this recursive construction:

10
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Lemma 10 (Key properties of nice stopping; Simplified version of Lemma 23) For any T ≥ 1
and δ ∈ (0, 1], let τT+1(δ) be the stopping time from Definition 9. Then, we have the following:

1. τT+1(δ) is a stopping time with respect to (Fs−1)s≥1, i.e., ∀s ≥ 1, {s < τT+1(δ)} ∈ Fs−1.

2. τT+1(δ) ∈ [2, T + 1], and E [τt+1(δ)] ≥ (T + 1)(1− δT/2).

3. For every s < τT+1(δ), denoting a = b20 + 2η2L2
0 and b = 1 + σ2

1 + cL,

η̃s
a.s.
≥ η√

a+
Tσ2

0+bE
[∑

ℓ<τT+1(δ)
∥∇F (wℓ)∥2

]
δ

,

Notice that an immediate consequence of Lemma 10 is that:

E

 ∑
t<τT+1(δ)

η̃t ∥∇F (wt)∥2
 ≥ ηE

[∑
t<τT+1(δ)

∥∇F (wt)∥2
]

√
a+

Tσ2
0+bE

[∑
t<τT+1(δ)

∥∇F (wt)∥2
]

δ

. (3)

When 1/δ = O(1), then (3) essentially has the desired form (2). Recall that we also needed
E [τ ] = Ω(T ) to use (2). However, Lemma 10 gives a vacuous lower bound on E [τT+1(δ)] when
δ ≥ 2/T .

Nevertheless, choosing δ = Θ(1/T) and solving the resulting quadratic inequality as before, (3)
implies E

[∑
t<τT+1(δ)

∥∇F (wt)∥2
]
≲ Tpoly log(T ). Given that E [τT+1(δ)] ≳ T in this δ regime,

this bound tells us something quite strong – that the sum of gradients before this stopping time scales
(roughly) linearly in expectation. This is an exponential improvement over the worst-case growth
of (L0, L1)-smooth functions after T time steps, which is approximately exp(L1ηT ). Moreover,
this bound implies (via Jensen’s inequality) that E

[
η̃τT+1(δ)

]
≳ 1/
√

Tpoly log(T )! Thus, at least in
expectation, the step sizes that we care about for our analysis are essentially scaling as 1/

√
T . It turns

out that this scaling is crucial to obtain Theorem 3 in the regime of σ1 < 1.

5.2. Using the descent lemma when σ1 ≥ 1

The arguments discussed above heavily relied on being able to take comp(τ) ≤ 0 and Sgood(τ) =
[τT+1(δ)− 1], which were trivially true for any stopping time when σ1 < 1. However, when σ1 ≥ 1,
then new ideas are needed, since Lemma 6 does not guarantee any meaningful descent inequality for
t ̸∈ Sgood(τ). In the context of L0-smooth optimization, (Faw et al., 2022) showed how to circumvent
this issue – indeed, they showed that comp(T ) ≲ E

[
|Sgood(T )

c|2
]

and E
[
|Sgood(T )

c|2
]
≲ log(T ).

At the core of their proofs for these arguments was the fact that, by L0-smoothness and properties of
(AG-Norm), |∥∇F (wt)∥ − ∥∇F (wt′)∥| ≲ ηL0|t− t′|.

General (L0, L1)-smooth functions clearly violate this inequality. Indeed, ∥∇F (wt)∥ can
potentially be a multiplicative factor of exp(ηL1 |t− t′|) times larger than ∥∇F (wt′)∥ (for instance,
when the (0, L1)-smooth objective is exp(L1w). Thus, even if we could guarantee deterministically
that only the first O(log(T )) time-steps are “bad”, the objective function (and also the norm of
the gradient) could grow by polynomial factor in T during this interval! In fact, this is exactly the
intuition behind our negative result for (AG-Norm) in the “large σ1” regime (see Lemma 34).
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In spite of this, not every (L0, L1)-smooth function is an exponential function, as polynomials of
constant degree also satisfy (L0, L1)-smoothness for constant L0, L1 (see Proposition 29). Motivated
by this, Definition 4 aims to generalize the inequality |∥∇F (wt)∥ − ∥∇F (wt′)∥| ≲ ηL0 |t− t′| to
allow this difference to have larger polynomial scaling in t− t′. Indeed, the constraint of Definition 4
allows us to bound comp(τ) as follows:

Lemma 11 Suppose that F (·) satisfies Definition 4 for some constants k ≥ 2, ck ≥ 1, and
c′k > 0. Let τ ∈ [2, T + 1] be any (possibly random) time. Then, recalling comp(τ) and Scomp(τ)
from Lemma 8, there is an explicit construction of Scomp(τ) (the subset of “good” times used to
compensate for Sgood(τ)

c) such that, for any ε, ε′, ε′′′ ∈ (0, 1) such that ε + ε′ < 1 and ncomp =
⌈4c3k(σ1−(1−ε−ε′))+/ε′′′⌉ (and taking (x)+ := max {0, x}) comp(τ) can be bounded as follows:

comp(τ) ≤ η(σ1 − (1− ε− ε′))+ck ∥∇F (w1)∥E [|Sgood(τ)
c|]

+ ηnk−1
compmax

{
c′kη

k−1, L0η
}(

(σ1 − (1− ε− ε′))+ +
ε′′′ncomp

2c3k

)
E
[
|Sgood(τ)

c|k
]
.

Lemma 11 reveals that, as long as E
[
|Sgood(τT+1(δ))

c|k
]

can be bounded by poly log(T ) for
any constant k ≥ 1, then it is still possible to bound comp(τT+1(δ)), even when the function is not
L0-smooth!

Lemma 12 Let τT+1(δ) ≤ T + 1 be the stopping time with respect to (Fs−1)s≥1 from Definition 9.
Recall the set Sgood(τT+1(δ)) from Definition 21, and denote Sgood(τT+1(δ))

c = [τT+1(δ)− 1] \

Sgood(τT+1(δ)). Let f(T ) = e +
eσ2

0(T−1)+e(1+σ2
1+cL)E

[∑
t<τT (δ)∥∇F (wt)∥2

]
b20δ

. Then, for any k ≥ 1,
the iterates of (AG-Norm) satisfy (under Assumption 4):

E
[
|Sgood(τT+1(δ))

c|k
]
≤
(

(k + 1)σ2
1 log(f(T ))

(1− (ε+ ε′ + ε′′ + ε′′′))2

)k

.

Notice that Lemma 12 does not explicitly require that Definition 4 be satisfied. However,
we use this constraint on the objective to easily guarantee that f(T ) = O(T 2(k−1)/δ), and thus that
E
[
|Sgood(τT+1(δ))

c|k
]
≲ poly log(T ). Lemma 31 demonstrates that the bound of E

[
|Sgood(T )

c|2
]

from (Faw et al., 2022) can be generalized to any moment k. Further, using this generalized result
requires bounding only E

[∑
t<τT (δ) ∥∇F (wt)∥2

]
instead of the sum over the entire time horizon,

which might give tighter bounds in some scenarios. With the bounds from Lemmas 11 and 12 in
place, it is now clear that a useful descent inequality is still obtainable from Lemma 8 when σ1 ≥ 1,
at least under the added assumption of Definition 4. There is still a (small) problem in translating
these results into a convergence result. Indeed, the analogous bound from (3) now becomes:

E

 ∑
t∈S̃(τT+1(δ))

η̃t ∥∇F (wt)∥2
 ≥ ηE

[∑
t∈S̃(τT+1(δ))

∥∇F (wt)∥2
]

√
a+

Tσ2
0+bE

[∑
t<τT+1(δ)

∥∇F (wt)∥2
]

δ

. (4)

Specifically, while the numerator depends on a sum over S̃(τT+1(δ)), the denominator depends
on the sum of these good times, as well as the compensating “good” times Scomp(τT+1(δ)) and
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the “bad” times before τT+1(δ), Sgood(τT+1(δ))
c. Faw et al. (2022) dealt with a similar issue by

using the fact that, by L0-smoothness and properties of (AG-Norm), ∥∇F (wt)∥2 ≲ T log(T/δ)
with probability at least 1 − δ, and ∥∇F (wt)∥2 ≲ T 2 deterministically. Combining this with
their bound E [|Sgood(T )

c|] ≲ log(T ), they proved that the sum of “bad” gradients satisfies

E
[∑

t∈Sgood(T )c ∥∇F (wt)∥2
]
≲ Tpoly log(T ). However, it is not clear how to prove such a

bound in our setting, since ∥∇F (wt)∥ can scale as tk−1, which is too large to be useful. Instead, we
prove the following relative upper bound, which is sufficient for our purposes:∑

t∈S̃(τT+1(δ))c

∥∇F (wt)∥2 ≤ B1 + cB2

∑
t∈S̃(τT+1(δ))

∥∇F (wt)∥2 ,

where E [B1] ≲ poly log(T ). As a consequence, (4) becomes:

E

 ∑
t∈S̃(τT+1(δ))

η̃t ∥∇F (wt)∥2
 ≥ ηE

[∑
t∈S̃(τT+1(δ))

∥∇F (wt)∥2
]

√
a+

Tσ2
0+E[B1]+bE

[∑
t∈S̃(τT+1(δ))

∥∇F (wt)∥2
]

δ

.

Since the numerator and denominator both depend on the same summation, we can apply essentially
the same arguments from the σ1 < 1 case to obtain our convergence rate for σ1 ≥ 1 in Theorem 5.

6. The challenges of multiplicative noise for (L0, L1)-smooth optimization

Given our positive results for (AG-Norm) from the previous sections, we now turn our focus to
algorithms which have been analyzed in prior works on (L0, L1)-smooth optimization. Some of the
first-studied algorithms for (L0, L1)-smooth optimization take the following forms: for parameters
η > 0 and γ ≥ 0:

wt+1 ← wt −
ηgt

γ + ∥gt∥
and wt+1 ← wt −

ηgt
max {γ, ∥gt∥}

. (5)

These closely-related updates are referred to as Normalized SGD and Clipped SGD respectively. One
motivation for considering these specific updates, at least in the noiseless setting where gt = ∇F (wt),
comes through a comparison with the natural SGD step-size for L0-smooth non-convex optimization.
Indeed, Ghadimi and Lan (2013) show that a constant step-size of ηt = 1/L0 yields a 1/T rate of
convergence to a first-order stationary point. Further, a simple extension of this result (see, e.g.,
(Bottou et al., 2018) for a proof) is that, under L0-smoothness and Assumption 4 with σ0 = 0 and
σ1 ≥ 0, the step size ηt = 1/L0(1+σ2

1) still achieves the 1/T convergence rate. Thus, by analogy,
in the (L0, L1)-smooth setting, ηt = 1/(L0+L1∥∇F (wt)∥) (and, in the multiplicative noise regime,
ηt = 1/(1+σ2

1)(L0+L1∥∇F (wt)∥)) is a natural candidate step size.
A number of works, including (Zhang et al., 2020b,a; Crawshaw et al., 2022), have proved

that (variants of) these algorithms converge whenever the noise of the stochastic gradient satisfies
(Bounded-supp). It turns out, however, that these algorithms can diverge under the noise model
considered in this paper, (Affine-var). To see this, it is useful to consider a specific stochastic gradient
oracle which satisfies Assumptions 3 and 4:

13



FAW ROUT CARAMANIS SHAKKOTTAI

Proposition 13 (A stochastic gradient oracle satisfying Assumption 4) Fix any σ0, σ1 ≥ 0, and
consider the following stochastic gradient oracle: fix any ε ≥ 0, and let, for every w ∈ Rd:

ξmult(w) =


(
1 +

σ2
1

1+ε

)
w.p. δ = 1

1+σ2
1/(1+ε)2

−ε w.p. 1− δ
and ξadd(w) ∼ N (0, σ2

0Id×d).

We can then take the output of the oracle to be g(w) := ξadd(w) + ξmult(w)∇F (w). Then, this
construction satisfies Assumptions 3 and 4 with the specified σ0 and σ1.

Consider the above oracle with σ0 = 0 and σ1 ≫ 1 + ε. This oracle outputs stochastic gradients
with the same sign as the true gradient for only roughly a 1/σ2

1 fraction of the times it is queried.
The majority of stochastic gradients thus have the opposite sign of the true gradient! This turns out
to be quite problematic for algorithms of the form (5). Indeed, consider the behavior of (5) when
∥gt∥ ≥ γ. In this regime, both algorithms discard the magnitude of the stochastic gradients gt, and
use only their sign to perform updates. Since the stochastic gradients gt of Proposition 13 have the
opposite sign of∇F (wt) for almost all time steps t, one can prove that algorithms of the form (5) do
not converge to a stationary point with constant probability under Assumptions 3 and 4, even when
the objective function is a 1-dimensional quadratic function (i.e., both smooth and strongly-convex).
We give a proof of (a slightly more general version of) this fact in Lemma 35. Similar arguments
also imply that (AG-Norm) can diverge on (L0, L1)-smooth objectives if η is not tuned with respect
to both L1 and and σ1, at least in a “large variance” regime (see Lemma 34). For more details, refer
to Appendix D.
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Appendix A. Auxiliary Lemmas

A.1. Useful facts for AdaGrad

Fact 14 Let {ai}∞i=1 be a sequence of non-negative integers such that a1 > 0. Then, for any T ,

∑
t∈[T ]

at∑t
s=1 as

≤ 1 + log

(∑
t∈[T ] at

a1

)
.

Proof We proceed via induction. The base case of T = 1 holds trivially, with equality. Assuming the
hypothesis holds at some time T ≥ 1, we have that∑

t∈[T+1]

at∑t
s=1 as

≤ 1 + log

(∑
t∈[T ] at

a1

)
+

aT+1∑
s∈[T+1] as

.

Now, using the fact that exp(x) ≤ 1/(1−x) for any x < 1, we have that

aT+1∑
s∈[T+1] as

= log

(
exp

(
aT+1∑

s∈[T+1] as

))
≤ log

 1

1− aT+1∑
s∈[T+1] as

 = log

(∑
s∈[T+1] as∑
s∈[T ] as

)
.

Combining these two bounds, we conclude that∑
t∈[T+1]

at∑t
s=1 as

≤ 1 + log

(∑
t∈[T ] at

a1

)
+ log

(∑
s∈[T+1] as∑
s∈[T ] as

)
= 1 + log

(∑
t∈[T+1] at

a1

)
,

so the claim holds also for T + 1. Thus, the claim holds for all T by induction.

Lemma 15 (Log sum inequality) The (AG-Norm) step-sizes satisfy, for any (possibly random)
times 1 ≤ t0 ≤ t1 and s ≥ 0,

t1∑
t=t0

∥gt∥2

b2t
≤ s+ log

(
b20 +

∑t1−s
t=t0
∥gt∥2

b20

)

Proof We first note that, by definition of bt:

t1∑
t=t0

∥gt∥2

b2t
≤

t1∑
t=t0

∥gt∥2

b20 +
∑t

ℓ=t0

≤ s+

t1−s∑
t=t0

∥gt∥2

b20 +
∑t

ℓ=t0
∥gℓ∥2

.

Thus, applying Fact 14, with a1 = b20 and aℓ+1 = ∥gt0+ℓ−1∥2 for ℓ ≥ 1, we obtain the claimed
inequality.

Fact 16 (Bounded Steps) The iterates {ws}∞s=1 generated by (AG-Norm) satisfy, for every t ≥ 1,

∥wt+1 −wt∥ ≤ η.

Moreover, for any k ≥ 2 and t > t′,

∥wt −wt′∥k−1 ≤ ηk−1(t− t′)k−1.

19



FAW ROUT CARAMANIS SHAKKOTTAI

Proof By definition of (AG-Norm),

∥wt+1 −wt∥ = ηt ∥gt∥ = η
∥gt∥√

b20 +
∑t

s=1 ∥gs∥
2
≤ η,

which establishes the first inequality. To obtain the second, we apply the first, together with Jensen’s
inequality (noting that ∥·∥k−1 is convex), to obtain:

∥wt −wt′∥k−1 = (t− t′)k−1

∥∥∥∥∥ 1

t− t′

t−1∑
s=t′

ws+1 −ws

∥∥∥∥∥
k−1

≤ (t− t′)k−2
t−1∑
s=t′

∥ws+1 −ws∥k−1

≤ ηk−1(t− t′)k−1,

as claimed.

A.2. Useful facts for (L0, L1)-smooth optimization

Lemma 17 (Local smoothness bound) For any function F satisfying Assumption 2, the sequence
of iterates {ws}∞s=1 generated by (AG-Norm) with η ≤ 1/L1 satisfy

F (wt+1) ≤ F (wt) + ⟨∇F (wt),wt+1 −wt⟩+
L0 + L1 ∥∇F (wt)∥

2
∥wt+1 −wt∥2

Proof By (Zhang et al., 2020a, Lemma A.3), we know that, for any function F (·) satisfying
Assumption 2, and for any w,w′ ∈ Rd satisfying ∥w −w′∥ ≤ 1/L1,

F (w′) ≤ F (w) +
〈
∇F (w),w′ −w

〉
+

L0 + L1 ∥∇F (w)∥
2

∥∥w′ −w
∥∥2 .

Thus, by choosing η ≤ 1/L1, the claim is an immediate consequence of Fact 16.

Lemma 18 (One-step gradient bound) For any (L0, L1)-smooth function F (·), assuming that
η ≤ 1/L1, the gradient ∥∇F (wt)∥2 evaluated at the iterate of (AG-Norm) at time t satisfies:

∥∇F (wt)∥2 ≤ 2η2L2
0 + 2(1 + ηL1)

2 ∥∇F (wt−1)∥2 .

Proof Since η ≤ 1/L1, ∥wt+1 −wt∥ ≤ 1/L1 by Fact 16. Thus, we may apply Assumption 2 to obtain

∥∇F (wt)∥ ≤ ∥∇F (wt−1)∥+ ∥∇F (wt)−∇F (wt−1)∥
≤ ∥∇F (wt−1)∥+ (L0 + L1 ∥∇F (wt−1)∥)ηt−1 ∥gt−1∥ ,

from which we conclude that:

∥∇F (wt)∥2 ≤ 2η2L2
0 + 2(1 + ηL1)

2 ∥∇F (wt−1)∥2 .
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Proposition 1 A function satisfying (L0, L1)-smoothness according to (Generalized-smooth) is
also (2L0, (e− 1)L1)-smooth according to Assumption 2. If F (·) is twice continuously differentiable
and (L0, L1)-smooth according to Assumption 2, then it is also (L0, L1)-smooth according to
(Generalized-smooth).

Proof The proof of the first statement is from (Zhang et al., 2020a, Corollary A.4). The proof of the
second statement closely follows the analogous proof for L0-smooth functions from (Nesterov, 2003,
Lemma 1.2.2). We give a proof of this claim for completeness.

Consider any x, s ∈ Rd such that 0 < ∥s∥ ≤ 1/L1, and let α ∈ (0, 1]. Then, by Assumption 2,∥∥∥∥∇F (x+ αs)−∇F (x)

α

∥∥∥∥ ≤ (L0 + L1 ∥∇F (x)∥) ∥s∥ .

Therefore, we have the following:

lim
α→0

∥∥∥∥∇F (x+ αs)−∇F (x)

α

∥∥∥∥
=

∥∥∥∥ limα→0

∇F (x+ αs)−∇F (x)

α

∥∥∥∥ by continuity of ∥·∥ and twice differentiability of F (·)

=
∥∥∇2F (x) · s

∥∥ by definition of directional derivative

Hence, by the limit inequality theorem, we have that, for any 0 < ∥s∥ ≤ 1/L1,∥∥∇2F (x) · s
∥∥

∥s∥
≤ L0 + L1 ∥∇F (x)∥ .

In particular, by taking the supremum over all such s, we conclude that

∥∥∇2F (x)
∥∥ =

∥∥∥∇2F (x)⊤
∥∥∥ ≤ L0 + L1 ∥∇F (x)∥ ,

as claimed, where the first equality follows by observing that∇2F (x)∇2F (x)⊤ and∇2F (x)⊤∇2F (x)
have the same non-zero eigenvalues (since all entries of ∇2F (x) are real, and by appealing to the
singular value decomposition), which implies that ∇2F (x) and ∇2F (x)⊤ have the same spectral
norm.

A.3. A note on enforcing σ1 < 1

Fact 19 (Reducing σ1 through mini-batching) Suppose that the stochastic gradient oracle sat-
isfies Assumptions 3 and 4 for some σ0 ≥ 0 and σ1 ≥ 1. Then, assuming this oracle returns
independent stochastic gradients each time g(w) is sampled, one can construct, for any ε ∈ (0, 1), a
new stochastic gradient oracle from this one through mini-batching which satisfies Assumptions 3
and 4 with σ̃0 ≤ σ0 and σ̃1 = 1 − ε, and where each call to the new gradient requires only
B = ⌈σ2

1/(1−ε)2⌉ calls to the old one.
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Proof Fix any ε ∈ (0, 1) and w ∈ Rd. Let B = ⌈σ2
1/(1−ε)2⌉, and let {gj(w)}j∈[B] be a set of B

independent stochastic gradients corresponding to ∇F (w) from an oracle satsifying Assumptions 3
and 4 with σ0 ≥ 0 and σ1 ≥ 1. Then, we take the response of the new oracle as:

g̃(w) :=
1

B

∑
j∈[B]

gj(w).

