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Abstract
The development of efficient sampling algorithms catering to non-Euclidean geometries has been a challeng-
ing endeavor, as discretization techniques which succeed in the Euclidean setting do not readily carry over
to more general settings. We develop a non-Euclidean analog of the recent proximal sampler of Lee et al.
(2021b), which naturally induces regularization by an object known as the log-Laplace transform (LLT) of
a density. We prove new mathematical properties (with an algorithmic flavor) of the LLT, such as strong
convexity-smoothness duality and an isoperimetric inequality, which are used to prove a mixing time on our
proximal sampler matching Lee et al. (2021b) under a warm start. As our main application, we show our
warm-started sampler improves the value oracle complexity of differentially private convex optimization in
`p and Schatten-p norms for p ∈ [1, 2] to match the Euclidean setting Gopi et al. (2022), while retaining
state-of-the-art excess risk bounds Gopi et al. (2023). We find our investigation of the LLT to be a promising
proof-of-concept of its utility as a tool for designing samplers, and outline directions for future exploration.
Keywords: sampling, private convex optimization, Non-Euclidean geometry, log-Laplace transform

1. Introduction

The development of samplers for continuous distributions, under weak oracle access to the corresponding
densities, has seen a flurry of recent research activity. For applications in settings inspired by machine
learning or computational statistics, this development has in large part built upon connections between
sampling and continuous optimization. Inspired by perspectives on sampling as optimization in the space
of measures Jordan et al. (1998) and starting with pioneering work of Dalalyan (2017b), a long sequence
of results, e.g. Dalalyan (2017a); Cheng et al. (2018); Dwivedi et al. (2019); Durmus and Moulines (2019);
Chen and Vempala (2019); Durmus et al. (2019); Shen and Lee (2019); Chen et al. (2020); Lee et al. (2020);
Chewi et al. (2021), has used analysis techniques from convex optimization to bound the convergence rates
of sampling algorithms for densities. We refer the reader to the survey Chewi (2023) for a more complete
account, but note in almost all cases, the focus has been on sampling from densities satisfying regularity
assumptions stated in the Euclidean (`2) norm, e.g. `2-bounded derivatives.

Continuous optimization under regularity assumptions stated for non-Euclidean geometries has played
an important role in algorithm design. These geometries naturally arise when the optimization problem is
over a structured constraint set, such as an `p ball or a polytope. In diverse applications such as learning
from experts Arora et al. (2012), sparse recovery Candès et al. (2006), multi-armed bandits Bubeck and
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Cesa-Bianchi (2012), matrix completion Agarwal et al. (2010), fair resource allocation Diakonikolas et al.
(2020), and robust PCA Jambulapati et al. (2020), first-order mirror descent techniques for `p or Schatten-p
geometries have been a remarkable success story. Beyond these applications, the theory of self-concordant
barriers (and the Riemannian geometries induced by their Hessians) has been greatly influential to the theory
of convex programming and interior point methods Nesterov and Todd (2002); Nemirovski (2004).1

Non-Euclidean samplers. A natural direction for building the theory of logconcave sampling (the analog
of convex optimization) is thus to develop samplers handling non-Euclidean regularity assumptions and con-
straints. Unfortunately, progress in this direction has relatively lagged behind optimization counterparts, as
discretization tools which work in the Euclidean case do not generalize. Briefly (with an extended discussion
deferred to Section 1.3), most prior attempts at giving non-Euclidean samplers have focused on analyzing
variants of the mirrored Langevin dynamics, building upon the ubiquitous mirror descent algorithm in opti-
mization Nemirovski and Yudin (1983). The key idea of mirror descent is to choose a regularizer φ : X → R
over a constraint setX , such that φ is strongly convex in an appropriate (possibly non-Euclidean) norm ‖·‖X .
The regularizer φ is then used to define iterative methods for optimizing functions f with regularity in ‖·‖X .

The sampling analog of this non-Euclidean generalization is to extend the Langevin dynamics, a stochas-
tic process inherently catered to the `2 geometry, to use Brownian motion reweighted by the Hessian of a
regularizer φ. This process, the mirrored Langevin dynamics (MLD), was introduced recently by Zhang
et al. (2020) (see also Hsieh et al. (2018) for an earlier incarnation). Several follow-up works attempted
to bound convergence rates for discretizations of MLD, e.g. Ahn and Chewi (2021); Jiang (2021); Li et al.
(2022). Unfortunately, many of these analyses imposed rather strong conditions on φ beyond strong con-
vexity, e.g. a “modified self-concordance” assumption used in Zhang et al. (2020); Jiang (2021); Li et al.
(2022) which (to our knowledge) is not known to be satisfied by standard regularizers. Even more prob-
lematically, these analyses (as well as an empirical evaluation by Jiang (2021)) suggest that without strong
relative regularity assumptions between the target density and φ, naı̈ve discretizations of MLD inherently
do not converge to the target even in the limit. A notable exception is Ahn and Chewi (2021), which circum-
vented both issues (the modified self-concordance assumption and a biased limit) using a different MLD
discretization; however, it is not clear that this discretization is feasible for standard choices of φ and X .

An alternative to directly discretizing MLD is to use a filter to control bias, akin to the MALA or
Metropolized HMC algorithms which are well-studied in the Euclidean case Besag (1994); Roberts and
Tweedie (1996); Bou-Rabee and Hairer (2012); Dwivedi et al. (2019); Chen et al. (2020); Lee et al. (2020).
However, here too generalizing existing analyses runs into obstacles: for example, typical analyses of
MALA and Metropolized HMC rely on bounding the conductance of random walks via isoperimetric in-
equalities on the target distribution. Prior isoperimetry bounds appear to be tailored to the `2 geometry and
properties of Gaussians (the basic strongly logconcave distribution in Euclidean settings). Potentially due
to this difficulty, to our knowledge no general-purpose extension of MALA or its variants to non-Euclidean
norms exists in the literature.2

Proximal samplers. In this paper, we overcome these difficulties by following a third strategy for the
design of efficient samplers: a proximal approach recently proposed by Lee et al. (2021b). To sample from
a density π on Rd proportional to exp(−f), the algorithm of Lee et al. (2021b) first extends the space to

1. Self-concordance requires that the second derivative of a function is stable to perturbations which are measured in the induced
norm. For notation and definitions used throughout the paper, see Section 2.

2. We mention that in certain geometries induced by structured manifolds (discussed in part in Section 1.3), generalizations of
MALA or Metropolized HMC have been previously proposed, e.g. Girolami and Calderhead (2011); Barp (2020). These works
are motivated by related, but different, settings to the ones considered in this work (we mainly study norm regularity, akin to
first-order convex optimization), and their focus is not on establishing non-asymptotic mixing time bounds.
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Rd × Rd, and defines a joint density π̂ such that, for some parameter η > 0,

dπ̂(z) ∝ exp

(
−f(x)− 1

2η
‖x− y‖22

)
dz where z = (x, y) ∈ Rd × Rd. (1)

It is straightforward to see that for any η, the x-marginal of π̂ is the original distribution π, and further
Lee et al. (2021b) shows that alternating sampling from the conditional distributions of π̂, i.e. π̂(x | y) or
π̂(y | x), mixes rapidly. We give an extended discussion on recent activity on designing and harnessing
proximal samplers building upon Lee et al. (2021b) in Section 1.3, but mention that instantiations of the
framework have resulted in state-of-the-art runtimes for many structured density families Chen et al. (2022);
Liang and Chen (2022); Gopi et al. (2022). Motivated by the success of proximal methods in the Euclidean
setting, one goal of our work is to extend this technique to non-Euclidean geometries.

Our approach. Our main insight is that a generalization of the strategy in Lee et al. (2021b) induces a
well-studied object in probability theory called the log-Laplace transform (LLT). Letting ϕ : Rd → R be a
convex function in the dual space y ∈ Rd, our generalization of (1) defines the joint density

dπ̂(z) ∝ exp (−f(x) + (〈x, y〉 − ϕ(y)− ψ(x))) dz,

where ψ(x) := log

(∫
exp (〈x, y〉 − ϕ(y)) dy

)
.

(2)

The function ψ is called the LLT of ϕ, and it has an interpretation as a normalizing constant for induced
densities Dϕx on the dual space proportional to exp(〈x, ·〉 − ϕ). Indeed, Dϕx is defined exactly so the x-
marginal of π̂ is π ∝ exp(−f). When η = 1 and ϕ,ψ are quadratics, this is exactly (1); we discuss
the case of general η in Section 1.2. Moreover, the LLT is a well-studied mathematical object: it arises
in probability theory as a cumulant-generating function, i.e. derivatives of the LLT yield cumulants of the
induced distributions Dϕx , just as derivatives of the MGF yield moments.

The LLT famously appeared in Cramér’s theorem on large deviations Cramér (1938), and its cumulant-
generating properties have yielded fundamental concentration results in convex geometry Klartag (2006);
Eldan and Klartag (2011); Klartag and Milman (2012). More recently, algorithmically-motivated properties
of the LLT have been studied in settings such as optimization Bubeck and Eldan (2019), where it was used
to define an optimal self-concordant barrier, as well as connections to localization schemes for sampling
from discrete distributions Chen and Eldan (2022). We continue this investigation by demonstrating new
mathematical properties of the LLT with an algorithmic flavor, and showcasing uses of the LLT as a tool
for continuous logconcave sampling. Armed with a deeper understanding of the LLT, we overcome several
of the aforementioned barriers to non-Euclidean sampler design and develop a generalized proximal sam-
pler. We further apply it to obtain new complexity results for non-Euclidean differentially private convex
optimization, building upon a connection discovered by Gopi et al. (2022, 2023). We are optimistic that the
LLT will find additional uses in sampler design (potentially beyond proximal sampling, building upon the
new properties we prove), and suggest avenues of future exploration to the community in Section 5.