Now, since E [gj(w)] = ∇F (w) and applying linearity of expectation, E [g̃(w)] = ∇F (w). Further,
notice that:

E
[
∥g̃(w)−∇F (w)∥2

]
= E

∥∥∥∥∥∥ 1B
∑
j∈[B]

gj(w)−∇F (w)

∥∥∥∥∥∥
2

=
1

B2

∑
j∈[B]

E
[
∥gj(w)−∇F (w)∥2

]
+

2

B2

∑
B≥j>j′≥1

E
[〈
gj(w)−∇F (w), gj′(w)−∇F (w)

〉]
≤ 1

B2

∑
j∈[B]

σ2
0 + σ2

1 ∥∇F (w)∥2

≤ (1− ε)2σ2
0

σ2
1

+ (1− ε)2 ∥∇F (w)∥2 ,

where the first inequality follows by Assumption 3 and since gj(w) and gj′(w) are independent. The
second inequality follows by Assumption 4 and our choice of B ≥ σ2

1/(1−ε)2. Thus, Assumption 4 is
satisfied with σ̃0

2 = (1−ε)2σ2
0/σ2

1 ≤ σ2
0 and σ̃1

2 = (1− ε)2.

Appendix B. Proofs for general (L0, L1)-smooth functions

B.1. Deriving the descent inequality

The following inequality serves as the first step in analyzing the convergence of (AG-Norm).

Lemma 6 Fix any ε, ε′ ∈ (0, 1). Suppose that η ≤ 2ε′

L1(4+σ2
1)

. Then, for any t,

E [F (wt+1)− F (wt) | Ft−1] ≤ −η̃t
(
1− ε− ε′ − σ1biast

)
∥∇F (wt)∥2 + c̃0E

[
∥gt∥2/b2t | Ft−1

]
,

where c̃0 =
ησ0

2ε + η2L0+σ0L1
2 and biast =

√
E
[
∥gt∥2/b2t | Ft−1

]
.

Proof An immediate consequence of Lemma 17 and (Faw et al., 2022, Lemma 5) is that, as long as
η ≤ 1/L1,

E [F (wt+1)− F (wt) | Ft−1] ≤ −η̃t (1− ε− σ1biast) ∥∇F (wt)∥2 + c0E

[
∥gt∥2

b2t
| Ft−1

]

+
L1 ∥∇F (wt)∥

2
E
[
η2t ∥gt∥

2 | Ft−1

]
, (6)
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where

c0 =
ησ0
2ε

+
η2L0

2
and biast =

√√√√√√E

∥gt∥2
(
∥∇̃t∥+ ∥gt∥

)2
b2t (̃bt + bt)2

| Ft−1

.

We provide a proof of this inequality in Lemma 273.

Now, let’s focus on bounding the final term above. We start by rewriting it as follows: Let us
take Eσ0 = {∥∇F (wt)∥ > σ0}. Then, we can decompose the final term (trivially) as

L1 ∥∇F (wt)∥
2

E
[
η2t ∥gt∥

2 | Ft−1

]
=

L1 ∥∇F (wt)∥
2

E
[
η2t ∥gt∥

2 | Ft−1

]
(1
{
Ecσ0

}
+ 1{Eσ0}).

Now, whenever Eσ0 is false, then this expression is easy to bound, since

L1 ∥∇F (wt)∥
2

E
[
η2t ∥gt∥

2 | Ft−1

]
1
{
Ecσ0

}
≤ L1σ0

2
E
[
η2t ∥gt∥

2 | Ft−1

]
.

Notice that this term can be absorbed into the second term in (6). The case when Eσ0 is true requires
slightly more care. However, we can deal with this case by adding and subtracting η̃2t , and using the
bound (1):

L1 ∥∇F (wt)∥
2

E
[
η2t ∥gt∥

2 | Ft−1

]
1{Eσ0} =

L1

2
η̃2t ∥∇F (wt)∥E

[
∥gt∥2 | Ft−1

]
1{Eσ0}

+
L1

2
∥∇F (wt)∥E

[
(η2t − η̃2t ) ∥gt∥

2 | Ft−1

]
1{Eσ0}

≤ L1(2 + σ2
1)

2
η̃2t ∥∇F (wt)∥3

+
L1

2
∥∇F (wt)∥E

[
(η2t − η̃2t ) ∥gt∥

2 | Ft−1

]
1{Eσ0}

≤ ηL1(2 + σ2
1)

2
η̃t ∥∇F (wt)∥2

+
L1

2
∥∇F (wt)∥E

[
(η2t − η̃2t ) ∥gt∥

2 | Ft−1

]
1{Eσ0}.

3. A careful reader may notice that the inequality in Lemma 27 is actually slightly smaller than the one from (Faw et al.,
2022, Lemma 5), since the dependence on constants is strictly better.

23



FAW ROUT CARAMANIS SHAKKOTTAI

Notice that the first term above can be absorbed into the first term in (6), assuming η is sufficiently
small. For the remaining term, we begin by noticing that

η2t − η̃2t
η2

1{Eσ0} =
1{Eσ0}

b2t−1 + ∥gt∥
2 −

1{Eσ0}
b2t−1 + ∥∇̃t∥2

=
(∥∇̃t∥2 − ∥gt∥2)1{Eσ0}

(b2t−1 + ∥gt∥
2)(b2t−1 + ∥∇̃t∥2)

≤ ∥∇̃t∥21{Eσ0}
(b2t−1 + ∥gt∥

2)(b2t−1 + ∥∇̃t∥2)

≤ 2 ∥∇F (wt)∥2

(b2t−1 + ∥gt∥
2)(b2t−1 + ∥∇̃t∥2)

≤ 2 ∥∇F (wt)∥

(b2t−1 + ∥gt∥
2)
√
b2t−1 + ∥∇̃t∥2

,

which implies that

L1(η
2
t − η̃2t )

2
∥∇F (wt)∥ ∥gt∥2 1{Eσ0} ≤ ηL1η̃t ∥∇F (wt)∥2

∥gt∥2

b2t

≤ ηL1η̃t ∥∇F (wt)∥2 .

Therefore, collecting these results and choosing η < 2ε′/L1(4+σ2
1), we have that

E [F (wt+1)− F (wt) | Ft−1] ≤ −η̃t
(
1− ε− σ1biast −

ηL1(4 + σ2
1)

2

)
∥∇F (wt)∥2 + c̃0E

[
∥gt∥2

b2t
| Ft−1

]

≤ −η̃t
(
1− ε− ε′ − σ1biast

)
∥∇F (wt)∥2 + c̃0E

[
∥gt∥2

b2t
| Ft−1

]
,

where c̃0 = c0 + η2L1σ0.

We use Lemma 6 by summing the expression until a carefully-chosen stopping time. To make
use of this bound, we begin by showing that the second additive term can (essentially) be absorbed
into the first term.

Lemma 20 Fix any ε′′ ∈ (0, 1), and let 2 ≤ τ ≤ T + 1 be any stopping time with respect to
(Fs−1)s≥1. Then, we have that

c̃0E

[
τ−1∑
t=1

∥gt∥2

b2t
| Ft−1

]
≤ ε′′E

[
τ−1∑
t=1

η̃t ∥∇F (wt)∥2
]
+ 2c̃0 log

(
(2 + σ2

1)c̃0E [τ − 1]

ηε′′b0

)
+

2ηε′′σ0
2 + σ2

1

.

Proof Let us define, for a parameter λ to be determined,

τstep(λ) = min {T + 1,min {t ≥ 1 : ηt ≤ λ}} .
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By construction, τstep(λ) is the first time when the step size ηt is smaller than some threshold λ (or
T + 1 in the case that ηt remains larger than λ for every t ∈ [T ]). Observe that ηt > λ is equivalent
to bt < η/λ. Thus, we divide our analysis into two phases: times before τstep(λ), and those after. For
the earlier times, since we have bτstep(λ)−1 < η/λ, we can bound these using Lemma 15. We use the
fact that ηt ≤ λ together with (1) to handle the remaining terms.

More specifically, for any t, we can decompose

c̃0
∥gt∥2

b2t
= c̃0

∥gt∥2

b2t
(1{t < τstep(λ)}+ 1{t ≥ τstep(λ)}).

Now, note that, by definition of τstep(λ), ητstep(λ)−1 > λ, i.e., bτstep(λ)−1 < η/λ. Hence, by
Lemma 15,

τ−1∑
t=1

∥gt∥2

b2t
1{t < τstep(λ)} ≤

∑
t<τstep(λ)

∥gt∥2

b2t
≤ 2 log(bτstep(λ)−1/b0) ≤ 2 log

(
η

λb0

)
.

In the other case, for any fixed t ∈ [T ], we have that

η2t ∥gt∥
2
1{t ≥ τstep(λ)} ≤ ληt ∥gt∥2

= λ(ηt − η̃t) ∥gt∥2 + λη̃t ∥gt∥2

≤ ηλ
∥∇̃t∥2

bt

√
b2t−1 + ∥∇̃t∥2(bt +

√
b2t−1 + ∥∇̃t∥2)

∥gt∥2 + λη̃t ∥gt∥2

≤ λη̃t ∥∇F (wt)∥2 + λησ0 + λη̃t ∥gt∥2 ,

where, in the first inequality, we used the fact that ηt ≤ λ for every t ≥ τstep(λ), and in the second,
we used the fact that

ηt − η̃t
η

=
1√

b2t−1 + ∥gt∥
2
− 1√

b2t−1 + ∥∇̃t∥2
=

∥∇̃t∥2 − ∥gt∥2

bt

√
b2t−1 + ∥∇̃t∥2(bt +

√
b2t−1 + ∥∇̃t∥2)

≤ ∥∇̃t∥2

b2t

√
b2t−1 + ∥∇̃t∥2

,

and in the third, we used the fact that ∥∇̃t∥2 = σ2
0 + ∥∇F (wt)∥2. Then, noting that

λη̃tE
[
∥gt∥2 | Ft−1

]
≤ λ(1 + σ2

1)η̃t ∥∇F (wt)∥2 + λη̃tσ
2
0 ≤ λ(1 + σ2

1)η̃t ∥∇F (wt)∥2 + λησ0,

we have that

E
[
η2t ∥gt∥

2
1{t ≥ τstep(λ)} | Ft−1

]
≤ 2λησ0 + λ(2 + σ2

1)η̃t ∥∇F (wt)∥2 .

Combining these bounds, we obtain:

c̃0E

[
∥gt∥2

b2t
| Ft−1

]
≤ η̃t

λc̃0(2 + σ2
1)

η2
∥∇F (wt)∥2 + c̃0E

[
∥gt∥2

b2t
1{t < τstep(λ)} | Ft−1

]
+

2c̃0λσ0
η
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Thus, if we choose λ = ε′′η2

(2+σ2
1)c̃0(τ−1)

, then we obtain

c̃0E

[
∥gt∥2

b2t
| Ft−1

]
≤ ε′′η̃t ∥∇F (wt)∥2 + c̃0E

[
∥gt∥2

b2t
1{t < τstep(λ)} | Ft−1

]
+

2ηε′′σ0
(2 + σ2

1)(τ − 1)
.

Now, summing over t ∈ [τ − 1], and using the fact that {t < τ} ∈ Ft−1 by assumption on τ , we
have:

c̃0E

[
τ−1∑
t=1

∥gt∥2

b2t

]
= c̃0

T∑
t=1

E

[
E

[
∥gt∥2

b2t
1{t < τ} | Ft−1

]]

=
T∑
t=1

E

[
c̃0E

[
∥gt∥2

b2t
| Ft−1

]
1{t < τ}

]

≤ E

[
τ−1∑
t=1

ε′′η̃t ∥∇F (wt)∥2
]
+ c̃0E

[
τ−1∑
t=1

∥gt∥2

b2t
1{t < τstep(λ)}+

2ηε′′σ0
(2 + σ2

1)(τ − 1)

]
.

Focusing on the last term in the above inequality, and recalling that (deterministically) τ > 1 by
assumption, we may apply the above bounds together with Jensen’s inequality to obtain:

c̃0E

[
τ−1∑
t=1

∥gt∥2

b2t
1{t < τstep(λ)}+

2ηε′′σ0
(2 + σ2

1)(τ − 1)

]
≤ 2c̃0E

[
log

(
(2 + σ2

1)c̃0(τ − 1)

ηε′′b0

)]
+

2ηε′′σ0
2 + σ2

1

≤ 2c̃0 log

(
(2 + σ2

1)c̃0E [τ − 1]

ηε′′b0

)
+

2ηε′′σ0
2 + σ2

1

.

Combining these bounds yields the claimed inequality.

In the following, we restate Definition 7 with an equivalent characterization that is sometimes
more convenient for our analysis.

Definition 21 (Good times (extended version of Definition 7)) A time t ∈ [T ] is “good” if, for
fixed parameters ε, ε′, ε′′, ε′′′ ∈ (0, 1), satisfying ε+ ε′ + ε′′ + ε′′′ < 1

1− ε− ε′ − ε′′ − σ1biast ≥ ε′′′ or, equivalently, E

[
∥gt∥2

b2t
| Ft−1

]
≤ (1− (ε+ ε′ + ε′′ + ε′′′))2

σ2
1

.

We take, for any stopping time τ with respect to (Fs−1)s≥1, the set Sgood(τ) = {1 ≤ t < τ : t is “good”}
to be the “good” times before τ , and Sgood(τ)

c = [τ − 1] \ Sgood(τ) to be the remaining “bad”
times before τ .

We will now use the notion of “good” and “bad” times from Definition 21 to understand how the
biast term affects Lemma 6.

Lemma 22 (Bounds for “good” and “bad” times) Consider the same setting as Lemmas 6 and 20.
Let τ ∈ [T + 1] be any stopping time with respect to (Fs−1)s≥1. Then, for any t ∈ Sgood(τ),

(ε′′ + ε′′′)η̃t ∥∇F (wt)∥2 ≤ E [F (wt)− F (wt+1) | Ft−1] + c̃0E

[
∥gt∥2

b2t
| Ft−1

]
.
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For every other time t ̸∈ Sgood(τ), we have that

E [F (wt+1)− F (wt) | Ft−1] ≤ η̃t
(
σ1 −

(
1− (ε+ ε′)

))
∥∇F (wt)∥2 + c̃0E

[
∥gt∥2

b2t
| Ft−1

]
.

In particular, whenever σ1 ≤ (1− ε− ε′), then we have the following bound for each t ̸∈ Sgood(τ).

E [F (wt+1)− F (wt) | Ft−1] ≤ c̃0E

[
∥gt∥2

b2t
| Ft−1

]
≤ c̃0.

Proof We note that, by construction, {t < τ} , {t ∈ Sgood(τ)} ∈ Ft−1, since τ is a stopping time
with respect to (Fs−1)s≥1 and E

[
∥gt∥2/b2t | Ft−1

]
is Ft−1-measurable. Since the inequalities we

wish to prove are in expectation conditioned on Ft−1, the condition that a time t is “good” or “bad”
is (effectively) deterministic.

The proof of the first inequality is an immediate consequence of Lemmas 6 and 20 and Defini-

tion 21. The second follows immediately from Lemma 6, noting that biast =
√
E
[
∥gt∥2/b2t | Ft−1

]
≤

1. The final follows from the second, noting in this case that σ1 − (1− (ε+ ε′)) ≤ 0.

We now combine the results from Lemmas 6, 20 and 22 to obtain our main descent lemma. This
gives us a bound on E

[∑
t∈S̃(τ) η̃t ∥∇F (wt)∥2

]
in terms of negligible terms and a “compensation”

term, comp(τ), where the summation is taken over a random subset of the “good” times.

Lemma 8 (Descent lemma) Fix any ε, ε′, ε′′, ε′′′ ∈ (0, 1) such that ε + ε′ + ε′′ + ε′′′ < 1. For
any (L0, L1)-function, if we run AdaGrad-Norm with parameters η ≤ 2ε′

L1(4+σ2
1)

and b20 > 0 for

T time steps, then, for any stopping time τ ∈ [2, T + 1] with respect to (Fs−1)s≥1, and any
S̃(τ) ⊆ Sgood(τ):

ε′′′E

 ∑
t∈S̃(τ)

η̃t ∥∇F (wt)∥2
 ≤ F (w1)− F ∗ + 2c̃0 log

(
(2 + σ2

1)c̃0E [τ − 1]

ηε′′b0

)
+

2ηε′′σ0
(2 + σ2

1)
+ comp(τ),

where comp(τ) := E

[ ∑
t∈Sgood(τ)c

(σ1 − (1− ε− ε′))η̃t ∥∇F (wt)∥2 −
∑

t′∈Scomp(τ)

ε′′′η̃t′ ∥∇F (wt′)∥2
]

,

the set Scomp(τ) := Sgood(τ) \ S̃(τ) consists of the “good” times used to compensate for the bad
times Sgood(τ)

c, and c̃0 = ησ0

2ε + η2L0+σ0L1
2 . In particular, whenever σ1 ≤ 1 − (ε + ε′), then

comp(τ) ≤ 0, and when σ1 ≤ 1− (ε+ ε′ + ε′′ + ε′′′), then additionally Sgood(τ) = [τ − 1].

Proof The proof follows straightforwardly by combining the inequalities from Lemma 22, together
with noting that, since τ is a stopping time with respect to (Fs−1)s≥1, {s < τ} ∈ Fs−1. Indeed,
since [τ − 1] = Sgood(τ) ∪ Sgood(τ)

c, we may apply the tower rule and linearity of expectation to
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conclude that

E [F (wτ )− F (w1)] = E

[∑
t<τ

F (wt+1)− F (wt)

]
=
∑
t∈[T ]

E [E [(F (wt+1)− F (wt))1{t < τ} | Ft−1]]

=
∑
t∈[T ]

E [E [F (wt+1)− F (wt) | Ft−1]1{t < τ}]

=
∑
t∈[T ]

E [E [F (wt+1)− F (wt) | Ft−1]1{t ∈ Sgood(τ)}]

+
∑
t∈[T ]

E [E [F (wt+1)− F (wt) | Ft−1]1{t ∈ Sgood(τ)
c}]

Now, we may use the first and second inequalities in Lemma 22 to bound the sum over “good” and
“bad” times, respectively, and, collecting terms, we obtain

E [F (wτ )− F (w1)] ≤ −(ε′′ + ε′′′)E

 ∑
t∈Sgood(τ)

η̃t ∥∇F (wt)∥2


+ E

 ∑
t∈Sgood(τ)c

(
σ1 −

(
1− (ε+ ε′)

))
η̃t ∥∇F (wt)∥2


+ c̃0E

 ∑
t∈[τ−1]

∥gt∥2

b2t


Thus, applying Lemma 20 to bound the final term above, and using the fact that E [F (w1)− F (wτ )] ≤
F (w1)− F ∗ by Assumption 1, we obtain:

ε′′′E

 ∑
t∈Sgood(τ)

η̃t ∥∇F (wt)∥2
 ≤ F (w1)− F ∗ + 2c̃0 log

(
(2 + σ2

1)c̃0E [τ − 1]

ηε′′b0

)
+

2ηε′′σ0
(2 + σ2

1)

+ E

 ∑
t∈Sgood(τ)c

(
σ1 −

(
1− ε− ε′

))
η̃t ∥∇F (wt)∥2)

 .

Thus, for any S̃(τ) ⊂ Sgood(τ), we can subtract ε′′′E
[∑

t∈Sgood(τ)\S̃(τ) η̃t ∥∇F (wt)∥2
]

from both
sides of the above inequality to obtain the first claimed inequality.

The second follows immediately by noting in this case that σ1 − (1− (ε+ ε′)) ≤ 0. The third
follows immediately from the second, recalling that, whenever σ1 ≤ (1− (ε+ ε′ + ε′′ + ε′′′)), then
Sgood(τ) = [τ − 1] by Definition 21.
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B.2. Constructing the “nice” stopping time

Let us recall the definition of τT+1(δ), the “nice” stopping time:

Definition 9 (Nice stopping) Fix any δ ∈ (0, 1], and consider the following sequence of random
times τt(δ) defined recursively as follows: let X0(δ) = 1, and define, for every t ≥ 1 (denoting
cL = 2(1 + ηL1)

2):

τt(δ) = min {t,min {s ≥ 0 : Xs(δ) = 0}}

St(δ) =

τt(δ)−1∑
s=1

∥gs∥2 + cL ∥∇F (ws)∥2 and Xt(δ) = Xt−1(δ)1{St(δ) ≤ E[St(δ)]/δ}.

Here, we show that these random variables are well-defined, and enumerate the crucial properties
that they satisfy.

Lemma 23 (Nice stopping; Full version of Lemma 10) For any δ ∈ (0, 1] and t ≥ 1, let τt(δ),
St(δ), and Xt(δ) be recursively-defined random variables from Definition 9. Then, we have that, for
all t ≥ 1,

1. τt(δ) is Ft−2-measurable, and St(δ), Xt(δ) are each Ft−1-measurable (where we take F0 =
F−1 to be the trivial σ-algebra).

2. τt(δ) is a stopping time with respect to (Fs−1)s≥1, i.e., for all s ≥ 0 {s < τt(δ)} ∈ Fs−1.