1.1. Our results

In this section, we overview our results, which separate cleanly into three categories.

Algorithmic aspects of the LLT. It is well-known that the derivatives of the LLT at a point x ∈ Rd are
cumulants of the induced density on y ∈ Rd:

dDϕx (y) ∝ exp (〈x, y〉 − ϕ(y)) dy.

For example, ∇ψ(x) = Ey∼Dϕx [y], and ∇2ψ(x) is the covariance of Dϕx . Further, it was shown in Bubeck
and Eldan (2019) that if ψ is the LLT of a convex function ϕ, then ψ is convex and self-concordant. Building
upon these facts, in Section 3, we prove the following new properties of the LLT.
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• Strong convexity-smoothness duality. Let ‖·‖ be a norm on Rd. We prove that if ϕ : Rd → R is
L-smooth in the dual norm ‖·‖∗, its LLT ψ : Rd → R is 1

L -strongly convex in ‖·‖.3 This fact parallels
a similar, well-known form of strong convexity-smoothness duality for Fenchel conjugates Shalev-
Shwartz (2007); Kakade et al. (2009). Our proof does not require ϕ to be convex. We further show
that the converse holds as well: a 1

L -strongly convex ϕ has a L-smooth LLT.

• Isoperimetry in the Hessian norm. We prove a one-dimensional isoperimetric inequality for densities
of the form exp(−φ), where φ : R→ R is self-concordant and convex. By appealing to (a strong vari-
ant of) the localization lemma of Lovász and Simonovits (1993), this proves that measures which are
strongly logconcave with respect to convex and self-concordant φ : Rd → R satisfy a similar isoperi-
metric inequality in the Riemannian geometry induced by∇2φ. Importantly, due to self-concordance
of the LLT, this applies to strongly logconcave measures in an LLT.

• Overlap of induced distributions Dϕx . We provide a KL divergence bound on the distributions Dϕx
and Dϕx′ for x and x′ which are close in the Riemannian distance induced by ψ. Combined with our
isoperimetric inequality and a classical argument of Dyer et al. (1991), this proves a lower bound on
the conductance of an alternating sampler for densities of the form (2).

These new properties of the LLT suggest that it may find uses in designing samplers under non-Euclidean
geometries beyond those explored in Section 4 and Appendix A. For example, the LLT of a smooth function
is strongly convex and self-concordant, which are the properties required by the MLD discretization scheme
of Ahn and Chewi (2021). In optimization, regularizers φ for mirror descent typically only require strong
convexity (and not self-concordance). However, controlling the evolution of the geometry induced by ∇2φ
is critical for discretizing MLD schemes, so imposing self-concordance (as opposed to more non-standard
regularity such as the modified self-concordance of Zhang et al. (2020); Jiang (2021); Li et al. (2022))
may be viewed as a minimal assumption. Problematically, standard strongly convex regularizers for mirror
descent such as entropy or `2p are not self-concordant; LLTs are a way of bridging this gap. Moreover,
our new isoperimetric inequality and conductance bounds suggest that LLTs may find use in Metropolized
sampling schemes, paving the way for non-Euclidean generalizations of MALA and its variants.

Our new duality result is a generic way of taking a strongly convex regularizer and transform it, via
the Fenchel transform and the log-Laplace transform, to another regularizer which is strongly convex in the
same norm and self-concordant. The first transform yields smoothness in the dual Kakade et al. (2009),
and the second undoes this change. We will later give an end-to-end application in improving the oracle
complexity of private stochastic convex optimization in the `p geometry, using the LLT of the `2q regularizer.

Non-Euclidean proximal sampling. In Section 4, we build upon these aforementioned tools to analyze
the mixing time of an alternating scheme for sampling densities π on convex, compact X ⊂ Rd equipped
with a norm ‖·‖X , where π ∝ exp (−F (x)− ηµψ(x)) 1X (x). Here, F : X → R is convex, η, µ > 0 are
tunable, and ψ is the LLT of η-smooth ϕ : Rd → R in ‖·‖X ∗ . We prove in Theorem 16 that alternately
sampling from conditional distributions of the extended density on z = (x, y) ∈ X × Rd proportional to

exp (−F (x)− ηµψ(x) + (〈x, y〉 − ϕ(y)− ψ(x))) 1X (x) (3)

has stationary distribution π, and converges in ≈ 1
ηµ iterations for a warm start. Our rate depends polyloga-

rithmically on both the warmness β of the point it is initialized with, and the inverse of the total variation δ.
The form of (3) is the same as (2), but we impose that f is ηµ-relatively strongly convex in ψ.

We first compare this result to the Euclidean proximal sampler of Lee et al. (2021b), who proved a
similar result for alternating sampling densities of the form (1). The main result of Lee et al. (2021b) shows

3. The constant factor 1 here is optimal, as demonstrated by quadratics.

4



ALGORITHMIC ASPECTS OF THE LLT

that if f is µ-strongly convex in the `2 norm, then alternating sampling from the marginals of (1) converges
in ≈ 1

ηµ iterations, also with polylogarithmic dependence on the target total variation error. Our result can
be viewed as an extension of this result; instead of requiring µ-strong convexity in the `2 norm (which
is equivalent to relative strong convexity with respect to the function x → 1

2 ‖x‖
2
2), we require µ-relative

strong convexity in the function ηψ. In light of our duality result, ηψ is 1-strongly convex in ‖·‖X , so it is
the natural “unit” for measuring strong convexity.

We remark that the parameters η and µ play different roles: µ governs the strong logconcavity of the
stationary distribution, and η controls the strong logconcavity of the x-conditional distribution of (3), which
is tuned to govern the convergence rate of sampling from the conditional distribution. In particular, we
further show that when F isG-Lipschitz in ‖·‖X , then as long as η . G−2, the conditional sampling required
by (3) can be performed in constant calls to a value oracle to F in expectation. This result holds even when
F is a distribution over G-Lipschitz functions, and we only have sample access to this distribution. This
extends a similar implementation of the marginal sampler required by Lee et al. (2021b) for log-Lipschitz
densities in the `2 norm, given by Gopi et al. (2022). The remaining complexity of the marginal sampling
depends on the structure of the chosen ϕ and X , but is independent of F ; we give a discussion of this aspect
of our sampler in Appendix A.3 and Section 5.

One shortcoming of Theorem 25’s rate is that it depends polylogarithmically on the warmness param-
eter. In contrast, the rate of Lee et al. (2021b) depends doubly logarithmically on the warmness, which is
important because in many sampling applications, standard starting distributions yield warmness exponen-
tial in problem parameters, e.g. the dimension d. We refer to Section 1.1 of Lee et al. (2021a) on warmness
assumptions under `2 geometry, which have created a ≈

√
d-sized gap on mixing time bounds for MALA,

with and without a polynomially-bounded warm start Chewi et al. (2021); Lee et al. (2020). An interesting
future direction is to close this gap in warmness assumptions for our sampler in Section 4, analogously to
the result of Lee et al. (2021b). Notably, there has been an ongoing exploration of new proof techniques for
the convergence of proximal samplers by the community Chen et al. (2022); Chen and Eldan (2022), and
we are optimistic similar advancements can be made in non-Euclidean settings, discussed in Section 1.3.

Zeroth-order private convex optimization. As our main application, we use our sampler to give new
algorithms for the problem of zeroth-order private convex optimization, where one is given access to a
zeroth-order function value evaluation oracle. The zeroth-order access model is appealing in practical set-
tings where gradients are expensive to compute, or the domain is not naturally differentiable. For example,
in SCO problems where samples correspond to humans in a population, it may be straightforward to query
the value of a sample (e.g. audit a human), but asking for gradients requires querying samples in a continuous
manner, which may not be feasible.

Specifically, we achieve this in Appendix A by designing LLTs based on the smoothness of ϕq(x) =
p−1

2 ‖x‖
2
q in `q, where 1

p + 1
q = 1 and p ∈ [1, 2], q ≥ 2. We show that the additive range4 of ψη,p,5 the

LLT of ηϕq for η . 1
d ,6 is bounded by O( 1

(p−1)η ) over the unit `p ball. This makes ηψη,p competitive with

the canonical choice of regularizer in `p norms for optimization, rp(x) := 1
2(p−1) ‖x‖

2
p, which has the same

additive range and strong convexity as ηψη,p (up to constants). We further build efficient value oracles and
samplers for induced densities for ψη,p in Appendix A.3.

A critical difference between ηψ and rp, however, is that regularizing by a multiple of ηψ admits efficient
samplers via Section 4; to our knowledge no similar technique is known for rp. This difference is important
in the setting of differentially private convex optimization: see Problem 22 for a formal statement. Recently,
Gopi et al. (2023) showed that to privately minimize population or empirical risk for a distribution over
convex functions which are Lipschitz in a (possibly non-Euclidean) norm ‖·‖X , it suffices to sample from a

4. We use the additive range of a function r to mean maxx r(x)−minx r(x) evaluated over the domain of r.
5. We use slightly different notation than in Appendix A for convenience of exposition here.
6. This restriction is discussed further in Section 1.2, but does not bottleneck our privacy applications.
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regularized density ∝ exp(−k(Ferm + µr)). Here, Ferm = 1
n

∑
i∈[n] fi is the empirical risk over n samples

{fi}i∈[n], k, µ are tunable parameters, and r is a 1-strongly convex regularizer in ‖·‖X .
Our results show a demonstrable algorithmic advantage of using ηψη,p in `p geometries, as opposed

to rp. In Theorem 25, we give algorithms for private convex optimization matching the state-of-the-art
excess risk bounds in Gopi et al. (2023) (who used rp as their regularizer). Under a warm start, our new
algorithms improve the zeroth-order oracle complexities under `p regularity in dimension d by poly(d)
factors compared to Gopi et al. (2023), i.e. the number of queries to {fi}i∈[n] used. We show these new
complexities extend straightforwardly to improve private convex optimization over matrix spaces satisfying
Schatten-p norm regularity. Our results match (up to logarithmic factors) the value oracle complexities in
the `2 setting obtained by Gopi et al. (2022), for all `p norms where p ∈ [1, 2]. In Appendix D, we extend
lower bounds for stochastic optimization from Duchi et al. (2015); Gopi et al. (2022) to the `p setting to
show the value oracle complexities of Theorems 16 and 25 are near-optimal, given a polynomially warm
start.

1.2. Our techniques

Analogously to Section 1.1, in this section we split our discussion of our techniques into three parts.

Algorithmic aspects of the LLT. We first discuss our strong convexity-smoothness duality result. From
a convex geometry perspective, smoothness of ϕ (with LLT ψ) ensures that the induced distributions ∝
exp(〈x, ·〉 − ϕ) are heavy-tailed (because their log-densities cannot grow quickly), which means their vari-
ances are “large.” We also know that∇2ψ is the covariance matrix of the induced distribution which means
that∇2ψ should be lower-bounded. Interestingly, we formalize this intuition by using a perspective inspired
by differential privacy: we show that small shifts of the induced distributions are difficult to distinguish, by
smoothness of ϕ. If the variance was small, the shifts would be easy to distinguish, proving the result. Our
converse proof is simpler, and uses the Brascamp-Lieb inequality Brascamp and Lieb (1976).

To prove our isoperimetric inequality, we draw inspiration from a similar bound shown in Lemma 35
of Lee and Vempala (2018), but for a family of convex functions φ satisfying a strange condition that φ′′

was convex (which fortunately includes the log barrier function). Noticing that − log is self-concordant, we
extend the Lee and Vempala (2018) result to hold for all self-concordant functions. Further we show by a
direct calculation that the KL divergence between the induced distributions of two nearby points x and x′

is essentially the LLT ψ at one of the points, up to a linear term. This lets us use stability of the Hessian
of self-concordance functions to demonstrate stability of nearby induced distributions, a key ingredient in
proving conductance bounds by the machinery of Dyer et al. (1991).

Non-Euclidean proximal sampling. Given the results of Section 3, establishing our main proximal sam-
pling result Theorem 16 is fairly routine. Our algorithm consists of an “outer loop” which is stated and
analyzed in Section 4, and an “inner loop” for sampling from the x-conditional distribution of (3) (Ap-
pendix C). Our outer loop analysis is directly based on the mixing time-to-conductance reduction of Lovász
and Simonovits (1993) and the technique of Dyer et al. (1991) to lower bound conductance, using facts from
Section 3. Our inner loop handling functions F in (3) which are Lipschitz (or distributions over Lipschitz
functions) is a small modification of a similar result in Gopi et al. (2022). The only LLT property needed
there is strong convexity: this implies a rejection sampler terminates quickly via concentration of Lipschitz
functions under strongly logconcave distributions (in any norm) Ledoux (1999); Bobkov and Ledoux (2000).

We note there is a design decision on how to define “scaling up the LLT by 1
η ,” unlike in the case of (1)

where using N (x, η−1Id) is natural. Given r, a 1-strongly convex function in ‖·‖X , and letting r∗ be its
(smooth) Fenchel conjugate, two ways of defining a scaled up induced distribution are to choose densities

∝ exp (〈x, y〉 − ηr∗(y)− ψ(x)) , (4)

6
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or

∝ exp

(
1

η
(〈x, y〉 − r∗(y)− ψ(x))

)
. (5)

The choice (4) results in ψ which is Ω(η−1)-strongly convex, suitable for our applications. However, the
second results in η−1ψ which is also Ω(η−1)-strongly convex. Interestingly, when r = r∗ = 1

2 ‖·‖
2
2, (1)

agrees with (5) but not (4). Unfortunately, the ψ from (5) is not self-concordant: its Hessian scales with η−1

and its third derivative with η−2. Our choice to use (4) has further implications, elaborated on next.

Zeroth-order private convex optimization. The frameworks of Gopi et al. (2022, 2023) show that to use
our proximal sampler for `p private convex optimization, it suffices to design an LLT with small additive
range. Perhaps surprisingly, we exploit the non-scale invariance of LLT for this task: the LLT of ηϕ does
not behave like η−1 times the LLT of ϕ.7 To see why this helps, consider the case when ϕ = 1

2 ‖·‖
2
∞.

Although one would hope ψ(x) has additive range comparable to 1
2 ‖x‖

2
1, the Fenchel conjugate of 1

2 ‖x‖
2
∞,

it is not hard to show that ψ(e1)− ψ(0) = Ω(
√
d); we give a proof in Appendix E. This shows the additive

range of ψ on the `1 ball is larger than 1
2 ‖·‖

2
1 by poly(d) factors.

We show the non-scale invariance of (4) actually helps improve additive ranges. Letting ψη denote the
LLT of η ‖x‖2q , we show the additive range of ηψη (a ≈ 1-strongly convex function) is ≈ max(η, 1,

√
dη).

For sufficiently small η, this implies ηψη is much smaller than ψ; graciously, our applications require η .
1
d2

. We find it potentially useful to explore how generic this non-scale invariance of the LLT is.

1.3. Prior work

Non-Euclidean sampling. A recurring issue that arises in bounding the convergence rate of non-Euclidean
samplers is that naı̈ve discretizations can result in significant error. As a result, most prior works either re-
quire strong assumptions or oracles for accurate discretization or adopt more sophisticated discretization
methods that are difficult to analyze. For example, earlier in the introduction this was discussed for dis-
cretizations of MLD Zhang et al. (2020); Jiang (2021); Ahn and Chewi (2021); Li et al. (2022). Part of the
intrinsic difficulty of bounding discretized MLD lies in third-order error terms emerging from non-Euclidean
geometries, which are hard to control under standard assumptions.

Under structured settings different than, but related to, those in this paper, an interesting alternative
sampling strategy is discretizing Riemannian Langevin or Hamiltonian dynamics. For example, Gatmiry
and Vempala (2022) studied the Riemmanian Langevin dynamics assuming access to an oracle to sample
from Brownian motion on a manifold, whose complexity heavily depends on the manifold. Further, the
convergence rate of Riemannian Hamiltonian Monte Carlo (RHMC) in polytopes was studied in Lee and
Vempala (2018), and a discretized version was analyzed in Kook et al. (2022); the results apply to a limited
family of distributions, and the convergence rate is fairly large. For RHMC to converge to the correct target
distribution, sophisticated discretization methods such as Implicit Midpoint Method are necessary. Though
efficient in practice, these methods are challenging to analyze theoretically.

Proximal sampling. A long line of works has used proximal methods in sampling (inspired by opti-
mization). Several considered proximal Langevin algorithms Pereyra (2016); Brosse et al. (2017); Bernton
(2018); Wibisono (2019), which combine proximal methods and discretizations of Langevin dynamics. Fur-
ther, Mou et al. (2022) proposed a sampler based on a proximal sampling oracle. However, these algorithms
required either stringent assumptions or a large mixing time. Recently, Lee et al. (2021b) proposed a prox-
imal sampler overcoming many assumptions and efficiency issues in prior methods. Several works have
focused on generalizing Lee et al. (2021b) and applying it in different settings: Chen et al. (2022) proved
convergence results using weaker assumptions than strong logconcavity. The framework has been used

7. On the other hand, the Fenchel conjugate of ηϕ is η times the Fenchel conjugate of ϕ( ·
η
).
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to obtain state-of-the-art samplers for various structured families, e.g. smooth, composite, and finite-sum
densities Lee et al. (2021b) as well as non-smooth densities Gopi et al. (2022); Liang and Chen (2022).

Log-Laplace transform. The LLT is a powerful tool that emerges frequently in probability theory and
convex geometry. Notably, Bubeck and Eldan (2019); Chewi (2021) showed that the Legendre-Fenchel dual
of LLT of the uniform measure on a convex body in Rn is an n-self-concordant barrier, giving the first
universal barrier for convex bodies with optimal self-concordance parameter. In Chen and Eldan (2022), the
LLT serves as one of the key ingredients of entropy conservation in localization schemes for sampling. In
addition, the LLT shows up in the solution to the entropic optimal transport problem, where a KL divergence
is added to regularize the optimal transport objective Chewi and Pooladian (2022).