3. For all t ≥ 1, τt+1(δ) ≥ τt(δ), St+1(δ) ≥ St(δ), and Xt+1(δ) ≤ Xt(δ).

4. E [St(δ)] ≤ E
[∑

s<τt(δ)
σ2
0 + (1 + σ2

1 + cL) ∥∇F (ws)∥2
]

5. Sτt(δ)−1(δ)
a.s.
≤ E[St−1(δ)]/δ.

6. ττt(δ)−1(δ)
a.s.
= τt(δ)− 1

7. For every s < τt(δ), the following inequalities hold deterministically:

η̃s ≥
η√

b20 + 2η2L2
0 + σ2

0 + Sτt(δ)−1(δ)

≥ η√
b20 + 2η2L2

0 +
(t−1)σ2

0+(1+σ2
1+cL)E

[∑
ℓ<τt−1(δ)

∥∇F (wℓ)∥2
]

δ

8. t ≥ E [τt(δ)] ≥ t (1− δ(t−1)/2)

Before proving this result, let us briefly discuss an alternative construction to Definition 9 which
is (perhaps) more natural and easier to define, but does not satisfy a property we rely on to prove
Lemma 25:
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Remark 24 One might attempt to define the stopping times τt(δ) from Definition 9 in the fol-
lowing simpler manner. First, denote S̃t =

∑t−1
s=1 ∥gs∥

2 + cL ∥∇F (ws)∥2. Then, let τ̃t(δ) :=

min
{
t,min

{
s ≥ 0 : S̃t > E[S̃t]/δ

}}
. On a first impression, this stopping time might seem to cap-

ture the same properties as Definition 9. Unfortunately, this is not the case. To see this, let us examine
the quantity S̃τ̃t(δ)−1. This stopping time guarantees the following:

S̃τ̃t(δ)−1 =
t−1∑
ℓ=1

S̃ℓ(δ)1{τ̃t(δ)− 1 = ℓ} ≤
t−1∑
ℓ=1

E
[
S̃ℓ

]
δ

1{τ̃t(δ)− 1 = ℓ}

=
t−1∑
ℓ=1

∑ℓ
s=1 E

[
∥gs∥2 + cL ∥∇F (ws)∥2

]
δ

1{τ̃t(δ)− 1 = ℓ}

=

∑τ̃t(δ)−1
s=1 E

[
∥gs∥2 + cL ∥∇F (ws)∥2

]
δ

. (7)

Thus, we are only guaranteed deterministically that S̃τ̃t(δ)−1 ≤
∑t−1

ℓ=1 E[∥gℓ∥
2+cL∥∇F (wℓ)∥2]/δ (indeed,

this is the only inequality we know on any sample path where τ̃t(δ) = t). By contrast, by Item 5 of
Lemma 23, we know that, deterministically:

Sτt(δ)−1(δ) ≤
E [St−1(δ)]

δ
=

E
[∑τt−1(δ)−1

s=1 ∥gs∥2 + cL ∥∇F (ws)∥2
]

δ
(8)

Notice that (8) is true no matter the realization of τt(δ). Indeed, for any realization of τt(δ), the
bound on the right-hand side still involves a random index inside the expectation. This is not the
case with (7) (there, the random index is outside of the expectation). This difference is crucial, and
this special property of Sτt(δ)−1 is actually what makes the proof of Lemma 25 possible.

Proof (of Lemma 23) We prove the first claim via induction. The base case of t = 1 holds trivially,
since X0(δ) = 1 deterministically by definition, which implies that τ1(δ) = 1 and S1(δ) = 0, and
thus X1(δ) = 1 (so are all measurable in the trivial σ-algebra). Assuming the claim holds for times
1, . . . , t, then we have that τt+1(δ) is Ft−1-measurable, since it depends only on X0(δ), . . . , Xt(δ),
each of which is Ft−1-measurable by the induction hypothesis. Thus, since St+1(δ) depends

only on τt+1(δ) and
{
∥gs∥2 , ∥∇F (ws)∥2

}τt+1(δ)−1

s=1
⊆
{
∥gs∥2 , ∥∇F (ws)∥2

}t

s=1
, St+1(δ) is Ft-

measurable. Further, since Xt(δ) is Ft−1 ⊂ Ft-measurable and St+1(δ) is Ft-measurable, and by
definition, Xt+1(δ) = Xt(δ)1{St+1(δ) ≤ E[St+1(δ)]/δ}, we conclude that Xt+1(δ) is Ft-measurable.
Thus, the claim holds by induction.

For the second claim, it suffices to consider 0 ≤ s ≤ t− 2 (since we just established that τt(δ) is
Ft−2-measurable, and Ft−2 ⊂ Ft′−2 for any t′ ≥ t). Now, for any such s, since s < t, we have that

{s ≥ τt(δ)} = ∪sℓ=0 {Xℓ(δ) = 0} ∈ Fs−1,

since Xℓ(δ) is Fs−1-measurable for every ℓ ≤ s. Thus, since Fs−1 is a σ-algebra, and hence closed
under complements, {s < τt(δ)} = {s ≥ τt(δ)}c ∈ Fs−1.

For the third claim, the inequality τt+1(δ) ≥ τt(δ) follows immediately from the definition,
since if τt(δ) = s for some s ∈ [t], then either Xs = 0, in which case τt+1(δ) = s = τt(δ),
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or s = t and Xt = 1, in which case τt(δ) = t and τt+1(δ) = t + 1 > τt(δ). The inequality
St+1(δ) ≥ St(δ) follows since τt+1(δ) ≥ τt(δ) and St(δ) is a sum of non-negative terms over the
interval [1, τt(δ)), each of which is contained in the sum St+1(δ). The inequality Xt+1(δ) ≤ Xt(δ)
follows immediately from the definition, since 1{St+1(δ) ≤ E[St+1(δ)]/δ} ∈ {0, 1}.

For the fourth claim, we have that, by definition of St(δ) and the tower rule of expectation,

E [St(δ)] = E

[
t−1∑
s=1

(∥gs∥2 + cL ∥∇F (ws)∥2)1{s < τt(δ)}

]

=

t−1∑
s=0

E
[
E
[
(∥gs∥2 + cL ∥∇F (ws)∥2)1{s < τt(δ)} | Fs−1

]]
.

Now, since {s < τt(δ)} ∈ Fs−1, and applying (1),

E
[
E
[
(∥gs∥2 + cL ∥∇F (ws)∥2)1{s < τt(δ)} | Fs−1

]]
= E

[
E
[
∥gs∥2 + cL ∥∇F (ws)∥2 | Fs−1

]
1{s < τt(δ)}

]
≤ E

[
(σ2

0 + (1 + σ2
1 + cL) ∥∇F (ws)∥2)1{s < τt(δ)}

]
.

Summing the above expression over s ∈ [t− 1], we conclude that

E [St(δ)] ≤ E

 ∑
s<τt(δ)

σ2
0 + (1 + σ2

1 + cL) ∥∇F (ws)∥2
 ,

establishing the third claim.
For the fifth claim, notice that, by definition of τt(δ), if τt(δ) = s, then Xs−1(δ) = 1, which

implies that Ss−1(δ) ≤ E[Ss−1(δ)]/δ by construction. Therefore,

Sτt(δ)−1(δ) =

t∑
s=1

Ss−1(δ)1{τt(δ) = s} =
t∑

s=1

Ss−1(δ)1{τt(δ) = s, Ss−1(δ) ≤ E[Ss−1(δ)]/δ}

≤
t∑

s=1

E [Ss−1(δ)]

δ
1{τt(δ) = s} ≤ E [St−1(δ)]

δ
.

For the sixth claim, we note that

ττt(δ)−1(δ) =

t∑
s=1

τs−1(δ)1{τt(δ) = s} =
t∑

s=1

τs−1(δ)1{X0(δ) = . . . = Xs−1(δ) = 1, τt(δ) = s}

=

t∑
s=1

(s− 1)1{τt(δ) = s} =
t−1∑
s=0

s1{τt(δ)− 1 = s} = τt(δ)− 1.

For the seventh claim, assuming s < τt(δ), we have that, by Lemma 18,

η̃s =
η√

b20 + σ2
0 +

∑s−1
ℓ=1 ∥gℓ∥

2 + ∥∇F (ws)∥2

≥ η√
b20 + σ2

0 + 2η2L2
0 +

∑
ℓ<τt(δ)−1 ∥gℓ∥

2 + cL ∥∇F (wℓ)∥2
.
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Further, since ττt(δ)−1(δ) = τt(δ)− 1, and by definition of St(δ), we have that

η̃s ≥
η√

b20 + σ2
0 + 2η2L2

0 +
∑

ℓ<ττt(δ)−1(δ)
∥gℓ∥2 + cL ∥∇F (wℓ)∥2

=
η√

b20 + σ2
0 + 2η2L2

0 + Sτt(δ)−1(δ)
.

Therefore, since Sτt(δ)−1(δ) ≤ E[St−1(δ)]/δ almost surely by Item 5, together with our upper-bound
on E [St(δ)] from Item 4, we conclude that

η̃s ≥
η√

b20 + 2η2L2
0 +

(t−1)σ2
0+(1+σ2

1+cL)E
[∑

ℓ<τt−1(δ)
∥∇F (wℓ)∥2

]
δ

,

as claimed.
For the final claim, we note that τt(δ) ≤ t deterministically, by construction. Thus, we focus on

the lower bound. Indeed, notice that, since τt(δ) ∈ [t],

τt(δ) =
t∑

s=1

s1{τt(δ) = s} =
t∑

s=1

1{τt(δ) = s}
s−1∑
ℓ=0

1{τt(δ) > ℓ}

=

t−1∑
ℓ=0

t∑
s=ℓ+1

1{τt(δ) = s}1{τt(δ) > ℓ}

=

t−1∑
ℓ=0

1{τt(δ) > ℓ}
t∑

s=ℓ+1

1{τt(δ) = s} =
t−1∑
ℓ=0

1{τt(δ) > ℓ}

Next, notice that Xs(δ) = 1 iff τt(δ) > s, which implies that Xs(δ) = 1{τt(δ) > s}. Additionally,
recall that X0(δ) = 1, and Xs(δ) = 1{∩sℓ=1 {Sℓ(δ) ≤ E[Sℓ(δ)]/δ}}. Hence, we have that

E [τt(δ)] =
t−1∑
s=0

E [Xs(δ)] =
t−1∑
s=0

Pr [Xs(δ) = 1] = 1 +
t−1∑
s=1

1− Pr [Xs(δ) = 0]

= 1 +

t−1∑
s=1

1− Pr [∪sℓ=1 {Sℓ(δ) > E[Sℓ(δ)]/δ}] .

Therefore, by applying the union bound and Markov’s inequality, we conclude that

E [τt(δ)] ≥ t−
t−1∑
s=1

s∑
ℓ=1

Pr [Sℓ(δ) > E[Sℓ(δ)]/δ] ≥ t−
t−1∑
s=1

s∑
ℓ=1

δ = t− δ
t(t− 1)

2
= t

(
1− δ(t− 1)

2

)
,

which establishes the final claim.
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B.3. The key consequence of the nice stopping time construction

The following result is the most crucial place where the properties of Definition 9 are utilized. It
tells us that, as long as the sum of “bad” gradients is comparable to the sum of “good” ones, and
as long as the descent inequality (Lemma 8) holds, then the sum of gradients scales (roughly) as
O(b(T )2/δ + b(T )

√
T/δ). One can compare this result to that of Faw et al. (2022, Lemma 13), which

obtained a similar bound in the simpler L0-smooth setting. Their argument utilized a technique they
termed “recursive improvement,” which required recursively invoking gradually improving bounds in
order to reach their desired conclusion after infinitely many calls. Moreover, their argument crucially
relies on properties of L0-smoothness in order to obtain worst-case upper bounds on the sum of
gradients, which are no longer true in our setting. Through our construction of the stopping time
τT+1(δ), we are able to obtain a similar bound as in their setting, but with an (arguably) significantly
simpler and more general proof which works even in the (L0, L1)-smooth setting.

Lemma 25 Recall the stopping time τT+1(δ) from Definition 9 and the set of “good” times before
τT+1(δ), Sgood(τT+1(δ)) from Definition 21. Let S̃(τT+1(δ)) ⊆ Sgood(τT+1(δ)) be any (random)
subset. Suppose that the following two conditions are satisfied: (i) for some cB1, cB2 ≥ 0 (possibly
dependent on T ):

E

 ∑
t∈S̃(τT+1(δ))c

∥∇F (wt)∥2
 ≤ cB1 + cB2E

 ∑
t∈S̃(τT+1(δ))

∥∇F (wt)∥2
 (9)

and (ii) for some b(T ) ≥ 0,

E

 ∑
t∈S̃(τT+1(δ))

η̃t ∥∇F (wt)∥2
 ≤ b(T ). (10)

Then, we obtain the inequality given below:

E

 ∑
t∈S̃(τT+1(δ))

∥∇F (wt)∥2
 ≤ 2(1 + cB2)(1 + cL + σ2

1)b(T )
2

η2δ

+
2b(T )

η

√
b20 + 2η2L2

0 +
Tσ2

0 + (1 + cL + σ2
1)cB1

δ
.

Proof Let S̃(τT+1(δ)) ⊆ Sgood(τT+1(δ)) be any (possibly random) subset. By (10),

b(T ) ≥ E

 ∑
t∈S̃(τT+1(δ))

η̃t ∥∇F (wt)∥2
 .
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Now, by Item 7 in Lemma 23, since t < τT+1(δ) for any t ∈ S̃(τT+1(δ)),

E

 ∑
t∈S̃(τT+1(δ))

η̃t ∥∇F (wt)∥2


≥ E

 ∑
t∈S̃(τT+1(δ))

η ∥∇F (wt)∥2√
b20 + 2ηL2

0 +
Tσ2

0+(1+σ2
1+cL)E

[∑
ℓ<τT+1(δ)

∥∇F (wℓ)∥2
]

δ


=

E
[∑

t∈S̃(τT+1(δ))
η ∥∇F (wt)∥2

]
√
b20 + 2ηL2

0 +
Tσ2

0+(1+σ2
1+cL)E

[∑
ℓ<τT+1(δ)

∥∇F (wℓ)∥2
]

δ

=
ηEgood√

b20 + 2ηL2
0 +

Tσ2
0+(1+σ2

1+cL)(Egood+Ebad)
δ

,

where Egood = E
[∑

t∈S̃(τT+1(δ))
∥∇F (wt)∥2

]
and Ebad = E

[∑
t∈S̃(τT+1(δ))c

∥∇F (wt)∥2
]
. Re-

arranging, we have the following inequality:

ηEgood ≤
√

b20 + 2η2L2
0 +

Tσ2
0 + (1 + cL + σ2

1)Ebad + (1 + cL + σ2
1)Egood

δ
b(T ).

Notice that this is a quadratic inequality in
√
Egood. Assuming that

Ebad ≤ cB1 + cB2Egood,

then we may solve this inequality to conclude that

√
Egood ≤

√
(1 + cB2)(1 + cL + σ2

1)b(T )

2η
√
δ

+
1

2η

√
(1 + cB2)(1 + cL + σ2

1)b(T )
2

δ
+ 4η

√
b20 + 2η2L2

0 +
Tσ2

0 + (1 + cL + σ2
1)cB1

δ
b(T )

≤
√
(1 + cB2)(1 + cL + σ2

1)b(T )

η
√
δ

+

√
b(T )

η

4

√
b20 + 2η2L2

0 +
Tσ2

0 + (1 + cL + σ2
1)cB1

δ
,

from which we conclude

E

 ∑
t∈S̃(τT+1(δ))

∥∇F (wt)∥2
 = Egood ≤

2(1 + cB2)(1 + cL + σ2
1)b(T )

2

η2δ

+
2b(T )

η

√
b20 + 2η2L2

0 +
Tσ2

0 + (1 + cL + σ2
1)cB1

δ
.
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B.4. Convergence for (L0, L1)-smooth functions

Here, we provide our main theorem for (L0, L1)-smooth functions. We emphasize that, unlike in
the statement of Theorem 3 from the main body, this theorem does not (directly) require σ1 < 1.
Instead, it requires that

∑
t∈S̃(τT+1(δ))c

∥∇F (wt)∥2, E
[
|S̃(τT+1(δ))

c|
]
, and comp(τT+1) can each

be upper-bounded by sufficiently-small quantities. While these quantities can each be (trivially)
upper-bounded when σ1 < 1, this is not a necessary condition. Indeed, we prove in Corollary 32
convergence for a subset of (L0, L1)-smooth functions without a restriction on σ1 using this theorem
as well.

Theorem 26 (Formal statement of Theorem 3) Fix any ε, ε′, ε′′, ε′′′ ∈ (0, 1). Consider (AG-Norm)
with any parameters η ≤ 2ε′/L1(4+σ2

1) and b20 > 0, running for T ≥ 1 time steps on an objective
function satisfying Assumption 2, and given access to a stochastic gradient oracle satisfying Assump-
tions 3 and 4. Let, for any δ′ ∈ (0, 1), τT+1 := τT+1(δ

′/4T) be the stopping time from Definition 9.
Let Sgood(τT+1) by the set of “good times” from Definition 21, let S̃(τT+1) ⊆ Sgood(τT+1), and
denote Scomp(τT+1) := Sgood(τT+1) \ S̃(τT+1) to be the compensating “good” times for the bad
times Sgood(τT+1)

c. Suppose there is a (possibly random) B1 ≥ 0 and constant cB2 ≥ 0 such that
E [B1] ≤ cB1 <∞ and which (deterministically) satisfy:∑

t∈S̃(τT+1)c

∥∇F (wt)∥2 ≤ B1 + cB2

∑
t∈S̃(τT+1)

∥∇F (wt)∥2 .

then for any T ≥ 1 and δ′ ∈ (0, 1), with probability at least 1 − δ′ − 2E[|S̃(τT+1)
c|]/T , (AG-Norm)

satisfies:

min
t∈[T ]
∥∇F (wt)∥2

≤ 32(1 + cB2)b(T )
2

η2(δ′)2T
+

16b(T )

η(δ′)2T

√
b20 + σ2

0 + 2(1 + σ2
1)cB1 +

4b(T )

η
σ2
1(1 + cB2)

√
b20 + 2η2L2

0

+
32b(T )3/2

η3/2(δ′)2.25T 3/4

√
2σ2

1(1 + cB2)
√

(1 + cL + σ2
1)cB1

+
16b(T )

η(δ′)2
√
T

√
2σ2

0 +
8σ2

1(1 + cB2)b(T )

η
√
δ′

(
2(1 + cB2)(1 + cL + σ2

1)b(T )

η
√
δ′

+ σ0

)
,

where cL = 2(1 + ηL1)
2,

b(T ) :=
1

ε′′′

(
F (w1)− F ∗ + 2c̃0 log

(
(2 + σ2

1)c̃0E [τT+1 − 1]

ηε′′b0

)
+

2ηε′′σ0
(2 + σ2

1)
+ comp(τT+1)

)
,

and

comp(τT+1) = E

 ∑
t∈Sgood(τT+1)c

(σ1 − (1− ε− ε′))η̃t ∥∇F (wt)∥2 −
∑

t′∈Scomp(τT+1)

ε′′′η̃t′ ∥∇F (wt′)∥2
 ,

and c̃0 =
ησ0

2ε + η2L0+σ0L1
2 .
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In particular, whenever σ1 ≤ (1− (ε+ ε′ + ε′′ + ε′′′)), then we have that Sgood(τT+1) =

[τT+1 − 1], so we can take S̃(τT+1) = Sgood(τT+1) so that cB1 = 0 = cB2 and comp(τT+1) ≤ 0,
so, with probability at least 1− δ′, the following inequality holds:

min
t∈[T ]
∥∇F (wt)∥2 ≤

32b(T )2

η2(δ′)2T
+

16b(T )

η(δ′)2T

√
b20 + σ2

0 +
4b(T )

η
σ2
1

√
b20 + 2η2L2

0

+
16b(T )

η(δ′)2
√
T

√
2σ2

0 +
8σ2

1b(T )

η
√
δ′

(
2(1 + cL + σ2

1)b(T )

η
√
δ′

+ σ0

)
,

Proof

Step 1: Rewrite Lemma 8 in terms of a single, worst-case step-size Let us assume that η ≤
2ε′/L1(4+σ2

1). Denote:

η̃τT+1(δ) =
η√

b20 + σ2
0 + 2

∑
s<τT+1(δ)

∥gs −∇F (ws)∥2 + ∥∇F (ws)∥2
.

Let S̃(τT+1(δ)) ⊆ Sgood(τT+1(δ)). Then, taking b(T ) as in the theorem statement above,

E

η̃τT+1(δ)

∑
t∈S̃(τT+1(δ))

∥∇F (wt)∥2
 ≤ b(T ), (11)

since, by Lemma 8, and using the fact that t < τT+1(δ) for every t ∈ S̃(τT+1(δ)),

b(T ) ≥ E

 ∑
t∈S̃(τT+1(δ))

η̃t ∥∇F (wt)∥2


= E

 ∑
t∈S̃(τT+1(δ))

η ∥∇F (wt)∥2√
b20 + σ2

0 +
∑t−1

s=1 ∥gs∥
2 + ∥∇F (wt)∥2


≥ E

 ∑
t∈S̃(τT+1(δ))

η ∥∇F (wt)∥2√
b20 + σ2

0 +
∑t−1

s=1(2 ∥gs −∇F (ws)∥2 + 2 ∥∇F (ws)∥2) + ∥∇F (wt)∥2


≥ E

η̃τT+1(δ)

∑
t∈S̃(τT+1(δ))

∥∇F (wt)∥2
 .