Private convex optimization. Differentially private convex optimization is one of the most extensively
studied problems in the privacy literature and captures an increasing number of critical applications in var-
ious domains, including machine learning, statistics, and data analysis. There is a rich body of works on
this topic Chaudhuri and Monteleoni (2008); Chaudhuri et al. (2011); Kifer et al. (2012); Bassily et al.
(2014); Wang et al. (2017); Bassily et al. (2019); Feldman et al. (2020), which have mainly focused on the
Euclidean geometry, e.g. assuming the `2 diameter of the domain and `2 norms of gradients are bounded.
Motivated by applications not captured by these assumptions, there has been growing interest in studying
differentially private convex optimization in non-Euclidean geometries, as seen in Talwar et al. (2015); Asi
et al. (2021); Bassily et al. (2021); Han et al. (2022); Gopi et al. (2023). Of particular relevance, Gopi et al.
(2023) develops an exponential mechanism based method attaining state-of-the-art excess risk bounds for
`p and Schatten-p norms, which are matched by our algorithms in Appendix A.

2. Preliminaries

General notation. In Section 1 only, Õ, ≈, and . hide logarithmic factors in problem parameters for
expositional convenience. For n ∈ N, [n] refers to the naturals 1 ≤ i ≤ n. We use X to denote a compact
convex subset of Rd. For all p ≥ 1 including p = ∞, we let ‖·‖p applied to a vector argument denote
the `p norm. We denote matrices in boldface and when ‖·‖p is applied to a matrix argument it denotes
the corresponding Schatten-p norm (`p norm of the singular values). For any X ⊂ Rd we let its indicator
function (i.e. the function which is 1 on X and 0 otherwise) be denoted 1X . We will be concerned with
optimizing functions f : X → R, and ‖·‖X refers to a norm on X . We let X ∗ be the dual space to X ,
and equip it with the dual norm ‖y‖X ∗ := sup‖x‖X=1 x

>y. We let N (µ,Σ) be the Gaussian density of
given mean and covariance. For a positive definite matrix M ∈ Rd×d, we denote the induced norm by
‖v‖M :=

√
v>Mv. When making asymptotic statements we will typically assume the dimension d is at

least a sufficently large constant, else we can pad and affect statements by at most constant factors.

Optimization. We say f is G-Lipschitz in ‖·‖X if for all x, x′ ∈ X , |f(x)− f(x′)| ≤ G ‖x− x′‖X . If f
is differentiable, we say it is L-smooth in ‖·‖X if for all x, x′ ∈ X , ‖∇f(x)−∇f(x′)‖X ∗ ≤ L ‖x− x′‖X ;
this implies f(x′) ≤ f(x) + 〈∇f(x), x′ − x〉 + L

2 ‖x− x
′‖2X . We say f is m-strongly convex in ‖·‖X if

for all x, x′ ∈ X , t ∈ [0, 1], f (tx+ (1− t)y) ≤ tf(x) + (1 − t)f(y) − mt(1−t)
2 ‖x− x′‖2X . We say f is

m-relatively strongly convex in φ if f −mφ is convex. For k-times differentiable f ,∇kf(x)[v1, v2, . . . , vk]
denotes the corresponding kth order directional derivative at f . If f is twice-differentiable and m-strongly
convex in ‖·‖X , ∇2f(x)[v, v] ≥ m ‖v‖2X for all x ∈ X , v ∈ Rd. We say convex φ : Rd → R is self-

concordant if it satisfies for all x, h ∈ Rd,
∣∣∇3φ(x)[h, h, h]

∣∣ ≤ 2
(
∇2φ(x)[h, h]

) 3
2 . A key implication of

self-concordance is Hessian stability under small distances: see Lemma 2.

Probability. For a density π supported on X , we let π(S) := Prx∼π[x ∈ S]. For two densities µ, π, their
total variation distance is ‖µ− π‖TV := 1

2

∫
|µ(x) − π(x)|dx and (when the Radon-Nikodym derivative

8
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exists) their KL divergence is DKL(µ‖π) :=
∫
µ(x) log µ(x)

π(x)dx. For 1 < α < ∞, we also define the α-

Rényi divergence between densities µ, π by Dα(µ‖π) := 1
α−1 log(

∫
(µ(x)
π(x))απ(x)dx). We say density π

is logconcave (respectively, m-strongly logconcave in ‖·‖X ) if − log π is convex (respectively, m-strongly
convex in ‖·‖X ). We say π is m-relatively strongly logconcave in φ if − log π is m-relatively strongly
convex in φ. We say a density π0 is β-warm with respect to a density π if for all x, dπ0(x)

dπ(x) ≤ β.

Log-Laplace transform. We define the log-Laplace transform (LLT) of ϕ : Rd → R by ψ(x) :=
log
(∫

exp (〈x, y〉 − ϕ(y)) dy
)
. When ϕ,ψ are clear from context, we define the density

Dϕx (y) = exp (〈x, y〉 − ϕ(y)− ψ(x)) . (6)

Note that the normalization constant is exactly given by exp(−ψ(x)) and henceDϕx is indeed a valid density.
We use ∝ to indicate proportionality, e.g. if µ is a density and we write µ ∝ exp(−f), we mean µ(x) =
exp(−f)

Z where Z :=
∫

exp(−f(x))dx and the integration is over the support of µ.

Riemannian geometry. In Sections 3 and 4 we will use geometry induced by the Hessian of a self-
concordant, convex function φ : Rd → R. We summarize the important points here, and defer a extended
treatment to Nesterov and Todd (2002). When φ is clear from context, we denote ‖h‖x := ‖h‖∇2φ(x).
Throughout this discussion letM ⊆ Rd be a Riemannian manifold equipped with the local metric ‖·‖x. The
induced Riemannian distance of a curve c : [0, 1] → M is defined as Lφ(c) :=

∫ 1
0

∥∥ d
dtc(t)

∥∥
c(t)

dt, where
d
dtc(t) is the velocity element of the curve in the tangent space at c(t). For x, y ∈M , dφ(x, y) is the infimum
of the length Lφ(c) over all curves with c(0) = x and c(1) = y. We use the following properties of the
Riemannian geometry over M = Rd induced by self-concordant, convex functions.

Lemma 1 (Nesterov and Todd (2002), Lemma 3.1) Suppose φ : Rd → R is convex and self-concordant.
For x, y ∈ Rd, if dφ(x, y) ≤ δ − δ2 < 1 for some δ ∈ (0, 1), then ‖y − x‖x ≤ δ.

Lemma 2 (Nemirovski (2004), Section 2.2.1) Suppose φ : Rd → R is convex and self-concordant. For
any h, x ∈ Rd such that ‖h‖x < 1, (1− ‖h‖x)2∇2φ(x) � ∇2φ(x+ h) � (1− ‖h‖x)−2∇2φ(x).

3. Properties of the LLT

We collect facts about the log-Laplace transform used to develop our sampling scheme in Section 4, defer-
ring most proofs to Appendix B due to space constraints. We use the first three derivatives of ψ.

Lemma 3 (LLT derivatives) For any x, h ∈ Rd, we have ∇ψ(x) = µ(Dϕx ) := Ey∼Dϕx [y], ∇2ψ(x) =

Cov(Dϕx ) := Ey∼Dϕx
[
(y − µ(Dϕx ))(y − µ(Dϕx ))>

]
, ∇3ψ(x)[h, h, h] = Ey∼Dϕx

[
〈y − µ(Dϕx ), h〉3

]
.

By a fact on one-dimensional distributions in Bubeck and Eldan (2019), this implies the following.

Lemma 4 (Self-concordance) If ψ is the LLT of a convex function, it is self-concordant.

Next, we prove that a form of strong convexity-smoothness duality holds with respect to ϕ and ψ,
analogous to the type of duality satisfied by Fenchel conjugates Kakade et al. (2009).

Lemma 5 (Strong convexity-smoothness duality) If ϕ : Rd → R is L-smooth with respect to ‖·‖∗, then
ψ : Rd → R is 1

L -strongly convex with respect to ‖·‖.

9
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Proof By definition of strong convexity it suffices to prove for any x, v ∈ Rd, v>∇2ψ(x)v ≥ 1
L ‖v‖

2.
Without loss of generality, by scale invariance we can assume ‖v‖ = 1. Let Y = 〈y, v〉, where y ∼ Dϕx . By
Lemma 3,∇2ψ(x) = Cov(Dϕx ), so it suffices to prove that

Var(Y ) = Ey∼Dϕx
[
〈y − µ(Dϕx ), v〉2

]
≥ 1

L
.

Letting M := Ey∼Dϕx∇
2ϕ(y), we first observe

L

2
v>M−1v = max

u∈Rd
〈u, v〉 − 1

2L
u>Mu ≥ max

u∈Rd
〈u, v〉 − 1

2
‖u‖2∗ =

1

2
‖v‖2 .

In the only inequality, we used that u>Mu = Ey∼Dϕx u
>∇2ϕ(y)u ≤ L ‖u‖2∗ by smoothness of ϕ, and the

last equality follows by optimizing over ‖u‖∗. This shows v>M−1v ≥ 1
L . The Cramér-Rao inequality (see

Lemma 2, Chewi and Pooladian (2022)) then implies

Var(Y ) ≥ v>M−1v ≥ 1

L
,

since the Hessian of − logDϕx at any x ∈ Rd is∇2ϕ.

Lemma 6 (Smoothness-strong convexity duality) If ϕ : Rd → R is 1
L -strongly convex with respect to

‖·‖∗, then ψ : Rd → R is L-smooth with respect to ‖·‖.

Proof Let v, x ∈ Rd and assume ‖v‖ = 1. As in Lemma 5, defining Y = 〈y, v〉 for y ∼ Dϕx , we have
v>∇2ψ(x)v = Var(Y ), and want to show Var(Y ) ≤ L. First note that for any y ∈ Rd,

1

2L
v>
(
∇2ϕ(y)

)−1
v = max

u∈Rd
〈u, v〉 − L

2
u>∇2ϕ(y)u ≤ max

u∈Rd
〈u, v〉 − 1

2
‖u‖2∗ =

1

2
‖v‖2 .

The first inequality used strong convexity of ϕ and the last equality optimizes over ‖u‖∗. This shows
v>(∇2ϕ(y))−1v ≤ L for all y. The Brascamp-Lieb inequality Brascamp and Lieb (1976) then implies
Var(Y ) ≤ Ey∼Dϕx v

> (∇2ϕ(y)
)−1

v ≤ L, since the Hessian of − logDϕx at any x ∈ Rd is ∇2ϕ.

We next state a new 1-d isoperimetric inequality for self-concordant functions, proven in Appendix B.

Lemma 7 Suppose φ : R→ R is convex and self-concordant. For any x ∈ R,

exp(−φ(x))√
φ′′(x)

≥ 1

12
min

{∫ x

−∞
exp(−φ(t))dt,

∫ ∞
x

exp(−φ(t))dt

}
.

By a localization argument deferred to Appendix B, we have the following result in high dimensions.

Lemma 8 (Self-concordant isoperimetry) Let φ : Rd → R be convex and self-concordant, and let f :
Rd → R be m-relatively strongly convex in φ. Given any partition S1, S2, S3 of Rd,∫

S3
exp (−f(x)) dx

min
{∫

S1
exp(−f(x))dx,

∫
S2

exp(−f(x))dx
} = Ω

(√
mdφ(S1, S2)

)
,

where dφ(S1, S2) = minx∈S1,y∈S2 dφ(x, y).

Finally, we provide a bound on the total variation distance of “nearby” induced distributions.

Lemma 9 (TV of induced distributions) For x, x′ ∈ Rd with dψ(x, x′) ≤ 1
4 ,
∥∥Dϕx −Dϕx′∥∥TV ≤

1
2 .

10
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4. Proximal LLT sampler

In this section, we study a sampling problem in the following setting, assumed throughout.

Problem 10 For D,G, η > 0, let X ⊂ Rd be compact and convex, with diameter in a norm ‖·‖X at most
D. Let F : X → R have the stochastic form F (x) := Ei∼I [fi(x)], for a distribution I over (a possibly
infinite) family of indices i, such that each fi : X → R is convex and G-Lipschitz in ‖·‖X . Finally, let
ϕ : Rd → R be convex and η-smooth in the dual norm ‖·‖X ∗ . Given µ > 0, and letting ψ : Rd → R be the
LLT of ϕ, the goal is to sample from the density π satisfying

dπ(x) ∝ exp (−F (x)− ηµψ(x)) 1X (x)dx. (7)

Note that by Lemma 5, ηµψ is µ-strongly convex in ‖·‖X . Letting z = (x, y) denote a variable on X ×Rd,
it is convenient for us to define the extended density on the joint space of z:

dπ̂(z) ∝ exp (−F (x)− ηµψ(x) + (〈x, y〉 − ψ(x)− ϕ(y))) 1X (x)dz. (8)

Our sampling framework for (7) generalizes an approach pioneered by Lee et al. (2021b), and is stated in
the following Algorithm 1. The algorithm simply alternately samples from each marginal of (8). Before
stating it, we define the following notation for conditional densities throughout the section:

dπx(y) = exp (〈x, y〉 − ψ(x)− ϕ(y)) dy for all x ∈ X ,
dπy(x) ∝ exp (−F (x)− (1 + ηµ)ψ(x) + 〈x, y〉) 1X (x)dx for all y ∈ Rd.

(9)

In particular, we observe that dπx(y) = dπ̂(· | x) and dπy(x) = dπ̂(· | y).

Algorithm 1: AlternateSample(X , F, ϕ, T, µ, x0)

1 Input: X , F, ϕ in the setting of Problem 10, T ∈ N, µ > 0, x0 ∈ X .
2 for k ∈ [T ] do
3 Sample yk ∼ πxk−1

.
4 Sample xk ∼ πyk .
5 end
6 Return: xT

Correctness of Algorithm 1 builds upon the following basic facts.

Lemma 11 The total x-marginal of π̂ in (8) is π in (7). Furthermore, the stationary distribution of Algo-
rithm 1 is π̂, and the induced Markov chains in Algorithm 1 restricted to either {xk}0≤k≤T (a Markov chain
on X ) or {yk}k∈[T ] (a Markov chain on Rd) are both reversible.

Proof The first conclusion is a direct calculation, and the remainder is Lemma 1 in Lee et al. (2021b).

In Appendix C, we develop Algorithm 2, a rejection sampler for implementing Line 4 of Algorithm 1,
based on Gopi et al. (2022). We defer a bound on its performance in Proposition 38 in Appendix C. We now
give our analysis of Algorithm 1 via a conductance argument, using tools from Section 3.

Definition 12 For a reversible Markov chain with stationary distribution π supported on X and transition
distributions {Tx}x∈X , we define the conductance of the Markov chain by Φ := infS⊂X

∫
S Tx(X\S)dπ(x)

min{π(S),π(X\S))} .

We further recall a standard way of lower bounding conductance via isoperimetry.

11
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Lemma 13 (Lee and Vempala (2018), Lemma 13) In the setting of Definition 12, let d : X × X be a
metric on X . Suppose for x, x′ ∈ X with d(x, x′) ≤ ∆, ‖Tx − Tx′‖TV ≤

1
2 . Also, suppose for any partition

S1, S2, S3 of Rd, π satisfies π(S3) ≥ Ciso(minx∈S1,y∈S2 d(x, y)) min{π(S1), π(S2)}. Then Φ = Ω (∆Ciso).

A classical result of Lovász and Simonovits (1993) upper bounds mixing time via conductance.

Lemma 14 (Lovász and Simonovits (1993), Corollary 1.5) In the setting of Definition 12, let πt be the
distribution after t steps of the Markov chain. If π0 is β-warm with respect to π, ‖πt − π‖TV ≤

√
β(1−Φ2

2 )t.

Proposition 15 Assume the input x0 to Algorithm 1 is drawn from a β-warm distribution with respect to
π, ηµ ≤ 1, and T = Ω( 1

ηµ log β
δ ) for a sufficiently large constant. Then the output of Algorithm 1 has total

variation distance to π bounded by δ.

Proof Following the optimal coupling characterization of total variation, whenever the optimal coupling of
y ∼ Dϕx and y′ ∼ Dϕx′ sets y = y′ in Line 3 of Algorithm 1, we can couple the resulting distributions in
Line 4 as well. This shows that ‖Tx − Tx′‖TV ≤ ‖D

ϕ
x − Dϕx′‖TV. By Lemma 4, since ϕ is convex, ψ is a

self-concordant function. Lemma 9 then implies if dψ(x, x′) ≤ 1
4 , ‖Tx − Tx′‖TV ≤

∥∥Dϕx −Dϕx′∥∥TV ≤
1
2 .

By Lemma 8, since F+ηµψ is ηµ-relatively strongly convex inψ, π satisfies the isoperimetric inequality
such that for any partition S1, S2, S3 of Rd, π(S3) = Ω(

√
ηµ) (minx∈S1,y∈S2 dψ(x, y)) min {π(S1), π(S2)}.

By Lemma 13, we can then lower bound the conductance by Φ = Ω(
√
ηµ). Choosing a sufficiently large

constant in T , we conclude by Lemma 14 the desired ‖πT − π‖TV ≤
√
β exp(−TΦ2

2 ) ≤ δ.

Theorem 16 In the setting of Problem 10, let ηµ ≤ 1 and assume x0 has a β-warm distribution with
respect to π defined in (7). Further for sufficiently large constants suppose 1

η = Ω(G2 log log β
δηµ ) and T =

Θ
(

1
ηµ log β

δ

)
. Algorithm 1 using Algorithm 2 with error parameter δ

2T to implement Line 4 returns a point
with δ total variation distance to π, querying O(T ) random fi in expectation.

Proof Proposition 15 guarantees that if each call to Line 4 of Algorithm 1 is implemented exactly, we obtain
δ
2 total variation to π. Further, the total variation error accumulated over T calls to Algorithm 2 is less
than δ

2 by a union bound on Proposition 38. Combining these bounds results in the desired total variation
guarantee, and the complexity bound follows from Proposition 38.

We note that given sample access to exp(−ηµψ(x))1x∈X , a distribution which only depends on the
choice of ϕ and X (and not the function F ), we obtain β ≤ exp(GD) in Theorem 16.

Lemma 17 The density dν(x) ∝ exp(−ηµψ(x))1X (x)dx is exp(GD)-warm for π defined in (7).