Step 2: Upper bound the inverse of this worst-case step-size in expectation Next, notice that,
denoting Egood = E

[∑
s∈S̃(τT+1(δ))

∥∇F (ws)∥2
]
,

E
[
η/η̃τT+1(δ)

]
≤
√
b20 + (2T + 1)σ2

0 + 2(1 + σ2
1)cB1 + 2Egood

+
√
2(1 + cB2)E

√ ∑
s∈S̃(τT+1(δ))

∥∇F (ws)∥2
 , (12)
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since, by the assumption that
∑

s∈S̃(τT+1(δ))c
∥∇F (ws)∥2 ≤ B1 + cB2

∑
s∈S̃(τT+1(δ))

∥∇F (ws)∥2

and E [B1] ≤ cB1,

E
[
η/η̃τT+1(δ)

]
= E

√b20 + σ2
0 + 2

∑
s<τT+1(δ)

∥gs −∇F (ws)∥2 + ∥∇F (ws)∥2


≤ E

√b20 + σ2
0 + 2B1 + 2

∑
s<τT+1(δ)

∥gs −∇F (ws)∥2 + 2(1 + cB2)
∑

s∈S̃(τT+1(δ))

∥∇F (ws)∥2


≤ E

√b20 + σ2
0 + 2B1 + 2

∑
s<τT+1(δ)

∥gs −∇F (ws)∥2


+
√

2(1 + cB2)E

√ ∑
s∈S̃(τT+1(δ))

∥∇F (ws)∥2


≤

√√√√√b20 + σ2
0 + 2cB1 + 2E

 ∑
s<τT+1(δ)

∥gs −∇F (ws)∥2


+
√

2(1 + cB2)E

√ ∑
s∈S̃(τT+1(δ))

∥∇F (ws)∥2


≤

√√√√√b20 + (2T + 1)σ2
0 + 2(1 + σ2

1)cB1 + 2(1 + cB2)E

 ∑
s∈S̃(τT+1(δ))

∥∇F (ws)∥2


+
√

2(1 + cB2)E

√ ∑
s∈S̃(τT+1(δ))

∥∇F (ws)∥2
 ,

where, in the last step, we used the fact that, since {s < τT+1(δ)} ∈ Fs−1 by Item 2 of Lemma 23,
we may apply Assumption 4 to obtain

E
[
∥gs −∇F (ws)∥2 1{s < τT+1(δ)}

]
= E

[
E
[
∥gs −∇F (ws)∥2 | Ft−1

]
1{s < τT+1(δ)}

]
≤ E

[
σ2
0 + σ2

1 ∥∇F (ws)∥2 1{s < τT+1(δ)}
]
.

Step 3: Use Hölder’s inequality and the above bounds to obtain a quadratic inequality At
this point, we can combine the bounds from (11) and (12) to obtain a quadratic inequality in
E
[√∑

s∈S̃(τT+1(δ))
∥∇F (ws)∥2

]
. Indeed, using Hölder’s inequality E

[
X2
]
≥ E[XY ]2/E[Y 2] with

X =
√

η̃τT+1(δ)

∑
t∈S̃(τT+1(δ))

∥∇F (wt)∥2 and Y =
√

1/η̃τT+1(δ)
, we have that:

E
[√∑

t∈S̃(τT+1(δ))
∥∇F (wt)∥2

]2
E
[
1/η̃τT+1(δ)

] ≤ b(T ),
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which, after rearranging, and writing Z =
√∑

s∈S̃(τT+1(δ))
∥∇F (ws)∥2, implies that:

ηE [Z]2 ≤ b(T )

(√
b20 + (2T + 1)σ2

0 + 2(1 + σ2
1)cB1 + 2σ2

1Egood +
√
2(1 + cB2)E [Z]

)
.

(13)

We solve this quadratic inequality in E [Z] to conclude that:

E [Z] ≤
√

2(1 + cB2)b(T )

2η

+
1

2η

√
2(1 + cB2)b(T )2 + 4ηb(T )

√
b20 + (2T + 1)σ2

0 + 2(1 + σ2
1)cB1 + 2σ2

1(1 + cB2)Egood

≤
√

2(1 + cB2)b(T )

η
+

√
b(T )

η
4

√
b20 + (2T + 1)σ2

0 + 2(1 + σ2
1)cB1 + 2σ2

1(1 + cB2)Egood.

Thus, applying the bound on Egood from Lemma 25, we obtain:

E [Z]2 ≤ 4(1 + cB2)b(T )
2

η2
+

2b(T )

η

√
b20 + σ2

0 + 2(1 + σ2
1)cB1 +

4b(T )

η
σ2
1(1 + cB2)

√
b20 + 2η2L2

0

+
2b(T )

η

√
2Tσ2

0 +
4σ2

1(1 + cB2)b(T )

η
√
δ

(
(1 + cB2)(1 + cL + σ2

1)b(T )

η
√
δ

+
√

Tσ2
0 + (1 + cL + σ2

1)cB1

)
,

where δ ∈ (0, 1) is a parameter of our choosing. In particular, choosing (with foresight) δ = δ′/4T
for any δ′ ∈ (0, 1), the above can be rewritten as:

E [Z]2 ≤ 4(1 + cB2)b(T )
2

η2
+

2b(T )

η

√
b20 + σ2

0 + 2(1 + σ2
1)cB1 +

4b(T )

η
σ2
1(1 + cB2)

√
b20 + 2η2L2

0

+
4b(T )3/2 4

√
T

η3/2(δ′)1/4

√
2σ2

1(1 + cB2)
√
(1 + cL + σ2

1)cB1

+
2b(T )

√
T

η

√
2σ2

0 +
8σ2

1(1 + cB2)b(T )

η
√
δ′

(
2(1 + cB2)(1 + cL + σ2

1)b(T )

η
√
δ′

+ σ0

)
:= C2

T

Step 4: Use the conclusion of the quadratic inequality to conclude with the claimed convergence
guarantee To obtain a convergence rate, we begin by noting, for any δ′ ∈ (0, 1), we can decompose

Pr

[
min
t∈[T ]
∥∇F (wt)∥2 >

8C2
T

(δ′)2T

]
= Pr

[
min
t∈[T ]
∥∇F (wt)∥2 >

8C2
T

(δ′)2T
, |S̃(τT+1(δ))| ≤ T/2

]
+ Pr

[
min
t∈[T ]
∥∇F (wt)∥2 >

8C2
T

(δ′)2T
, |S̃(τT+1(δ))| > T/2

]
(14)

38



BEYOND UNIFORM SMOOTHNESS: A STOPPED ANALYSIS OF ADAPTIVE SGD

The first term in (14) is easy to bound via Markov’s inequality, since, choosing δ = δ′

4T ≤
δ′

2(T+1)
(since T ≥ 1),

Pr

[
min
t∈[T ]
∥∇F (wt)∥2 >

8C2
T

(δ′)2T
, |S̃(τT+1(δ))| ≤ T/2

]
≤ Pr

[
|S̃(τT+1(δ))| ≤ T/2

]
≤

2E
[
|[T ] \ S̃(τT+1(δ))|

]
T

≤ 2

T

(
δT (T + 1)

2
+ E

[
|S̃(τT+1(δ))

c|
])

≤ δ′

2
+

2E
[
|S̃(τT+1(δ))

c|
]

T
, (15)

where we bounded the above expectation using the fact that, by Item 8 of Lemma 23,

E
[
|[T ] \ S̃(τT+1(δ))|

]
= E

[
|[τT+1(δ), T ] ∪ S̃(τT+1(δ))

c|
]
≤ E [T − τT+1(δ) + 1] + E

[
|S̃(τT+1(δ))

c|
]

≤ δT (T + 1)

2
+ E

[
|S̃(τT+1(δ))

c|
]
.

To bound the second term in (14), we note that, whenever |S̃(τT+1(δ))| > T/2, then

min
t∈[T ]
∥∇F (wt)∥2 ≤ min

t∈S̃(τT+1(δ))
∥∇F (wt)∥2 ≤

1

|S̃(τT+1(δ))|

∑
t∈S̃(τT+1(δ))

∥∇F (wt)∥2

≤ 2

T

∑
t∈S̃(τT+1(δ))

∥∇F (wt)∥2

︸ ︷︷ ︸
Z2

Hence, we have by Markov’s inequality and the above bound,

Pr

[
min
t∈[T ]
∥∇F (wt)∥2 >

8C2
T

(δ′)2T
, |S̃(τT+1(δ))| > T/2

]
≤ Pr

[
Z >

2CT

δ′

]
≤ δ′

E [Z]

2CT
≤ δ′

2
. (16)

Therefore, combining (15) and (16) with (14), we conclude that, with probability at least 1− δ′ −
2E[|S̃(τT+1(δ))

c|]/T ,

min
t∈[T ]
∥∇F (wt)∥2

≤
8C2

T

(δ′)2T

≤ 32(1 + cB2)b(T )
2

η2(δ′)2T
+

16b(T )

η(δ′)2T

√
b20 + σ2

0 + 2(1 + σ2
1)cB1 +

4b(T )

η
σ2
1(1 + cB2)

√
b20 + 2η2L2

0

+
32b(T )3/2

η3/2(δ′)2.25T 3/4

√
2σ2

1(1 + cB2)
√

(1 + cL + σ2
1)cB1

+
16b(T )

η(δ′)2
√
T

√
2σ2

0 +
8σ2

1(1 + cB2)b(T )

η
√
δ′

(
2(1 + cB2)(1 + cL + σ2

1)b(T )

η
√
δ′

+ σ0

)
,

as claimed
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B.5. A deferred proof for establishing Lemma 6

Here, we give a bound which is used in proving Lemma 6. We remark that this inequality is an
extension of a similar one from (Faw et al., 2022) (in the L0-smooth setting) to the more general
(L0, L1)-smooth setting. We additionally note that this bound has a better dependence on σ1biast
than the analogous one in theirs.

Lemma 27 Fix any ε ∈ (0, 1). Suppose that η ≤ 1/L1. Then, for any time t, the iterates of
(AG-Norm) satisfy

E [F (wt+1)− F (wt) | Ft−1] ≤ −η̃t (1− ε− σ1biast) ∥∇F (wt)∥2 + c0E

[
∥gt∥2

b2t
| Ft−1

]

+
L1 ∥∇F (wt)∥

2
E
[
η2t ∥gt∥

2 | Ft−1

]
,

where

c0 =
ησ0
2ε

+
η2L0

2
and biast =

√√√√E

[
∥gt∥2

b2t
| Ft−1

]
.

Proof The proof proceeds using similar arguments as in (Faw et al., 2022, Lemma 5). By Lemma 17
and the definition of (AG-Norm), we know that

E [F (wt+1)− F (wt) | Ft−1] ≤ −E [ηt ⟨∇F (wt), gt⟩ | Ft−1] +
L0 + L1 ∥∇F (wt)∥

2
E
[
η2t ∥gt∥

2 | Ft−1

]
≤ −η̃t ∥∇F (wt)∥2 − E [(ηt − η̃t) ⟨∇F (wt), gt⟩ | Ft−1]

+
L0 + L1 ∥∇F (wt)∥

2
E
[
η2t ∥gt∥

2 | Ft−1

]
.

We begin by bounding the inner product term above as:

−(ηt − η̃t) ⟨∇F (wt), gt⟩ ≤ |ηt − η̃t| ∥∇F (wt)∥ ∥gt∥ .

To bound this quantity, we begin by rewriting ηt − η̃t. Denoting b̃2t := b2t + ∥∇̃t∥2, we have that

|ηt − η̃t| = η

∣∣∣∣∣∣ 1√
b2t−1 + ∥gt∥

2
− 1√

b2t−1 + ∥∇̃t∥2

∣∣∣∣∣∣ = η

∣∣∣∥∇̃t∥2 − ∥gt∥2
∣∣∣

b̃tbt(̃bt + b̃t)
= η

∣∣∣∥∇̃t∥ − ∥gt∥
∣∣∣ (∥∇̃t∥+ ∥gt∥

)
b̃tbt(̃bt + b̃t)

.

Combining the above arguments, and applying Hölder’s inequality, we have that

− E [(ηt − η̃t) ⟨∇F (wt), gt⟩ | Ft−1]

≤ E [|ηt − η̃t| ∥∇F (wt)∥ ∥gt∥ | Ft−1]

= η̃t ∥∇F (wt)∥E

∥gt∥
(
∥gt∥+ ∥∇̃t∥

)
bt(̃bt + bt)

∣∣∣∥∇̃t∥ − ∥gt∥
∣∣∣ | Ft−1



≤ η̃t ∥∇F (wt)∥

√√√√√√E

∥gt∥2
(
∥gt∥+ ∥∇̃t∥

)2
b2t (̃bt + bt)2

| Ft−1


√
E
[∣∣∣∥∇̃t∥ − ∥gt∥

∣∣∣2 | Ft−1

]
.
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By (1), E
[
∥gt∥2 | Ft−1

]
≤ σ2

0+(1+σ2
1) ∥∇F (wt)∥2, and by Assumption 3 and Jensen’s inequality,

E [∥gt∥ | Ft−1] ≥ ∥E [gt | Ft−1]∥ = ∥∇F (wt)∥. Therefore,

E
[∣∣∣∥∇̃t∥ − ∥gt∥

∣∣∣2 | Ft−1

]
= ∥∇̃t∥2 + E

[
∥gt∥2 | Ft−1

]
− 2∥∇̃t∥E [∥gt∥ | Ft−1]

≤ ∥∇̃t∥2 + σ2
0 + (1 + σ2

1) ∥∇F (wt)∥2 − 2∥∇̃t∥ ∥∇F (wt)∥
≤ 2σ2

0 + σ2
1 ∥∇F (wt)∥2 ,

where the last step comes from ∥∇̃t∥ ≥ ∥∇F (wt)∥. Collecting our bounds so far yields:

− E [(ηt − η̃t) ⟨∇F (wt), gt⟩ | Ft−1]

≤ η̃t ∥∇F (wt)∥

√√√√E

[
∥gt∥2 (∥∇̃t∥+ ∥gt∥)2

b2t (̃bt + bt)2
| Ft−1

]√
2σ2

0 + σ2
1 ∥∇F (wt)∥2

Focusing on the term depending on σ0, we have that for any ε > 0,

√
2σ0η̃t ∥∇F (wt)∥

√√√√√√E

∥gt∥2
(
∥∇̃t∥+ ∥gt∥

)2
b2t (̃bt + bt)2

| Ft−1



≤ εη̃t ∥∇F (wt)∥2 +
σ2
0 η̃t
2ε

E

∥gt∥2
(
∥∇̃t∥+ ∥gt∥

)2
b2t (̃bt + bt)2

| Ft−1


≤ εη̃t ∥∇F (wt)∥2 +

σ0η

2ε
E

[
∥gt∥2

b2t
| Ft−1

]
.

Thus, denoting biast =
√
E
[
∥gt∥2/b2t | Ft−1

]
and c0 = ησ0/2ε + η2L0/2, we have that

E [F (wt+1)− F (wt) | Ft−1] ≤ −η̃t (1− ε− σ1biast) ∥∇F (wt)∥2 + c0E

[
∥gt∥2

b2t
| Ft−1

]

+
L1 ∥∇F (wt)∥

2
E
[
η2t ∥gt∥

2 | Ft−1

]
,

as claimed by the lemma.

Appendix C. Proofs for Polynomially-bounded functions for general σ1

In this section, we show that Theorem 26 can be used to establish a Õ(1/√T) convergence rate
without the restriction of σ1 < 1. The key is to restrict our attention to (L0, L1)-smooth functions
which satisfy the following additional property:
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C.1. The key definition and its properties

Definition 4 A function F (·) is k-polynomially bounded for k ≥ 2 if ∀w,w′ ∈ Rd, then there are
constants ck ≥ 1 and c′k, L0 > 0 such that:

∥∇F (w)∥ − ck
∥∥∇F (w′)

∥∥ ≤ max
{
c′k
∥∥w −w′∥∥k−1

, L0

∥∥w −w′∥∥} .

The following result provides a characterization of these functions relative to L0-smooth functions
and (L0, L1)-smooth functions. In particular, it tells us that Definition 4 is a richer function class
than (L0, L1)-smooth functions. However, not all (L0, L1)-smooth functions satisfy Definition 4.

Proposition 28 We have the following:

1. Every L0-smooth function satisfies Definition 4 with k = 2, ck = 1, and c′k = L0.

2. Every (L0, L1)-smooth function satisfies Definition 4 locally (i.e., when ∥w −w′∥ ≤ 1/L1)
with k = 2, ck = 2 and c′k = L0.

3. There is a (0, L1)-smooth function which does not satisfy Definition 4 for any fixed k, ck, c
′
k.

4. For any k ≥ 2, F (w) = ∥w −w∗∥k satisfies Definition 4 with k = k, ck = 2k−2, and
c′k = k2k−2. Additionally, for any L1 > 0, F (w) is (2k(k−1)/Lk−2

1 , (e− 1)(k − 1)L1)-smooth.
However, this F (w) is not L0-smooth when k > 2.

In particular, this implies that:

{L0-smooth functions} ⊊ {(L0, L1)-smooth functions satisfying Definition 4} ⊊ {(L0, L1)-smooth functions}

Proof The first claim follows by noting that L0-smooth functions satisfy, for every w,w′ ∈ Rd,

∥∇F (w)∥ −
∥∥∇F (w′)

∥∥ ≤ ∣∣∥∇F (w)∥ −
∥∥∇F (w′)

∥∥∣∣ ≤ ∥∥∇F (w)−∇F (w′)
∥∥ ≤ L0

∥∥w −w′∥∥ .
The second follows since, for any (L0, L1)-smooth function, for every ∥w −w′∥ ≤ L1,

∥∇F (w)∥ −
∥∥∇F (w′)

∥∥ ≤ ∥∥∇F (w)−∇F (w′)
∥∥ ≤ (L0 + L1

∥∥∇F (w′)
∥∥) ∥∥w −w′∥∥

≤ L0

∥∥w −w′∥∥+ ∥∥∇F (w′)
∥∥ .

For the third claim, consider the function F (w) = exp(L1w). Since F ′′(w) = L2
1 exp(L1w) =

L1F
′(w). Suppose there were some k, ck, c

′
k such that Definition 4 is satisfied. Then, it must be the

case that, for any x > 0:

1 ≥ lim
α→∞

exp(L1αx)− ck exp(L10)

c′k(αx)
k−1

= lim
α→∞

L1x exp(L1αx)

c′k(k − 1)xk−1αk−2

=
L1

c′k(k − 1)xk−2
lim
α→∞

exp(L1αx)

αk−2
,

where the inequality follows from the definition of Definition 4, the first equality by L’Hôpital’s
rule, and the second by rewriting the previous expression. Repeating this argument k − 1 times, this
implies that

1 ≥ lim
α→∞

exp(L1αx)− ck exp(L10)

c′k(αx)
k−1

=
Lk−1
1

c′k(k − 1)!
lim
α→∞

exp(L1αx) =∞,
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a contradiction. Hence, exp(L1x) cannot satisfy Definition 4.
For the final claim, we see that F (w) satisfies Definition 4 with ck = 2k−2 and c′k = k2k−2

since, by Jensen’s inequality,

∥∇F (w)∥ = k ∥w −w∗∥k−1 = k2k−1

∥∥∥∥12(w −w′) +
1

2
(w′ −w∗)

∥∥∥∥k−1

≤ k2k−2(
∥∥w −w′∥∥k−1

+
∥∥w′ −w∗∥∥k−1

)

≤ 2k−2(k
∥∥w −w′∥∥k−1

+
∥∥∇F (w′)

∥∥).
Further, F (w) is also (2k(k − 1), (e− 1)(k − 1))-smooth, since simple calculations yield that

∇2F (w) = k(k − 2) ∥w −w∗∥k−4 (w −w∗)(w −w∗)⊤ + k ∥w −w∗∥k−2 I.

In particular, this implies that w −w∗ is an eigenvector with largest eigenvalue, so, for any L1 > 0,

∥∥∇2F (w)
∥∥ = k(k − 1) ∥w −w∗∥k−2 ≤ k(k − 1)max

{
L1 ∥w −w∗∥k−1 ,

1

Lk−2
1

}

≤ k(k − 1)

Lk−2
1

+ (k − 1)L1 ∥∇F (w)∥ .

Therefore, by (Zhang et al., 2020a, Corollary A.4), for any ∥w −w′∥ ≤ 1/(k−1)L1,∥∥∇F (w)−∇F (w′)
∥∥ ≤ (2k(k − 1)

Lk−2
1

+ (e− 1)(k − 1)L1

∥∥∇F (w′)
∥∥)∥∥w −w′∥∥ .

Hence, F is (2k(k−1)/Lk−2
1 , (e − 1)(k − 1)L1)-smooth, as claimed. It is clear that this F is not

L0-smooth for any L0 when k > 2, since for any w ∈ Rd such that ∥w∥ > 0,

lim
α→∞

∥∇F (αw +w∗)−∇F (w∗)∥
L0 ∥αw +w∗ −w∗∥

= lim
α→∞

∥∇F (αw +w∗)∥
αL0 ∥w∥

= lim
α→∞

kαk−2 ∥w∥k−1

L0 ∥w∥
=∞.

The following result demonstrates the difference in worst-case gradient norm scaling that
(L0, L1)-smooth functions provide, versus the worst-case scaling of functions satisfying Defini-
tion 4.

Proposition 29 For any function satisfying Assumption 2, and any algorithm producing iterates
(ws)s≥1 satisfying ∥ws+1 −ws∥ ≤ η ≤ 1/L1 for every s ≥ 1, the following inequality holds for
every t > t′:

∥∇F (wt)∥ − (1 + ηL1)
t−t′ ∥∇F (wt′)∥ ≤ ((1 + ηL1)

t−t′ − 1)
L0

L1
.

Moreover, this inequality is essentially unimprovable, in the sense that there exists a (0,O(L1))-
smooth function and η ≤ 1/L1 such that ∥∇F (wT+1)∥ = (1 + O(ηL1))

T+1 ∥∇F (w1)∥ for any
T ≥ 1, and a (O(L0),O(L1))-smooth function such that ∥∇F (w1)∥ = 0 and ∥∇F (wT+1)∥ =
O(L0/L1)((1 +O(ηL1))

T − 1). By contrast, any function satisfying Definition 4 satisfies:

∥∇F (wt)∥ − ck ∥∇F (wt′)∥ ≤ max
{
c′kη

k−1(t− t′)k−1, L0η(t− t′)
}
.
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Proof We begin by proving the first claim by by induction on t − t′. The base case of t − t′ = 1
holds by definition, since

∥∇F (wt)∥ − ∥∇F (wt−1)∥ ≤ |∥∇F (wt)∥ − ∥∇F (wt−1)∥| ≤ ∥∇F (wt)−∇F (wt−1)∥
≤ (L0 + L1 ∥∇F (wt−1)∥) ∥wt −wt−1∥
≤ η(L0 + L1 ∥∇F (wt−1)∥).