5. Conclusion

We believe our work is a significant step towards developing the theory of LLTs and paving the way for their
use in designing sampling algorithms. There are a number of important questions left open by our work,
which we find interesting and potentially fruitful for the community to explore.
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Stronger mixing time bounds. Perhaps the most immediate open question regarding our alternating sam-
pling framework in Section 4 is to obtain a better understanding of its mixing time. As discussed in Sec-
tion 1.1, Theorem 16’s mixing time scales linearly in log β, which as demonstrated by Lemma 17 (and
related other settings, e.g. MALA Chewi et al. (2021); Lee et al. (2021a)) can result in additional poly-
nomial overhead in problem parameters: for what ϕ,ψ is this avoidable? Notably, it is avoided for the
Euclidean proximal sampler Lee et al. (2021b) by working directly with KL divergence (as opposed to the
larger χ2 distance typically used by proofs using conductance bounds). Different proofs of this log log β
dependency for the Euclidean proximal sampler were then subsequently obtained by Chen et al. (2022);
Chen and Eldan (2022). We also mention that log log β dependences may sometimes follow via average
conductance techniques (e.g. Lovász and Kannan (1999)), which may apply to our Markov chain.

Samplers for explicit distributions. Our results Theorem 16 and 25 mainly focused on bounding the
query complexity to the function F , or samples fi from the distribution defining it. The total computational
complexity of a practical implementation of Algorithm 1 also includes the cost of sampling from the dis-
tribution families πx (9), γy (24) (the latter is used in our rejection sampler subroutine, Algorithm 2). In
Appendix A.3, we give a linear-time sampler for πx and a polynomial-time sampler for γy under the `p
geometry, but it is interesting to obtain faster samplers for particular choices of (ϕ,X ).

LLT beyond proximal sampling. More generally, we believe it is worthwhile to obtain a better under-
standing of specific choices of (ϕ,ψ), e.g. the examples in Appendix A.1, from an algorithmic perspective.
LLTs satisfy appealing properties such as self-concordance, strong convexity, and isoperimetry making
them well-suited for frameworks beyond Algorithm 1, such as discretized MLD Ahn and Chewi (2021)
and Metropolized sampling methods discussed in Section 1. Bounding the complexity of their use in these
applications necessitates an improved understanding of specific LLTs.

LLT as a dual object. Finally, a tantalizing open question in the theory of well-conditioned sampling
(even in the `2 setting) is whether acceleration is achievable, i.e. mixing scaling with the square root of the
condition number (which is possible in optimization Nesterov (1983)). The duality of Fenchel conjugates
appears to play a key role in acceleration Wang and Abernethy (2018); Cohen et al. (2021), so a better
understanding of duality may be helpful in the corresponding endeavor for sampling. The LLT is a natural
candidate for a dual object, as it arises via joint densities on an extended space (2), and satisfies strong
convexity-smoothness duality. Can we demystify this relationship, and use it to obtain faster samplers?
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Appendix A. Applications

In this section, we discuss applications of the sampling scheme we develop in Section 4. We begin by
specializing our machinery to `p and Schatten-p norms in Appendix A.1. We then give new algorithms
with improved zeroth-order query complexity for private convex optimization in Appendix A.2. Finally, in
Appendix A.3 we discuss computational issues regarding the specific LLT we introduce.

A.1. LLT for `p and Schatten-p norms

Throughout this section we fix some p ∈ [1, 2], and define the dual value q ≥ 2 such that 1
q + 1

p = 1. It
is well-known that the `q norm and `p norm are dual, as are the corresponding Schatten norms. In light
of Lemma 5, to obtain a sampler catering to the `p geometry for example, it suffices to take the LLT of a
smooth function in `q. We provide the latter by recalling the following fact.

Lemma 18 Let p ∈ [1, 2], q ≥ 2 satisfy 1
p + 1

q . If ‖·‖q is a vector `q norm, 1
2 ‖·‖

2
q is 1

p−1 -smooth in the `q
norm, and if ‖·‖q is a matrix Schatten-q norm, 1

2 ‖·‖
2
q is 1

p−1 -smooth in the Schatten-q norm.

Proof This follows (for example) from three well-known facts: 1) that 1
2 ‖·‖

2
q and 1

2 ‖·‖
2
p are conjugate

functions in both the vector and matrix cases, 2) that the conjugate of a m-strongly convex function in a
norm is 1

m -smooth in the dual norm Kakade et al. (2009), and 3) that 1
2 ‖·‖

2
p is (p − 1)-strongly convex in

‖·‖p in both the vector and matrix cases Ball et al. (1994).

`p norms. Next, for any a > 0, when the context is clearly about vector spaces, we define

ψp,a(x) := log

(∫
exp

(
〈x, y〉 − a ‖y‖2q

)
dy
)
. (10)

Note that as the LLT of a 2a
p−1 -smooth function in `q, ψp,a is Ω(p−1

a )-strongly convex in `p by Lemma 5. In
applications we fix a value of η > 0, set a = Θ((p− 1)η), and use ηψp,a as our strongly convex regularizer
in `p. We next provide a bound on the range of ψp,a.

Lemma 19 Let a > 0 and let d ∈ N be at least a sufficiently large constant. The additive range of ψp,a
over {x ∈ Rd | ‖x‖p ≤ 1} is

O

(
1 +

1

a
+

√
d

a
log

(
a+

d

a

))
.

In particular, for a ≤ 1
d log d , the additive range is O( 1

a).

Proof Throughout the proof denote for simplicity ψ := ψp,a and let

Dϕx (y) ∝ exp
(
〈x, y〉 − a ‖y‖2q

)
be the associated density. By the characterization of∇ψ in Lemma 3 and the fact that the associated density
Dϕx is symmetric in y for x = 0, we have ∇ψ(0) = 0 and hence it suffices to bound ψ(x) − ψ(0) for
‖x‖q ≤ 1. We simplify this expression as

ψ(x)− ψ(0) = log

(∫
exp

(
〈x, y〉 − a ‖y‖2q

)
dy
)
− log

(∫
exp

(
−a ‖y‖2q

)
dy
)

= log

∫ exp (〈x, y〉)
exp

(
−a ‖y‖2q

)
∫

exp
(
−a ‖y‖2q

)
dy

dy

 = log
(
Ey∼Dϕ0 [exp (〈x, y〉)]

)
.

(11)
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Next, let π be the probability density on R≥0 such that

dπ(r) ∝ rd−1 exp
(
−ar2

)
dr.

We note dπ(r) is the density of the scalar quantity r = ‖y‖q for y ∼ Dϕ0 . This can be seen by taking a
derivative of the volume of the `p ball of radius r, which scales as rd, so the surface area of the ball scales
as rd−1. By Hölder’s inequality, 〈x, y〉 ≤ ‖y‖q for all y, since ‖x‖p ≤ 1. We then continue (11) and bound
ψ(x)− ψ(0) ≤ log(Er∼π exp(r)), and the conclusion follows from Lemma 20.

Lemma 20 For any a > 0 and d ∈ N at least a sufficiently large constant,

log

(∫∞
0 exp

(
(d− 1) log r + r − ar2

)
dr∫∞

0 exp ((d− 1) log r − ar2) dr

)
≤ 8 +

8

a
+

√
8d

a
log

(
a+

d

a

)
.

Proof Throughout this proof let

Z :=

∫ ∞
0

exp
(
(d− 1) log r − αr2

)
dr =

Γ(d2)

2a
d
2

, τ := 7 +
8

a
+

√
8d

a
log

(
a+

d

a

)
.

Next we split the numerator of the left-hand side into two integrals:

I1 :=

∫ τ

0
exp

(
(d− 1) log r + r − ar2

)
dr,

I2 :=

∫ ∞
τ

exp
(
(d− 1) log r + r − ar2

)
dr.

It is immediate that I1 ≤ exp(τ)Z. Further, we recognize that for r ≥ τ ,

max (r, (d− 1) log r) ≤ ar2

4
.

The first piece in the maximum is clear from τ ≥ 4
a . The second follows since r2

log r is an increasing function

for r ≥ 7, and either 4d
a ≤ 10 in which case we use 72

log 7 ≥ 10, or we let C := 4d
a and use

r2

log r
≥ C for r ≥

√
2C log

C

4
, C ≥ 10.

Hence we may bound

I2 ≤
∫ ∞
τ

exp

(
−ar

2

2

)
=

√
2π

a
Pr

t∼N (0,a−1)
[t ≥ τ ] ≤ 2

aτ
exp

(
−aτ

2

2

)
.

Above, we used Mill’s inequality

Pr
t∼N (0,σ2)

[t ≥ τ ] ≤
√

2

π

σ

τ
exp

(
− τ2

2σ2

)
.

Further for our τ , our upper bound on I1 is larger than our upper bound on I2. To see this,

τ
(

1 +
aτ

2

)
+
d

3
log d ≥ d

2
log a =⇒ exp

(
τ
(

1 +
aτ

2

))
Γ

(
d

2

)
≥ a

d
2

=⇒
exp (τ) Γ(d2)

2a
d
2

≥ 4

aτ
exp

(
−aτ

2

2

)
.
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The first inequality is because aτ2 ≥ d log a. The first implication then follows by exponentiating and using
log Γ(d2) ≥ d

3 log d for sufficiently large d, and the second implication follows by rearranging and using
aτ ≥ 4. Finally the conclusion follows from

log

(∫∞
0 exp

(
(d− 1) log r + r − ar2

)
dr∫∞

0 exp ((d− 1) log r − ar2) dr

)
≤ log

(
2 exp(τ)Z

Z

)
≤ τ + 1.

Schatten-p norms. When the context is clearly about matrix spaces, we analogously define

ψp,a(X) := log

(∫
exp

(
〈X,Y〉 − a ‖Y‖2q

)
dy
)
.

The proof of Lemma 19 implies the following analogous range bound in this setting.

Corollary 21 Let a > 0 and let d1, d2 ∈ N be at least sufficiently large constants. The additive range of
ψp,a over {X ∈ Rd1×d2 | ‖X‖p ≤ 1} is

O

(
1 +

1

a
+

√
d1d2

a
log

(
a+

d1d2

a

))
.

In particular, for a ≤ 1
d1d2 log(d1d2) , the additive range is O( 1

a).

A.2. Zeroth-order private convex optimization

In this section, we consider a pair of closely-related problems in private convex optimization. Let S be
a domain, and let n ∈ N. We say that a mechanism (randomized algorithm) M : Sn → Ω satisfies
(ε, δ)-differential privacy (DP) if for any event S ⊆ Ω where Ω is the output space, and any two datasets
D,D′ ∈ Sn which differ in exactly one element,

Pr[M(D) ∈ S] ≤ exp(ε) Pr[M(D′) ∈ S] + δ.

We next define the private optimization problems we study.

Problem 22 (DP-ERM and DP-SCO) Let n ∈ N, ε, δ ∈ (0, 1), D,G ≥ 0, and let X ⊂ Rd be compact
and convex with diameter in a norm ‖·‖X at most D. Let P be a distribution over a set S such that for any
s ∈ S, there is a f(·; s) : X → R which is convex and G-Lipschitz in ‖·‖X . Let D := {si}i∈[n] consist of n
independent draws from P , and let fi := f(·; si) for all i ∈ [n].

In the differentially private empirical risk minimization (DP-ERM) problem, we receive D and wish to
design a mechanismM which satisfies (ε, δ)-DP and approximately minimizes

Ferm(x) :=
1

n

∑
i∈[n]

fi(x).

In the differentially private stochastic convex optimization (DP-SCO) problem, we receive D and wish to
design a mechanismM which satisfies (ε, δ)-DP and approximately minimizes

Fsco(x) := Es∼P [f(x; s)] .

22



ALGORITHMIC ASPECTS OF THE LLT

The following powerful general-purpose result was proven in Gopi et al. (2023) reducing the DP-ERM
and DP-SCO problems to logconcave sampling problems catered to the ‖·‖X geometry. We slightly improve
the parameter settings used by Theorem 4 of Gopi et al. (2023) for DP-SCO by noting that a smaller value
of k also suffices (due to the larger error bound), as observed by Gopi et al. (2022).

Proposition 23 (Theorem 3, Theorem 4, Gopi et al. (2023), Theorem 6.9, Gopi et al. (2022)) In the set-
ting of Problem 22, let k ≥ 0, and let r : X → R be 1-strongly convex with respect to ‖·‖X , with additive
range at most Θ. Let ν be the density on X satisfying dν(x) ∝ exp(−k(Ferm(x) + µr(x)))1X (x)dx. Then
the algorithm which returns a sample from ν for

k =

√
dnε

G
√

2Θ log 1
2δ

, µ =
2G2k log 1

2δ

n2ε2
,

satisfies (ε, δ)-DP, and guarantees

Ex∼ν [Ferm(x)]−min
x∈X

Ferm(x) ≤ O

G√Θ ·

√
d log 1

δ

nε

 .

Further, the algorithm which returns a sample from ν for

k =
1

G
√

Θ
·

√√√√(d log 1
2δ

ε2n2
+

1

n

)
·min

(
ε2n2

log 1
2δ

, nd

)
, µ = G2k ·max

(
log 1

2δ

n2ε2
,

1

nd

)

satisfies (ε, δ)-DP, and guarantees

Ex∼ν [Fsco(x)]−min
x∈X

Fsco(x) ≤ O

G√Θ ·


√
d log 1

δ

nε
+

1√
n

 .

Armed with Proposition 23 and the sampler in Theorem 16, we give our main results on Problem 22.

Assumption 24 Fix p ∈ [1, 2] and k, a, η, µ > 0. In the setting of Problem 22, assume there is an algorithm
A which returns a point drawn from a β-warm start to the density ν satisfying

dν(x) ∝ exp (−k (Ferm(x) + ηµψp,a(x))) 1X (x)dx.

Theorem 25 Let p ∈ [1, 2], ε, δ ∈ (0, 1). In the setting of Problem 22 where ‖·‖X is the `p norm on Rd,
there is an (ε, δ)-differentially private algorithmMerm which produces x ∈ X such that

EMerm [Ferm(x)]−min
x∈X

Ferm(x) = O

 GD√
p− 1

·

√
d log 1

δ

nε

 for p ∈ (1, 2],

EMerm [Ferm(x)]−min
x∈X

Ferm(x) = O

GD√log d ·

√
d log 1

δ

nε

 for p = 1.
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Further, there is an (ε, δ)-differentially private algorithmMsco which produces x ∈ X such that

EMsco [Fsco(x)]−min
x∈X

Fsco(x) = O

 GD√
p− 1

·

 1√
n

+

√
d log 1

δ

nε

 for p ∈ (1, 2],

EMsco [Fsco(x)]−min
x∈X

Fsco(x) = O

GD√log d ·

 1√
n

+

√
d log 1

δ

nε

 for p = 1.

BothMerm andMsco call A in Assumption 24, appropriately parameterized, once.Merm uses

O

((
1 +

n2ε2

log 1
δ

)
log

(
(1 + nε) log β

δ

)
log

β

δ

)
.

additional value queries to some f(·; si), andMsco uses

O

(
min

(
nd, 1 +

n2ε2

log 1
δ

)
log

(
(1 + nε) log β

δ

)
log

β

δ

)

additional value queries to some f(·; si).

Proof First, we slightly simplify the setting of Problem 22. We may first assume that D = 1, i.e. X
has diameter at most 1 in ‖·‖X . If the diameter is bounded by some D 6= 1, we can rescale the domain
X ← 1

DX , and remap to the modified functions f(x; s) ← f(Dx; s) over this modified domain for all
s ∈ S. It is clear the Lipschitz constant rescales asG← GD as a result. Next, we assume (nε)2 ≥ dΘ log 1

δ
where Θ = min( 1

p−1 , log d). In the other case, in light of the diameter bound on X and the Lipschitz
assumption, returning a random point in X attains the error bound claimed. Finally, assume p ∈ (1, 2], as
otherwise we set p ← 1 + 1

log d , which only affects bounds by constant factors, since ‖·‖p is affected by
O(1) multplicatively everywhere under this change.

Under these simplifications, we choose the parameters k and µ according to Proposition 22 for each
problem. Assume for now that Θ for the regularizer r we choose is bounded by a universal constant times

1
p−1 . Then the Lipschitz constant of kFerm in either case of Proposition 22 is

kG = Ω

min

√(p− 1)dnε√
log 1

δ

, d
√
n

 = Ω(d),

as implied by our earlier simplification. We hence may choose I to be uniform over [n], and

η = O

(
1

k2G2 log (1+nε) log β
δ

)

for a sufficiently small constant to use Theorem 16. Under this setting we certainly have η = O( 1
d2

), so
letting r := 12ηψp,a for a := η(p−1)

2 shows that r is 12η times the LLT of an η-smooth function in `q. By
Lemma 5, r is indeed 1-strongly convex in `p, and Lemma 19 bounds its range by Θ = O( 1

p−1) satisfying
our earlier assumption, where we use a = O( 1

d2
). The runtime finally follows by applying our choices of

k, µ in Proposition 23, with our choice of η, in Theorem 16, where we ensure that η · kµ ≤ 1 by choosing
a smaller η if this is not the case (so Theorem 16 applies). Finally, to account for total variation error in our
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sampler, it suffices to adjust the failure probability δ by a constant and take a union bound over the privacy
definition and the failure of Theorem 16.

By combining the proof strategy of Theorem 25 with Corollary 21 instead of Lemma 19, we immediately
obtain the following corollary in the case of Schatten norms.

Corollary 26 Let p ∈ [1, 2], ε, δ ∈ (0, 1). In the setting of Problem 22 where ‖·‖X is the Schatten-p norm
on Rd1×d2 , there is an (ε, δ)-differentially private algorithmMerm which produces X ∈ X such that

EMerm [Ferm(X)]− min
X∈X

Ferm(X) = O

 GD√
p− 1

·

√
d1d2 log 1

δ

nε

 for p ∈ (1, 2],

EMerm [Ferm(X)]− min
X∈X

Ferm(X) = O

GD√log(d1d2) ·

√
d1d2 log 1

δ

nε

 for p = 1.

Further, there is an (ε, δ)-differentially private algorithmMsco which produces X ∈ X such that

EMsco [Fsco(X)]− min
X∈X

Fsco(X) = O

 GD√
p− 1

·

 1√
n

+

√
d1d2 log 1

δ

nε

 for p ∈ (1, 2],

EMsco [Fsco(X)]− min
X∈X

Fsco(X) = O

GD√log(d1d2) ·

 1√
n

+

√
d1d2 log 1

δ

nε

 for p = 1.