Now, supposing the claim holds for t− t′ = 1, . . . , s, we have that:

∥∇F (wt)∥ ≤ ((1 + ηL1)
s − 1)

L0

L1
+ (1 + ηL1)

s ∥∇F (wt−s)∥

≤ ((1 + ηL1)
s − 1)

L0

L1
+ (1 + ηL1)

s
(
ηL0 + (1 + ηL1)

∥∥∇F (wt−(s+1))
∥∥)

= ((1 + ηL1)
s+1 − 1)

L0

L1
+ (1 + ηL1)

s+1
∥∥∇F (wt−(s+1))

∥∥ ,
where the first inequality follows by applying the induction hypothesis for t− t′ = s, the second by
applying the induction hypothesis for t− t′ = 1, and the final equality follows by rearranging the
prior line. Thus, the inequality holds also at t− t′ = s+ 1, and thus our claim holds by induction.

To see that this inequality is essentially unimprovable, let us consider first consider, for any
L1 > 0, the function:

F (x) = exp(L1x).

Since F ′′(x) = L2
1 exp(L1x) = L1F

′(x), it follows from Proposition 1 that F (·) is (0, (e− 1)L1)-
smooth. Notice that, if xs+1 − xs = η = 1/(e−1)L1, then, taking x1 = 0 and t ≥ 1,

(1 + (e− 1)(e
1/(e−1) − 1)ηL1)

tF ′(x1) = exp(t/(e−1)) = exp(ηL1t) = F ′(xt+1).

Further, for any L0, L1 > 0, consider the function:

F (x) =
L0

2
x2 exp(L1x)−

L0x

L1
.

Clearly,

F ′(x) = L0x exp(L1x) +
L1L0

2
x2 exp(L1x)−

L0

L1

F ′′(x) = L0 exp(L1x) + 2L1L0x exp(L1x) +
L2
1L0x

2

2
exp(L1x)

= L0

(
1− L2

1x
2

2

)
exp(L1x) + 2L0 + 2L1F

′(x).

Noting that F ′′(x) ≤ 2L0+2L1F
′(x) when |x| ≥

√
2/L1, and F ′′(x) ≤ L1(2+exp(

√
2))+2L1F

′(x)
otherwise, it follows that F is (2(2+exp(

√
2))L0, 2(e−1)L1)-smooth (by Proposition 1). Therefore,
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whenever η = 1/2(e−1)L1,

F (xT+1) =
L0

L1

(
exp

(
ηL1T + log(L1ηT +

L2
1η

2T 2

2
)

)
− 1

)
=

L0

L1
(exp (O(ηL1T ))− 1)

=
L0

L1
(exp (T log(1 +O(2(e− 1)ηL1)))− 1)

= O

(
2(2 + exp(

√
2))L0

2(e− 1)L1

)(
(1 +O(2(e− 1)ηL1))

T − 1
)
,

where the first equality follows by rearranging the definition, the second since ηL1 = Θ(1), the third
since 2 c

1+c(e− 1)ηL1 = 2c(e−1)ηL1

1+2c(e−1)ηL1
≤ log(1 + c2(e− 1)ηL1) ≤ 2c(e− 1)ηL1, and the fourth

by rearranging.
The final inequality follows immediately from Fact 16 and Definition 4, which together imply

that

∥∇F (wt)∥ − ck ∥∇F (wt′)∥ ≤ max
{
c′kη

k−1(t− t′)k−1, L0η(t− t′)
}
.

C.2. Bounding comp(τ) from Lemma 8

In order to use Theorem 26, recall that we must be able to bound the quantity comp(τT+1(δ)). To
accomplish this, we show that, if one can find “good” times t′ near to the “bad” time t (that is,
t− t′ is “small”), then it is possible to bound comp(τ). We remark that this result generalizes the
compensation argument of (Faw et al., 2022) to functions satisfying Definition 4.

Lemma 30 Suppose that F (·) satisfies Definition 4 for some constants k ≥ 2, ck ≥ 1, c′k > 0.
Fix any time t ∈ [T ], and let Scomp

[t] ⊂ [T ] be any set such that t > max(Scomp
[t] ) and |Scomp

[t] | ≤

ncomp :=
⌈
4c3k(σ1−(1−ε−ε′))+

ε′′′

⌉
(where (x)+ := max {0, x}). Then, assuming {wt}t≥1 are the

iterates corresponding to (AG-Norm), we have that either |Scomp
[t] | < ncomp, or:

(σ1 − (1− ε− ε′))η̃t ∥∇F (wt)∥2 −
∑

t′∈Scomp
[t]

ε′′′η̃t′ ∥∇F (wt′)∥2

≤ ε′′′ηncomp

2c2k
max

{
c′kη

k−1, L0η
}
(t−min(Scomp

[t] ))k−1.

Proof We first show that

η̃t
4c3k
∥∇F (wt)∥2 − η̃t′ ∥∇F (wt′)∥2 ≤

η

2c2k
max

{
c′k ∥wt −wt′∥k−1 , L0 ∥wt −wt′∥

}
. (17)
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To see this, first observe that, recalling the definition of η̃t from Definition 2,

η̃t
ck
− η̃t′

η
=

1

ck b̃t
− 1

b̃t′

=
b̃2t′ − c2k b̃

2
t

ck b̃tb̃t′(ck b̃t + b̃t′)

=
b2t′−1 − c2kb

2
t−1 + ∥∇F (wt′)∥2 − c2k ∥∇F (wt)∥2

ck b̃tb̃t′(ck b̃t + b̃t′)

≤
∥∇F (wt′)∥2 − c2k ∥∇F (wt)∥2

ck b̃tb̃t′(ck b̃t + b̃t′)

=
(∥∇F (wt′)∥ − ck ∥∇F (wt)∥)(∥∇F (wt′)∥+ ck ∥∇F (wt)∥)

ck b̃tb̃t′(ck b̃t + b̃t′)

≤
max

{
c′k ∥wt −wt′∥k−1 , L0 ∥wt −wt′∥

}
(∥∇F (wt′)∥+ ck ∥∇F (wt)∥)

ck b̃tb̃t′(ck b̃t + b̃t′)

≤
max

{
c′k ∥wt −wt′∥k−1 , L0 ∥wt −wt′∥

}
ck ∥∇F (wt)∥ ∥∇F (wt′)∥

where we use the fact that ck ≥ 1 and b2t−1 ≥ b2t′−1 (since t ≥ t′) for the first inequality, the definition
of Definition 4 for the second, and the definition of b̃t from Definition 2 for the third. Now, either
∥∇F (wt)∥ ≥ 2max

{
c′k ∥wt −wt′∥k−1 , L0 ∥wt −wt′∥

}
, or not. In the first case, we note that

ck ∥∇F (wt′)∥ ≥ ∥∇F (wt)∥ −max
{
c′k ∥wt −wt′∥k−1 , L0 ∥wt −wt′∥

}
≥ ∥∇F (wt)∥ −

1

2
∥∇F (wt)∥ =

1

2
∥∇F (wt)∥ ,

from which we may conclude that

η̃t
4c3k
∥∇F (wt)∥2 − η̃t′ ∥∇F (wt′)∥2 ≤

1

4c2k

(
η̃t
ck
− η̃t′

)
∥∇F (wt)∥2

≤
ηmax

{
c′k ∥wt −wt′∥k−1 , L0 ∥wt −wt′∥

}
4c3k ∥∇F (wt)∥ ∥∇F (wt′)∥

∥∇F (wt)∥2

≤
ηmax

{
c′k ∥wt −wt′∥k−1 , L0 ∥wt −wt′∥

}
4c3k ∥∇F (wt)∥ 1

2ck
∥∇F (wt)∥

∥∇F (wt)∥2

=
ηmax

{
c′k ∥wt −wt′∥k−1 , L0 ∥wt −wt′∥

}
2c2k

.
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In the alternate case that ∥∇F (wt)∥ < 2max
{
c′k ∥wt −wt′∥k−1 , L0 ∥wt −wt′∥

}
, we obtain:

η̃t
4c3k
∥∇F (wt)∥2 − η̃t′ ∥∇F (wt′)∥2 ≤

η̃t
4c3k
∥∇F (wt)∥2

≤ η

4c3k
∥∇F (wt)∥

<
η

4c3k
2max

{
c′k ∥wt −wt′∥k−1 , L0 ∥wt −wt′∥

}
=

η

2c3k
max

{
c′k ∥wt −wt′∥k−1 , L0 ∥wt −wt′∥

}
,

which, since ck ≥ 1, establishes (17). The lemma follows straightforwardly from (17). Indeed, note
that the claimed inequality is trivially true whenever |Scomp

[t] | = ncomp = 0, since this implies that
σ1 ≤ 1− ε− ε′. Otherwise, when ncomp > 0, we have that

(σ1 − (1− ε− ε′))η̃t ∥∇F (wt)∥2 −
∑

t′∈Scomp
[t]

ε′′′η̃t′ ∥∇F (wt′)∥2

=
∑

t′∈Scomp
[t]

σ1 − (1− ε− ε′)

ncomp
η̃t ∥∇F (wt)∥2 − ε′′′η̃t′ ∥∇F (wt′)∥2

≤ ε′′′
∑

t′∈Scomp
[t]

η̃t
4c2k
∥∇F (wt)∥2 − η̃t′ ∥∇F (wt′)∥2

≤ ε′′′
∑

t′∈Scomp
[t]

ηmax
{
c′k ∥wt −wt′∥k−1 , L0 ∥wt −wt′∥

}
2c2k

.

Thus, by Fact 16, we conclude that:

(σ1 − (1− ε− ε′))η̃t ∥∇F (wt)∥2 −
∑

t′∈Scomp
[t]

ε′′′η̃t′ ∥∇F (wt′)∥2

≤ ncompε
′′′
ηmax

{
c′kη

k−1(t−min(Scomp
[t] ))k−1, L0η(t−min(Scomp

[t] ))
}

2c2k

≤ ncompε
′′′ ηmax

{
c′kη

k−1, L0η
}

2c2k
(t−min(Scomp

[t] ))k−1

as claimed.

We now show how to translate Lemma 30 directly into a bound on comp(τ). This shows that,
in order to bound comp(τ), it suffices to bound E

[
|Sgood(τT+1(δ))

c|k
]

by a “sufficiently small”
quantity (say, O(log(T ))).

Lemma 11 Suppose that F (·) satisfies Definition 4 for some constants k ≥ 2, ck ≥ 1, and
c′k > 0. Let τ ∈ [2, T + 1] be any (possibly random) time. Then, recalling comp(τ) and Scomp(τ)
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from Lemma 8, there is an explicit construction of Scomp(τ) (the subset of “good” times used to
compensate for Sgood(τ)

c) such that, for any ε, ε′, ε′′′ ∈ (0, 1) such that ε + ε′ < 1 and ncomp =
⌈4c3k(σ1−(1−ε−ε′))+/ε′′′⌉ (and taking (x)+ := max {0, x}) comp(τ) can be bounded as follows:

comp(τ) ≤ η(σ1 − (1− ε− ε′))+ck ∥∇F (w1)∥E [|Sgood(τ)
c|]

+ ηnk−1
compmax

{
c′kη

k−1, L0η
}(

(σ1 − (1− ε− ε′))+ +
ε′′′ncomp

2c3k

)
E
[
|Sgood(τ)

c|k
]
.

Proof First, let us construct S̃(τ) in the same manner as in (Faw et al., 2022, Lemma 11). In
particular, denote τbad[i] as the ith largest “bad” time in Sgood(τ)

c, i.e., τbad[1] = max(Sgood(τ)
c), and,

for every i ∈ [2, |Sgood(τ)
c|],

τbad[i] = max
{
t ∈ Sgood(τ)

c : t < τbad[i−1]

}
.

Then, to every “bad” time τbad[i] , associate a set Scomp
[i] of the largest (at most) ncomp = max

{
0,
⌈
4c3k(σ1−(1−ε−ε′))

ε′′′

⌉}
“good” times before τbad[i] that are not assigned to another τbad[i′] > τbad[i] . That is, denoting

τgood[0,ncomp]
:= +∞

τgood[i,1] := max
{
Sgood(τ) ∩ [1,min

{
τbad[i] , τgood[i−1,ncomp]

}
)
}

τgood[i,j+1] := max
{
t ∈ Sgood(τ) : t < min

{
τbad[i] , τgood[i,j]

}}
,

where, when the maximum does not exist, we take τgood[i,j] = −∞. We can then take

Scomp
[i] :=

{
τgood[i,j] : j ∈ [ncomp], τ

good
[i,j] > −∞

}
.

Then, by (Faw et al., 2022, Lemma 11), we have that, for some index i∗ ∈ [|Sgood(τ)
c|], and for

every i < i∗,

|Scomp
[i] | = ncomp and τbad[i] −min(Scomp

[i] ) ≤ ncomp|Sgood(τ)
c| if ncomp > 0. (18)

For the remaining i ≥ i∗, τbad[i] ≤ τbad[i∗] ≤ ncomp|Sgood(τ)
c|. Finally, we take:

Scomp(τ) = ∪i∈[|Sgood(τ)c|]S
comp
[i] and S̃(τ) = Sgood(τ) \ Scomp(τ)

We use these compensation sets to bound the quantity comp(τ) from Lemma 8. Indeed, we can
decompose this quantity as follows:

comp(τ) = E

 ∑
t∈Sgood(τ)c

(σ1 − (1− ε− ε′))η̃t ∥∇F (wt)∥2 −
∑

t′∈Scomp(τ)

ε′′′η̃t′ ∥∇F (wt′)∥2


= E

∑
i<i∗

(σ1 − (1− ε− ε′))η̃τbad
[i]

∥∥∥∇F (wτbad
[i]

)
∥∥∥2 − ∑

t′∈Scomp
[i]

ε′′′η̃t′ ∥∇F (wt′)∥2


+ E

∑
i≥i∗

(σ1 − (1− ε− ε′))η̃τbad
[i]

∥∥∥∇F (wτbad
[i]

)
∥∥∥2 − ∑

t′∈Scomp
[i]

ε′′′η̃t′ ∥∇F (wt′)∥2

 ,
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To obtain a bound on the first term, we can use Lemma 30. For the second, we trivially lower-bound∑
t′∈Scomp

[i]
ε′′′η̃t′ ∥∇F (wt′)∥2 ≥ 0. The resulting bound is:

comp(τ) ≤
ε′′′ηmax

{
c′kη

k−1, L0η
}
ncomp

2c2k
E

[∑
i<i∗

(τbad[i] −min(Scomp
[i] ))k−1

]

+ (σ1 − (1− ε− ε′))E

∑
i≥i∗

η̃τbad
[i]

∥∥∥∇F (wτbad
[i]

)
∥∥∥2
 .

Next, using (18) to bound τbad[i] − min(Scomp
[i] ) for each i < i∗, and recalling η̃t ∥∇F (wt)∥2 ≤

η ∥∇F (wt)∥ for every t, the above bound becomes:

comp(τ) ≤
ε′′′ηmax

{
c′kη

k−1, L0η
}
nk
comp

2c3k
E

[∑
i<i∗

|Sgood(τ)
c|k−1

]

+ (σ1 − (1− ε− ε′))+E

∑
i≥i∗

η
∥∥∥∇F (wτbad

[i]
)
∥∥∥
 .

Now, notice that both summation ranges i < i∗ and i ≥ i∗ are of size at most |Sgood(τ)
c|. Thus, the

first term can be bounded as:

E

[∑
i<i∗

|Sgood(τ)
c|k−1

]
≤ E

[
|Sgood(τ)

c|k
]
.

To bound the second term, we apply Definition 4 and Fact 16, together with the above construction,
to obtain:

E

∑
i≥i∗

∥∥∥∇F (wτbad
[i]

)
∥∥∥
 ≤ E

∑
i≥i∗

ck ∥∇F (w1)∥+max
{
c′kη

k−1, L0η
}
(τbad[i] )k−1


≤ E

∑
i≥i∗

ck ∥∇F (w1)∥+max
{
c′kη

k−1, L0η
}
nk−1
comp|Sgood(τ)

c|k−1


≤ ck ∥∇F (w1)∥E [|Sgood(τ)

c|] + max
{
c′kη

k−1, L0η
}
nk−1
compE

[
|Sgood(τ)

c|k
]

Collecting results, we have that:

comp(τ) ≤ η(σ1 − (1− ε− ε′))+ck ∥∇F (w1)∥E [|Sgood(τ)
c|]

+ ηnk−1
compmax

{
c′kη

k−1, L0η
}(

(σ1 − (1− ε− ε′))+ +
ε′′′ncomp

2c3k

)
E
[
|Sgood(τ)

c|k
]
,

as claimed.

The next result, combined with Lemma 11, completes our goal of bounding comp(τT+1(δ)) by
poly log(T ).
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Lemma 12 Let τT+1(δ) ≤ T + 1 be the stopping time with respect to (Fs−1)s≥1 from Definition 9.
Recall the set Sgood(τT+1(δ)) from Definition 21, and denote Sgood(τT+1(δ))

c = [τT+1(δ)− 1] \

Sgood(τT+1(δ)). Let f(T ) = e +
eσ2

0(T−1)+e(1+σ2
1+cL)E

[∑
t<τT (δ)∥∇F (wt)∥2

]
b20δ

. Then, for any k ≥ 1,
the iterates of (AG-Norm) satisfy (under Assumption 4):

E
[
|Sgood(τT+1(δ))

c|k
]
≤
(

(k + 1)σ2
1 log(f(T ))

(1− (ε+ ε′ + ε′′ + ε′′′))2

)k

.

Proof Note that we can write |Sgood(τT+1(δ))
c| as:

|Sgood(τT+1(δ))
c| =

∑
t<τT+1(δ)

1{t ∈ Sgood(τT+1(δ))
c}.

Thus, by the Multinomial theorem, we have that

|Sgood(τT+1(δ))
c|k =

∑
k1,...,kτT+1(δ)−1≥0

k1+...+kτT+1(δ)−1=k

(
k

k1, . . . , kτT+1(δ)−1

) ∏
t<τT+1(δ)

1{t ∈ Sgood(τT+1(δ))
c}kt

=
k∑

s=1

∑
1≤t1<...<ts≤τT+1(δ)−1

∑
kt1 ,...,kts>0

kt1+...+kts=k

(
k

kt1 , . . . , kts

) ∏
ℓ∈[s]

1{tℓ ∈ Sgood(τT+1(δ))
c}ktℓ

=
k∑

s=1

∑
1≤t1<...<ts≤τT+1(δ)−1

∑
kt1 ,...,kts>0

kt1+...+kts=k

(
k

kt1 , . . . , kts

) ∏
ℓ∈[s]

1{tℓ ∈ Sgood(τT+1(δ))
c}

=
k∑

s=1

∑
1≤t1<...<ts≤τT+1(δ)−1

∏
ℓ∈[s]

1{tℓ ∈ Sgood(τT+1(δ))
c}

∑
kt1 ,...,kts>0

kt1+...+kts=k

(
k

kt1 , . . . , kts

)
,

where in the second line, we rewrite the first summation as a sum over all possible support sets
{t1, . . . , ts} ⊂ [τT+1(δ)− 1] of size s ∈ [k] of terms included in the summation. The third equality
follows immediately from the second, since each kℓ > 0. The final equality follows by rearranging
the terms in the prior one. Now, by another application of the Multinomial theorem, we have that

∑
kt1 ,...,kts>0

kt1+...+kts=k

(
k

kt1 , . . . , kts

)
≤

∑
kt1 ,...,kts≥0

kt1+...+kts=k

(
k

kt1 , . . . , kts

)
= sk.

Combining this with the above, we have the following:

|Sgood(τT+1(δ))
c|k ≤

k∑
s=1

sk
∑

1≤t1<...<ts≤τT+1(δ)−1

∏
ℓ∈[s]

1{tℓ ∈ Sgood(τT+1(δ))
c}.
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We claim that, for any s ≥ 1, the inner summation term above is bounded in expectation by:

E

 ∑
1≤t1<...<ts≤τT+1(δ)−1

∏
ℓ∈[s]

1{tℓ ∈ Sgood(τT+1(δ))
c}


≤
(

σ2
1

(1− (ε+ ε′ + ε′′ + ε′′′))2
log (f(T ))

)s

, (19)

where f(T ) = e +
eσ2

0(T−1)+e(1+σ2
1+cL)E

[∑
t<τT (δ)∥∇F (wt)∥2

]
δb20

. We prove (19) via induction on s.

We begin by observing that, for any t′ ≥ 0,

E

τT+1(δ)−1∑
t=t′+1

1{t ∈ Sgood(τT+1(δ))
c} | Ft′−1

 ≤ σ2
1

(1− (ε+ ε′ + ε′′ + ε′′′))2
log (f(T )) . (20)

To see this, first note that, by Definition 21, and since {t < τT+1(δ)} ∈ Ft−1 by Lemma 23, for any
t′ ≥ 0,

(1− (ε+ ε′ + ε′′ + ε′′′))2)

σ2
1

E

[
T∑

t=t′+1

1{t ∈ Sgood(τT+1(δ))
c} | Ft′−1

]

≤
T∑

t=t′+1

E

[
E

[
∥gt∥2

b2t
| Ft−1

]
1{t ∈ Sgood(τT+1(δ))

c} | Ft′−1

]

≤
T∑

t=t′+1

E

[
E

[
∥gt∥2

b2t
| Ft−1

]
1{t < τT+1(δ)} | Ft′−1

]

=

T∑
t=t′+1

E

[
E

[
∥gt∥2

b2t
1{t < τT+1(δ)} | Ft−1

]
| Ft′−1

]

= E

τT+1(δ)−1∑
t=t′+1

∥gt∥2

b2t
| Ft′−1

 .

Now, by Lemma 15, we have that

τT+1(δ)−1∑
t=t′+1

∥gt∥2

b2t
≤

τT+1(δ)−1∑
t=t′+1

∥gt∥2

b20 +
∑t

s=t′+1 ∥gs∥
2 ≤ 1 +

τT+1(δ)−2∑
t=t′+1

∥gt∥2

b20 +
∑t

s=t′+1 ∥gt∥
2

≤ 1 + log

(
b20 +

∑τT+1(δ)−2
t=t′+1 ∥gt∥2

b20

)
.

Now, by Items 4, 5 and 6 of Lemma 23, we have that, almost surely,

τT+1(δ)−2∑
t=t′+1

∥gt∥2 ≤
∑

t<τT+1(δ)−1

∥gt∥2 + cL ∥∇F (wt)∥2 =
∑

t<ττT+1(δ)−1(δ)

∥gt∥2 + cL ∥∇F (wt)∥2

= SτT+1(δ)−1 ≤
E [ST ]

δ
≤

(T − 1)σ2
0 + (1 + σ2

1 + cL)E
[∑

t<τT (δ) ∥∇F (wt)∥2
]

δ
.
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Therefore, collecting these results, we conclude that, for any t′ ≥ 0,

E

τT+1(δ)−1∑
t=t′+1

1{t ∈ Sgood(τT+1(δ))
c} | Ft′−1


≤ σ2

1

(1− (ε+ ε′ + ε′′ + ε′′′))2
E

τT+1(δ)−1∑
t=t′+1

∥gt∥2

b2t
| Ft′−1


≤ σ2

1

(1− (ε+ ε′ + ε′′ + ε′′′))2
E

1 + log

1 +
(T − 1)σ2

0 + (1 + σ2
1 + cL)E

[∑
t<τT (δ) ∥∇F (wt)∥2

]
δb20

 | Ft′−1


=

σ2
1

(1− (ε+ ε′ + ε′′ + ε′′′))2
log (f(T )) ,

as claimed.
Now, the base case of s = 1 for (19) follows immediately from (20) with t′ = 0. Let us now

suppose that the claim (19) holds for some s ≥ 1. Then, to apply the induction hypothesis, we begin
by decomposing:

E

 ∑
1≤t1<...<ts+1≤τT+1(δ)−1

∏
ℓ∈[s+1]

1{tℓ ∈ Sgood(τT+1(δ))
c}


=

∑
1≤t1<...<ts≤T

E

1{ti ∈ Sgood(τT+1(δ))
c ∀i ∈ [s]}

τT+1(δ)−1∑
ts+1=ts+1

1{ts+1 ∈ Sgood(τT+1(δ))
c}

 .

Notice that the above expectation is a product of two terms: indicators depending of times t1, . . . , ts,
and those depending on ts+1 > ts. Therefore, since, by Lemma 23 and Definition 21,

{t ∈ Sgood(τT+1(δ))
c} = {t < τT+1(δ)} ∩ {t is “good”} ∈ Fts−1,

we may apply the tower rule of expectations and the inequality from (20):

E

1{ti ∈ Sgood(τT+1(δ))
c ∀i ∈ [s]}

τT+1(δ)−1∑
ts+1=ts+1

1{ts+1 ∈ Sgood(τT+1(δ))
c}


= E

E
1{ti ∈ Sgood(τT+1(δ))

c ∀i ∈ [s]}
τT+1(δ)−1∑
ts+1=ts+1

1{ts+1 ∈ Sgood(τT+1(δ))
c} | Fts−1


= E

1{ti ∈ Sgood(τT+1(δ))
c ∀i ∈ [s]}E

τT+1(δ)−1∑
ts+1=ts+1

1{ts+1 ∈ Sgood(τT+1(δ))
c} | Fts−1


≤ σ2

1

(1− (ε+ ε′ + ε′′ + ε′′′))2
log(f(T ))E [1{ti ∈ Sgood(τT+1(δ))

c ∀i ∈ [s]}] .
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Therefore, summing the above expression over 1 ≤ t1 < . . . < ts ≤ T and applying the induction
hypothesis, we conclude that:

E

 ∑
1≤t1<...<ts+1≤τT+1(δ)−1

∏
ℓ∈[s+1]

1{tℓ ∈ Sgood(τT+1(δ))
c}


≤ σ2

1

(1− (ε+ ε′ + ε′′ + ε′′′))2
log(f(T ))E

 ∑
1≤t1<...<ts≤τT+1(δ)−1

1{ti ∈ Sgood(τT+1(δ))
c ∀i ∈ [s]}


=

σ2
1

(1− (ε+ ε′ + ε′′ + ε′′′))2
log(f(T ))E

 ∑
1≤t1<...<ts≤τT+1(δ)−1

∏
ℓ∈[s]

1{tℓ ∈ Sgood(τT+1(δ))
c}


≤
(

σ2
1

(1− (ε+ ε′ + ε′′ + ε′′′))2
log(f(T ))

)s+1

,

which establishes (19) by induction.
Finally, using (19), we conclude that

E
[
|Sgood(τT+1(δ))

c|k
]
≤
∑
s∈[k]

skE

 ∑
1≤t1<...<ts≤T

∏
ℓ∈[s]

1{tℓ ̸∈ Sgood(τT+1(δ))}


≤
∑
s∈[k]

sk
(

σ2
1 log(f(T ))

(1− (ε+ ε′ + ε′′ + ε′′′))2

)s

.

Now, finally noting that, for any x ≥ 1,

∑
s∈[k]

skxs ≤ xk
∑
s∈[k]

sk ≤ xk
∫ k+1

1
sk =

xk((k + 1)k+1 − 1)

k + 1
≤ xk(k + 1)k,

we conclude that

E
[
|Sgood(τT+1(δ))

c|k
]
≤
(

(k + 1)σ2
1 log(f(T ))

(1− (ε+ ε′ + ε′′ + ε′′′))2

)k

,

as claimed.

C.3. Bounding the sum of “bad” gradients by the sum of “good” ones

We recall from Theorem 26 that, in order to use this bound, we need to show that the sum of “bad”
gradients can be upper-bounded (relatively) by the sum of “good” ones. It turns out, for functions
satisfying Definition 4, this is possible, as we now show.

Lemma 31 Let τ ≥ 1 be any (possibly random) time, and consider any (possibly random) set
S(τ) ⊆ [τ − 1]. Denote S(τ)c = [τ − 1] \ S(τ). Then, assuming F (·) satisfies Definition 4, the
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following is satisfied deterministically:∑
t∈S(τ)c

∥∇F (wt)∥2 ≤ 2max
{
c′2k η

2(k−1), L2
0η

2
}
|S(τ)c|2k−1 + 2c2k ∥∇F (w1)∥2 |S(τ)c|

+ 2c2k
∑

t∈S(τ)

∥∇F (wt)∥2 .

In particular, recalling τT+1(δ) as the stopping time from Definition 9 and Sgood(τT+1(δ)) the set of
“good” times before τT+1(δ) from Definition 21, we have that, for any S̃(τT+1(δ)) ⊆ Sgood(τT+1(δ))

such that E
[
|S̃(τT+1(δ))

c|
]
≤ (1 + ncomp)E [|Sgood(τT+1(δ))

c|], we have that:

E

 ∑
t∈S̃(τT+1(δ))c

∥∇F (wt)∥2
 ≤ cB1 + cB2E

 ∑
t∈S̃(τT+1(δ))

∥∇F (wt)∥2
 ,

where

cB1 = 2max
{
c′2k η

2(k−1), L2
0η

2
}
(ncomp + 1)2k−1

(
2kσ2

1 log(f(τT+1(δ)))

(1− (ε+ ε′ + ε′′ + ε′′′))2

)2k−1

+ 2c2k ∥∇F (w1)∥2 (ncomp + 1)

(
2σ2

1 log(f(τT+1(δ)))

(1− (ε+ ε′ + ε′′ + ε′′′))2

)
,

cB2 = 2c2k

Proof The proof of this result follows a similar argument as used in Lemma 11. The main idea here
is to, for every t ∈ S(τ)c in decreasing order, find the first available time t′ ∈ S(τ) which has not
been associated with an earlier time from S(τ)c. Then, using Definition 4, we show that, as long as t
and t′ are not too far apart, then ∥∇F (wt)∥2 and ∥∇F (wt′)∥2 must also be close. For some times
t ∈ S(τ)c, there may not be such a t′ ∈ S(τ). However, because of the greedy construction, these
times must be relatively small (roughly within the first |S(τ)c| time steps). Thus, as long as |S(τ)c|
is not “too big” (in expectation), then we can still bound these remaining terms. We now make these
arguments precise.

To begin, note that for every t, t′ ≥ 1, by Definition 4,

∥∇F (wt)∥2 ≤ 2c2k ∥∇F (wt′)∥2 + 2c′2k ∥wt −wt′∥2(k−1) .

We use this bound as follows: let us index the times in S(τ)c, denoting τ̃[i] to be the ith largest time
in S(τ)c, i.e.,

τ̃[1] = max(S(τ)c) and τ̃[i] = max(S(τ)c \
(
∪i−1
i′=1

{
τ̃[i′]
})

) ∀i ∈ [2, |S(τ)c|].

To each τ̃[i] in decreasing order of time, associate the largest time τ̃good[i] in S(τ) before τ̃[i] which has
not already been associated with some other τ̃[i′] > τ̃[i], as long as such a time exists. In particular,
we take

τ̃good[i] = max
{
t ∈ S(τ) : t < min

{
τ̃[i], τ̃

good
[i−1]

}}
,
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if such a time exists, and τ̃good[i] = −∞ otherwise. Let i∗ be the index of the largest time τ̃[i∗] such

that τ̃good[i∗] does not exist, i.e.,

i∗ = min
{
i ∈ [|S(τ)c|] : S(τ) ∩

[
1,min

{
τ̃[i], τ̃

good
[i−1]

})
= ∅
}
.

Notice that τ̃good[i] = −∞ for every i ≥ i∗, and τ̃good[i] ∈ S(τ) otherwise. Notice that, for every i < i∗,
we have that

τ̃[i] − τ̃good[i] ≤ |S(τ)c|. (21)

Indeed, this follows by first decomposing

τ̃[i] − τ̃good[i] = |(τ̃good[i] , τ̃[i]) ∩ S(τ)c|+ |(τ̃good[i] , τ̃[i]) ∩ S(τ)|+ 1.

Notice that |(τ̃good[i] , τ̃[i]) ∩ S(τ)| ≤ i − 1, since there are exactly i − 1 times τ̃[i′] > τ̃[i], and

each has a time τ̃good[i′] ∈ S(τ), which may lie on that interval. Note that there cannot be more

than i − 1 times t ∈ S(τ) on this interval, since this would violate our choice of τ̃good[i] as the
largest time in S(τ) smaller than τ̃[i] which wasn’t assigned to an earlier τ̃[i′]. Further, notice that
|(τ̃good[i] , τ̃[i]) ∩ S(τ)c| ≤ |S(τ)c| − i by definition of τ̃[i]. Combining these two bounds yields the
claim.

Next, notice that, for every i ≥ i∗,

τ̃[i] ≤ τ̃[i∗] ≤ |S(τ)c|, (22)

where the first inequality is by definition of τ̃[i]. To see the second inequality, we follow a similar
argument as before. Indeed, observe that

τ̃[i∗] = |[1, τ̃[i∗]) ∩ S(τ)c|+ |[1, τ̃[i∗]) ∩ S(τ)|+ 1.

By definition of i∗, |[1, τ̃[i∗]) ∩ S(τ)| ≤ i∗ − 1, since the only times t ∈ S(τ) on this interval
can be τ̃good[1] , . . . , τ̃good[i∗−1] by definition of i∗ (otherwise, we would have τ̃good[i∗] > −∞). Further,
|[1, τ̃[i∗]) ∩ S(τ)c| ≤ |S(τ)c| − i∗ by definition of τ̃[i∗]. Combining these two bounds yields the
claim.

As a result, we have the following:

∑
t∈S(τ)c

∥∇F (wt)∥2 =
i∗−1∑
i=1

∥∥∥∇F (wτ̃[i])
∥∥∥2 + |S(τ)c|∑

i=i∗

∥∥∥∇F (wτ̃[i])
∥∥∥2

≤
i∗−1∑
i=1

2c2k

∥∥∥∥∇F (w
τ̃good
[i]

)

∥∥∥∥2 + 2c′2k

∥∥∥∥wτ̃[i] −w
τ̃good
[i]

∥∥∥∥2(k−1)

+

|S(τ)c|∑
i=i∗

2c2k ∥∇F (w1)∥2 + 2max

{
c′2k

∥∥∥wτ̃[i] −w1

∥∥∥2(k−1)
, L2

0

∥∥∥wτ̃[i] −w1

∥∥∥2} .
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Hence, by Fact 16, we have the bound∑
t∈S(τ)c

∥∇F (wt)∥2

≤
∑

t∈S(τ)

2c2k ∥∇F (wt)∥2 +
i∗−1∑
i=1

2max
{
c′2k η

2(k−1), L2
0η

2
}
(τ̃[i] − τ̃good[i] )2(k−1)

+ 2c2k ∥∇F (w1)∥2 |S(τ)c|+
|S(τ)c|∑
i=i∗

2max
{
c′2k η

2(k−1), L2
0η

2
}
τ̃
2(k−1)
[i∗]

≤
∑

t∈S(τ)

2c2k ∥∇F (wt)∥2 + 2max
{
c′2k η

2(k−1), L2
0η

2
}
(i∗ − 1)|S(τ)c|2(k−1)

+ 2c2k ∥∇F (w1)∥2 |S(τ)c|+ 2max
{
c′2k η

2(k−1), L2
0η

2
}
(|S(τ)c| − (i∗ − 1))|S(τ)c|2(k−1)

=
∑

t∈S(τ)

2c2k ∥∇F (wt)∥2 + 2max
{
c′2k η

2(k−1), L2
0η

2
}
|S(τ)c|2k−1 + 2c2k ∥∇F (w1)∥2 |S(τ)c|,

which is the first stated bound.
To obtain the second, we apply the first, where we choose τ := τT+1(δ) (the stopping time

from Definition 9) and S(τ) := Sgood(τT+1(δ)) (the set of “good” times before τT+1(δ) from

Definition 21). Thus, for any S̃(τT+1(δ)) ⊆ Sgood(τT+1(δ)) for which E
[
|S̃(τT+1(δ))

c|
]
≤

(1 + ncomp)E [|Sgood(τT+1(δ))|], we conclude that:

E

 ∑
t∈S̃(τT+1(δ))c

∥∇F (wt)∥2


≤ 2c2kE

 ∑
t∈S̃(τT+1(δ))

∥∇F (wt)∥2


+ 2max
{
c′2k η

2(k−1), L2
0η

2
}
(ncomp + 1)2k−1E

[
|S̃(τT+1(δ))

c|2k−1
]

+ 2c2k ∥∇F (w1)∥2 (ncomp + 1)E [|Sgood(τT+1(δ))
c|]

≤ 2c2kE

 ∑
t∈S̃(τT+1(δ))

∥∇F (wt)∥2


+ 2max
{
c′2k η

2(k−1), L2
0η

2
}
(ncomp + 1)2k−1

(
2kσ2

1 log(f(τT (δ)))

(1− (ε+ ε′ + ε′′ + ε′′′))2

)2k−1

+ 2c2k ∥∇F (w1)∥2 (ncomp + 1)

(
2σ2

1 log(f(τT (δ)))

(1− (ε+ ε′ + ε′′ + ε′′′))2

)
,

where in the second inequality, we applied Lemma 12. Thus, we obtain the claimed result.
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C.4. Applying Theorem 26 to polynomially-bounded functions with no restriction on σ1

Now that we have shown in the previous results how to upper bound comp(τT+1(δ)), the sum
of “bad” gradients, and the moments of the size of the “bad” set, we are now ready to establish
our second main result: a convergence guarantee for functions satisfying (L0, L1)-smoothness and
Definition 4, which holds for arbitrary σ0, σ1 ≥ 0.

Corollary 32 (of Theorem 26; Formal statement of Theorem 5) Fix any ε, ε′, ε′′, ε′′′ ∈ (0, 1)
satisfying ε + ε′ + ε′′ + ε′′′ < 1. Consider (AG-Norm) with any parameters η ≤ 2ε′/L1(4+σ2

1)

and b20 > 0, running for T ≥ 1 time steps on an objective function satisfying Assumption 2 as well as
Definition 4 for some constants k ≥ 2, ck ≥ 1, c′k > 0. Suppose that the stochastic gradient oracle
satisfies Assumption 4 for any σ0, σ1 ≥ 0. Then, for any δ′ ∈ (0, 1) and T ≥ 1, with probability at
least 1− δ′ − 4(1+ncomp)σ2

1 log(f(T ))
(1−(ε+ε′+ε′′+ε′′′))2T , (AG-Norm) satisfies:

min
t∈[T ]
∥∇F (wt)∥2

≤ 32(1 + cB2)b(T )
2

η2(δ′)2T
+

16b(T )

η(δ′)2T

√
b20 + σ2

0 + 2(1 + σ2
1)cB1 +

4b(T )

η
σ2
1(1 + cB2)

√
b20 + 2η2L2

0

+
32b(T )3/2

η3/2(δ′)2.25T 3/4

√
2σ2

1(1 + cB2)
√

(1 + cL + σ2
1)cB1

+
16b(T )

η(δ′)2
√
T

√
2σ2

0 +
8σ2

1(1 + cB2)b(T )

η
√
δ′

(
2(1 + cB2)(1 + cL + σ2

1)b(T )

η
√
δ′

+ σ0

)
,

where ncomp =
⌈
4c3k(σ1−(1−ε−ε′))+

ε′′′

⌉
, cL = 2(1 + ηL1)

2, cB2 = 2c2k,

b(T ) :=
1

ε′′′

(
F (w1)− F ∗ + 2c̃0 log

(
(2 + σ2

1)c̃0T

ηε′′b0

)
+

2ηε′′σ0
(2 + σ2

1)
+ comp(T )

)
comp(T ) = η(σ1 − (1− ε− ε′))+ck ∥∇F (w1)∥ ℓ1(T )

+ ηnk−1
compmax

{
c′kη

k−1, L0η
}
((2ck + 1)σ1 + 1/2) ℓk(T )

cB1 = 2c2k ∥∇F (w1)∥2 (ncomp + 1)ℓ1(T ) + 2max
{
c′kη

k−1, L0η
}2

(ncomp + 1)2k−1ℓ2k−1(T ),

ℓk(T ) =

(
(k + 1)σ2

1 log(f(T ))

(1− (ε+ ε′ + ε′′ + ε′′′))2

)k

f(T ) = e+ 4eT
σ2
0T + (1 + σ2

1 + cL)
(
2Tc2k ∥∇F (w1)∥2 + 2max

{
c′kη

k−1, L0η
}2

T 2(k−1)
)

b20δ
′ ,

and c̃0 =
ησ0

2ε + η2L0+σ0L1
2 (where we use the notation (x)+ := max {0, x}).
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Proof We apply Theorem 26 as follows. First, we observe that, as a consequence of Lemma 11,
together with the bound on E

[
|Sgood(τT+1(δ))

c|k
]

from Lemma 12, we have that:

comp(τT+1(δ))

≤ η(σ1 − (1− ε− ε′))+ck ∥∇F (w1)∥
(

2σ2
1 log(f(τT (δ)))

(1− (ε+ ε′ + ε′′ + ε′′′))2

)
+ ηnk−1

compmax
{
c′kη

k−1, L0η
}( (k + 1)σ2

1 log(f(τT (δ)))

(1− (ε+ ε′ + ε′′ + ε′′′))2

)k (
(σ1 − (1− ε− ε′))+ +

ε′′′ncomp

2c3k

)
.

Next, by Lemma 31, we know that∑
t∈S̃(τT+1(δ))c

∥∇F (wt)∥2 ≤ B1 + cB2

∑
t∈S̃(τT+1(δ))

∥∇F (wt)∥2 ,

where

E [B1] ≤ cB1 = 2max
{
c′2k η

2(k−1), L2
0η

2
}
(ncomp + 1)2k−1

(
2kσ2

1 log(f(τT (δ)))

(1− (ε+ ε′ + ε′′ + ε′′′))2

)2k−1

+ 2c2k ∥∇F (w1)∥2 (ncomp + 1)

(
2σ2

1 log(f(τT (δ)))

(1− (ε+ ε′ + ε′′ + ε′′′))2

)
,

cB2 = 2c2k.

Thus, the conditions to apply Theorem 26 are satisfied, and we obtain the convergence rate.

Appendix D. Many common algorithms for (L0, L1)-smooth optimization can diverge
in the presence of multiplicative noise

In this section, we consider the convergence behavior of several natural candidate algorithms which
have been studied in the literature on (L0, L1)-smooth optimization. These algorithms take the form
wt+1 = wt − ut, where ut takes a number of different forms, including: in Normalized SGD:

ut = η
gt

γ + ∥gt∥
, (NormSGD)

Clipped SGD:

ut = η
gt

max {γ, ∥gt∥}
(ClippedSGD)

and Sign-SGD with Momentum (operations performed element-wise):

ut = η
mt

|mt|
where m0 = 0, mt = βmt−1 + (1− β)gt (SignSGD-M)

Zhang et al. (2020b,a); Crawshaw et al. (2022) proveO(1/√T) convergence of these algorithms in the
setting of (Bounded-supp). In this section, we show that these step-size choices for (L0, L1)-smooth
optimization fail under (Affine-var), despite working in the noiseless and (Bounded-supp) settings.
Our negative results rely on the following stochastic gradient oracle construction:
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Proposition 13 (A stochastic gradient oracle satisfying Assumption 4) Fix any σ0, σ1 ≥ 0, and
consider the following stochastic gradient oracle: fix any ε ≥ 0, and let, for every w ∈ Rd:

ξmult(w) =


(
1 +

σ2
1

1+ε

)
w.p. δ = 1

1+σ2
1/(1+ε)2

−ε w.p. 1− δ
and ξadd(w) ∼ N (0, σ2

0Id×d).

We can then take the output of the oracle to be g(w) := ξadd(w) + ξmult(w)∇F (w). Then, this
construction satisfies Assumptions 3 and 4 with the specified σ0 and σ1.

Proof Fix any ε, σ1 ≥ 0. We begin by establishing that Assumption 3 holds for our construction of
g(w). Begin by denoting δ = (1+ε)2/((1+ε)2+σ2

1). Under this notation, we have that

1 +
σ2
1

1 + ε
=

(1 + ε)2 + σ2
1(1 + ε)

(1 + ε)2
=

1

δ
+ ε

(1− δ)

δ
=

1 + ε(1− δ)

δ
.

Therefore, it follows that

E [ξmult(w)] = (−ε(1− δ) + ε(1− δ)) = 1.

Further, E [ξadd(w)] = 0 by construction. Therefore, E [g(w)] = ∇F (w), which establishes
Assumption 3. As for Assumption 4, denote c = 1 + ε, then we have that

E
[
ξmult(w)2

]
= (c− 1)2

σ2
1

c2 + σ2
1

+

(
1 +

σ2
1

c

)2
c2

c2 + σ2
1

=
(c2 + 1− 2c)σ2

1 + c2 + σ4
1 + 2cσ2

1

c2 + σ2
1

= (1 + σ2
1).

Further, E
[
∥ξadd(w)∥2

]
= σ2

0 by construction. Therefore, since ξmult(w) and ξadd(w) are indepen-
dent, we conclude that

E
[
∥g(w)∥2

]
= E

[
ξmult(w)2

]
∥∇F (w)∥2 + E

[
∥ξadd(w)∥2

]
+ 2E [⟨ξmult(w)∇F (w), ξadd(w)⟩]

= (1 + σ2
1) ∥∇F (w)∥2 + σ2

0 + 2 ⟨E [ξmult(w)]∇F (w),E [ξadd(w)]⟩
= (1 + σ2

1) ∥∇F (w)∥2 + σ2
0,

which establishes Assumption 4 for any σ0, σ1 ≥ 0.

D.1. Overview of main negative results

We establish all of the following negative results using the stochastic gradient oracle described in
Proposition 13. Before stating our results, let us briefly discuss some intuition behind why one should
expect (NormSGD), (ClippedSGD), and (SignSGD-M) to fail under Proposition 13. Consider the
setting where σ1 ≫ 1 + ε. Then, notice that the stochastic gradient gt only has the same sign as
∇F (wt) with roughly 1/σ2

1 probability. Otherwise, gt has the opposite sign as ∇F (wt). Now, for
an algorithm which incorporates the magnitude of the stochastic gradients together with the signs,
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the oracle in Proposition 13 may not be so problematic – indeed, even though the updates with
correct sign are somewhat “rare”, they are also of significantly larger magnitude compared to the
updates with proper sign. However, notice that (NormSGD), (ClippedSGD), and (SignSGD-M) are
(effectively) unit step-length algorithms (at least, in the setting where ∥gt∥ ≥ γ). Thus, in many
parameter regimes, all of these algorithms effectively disregard the magnitude of the stochastic
gradients and only use their signs. This results in a biased random walk which never finds an iterate
better than the initial one with constant probability. We formalize this intuition in the following:

Lemma 33 (Informal statement of Lemma 35) Fix any smoothness parameter L0 > 0, initial
gap ∆ > 0, and affine variance parameter σ1 > 2

√
2. Suppose that either: (i) (SignSGD-M) is run

with parameter 0 ≤ β ≤ 1 − 2
√
2/3 ≈ 0.057 and η > 0 for T ≥ 1 time steps, or (ii) (NormSGD)

or (ClippedSGD) is run with 0 ≤ γ ≤
√

σ2
1∆L0/2 and η > 0 for T ≥ 1 time steps, where, in either

case, the algorithms are allowed an arbitrary initialization x1 ∈ R, and each of these parameters
can depend on L0,∆ and σ1. Then, there exists a 1-dimensional (L0, 0)-smooth function (which is
also L0-strongly convex) with F (x1)− infx∈R F (x) = ∆, and stochastic gradient oracle satisfying
Assumptions 3 and 4 with σ0 = 0 and the specified σ1, and for which, with constant probability
(independent of T ), mint∈[T ] ∥∇F (xt)∥2 = ∥∇F (x1)∥2.

We note that the statement Lemma 33 follows from Lemma 35 by choosing the parameter ε =
σ1/2

√
2. The main takeaway here is that, for a reasonably wide range of parameters, (NormSGD),

(ClippedSGD), and (SignSGD-M) can diverge in the affine variance setting, even for very simple
smooth and strongly convex problems (in fact, even on a 1-dimensional quadratic function). In
particular, this says that, whenever (NormSGD) is run with γ = 0 (or (SignSGD-M) with β = 0),
then there is no parameter tuning with respect to η such that mint∈[T ] ∥∇F (xt)∥2 converges!

We also give a (weaker) negative result for the (AG-Norm) in the “large variance” regime. This
result establishes that, whenever η is not carefully tuned with respect to both L1 and σ1, then the
algorithm does not converge with constant probability. The intuition for this result is that, with
constant probability, the first ≈ σ2

1 stochastic gradients all have the wrong sign. Whenever σ1 is
“large” (i.e., scaling as poly log(T )), then after only poly log(T ) steps, the algorithm can reach an
objective value which is poly(T )-times larger than the initial condition. Further, after reaching such
a large gradient value, the step sizes are always too small for the algorithm to recover from these
wrong initial steps. This is because the (AG-Norm) updates are normalized by the large previous
gradients.

Lemma 34 (Informal statement of Lemma 39) Fix any L1 > 0, time horizon T > 1, and affine
variance parameter

σ1 ≥ max


(
4(1 +

√
2)2 − 2

log(4/3)

)2/3

,

(
16 log(T − 1))2

log(4/3)

)2
 .

Suppose that (AG-Norm) is initialized at x1 ∈ R and run with any parameters η ≥ 1/(2L1
√
σ1) and

0 < b20 ≤
√
σ1L

2
1 exp(2L1x1) (where these parameter choices may depend on L1). Then, there

exists a 1-dimensional (0, (e− 1)L1)-smooth function such that infx∈R F (x) = 0, and a stochastic
gradient oracle satisfying Assumptions 3 and 4 with σ0 = 0 and the specified σ1, for which, with
probability at least 3/4, mint∈[T ] ∥∇F (xt)∥2 = ∥∇F (x1)∥2.
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We note that the statement Lemma 34 follows from Lemma 39 by choosing the parameters
α = 1/(2√σ1), ε = 4

√
σ1 − 1, and δ = 1/4. Let us compare the negative result in Lemma 34 with the

convergence result in the L0-smooth regime for the same algorithm from (Faw et al., 2022). Indeed,
their main result was that a Õ(1/√T) convergence rate is achievable without tuning the parameters of
the algorithm with respect to σ0, σ1, or L0. Since their convergence rate depends only polynomially
on σ1, this rate is maintained (up to poly-logarithmic factors) even when σ1 = poly log(T ), without
adjusting the parameters η or b0 of the algorithm. By contrast, Lemma 34 tells us that, in the
(L0, L1)-smooth regime, such a result is no longer possible. Indeed, if η is not sufficiently small,
then the algorithm does not converge with constant probability when σ2

1 ≳ poly log(T )!

D.2. Full statement and proof of negative results for (SignSGD-M), (NormSGD), and
(ClippedSGD)

Here, we give the complete negative result for (SignSGD-M), (NormSGD), and (ClippedSGD), and
formalize the intuition given there.

Lemma 35 (Formal statement of Lemma 33) Fix any L0 > 0, ε > 0, σ2
1 > (1+ ε)2, and ∆ > 0.

Let x1 ∈ R, η > 0, γ ∈ [0, ε
√
2∆L0], β ∈

[
0, 1−

√
1− ε

1+ε+σ2
1/(1+ε)

)
⊃
[
0, ε

2(1+ε+σ2
1/(1+ε))

)
,

and T ≥ 1 be arbitrary parameters (possibly dependent on L0, ε, σ1, and ∆). For any t ∈ [T ], con-
sider the (one-dimensional) process {xt}t≥1 given in (SignSGD-M), (NormSGD), or (ClippedSGD).
where, in the case that mt = 0 (in the case of (SignSGD-M)) or µ + |gt| = 0 (in the case
of (NormSGD)), ut ∈ {±η} may be chosen arbitrarily as a (possibly randomized) function
of {g1, . . . , gt}. Then, assuming that σ2

1 > (1 + γ/ε
√
2∆L0)(1 + ε)2 ∈ [(1 + ε)2, 2(1 + ε)2],

there exists an 1-dimensional (L0, 0)-smooth function (which is also L0-strongly convex) with
F (x1)− infx∈R F (x) = ∆, and stochastic gradient oracle which outputs stochastic gradients gt of
∇F (xt) which satisfy Assumptions 3 and 4, and such that:

Pr

[
min
t∈[T ]
∥∇F (xt)∥2 = ∥∇F (x1)∥2

]
≥ (1− δ)t0+1 ,

where

t0 =

⌈√
2δ(1− δ) log(1 + 2/δ)

δ0

(
1 +

2δ(1− δ)

(δ − δ0)2
log

(
4(1− δ)

(δ0 − δ)2

))⌉
,

and δ = 1
(1+σ2

1/(1+ε)2)
< 1

1+1/λclip
= δ0 ∈ [1/3, 1/2] and 1/λclip = 1 + γ/(ε

√
2∆L0) ∈ [1, 2].

Proof Let us choose, for arbitrary L0 > 0 and ∆ > 0, the (L0, 0)-smooth objective F (x) = L0/2 x2,
and assume without loss of generality that x1 = −

√
2∆/L0 (indeed, if this is not the case, then we

can always translate the function F (x) to be F (x) = L0/2(x− x1 −
√

2∆/L0)2, and our arguments
remain unchanged). Notice that F (x1)− F ∗ = F (x1) = ∆.

Consider, for any ε > 0 and σ2
1 > (1 + ε)2, the stochastic gradient oracle from Proposition 13,

i.e.,

g(x) :=


(
1 +

σ2
1

1+ε

)
L0x w.p. 1

1+
σ2
1

(1+ε)2

:= δ

−εL0x w.p. 1− 1

1+
σ2
1

(1+ε)2

= 1− δ,
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where the multiplicative noise is sampled i.i.d for each x. Since ∇F (x) = L0x, this construction
satisfies Assumptions 3 and 4 by Proposition 13. Further, denoting xclip := −γ/εL0, our assumption
that γ ≤ ε

√
2∆L0 = −εL0x1 and σ2

1 > (1 + ε)2 (and thus also ε < 1 + σ2
1/(1+ε)) ensures:

x1 ≤ xclip < 0 and |g(xclip)| ≥ εL0 |xclip| = γ. (23)

Let τ∗ be the first time when an iterate becomes larger than the original one, i.e.,

τ∗ = min {t > 1 : x1 ≤ xt} .

Notice that this implies that, for any 1 ≤ t < τ∗:

xt ≤ x1 ≤ xclip < 0 and |gt| ≥ γ and ∥∇F (xt)∥2 ≥ ∥∇F (x1)∥2 . (24)

This guarantees that, before τ∗, (i) the iterates are always to the left of the minimizer, (ii) that the algo-
rithm (ClippedSGD) never “clips” (i.e., ut = ηgt/|gt|), and (iii), mint<τ∗ ∥∇F (xt)∥2 = ∥∇F (x1)∥2
(i.e., the algorithm never achieves any nontrivial target minimization criterion). Additionally, it must
be the case that:

uτ∗−1 < 0, (25)

since xτ∗−1 < x1 and xτ∗ = xτ∗−1 − uτ∗−1 ≥ x1.
Now, let us distinguish the updates of (SignSGD-M), (NormSGD), and (ClippedSGD) as

(xt(1), ut(1)), (xt(2), ut(2)), and (xt(3), ut(3)), respectively. Now, instead of reasoning about
the dynamics of each of these algorithms individually, we instead reason about an algorithm with
simpler dynamics, and draw conclusions about each of these processes via a stochastic dominance
argument.

To do this, we utilize the coupling of these algorithms defined in Lemma 37 – namely, we let
x1(i) = x1 =

√
2∆/L0 (as discussed above), and g(xt(i)) = ξmult,t∇F (xt(i)) for every i, where

ξmult,t is −ε with probability 1− δ, and 1 + σ2
1/(1+ε) otherwise. That is, each process starts from the

same initial iterate, and receives the same multiplicative noise on the stochastic gradient at time t.
Similarly, let us define the “simpler” comparison process as:

us(4) =

{
λclipη if ξmult,s = −ε
−η o.w.

and λclip :=
1

1 + γ
εL0|x1|

=
1

1 + γ
ε
√
2∆L0

∈ [1/2, 1]

and take x1(4) = x1 and xt+1(4) = xt(4) − ut(4). Now, denote τ∗(i) as the stopping time from
(23) corresponding to the process i ∈ [4]. Then, by Lemma 37, we have that, under our coupling of
these algorithms, τ∗(4) ≤ mini∈[3] τ

∗(i), which implies that, for each algorithm i ∈ [3]:

Pr

[
min
t∈[T ]
∥∇F (xt(i))∥2 = ∥∇F (x1)∥2

]
≥ Pr [τ∗(i) > T ] ≥ Pr [τ∗(4) > T ] ,

where the first inequality follows from (24). Thus, to lower bound the failure probability of algorithm
i, it suffices to lower bound Pr [τ∗(4) > T ], and thus to reason only about the dynamics of this
“simpler” process.
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By Lemma 38, we have that, for any t0 ≥ 0:

Pr [τ∗(4) > T ] ≥ (1− δ)t0

(
1−

T∑
t=t0+2

Pr

[
1

t− t0 − 1
(Xt − E [Xt]) ≤ − (δ0 − δ)− δ0t0

t− t0 − 1

])
,

where Xt is a sum of t − t0 − 1 i.i.d Bernoulli random variables, each with mean 1 − δ =
1 − 1

1+σ2
1/(1+ε)2

> 1/2 (since, by assumption, σ1 > (1 + ε)), and δ0 = λclip/(1+λclip). We may
therefore apply the Chernoff-Hoeffding inequality (Hoeffding, 1963, Theorem 1, Eq. (2.2)) to obtain:

Pr

[
1

t− t0 − 1
(Xt − E [Xt]) ≤ − (δ0 − δ)−

λclipt0
(1 + λclip)(t− t0 − 1)

]
≤ exp

(
− t− t0 − 1

2δ(1− δ)

(
δ0 − δ +

δ0t0
t− t0 − 1

)2
)
.

Notice that, since σ2
1 > (1+ε)2/λclip = (1+ ε)2(1+ γ/ε

√
2∆L0), δ0− δ = 1

2+ γ

ε
√

2∆L0

− 1

1+
σ2
1

(1+ε)2

> 0,

which implies the above bound is always nontrivial. Thus, we can use that bound to obtain, for any
ℓ > 0:

T∑
t=t0+2

Pr

[
1

t− t0 − 1
(Xt − E [Xt]) ≤ − (δ0 − δ)− δ0t0

t− t0 − 1

]

≤
t0+1+

⌊
δ0t0
ℓ

⌋∑
t=t0+2

exp

(
− t− t0 − 1

2δ(1− δ)
(δ0 − δ + ℓ)2

)
+

T∑
t=t0+2+

⌊
δ0t0
ℓ

⌋ exp
(
− t− t0 − 1

2δ(1− δ)
(δ0 − δ)2

)

=

⌊
δ0t0
ℓ

⌋
−1∑

t=0

exp

(
− t+ 1

2δ(1− δ)
(δ0 − δ + ℓ)2

)
+

T−t0−2−
⌊
δ0t0
ℓ

⌋∑
t=0

exp

− t+ 1 +
⌊
δ0t0
ℓ

⌋
2δ(1− δ)

(δ0 − δ)2


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Thus, using the geometric summation formula, we can bound the above summations as:

T∑
t=t0+2

Pr

[
1

t− t0 − 1
(Xt − E [Xt]) ≤ − (δ0 − δ)− δ0t0

t− t0 − 1

]

≤ exp

(
− 1

2δ(1− δ)
(δ0 − δ + ℓ)2

) 1− exp

(
−

⌊
δ0t0
ℓ

⌋
2δ(1−δ) (δ0 − δ + ℓ)2

)
1− exp

(
− 1

2δ(1−δ) (δ0 − δ + ℓ)2
)

+ exp

−1 +
⌊
δ0t0
ℓ

⌋
2δ(1− δ)

(δ0 − δ)2

 1

1− exp
(
− 1

2δ(1−δ) (δ0 − δ)2
)

≤
exp

(
− ℓ2

2δ(1−δ)

)
1− exp

(
− ℓ2

2δ(1−δ)

)
1− exp

−
⌊
δ0t0
ℓ

⌋
2δ(1− δ)

(δ0 − δ + ℓ)2


+

exp
(
− 1

2δ(1−δ) (δ0 − δ)2
)

1− exp
(
− 1

2δ(1−δ) (δ0 − δ)2
) exp

−
⌊
δ0t0
ℓ

⌋
2δ(1− δ)

(δ0 − δ)2

 .

Now, let us focus on bounding the two terms in the above expression. To do this, we first observe
that, for any µ, x > 0 and i ≥ 0,

exp(−(1 + i)x)

1− exp(−x)
≤ µ ⇐⇒ i ≥ 1

x
log

(
exp(−x)

µ(1− exp(−x))

)
or i = 0 and x ≥ log

(
1 +

1

µ

)
.

(26)

Taking i = 0 and x = ℓ2/(2δ(1−δ)), the above implies that the first term is upper-bounded by
µ = δ/2 whenever ℓ ≥

√
2δ(1− δ) log(1 + 2/δ). For the second term, we take i =

⌊
δ0t0
ℓ

⌋
, x =

(δ0−δ)2/(2δ(1−δ)), and conclude that the second term is upper-bounded by µ = δ/2 whenever

⌊
δ0t0
ℓ

⌋
≥ 2δ(1− δ)

(δ − δ0)2
log

 2 exp
(
− (δ0−δ)2

2δ(1−δ)

)
δ
(
1− exp

(
− (δ0−δ)2

2δ(1−δ)

))
 .

In particular, since exp(−x) < 1/(1+x) for any x > 0, and thus also exp(−x)/1−exp(−x) < 1/x, since
⌊x⌋ > x− 1, we have that the above inequality is satisfied whenever:

t0 ≥
ℓ

δ0

(
1 +

2δ(1− δ)

(δ − δ0)2
log

(
4(1− δ)

(δ0 − δ)2

))
.

Therefore, we can choose ℓ =
√
2δ(1− δ) log(1 + 2/δ) and:

t0 =

⌈√
2δ(1− δ) log(1 + 2/δ)

δ0

(
1 +

2δ(1− δ)

(δ − δ0)2
log

(
4(1− δ)

(δ0 − δ)2

))⌉
,
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and, combining our results, we conclude that, for any algorithm i ∈ [3]:

Pr

[
min
t∈[T ]
∥∇F (xt(i))∥2 = ∥∇F (x1)∥2

]
> (1− δ)t0+1,

as claimed.

Lemma 36 Consider the process {xt}t≥1 from (SignSGD-M) as defined in Lemma 35, where
x1 < 0, F (x) := L0/2 x2 for some L0 > 0, and gt are the stochastic gradients output by the oracle
from Proposition 13. Suppose that the parameter β of (SignSGD-M) satisfies:

β ∈

0, ε

1 + ε+
σ2
1

1+ε

 .

Let τ∗ = min {t > 1 : x1 ≤ xt}. Then, if t < τ∗ and gt = −ε∇F (xt), then ut = η.

Proof Recall that, by construction of the stochastic gradient oracle from Proposition 13, and since
∇F (x) = L0x:

g(x) :=


(
1 +

σ2
1

1+ε

)
L0x w.p. 1

1+
σ2
1

(1+ε)2

:= δ

−εL0x w.p. 1− 1

1+
σ2
1

(1+ε)2

= 1− δ.

We wish to show that the process from (SignSGD-M) has the property that, whenever gt = −εL0xt
and xs < 0 for every s ∈ [t], then ut = η. We consider any initialization x1 < 0, and denote τ∗ to
be the first time when an iterate becomes non-negative, i.e.,

τ∗ = min {t > 1 : x1 ≤ xt} .

Further, take:

τ0 := 0 and τi+1 := min {t > τi : gt = −εL0xt or ut = η} .

Notice that, since ut ∈ {±η} by definition of (SignSGD-M), and by construction of the stochastic
gradient oracle:

gt =

(
1 +

σ2
1

1 + ε

)
L0xt and ut = −η ∀t ∈ (τi, τi+1) ∀i ≥ 0. (27)

Thus, it suffices to prove by induction that, for any i ≥ 0, either τi ≥ τ∗, or uτi = η, as long as

β < 1−
√
1− ε

1 + ε+
σ2
1

1+ε

= 1−
√

ε

1 + ε
δ.

For the base case of i = 0, we may assume without loss of generality that uτ0 = u0 = η, since
m0 = 0 and the dynamics of the update rule do not depend on u0 (i.e., the dynamics begin at time
t = 1 and x1 is the starting point of the process). Thus, the base case is true by construction.
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Now, suppose the claim holds for some i ≥ 1. Either τi+1 ≥ τ∗ or not. In the former case,
the claim follows trivially, so let us assume that τi+1 < τ∗. Since τi < τi+1 < τ∗ by construction,
uτi = η by the induction hypothesis. Further, let us assume that gτi+1 = −εL0xτi+1 , since otherwise
the claim again follows trivially by definition of τi+1. Thus, we can write:

mτi+1 = βτi+1−τimτi + (1− β)

τi+1∑
t=τi+1

βτi+1−tgt

= βτi+1−τimτi + (1− β)L0

(
1 +

σ2
1

1 + ε

) τi+1−1∑
t=τi+1

βτi+1−t(xτi+1 + η(t− τi − 1))

− (1− β)L0ε(xτi+1 + η(τi+1 − τi − 1))

where the first equality is the definition of mτi+1 . The second inequality follows from observation
(27). Further, since uτi = η, then by definition of (SignSGD-M), either mτi > 0, or mτi = 0 and
the algorithm chooses uτi = η. In either case, mτi ≥ 0. Therefore, since, for β ∈ [0, 1):

(1− β)

τi+1−1∑
t=τi+1

βτi+1−t(xτi+1 + η(t− τi − 1))

= β(xτi+1 + η(τi+1 − τi − 1))− βτi+1−τixτi+1 − βη
1− βτi+1−τi−1

1− β
,

we obtain, using the fact that xτi+1 = xτi+1 + η(τi+1 − (τi + 1)) and mτi ≥ 0:

mτi+1

L0
=

βτi+1−τimτi

L0
−
(
(1− β)ε− β

(
1 +

σ2
1

1 + ε

))
(xτi+1 + η(τi+1 − τi − 1))

− βτi+1−τi

(
1 +

σ2
1

1 + ε

)
xτi+1

− βη

(
1 +

σ2
1

1 + ε

)
1− βτi+1−τi−1

1− β

≥ −
(
(1− β)ε− β

(
1 +

σ2
1

1 + ε

))
(xτi+1 + η)

− βτi+1−τi

(
1 +

σ2
1

1 + ε

)
xτi+1

+ η

(
(1− β)ε− β

(
1 +

σ2
1

1 + ε

)(
1 +

1− βτi+1−τi−1

1− β

))
.

Thus, since xτi+1 ≤ xτi+1 < 0, and since τi+1 < τ∗ (which implies, since each update of
(SignSGD-M) satisfies ut ∈ {±η} and by definition of τ∗, xτi+1 ≤ xτ∗−1 = x1 − η < 0),
the above inequality implies that mτi+1 > 0 as long as:

(1− β)ε− β

(
1 +

σ2
1

1 + ε

)(
1 +

1− βτi+1−τi−1

1− β

)
> (1− β)ε− β

(
1 +

σ2
1

1 + ε

)(
1 +

1

1− β

)
> 0.

Since we require 0 ≤ β < 1, the second inequality is equivalent to:

(1− β)2ε >

(
1 +

σ2
1

1 + ε

)
β(2− β),
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which is satisfied as long as:

β < 1−

√√√√√ 1 +
σ2
1

1+ε

1 + ε+
σ2
1

1+ε

= 1−
√

1− ε

1 + ε

1

1 +
σ2
1

1+ε

= 1−
√
1− ε

1 + ε
δ.

Thus, since
√
1− x < 1− x/2 for 0 < x ≤ 1, it suffices to choose β as:

β ≤ ε

2(1 + ε)
δ < 1−

√
1− ε

1 + ε
δ.

In this case, mτi+1 > 0, and thus ut = η, which establishes the induction step. Thus, for every i ≥ 0,
either τi ≥ τ∗ or uτi = η, as claimed.

Lemma 37 Let us recall the i.i.d random process {ξmult,t}t≥1 from Proposition 13, where each
ξmult,t is−ε with probability 1−δ, and (1+σ2

1/(1+ε)) otherwise. Let us distinguish the three processes
from Lemma 35 (Eqs. (SignSGD-M), (ClippedSGD) and (NormSGD)) as, respectively, {xt(i)}t≥1

for i ∈ [3]. Consider the coupling of these three processes, where x1(i) = x1 := −
√

2∆/L0 for every
i ∈ [4], and for each t ≥ 1 and i ∈ [3], g(xt(i)) = ξmult,t∇F (xt(i)). Further, let us denote, for each
t ≥ 1:

ut(4) =

{
λclipη if ξmult,t = −ε
−η o.w.

where λclip :=
1

1 + γ
ε
√
2∆L0

∈ [1/2, 1],

and take x1(4) = x1 and xt+1(4) = xt(4)− ut(4). Further, let, for each i ∈ [4],

τ∗(i) = min {t > 1 : x1 ≤ xt(i)} .

Then, under the constraints on parameters of the three algorithms as imposed in Lemma 35, we have
that:

τ∗(4) ≤ min
i∈[3]

τ∗(i).

Proof We claim that, for each i ∈ [3], and any t < τ∗(i), ut(4) ≤ ut(i). Notice that, supposing this
claim is true, then τ∗(4) ≤ τ∗(i) for each i ∈ [3], since, by definition of τ∗(i):

x1 ≤ xτ∗(i)(i) = x1 −
τ∗(i)−1∑
s=1

us(i) ≤ x1 −
τ∗(i)−1∑
s=1

us(4) = xτ∗(i)(4).

Thus, since τ∗(i) is the first time t > 1 for which xt(i) ≥ x1, it follows that τ∗(4) ≤ τ∗(i). Having
established this implication, it suffices to prove the claim for each of the ut(i)s.

For the case of i = 1 (i.e., algorithm (SignSGD-M)), this follows immediately from Lemma 36,
since this result tells us that whenever t < τ∗(1) and ξmult,t = −ε, then ut(1) = η > ηλclip = ut(4).
Otherwise, whenever t < τ∗(1) and ξmult,t = (1 + σ2

1/(1+ε)), then by construction, ut(4) = −η,
while ut(1) ∈ {±η}.
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For the case of i = 2 (i.e., algorithm (NormSGD)), for every t < τ∗(2), since |g(xt(2))| ≥
εL0|x1| ≥ γ by (24) and since x/(x+y) is non-decreasing in x on the interval x ∈ (0,∞) for any
fixed y ≥ 0,

η ≥ |ut(2)| = η
|g(xt(2))|

γ + |g(xt(2))|
≥ η

εL0 |x1|
γ + εL0 |x1|

=
η

γ
εL0|x1| + 1

= λclipη ≥
η

2
.

Thus, when t < τ∗(2) and ξmult,t = −ε, ut(2) ≥ λclipη = ut(4), and when t < τ∗(2) and
gt = (1 + σ2

1/(1+ε))L0xt, ut(2) ≥ −η = ũt.
For the case of i = 3 (i.e., algorithm (ClippedSGD)), for every t < τ∗, |gt| > γ by (24), which

implies that |ut| = η|gt|/|gt| = η. Thus, when t < τ∗ and gt = −εL0xt (notice gt > 0 in this case),
ut(3) = η ≥ λclipη = ũt, and when t < τ∗ and gt = (1 + σ2

1/(1+ε))L0xt, ut(3) = −η = ũt.
Therefore, the claim is established in all three cases, which also concludes the proof.

Lemma 38 Consider the algorithm 4 as defined in Lemma 37. Then, under the assumptions of
Lemma 35, we have that, for any T ≥ 1 and any t0 ≥ 0,

Pr [τ∗(4) > T ] ≥ (1− δ)t0

(
1−

T∑
t=t0+2

Pr

[
1

t− t0 − 1
(Xt − E [Xt]) ≤ −(δ0 − δ)− δ0t0

t− t0 − 1

])
,

where Xt =
∑t−1

s=t0+1 1{Es} is a sum of t − t0 − 1 i.i.d Bernoulli random variables with mean
1− δ = 1− 1

(1+σ2
1/(1+ε)2)

. 1/λclip := 1 + γ/ε
√
2∆L0) and δ0 = 1/1+1/λclip.

Proof Recall the construction of algorithm 4 from Lemma 37. Denote Es = {ξmult,s = (1 + σ2
1/(1+ε))},

and recall that Pr [Es] = δ = 1
1+σ2

1/(1+ε)2
. Let us write:

Ñt1,t2 = −(xt(4)− x1) =

t2∑
s=t1

us(4) =

t2∑
s=t1

−η1{Es}+ λclipη1{Ecs},

as the “net movement” of algorithm 4 to the left of xt1 after t2 − t1 + 1 time steps. and observe that

E
[
Ñt1,t2

]
=

t2∑
s=t1

−ηδ + λclipη(1− δ) = λclipη

(
1−

(
1 +

1

λclip

)
δ

)
(t2 − t1 + 1).

Additionally, note that, recalling the definition of τ∗(4) from Eq. (23),

{τ∗(4) > T} = {∀t ∈ [2, T ] : xt(4) < x1} = {∀t ∈ [2, T ] : −(xt(4)− x1) > 0}

=
{
∀t ∈ [2, T ] : Ñ1,t−1 > 0

}
.

Therefore, we have that, for any t0 ≥ 0,

Pr [τ∗(4) > T ] = Pr
[
∀t ∈ [2, T ] : Ñ1,t−1 > 0

]
≥ Pr

{∀t ∈ [2, T ] : Ñ1,t−1 > 0
}
∩
⋂

s∈[t0]

Ecs

 .
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Further, since the stochastic gradient of algorithm 4 uses i.i.d multiplicative noise at each round (i.e.,
the events {Es}s∈[T ] are mutually independent and Pr [Es] = δ for every s), and since the event Ecs
implies that xs+1(i) = xs(i)− λclipη for each algorithm i, we have that for any t0 ≥ 0,

Pr

{∀t ∈ [2, T ] : Ñ1,t−1 > 0
}
∩
⋂

s∈[t0]

Ecs


= Pr

{∀t ∈ [t0 + 2, T ] : Ñt0+1,t−1 > −λclipt0η
}
∩
⋂

s∈[t0]

Ecs


= (1− δ)t0Pr

[
∀t ∈ [t0 + 2, T ] : Ñt0+1,t−1 > −λclipt0η

]
.

Now, since

Pr
[
∀t ∈ [t0 + 2, T ] : Ñt0+1,t−1 > −λclipt0η

]
= 1− Pr

[
∃t ∈ [t0 + 2, T ] : Ñt0+1,t−1 ≤ −λclipt0η

]
≥ 1−

T∑
t=t0+2

Pr
[
Ñt0+1,t−1 ≤ −λclipt0η

]
,

it remains only to upper-bound each probability inside of the above summation. To do this, let us
denote, for any t ∈ [t0 + 2, T ],

Xt =
t−1∑

s=t0+1

1{Ecs} =
1

(1 + λclip)η
Ñt0+1,t−1 +

t− t0 − 1

1 + λclip
.

Thus, Xt is a sum of i.i.d Bernoulli random variables, each with mean 1− δ = 1− 1
1+σ2

1/(1+ε)2
> 1/2

(since, by assumption, σ1 > (1 + ε)). We may therefore apply (Hoeffding, 1963, Theorem 1, Eq.
(2.2)), denoting δ0 := 1− 1

1+λclip
= λclip/(1+λclip), to obtain:

Pr
[
Ñt0+1,t−1 ≤ −λclipt0η

]
= Pr [(1 + λclip)ηXt − η(t− t0 − 1) ≤ −λclipt0η]

= Pr

[
1

t− t0 − 1
(Xt − E [Xt]) ≤ − (δ0 − δ)− δ0t0

t− t0 − 1

]
.

Collecting the above results, we arrive at the claimed lower bound.

D.3. Full statement and proof for negative result for (AG-Norm) in the “large σ1” regime

Lemma 39 (Formal statement of Lemma 34) Fix any L1 > 0, x1 ∈ R, and σ1 > 1. Let T ≥ 1,
η > 0, ε ∈ (0, 1) and 0 < b20 ≤ ε2L2

1 exp(2L1x1) be arbitrary parameters (possibly dependent on
L1, x1, and σ1). Then, there exists a 1-dimensional (0, (e−1)L1)-smooth function such that F ∗ = 0,
and a stochastic gradient oracle satisfying Assumptions 3 and 4 with σ0 = 0 and the specified σ1,
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such that, if (AG-Norm) is run for T time steps using parameters η and b20, then then the resulting
iterates {xt}t∈[T ] satisfy:

Pr

[
min
t∈[T ]
∥∇F (xt)∥2 = ∥∇F (x1)∥2

]
≥

1− 1

1 +
σ2
1

(1+ε)2

t0

,

where

t0 =

(
1 +
√
2 +

log(T − 1)

2ηL1

)2

− 2.

In particular, whenever η ≥ α/L1 for some α > 0, and, for any δ ∈ (0, 1),

σ2
1 ≥

1

log(1/(1−δ))
(1 + ε)2

((
1 +
√
2 +

log(T − 1)

α

)2

− 2

)
,

then

Pr

[
min
t∈[T ]
∥∇F (xt)∥2 = ∥∇F (x1)∥2

]
≥ 1− δ.

Proof Let F (x) = exp(L1x). Notice that, since∇2F (x) = L1∇F (x), it follows from Proposition 1
that F (·) is (0, (e − 1)L1)-smooth. Clearly F ∗ = infx∈R exp(L1x) = 0. Further, consider the
stochastic gradient oracle from Proposition 13, which, for the iterate xt at time t, first draws an i.i.d
sample:

ξmult,t =

−ε w.p. 1− δ = 1− 1
1+σ2

1/(1+ε)2(
1 +

σ2
1

1+ε

)
w.p. δ = 1

1+σ2
1/(1+ε)2

,

and g(xt) = ξmult,t∇F (xt). As established in Proposition 13, this oracle satisfies Assumptions 3
and 4 with σ0 = 0 and the specified σ1 > 1.

Let us define, for a parameter t0 ≥ 1 to be determined shortly:

Enc := {∀t ∈ [t0] : g(xt) = −ε∇F (xt)} .

Now, since the noise is sampled i.i.d at each time step, we have that, for any t0 ≥ 0:

Pr [Enc] = Pr [∀t ∈ [t0] : ξmult,t = −ε] = (1− δ)t0 .

Whenever Enc is true, notice that:

∇F (xt0+1) = L1 exp (L1xt0+1) = L1 exp

(
L1x1 + L1

t0∑
t=1

xt+1 − xt

)

= L1 exp

L1x1 + L1η

t0∑
t=1

g(xt)√
b20 +

∑t
s=1 ∥g(xs)∥

2


= L1 exp

L1x1 + L1η

t0∑
t=1

ε∇F (xt)√
b20 +

∑t
s=1 ε

2 ∥∇F (xs)∥2

 .
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Now, using the fact that, whenever Enc is true, then ∇F (xt) ≤ ∇F (xt+1) for each t ∈ [t0], and
assuming b20 ≤ ε2 ∥∇F (x1)∥2, we can bound

t0∑
t=1

ε∇F (xt)√
b20 +

∑t
s=1 ε

2 ∥∇F (xs)∥2
≥

t0∑
t=1

ε2∇F (xt)√
ε ∥∇F (x1)∥2 + ε2t ∥∇F (xt)∥2

≥
t0∑
t=1

1√
t+ 1

≥
∫ t0+2

2

1√
t
dt

= 2(
√
t0 + 2−

√
2).

Thus, we conclude that:

∇F (xt0+1) ≥ L1 exp(L1(x1 + 2η
√
t0 + 2− 2η

√
2)).

Now, for a parameter α > 0 to be determined shortly, let us define:

τ0 = min {t ≥ t0 : ∇F (xt+1) ≤ ∇F (xt0+1) exp(−L1ηα)} ,

and let, for each i ≥ 0,

τi+1 = min {t ≥ τi : ∇F (xt+1) < ∇F (xτi)} .

Notice that, by construction, ξmult,τi = 1+σ2
1/(1+ε) for every i ≥ 0. Further, xτi+1 ≤ xτi+1 since τi+1

is the first time after τi satisfying ∇F (xτi+1+1) < ∇F (xτi+1), or equivalently, xτi+1+1 < xτi+1.
This implies that

xτi+1 = xτ0+1 +

i−1∑
j=0

xτj+1+1 − xτj+1 ≥ xτ0+1 +

i−1∑
j=0

xτj+1+1 − xτj+1

= xτ0+1 −
i−1∑
j=0

η
(
1 +

σ2
1

1+ε

)
∇F (xτj+1)√

b20 +
∑t

s=1 g
2
t

≥ xτ0+1 −
i−1∑
j=0

η
(
1 +

σ2
1

1+ε

)
∇F (xτj+1)√(

1 +
σ2
1

1+ε

)2
∥∇F (xt0+1)∥2

.

Now, notice that:

∇F (xτj+1) = L1 exp(L1xτj+1+1 + L1(xτj+1 − xτj+1+1))

= ∇F (xτj+1+1) exp(L1(xτj+1 − xτj+1+1))

< ∇F (xτ0+1) exp(L1(xτj+1 − xτj+1+1))

≤ ∇F (xt0+1) exp(L1(xτj+1 − xτj+1+1 − ηα))

≤ ∇F (xt0+1) exp(−ηL1(α− 1)),

from which we obtain the bound:

xτi+1 ≥ xτ0+1 − η
i−1∑
j=0

exp(−ηL1(α− 1)) = xτ0+1 − iη exp(−ηL1(α− 1)).
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Now, by construction of the τi, we have that, assuming Enc is true, then

min
t∈[T ]
∥∇F (xt)∥2 = min

t∈[t0+2,T ]
min

{
∥∇F (x1)∥2 , ∥∇F (xt)∥2

}
≥ min

i∈[0,T−1]
min

{
∥∇F (x1)∥2 , ∥∇F (xτi+1)∥2

}
.

Thus, to ensure that mint∈[T ] ∥∇F (xt)∥2 = ∥∇F (x1)∥2, it suffices to have that, for every i < T ,
∥∇F (xτi)∥

2 ≥ ∥∇F (x1)∥2. Now, notice that

∇F (xτi+1) = L1 exp(L1(xτi+1))

≥ L1 exp(L1(xτ0+1)− iη exp(−ηL1(α− 1)))

= ∇F (xτ0+1) exp(−iL1η exp(−ηL1(α− 1)))

= ∇F (xτ0) exp(L1(xτ0+1 − xτ0)− iL1η exp(−ηL1(α− 1)))

> ∇F (xt0+1) exp(−L1ηα+ L1(xτ0+1 − xτ0)− iL1η exp(−ηL1(α− 1)))

≥ ∇F (x1) exp(2ηL1(
√
t0 + 2−

√
2)− L1η(α+ 1)− iL1η exp(−ηL1(α− 1))).

Thus, it suffices to establish conditions under which

2
√
t0 + 2 ≥ 2

√
2 + α+ 1 + i exp(−L1η(α− 1)).

Thus, if we choose α = log(T−1)/ηL1, then it suffices to take:

t0 =

(
1 +
√
2 +

log(T − 1)

2ηL1

)2

− 2,

in which case mint∈[T ] ∥∇F (xt)∥2 = ∥∇F (x1)∥2 under Enc. Hence,

Pr

[
min
t∈[T ]
∥∇F (xt)∥2 = ∥∇F (x1)∥2

]
≥ Pr [Enc]

=

1− 1

1 +
σ2
1

1+ε

t0

.

In particular, using the fact that 1− x > exp(−x/(1−x)) for x < 1, it follows that:

Pr

[
min
t∈[T ]
∥∇F (xt)∥2 = ∥∇F (x1)∥2

]
≥ exp

(
−(1 + ε)2t0

σ2
1

)

≥ exp

−(1 + ε)2
((

1 +
√
2 + log(T−1)

ηL1

)2
− 2

)
σ2
1


Hence, as long as, for some δ ∈ (0, 1),

σ2
1 ≥

1

log(1/(1−δ))
(1 + ε)2

((
1 +
√
2 +

log(T − 1)

ηL1

)2

− 2

)
,

then Pr
[
mint∈[T ] ∥∇F (xt)∥2 = ∥∇F (x1)∥2

]
≥ 1− δ.

72


	Introduction
	Contributions

	Related Works
	Problem Setting
	Convergence of AdaGrad-Norm on (L0, L1)-smooth functions
	Key technical ideas
	Using the descent lemma when 1< 1
	Using the descent lemma when 11

	The challenges of multiplicative noise for (L0, L1)-smooth optimization
	Auxiliary Lemmas
	Useful facts for AdaGrad
	Useful facts for (L0, L1)-smooth optimization
	A note on enforcing 1< 1

	Proofs for general (L0, L1)-smooth functions
	Deriving the descent inequality
	Constructing the ``nice'' stopping time
	The key consequence of the nice stopping time construction
	Convergence for (L0, L1)-smooth functions
	A deferred proof for establishing lem:startingPoint

	Proofs for Polynomially-bounded functions for general 1
	The key definition and its properties
	Bounding comp() from lem:descentLemma
	Bounding the sum of ``bad'' gradients by the sum of ``good'' ones
	Applying thm:main to polynomially-bounded functions with no restriction on 1

	Many common algorithms for (L0, L1)-smooth optimization can diverge in the presence of multiplicative noise
	Overview of main negative results
	Full statement and proof of negative results for (SignSGD-M), (NormSGD), and (ClippedSGD)
	Full statement and proof for negative result for (AG-Norm) in the ``large 1'' regime