BothMerm andMsco call A in Assumption 24, appropriately parameterized, once.Merm uses

O

((
1 +

n2ε2

log 1
δ

)
log

(
(1 + nε) log β

δ

)
log

β

δ

)
.

additional value queries to some f(·; si), andMsco uses

O

(
min

(
nd1d2, 1 +

n2ε2

log 1
δ

)
log

(
(1 + nε) log β

δ

)
log

β

δ

)
additional value queries to some f(·; si).

A.3. Oracle access for ψp,a
In Theorem 25 and Corollary 26, we only bounded the value oracle complexity of our sampling algorithms.
The remainder of the steps in Algorithm 1 and its subroutine Algorithm 2 require samples from densities
of the form dπx (for some x ∈ X ) or dγy (for some y ∈ Rd), defined in (9) and (24) respectively and
reproduced here for convenience:

dπx(y) = exp (〈x, y〉 − ψ(x)− ϕ(y)) dy,

dγy(x) ∝ exp (−ηµψ(x)− (ψ(x)− 〈x, y〉)) 1X (x)dx.
(12)

These densities are independent of the function F in Problem 10 and hence do not require additional value
oracle queries in the setting of Problem 10. In general, the complexity of these steps depends on the com-
plexity of the functions ϕ and ψ, and the set X . We now discuss strategies for sampling from πx and γy in
specific settings described by Appendix A.1, which we first briefly summarize.
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(1) We describe a method based on the inverse Laplace transform for sampling from πx and evaluating
ψp,a with complexity linear in the dimension d in the vector setting.

(2) Under efficient value oracle access to ψp,a and membership oracle access to X , general-purpose re-
sults Lovász and Vempala (2007); Jia et al. (2021); Jambulapati et al. (2022) imply polynomial-time
samplers for γy.

(3) We discuss generalizations of these methods to the matrix setting, and naı̈ve sampling methods. We
draw a loose connection to the HCIZ integral from harmonic analysis, and suggest how it may poten-
tially help in the structured sampling task for LLTs in Schatten norms.

`p setting. We first discuss the case when X ⊂ Rd is a set on vectors equipped with the `p norm for some
p ∈ [1, 2], and we let q ≥ 2 satisfy 1

p + 1
q = 1. We follow the notation (10).

In order to sample from the density πx, we use an inverse Laplace transform decomposition. For a
parameter c ∈ [0, 1), we define the density µc supported on R≥0, such that for all t ≥ 0,

exp(−tc) =

∫ ∞
0

exp (−λt)µc(λ)dλ. (13)

Intuitively, the density µc(λ) and the corresponding decomposition (inverse Laplace transform) (13) aims to
express the more heavy-tailed function exp(−tc) as a distribution over the lighter-tailed functions exp(−λt).
The inverse Laplace transform densities µc are well-studied in the probability theory literature, and corre-
spond to stable count distributions parameterized by c. For example, it is well-known that µ 1

2
is the Lévy

distribution

dµ 1
2
(λ) =

1

2
√
πλ

3
2

exp

(
− 1

4λ

)
dλ.

We refer the reader to references e.g. Mainardi (2007) on properties of the densities µc, and for now assume
we can access and sample from these one-dimensional distributions in closed form for simplicity. Given this
decomposition, we can then write

exp(ψp,a(x)) =

∫
exp

(
〈x, y〉 − a ‖y‖2q

)
dy

=

∫ ∞
0

(∫
exp

(
〈x, y〉 − λa

q
2 ‖y‖qq

)
dy
)
µ 2
q
(λ)dλ

=

∫ ∞
0

∏
i∈[d]

(∫ ∞
−∞

exp
(
xiyi − λa

q
2 yqi

)
dyi

)
µ 2
q
(λ)dλ.

(14)

The decomposition (14) reduces the problem of sampling from πx to d one-dimensional problems. To
sample ∝ exp(〈x, y〉 − a ‖y‖2q), we can first sample λ from the density µc for c = 2

q , and then sample each

coordinate yi proportionally to exp(xiyi − λa
q
2 yqi ) conditioned on the sampled λ.

This decomposition also gives us an efficient value oracle forψp,a, by evaluating (14) as a one-dimensional
integral over λ, where the integrand may be evaluated as a product of d one-dimensional integrals. Under
membership oracle access to X , the problem of sampling from γy then falls under a generic logconcave
sampling setup studied in a long line of work building upon Dyer et al. (1991). The state-of-the-art general-
purpose logconcave sampler, which combines the algorithms of Lovász and Vempala (2007); Jia et al. (2021)
with the isoperimetric bound in Jambulapati et al. (2022) (improving recent breakthroughs by Chen (2021);
Klartag and Lehec (2022)), requires roughly d3 value oracle calls to ψp,a and membership oracle calls to X .

In principle, for structured sets X (such as `p balls), the particular explicit structure of ψp,a and X may
be exploited to design more efficient samplers for the densities γy, analogously to our custom linear-time
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sampler for πx. However, it should be noted that the sampling problem for γy appears to be quite a bit
more challenging than the problem for πx. We leave the investigation of explicit sampler design for γy as
an interesting open problem for future work.

Schatten-p setting. The situation is somewhat less straightforward in the matrix case. Here, the key
computational problem in replicating the strategy suggested by (14) is evaluating the integral∫

exp
(
〈X,Y〉 − C ‖Y‖qq

)
dY, (15)

where the integral is over Y ∈ Rd1×d2 , and X ∈ Rd1×d2 , C > 0 are fixed. The difficulty is 〈X,Y〉
decomposes coordinatewise, whereas ‖Y‖qq decomposes spectrally.8 At least superficially, this is similar to
the challenge faced when evaluating the Harish-Chandra-Itzykson-Zuber (HCIZ) formula∫

exp
(

Tr
(
AUBU†

))
dU, (16)

where the integral is over the Haar measure on (complex) unitary matrices U, and A, B are Hermitian. By
dropping the −C ‖Y‖qq term in (15) and only integrating over unitary conjugations of a fixed matrix Y,
we arrive at a generalization of (16). The difficulty in evaluating (16) is also a sort of tension between the
eigenspaces of A and B. Nonetheless, (16) has a (polynomial-time computable) exact formula, which was
famously discovered independently by Harish-Chandra (1957); Itzykson and Zuber (1980). Furthermore,
Leake et al. (2021) recently obtained a polynomial-time sampler for the density induced by (16); while a
sampler for (15) would follow from logconcavity and general-purpose results, it would be far from cheap,
so ways of exploiting structure are fruitful to explore.

As a proof-of-concept, evaluating the integral (15) in (polynomial-time computable) closed form is a
minimal requirement for implementing the X-oracles in (12) used by our algorithm. Even this problem ap-
pears challenging, but (as summarized cleanly by Tao (2013); McSwiggen (2021)) a plethora of techniques
exist for proving the HCIZ formula, some based on tools from stochastic processes. We pose the efficient
computability of the integral (15) as another explicit open question.

Appendix B. Deferred proofs from Section 3

Lemma 27 (LLT derivatives) For any x, h ∈ Rd, we have ∇ψ(x) = µ(Dϕx ) := Ey∼Dϕx [y], ∇2ψ(x) =

Cov(Dϕx ) := Ey∼Dϕx
[
(y − µ(Dϕx ))(y − µ(Dϕx ))>

]
, ∇3ψ(x)[h, h, h] = Ey∼Dϕx

[
〈y − µ(Dϕx ), h〉3

]
.

Proof For any x ∈ Rd, a straightforward calculation shows that

∇ψ(x) = ∇
(

log

∫
exp (〈x, y〉 − ϕ(y)) dy

)
=

∫
exp (〈x, y〉 − ϕ(y)) ydy∫
exp (〈x, y〉 − ϕ(y)) dy

= µ(Dϕx ).

Further,

∇2ψ(x) = ∇
(∫

exp (〈x, y〉 − ϕ(y)) ydy∫
exp (〈x, y〉 − ϕ(y)) dy

)
=

∫
exp (〈x, y〉 − ϕ(y)) yy>dy∫

exp (〈x, y〉 − ϕ(y)) dy
−
(∫

exp (〈x, y〉 − ϕ(y)) ydy
) (∫

exp (〈x, y〉 − ϕ(y)) ydy
)>(∫

exp (〈x, y〉 − ϕ(y)) dy
)2 .

8. Note that because ‖·‖q is unitarially invariant, we may assume X is diagonal.
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Finally,

∇3ψ(x)[h, h, h] = h>∇

(∫
exp (〈x, y〉 − ϕ(y))

(
y>h

)2 dy∫
exp (〈x, y〉 − ϕ(y)) dy

−
(∫

exp (〈x, y〉 − ϕ(y)) y>hdy
)2(∫

exp (〈x, y〉 − ϕ(y)) dy
)2

)

=

∫
exp (〈x, y〉 − ϕ(y))

(
y>h

)3 dy∫
exp (〈x, y〉 − ϕ(y)) dy

+ 2

(∫
exp (〈x, y〉 − ϕ(y)) y>hdy∫

exp (〈x, y〉 − ϕ(y)) dy

)3

−
3
∫

exp (〈x, y〉 − ϕ(y))
(
y>h

)2 dy
∫

exp (〈x, y〉 − ϕ(y)) y>hdy(∫
exp (〈x, y〉 − ϕ(y)) dy

)2 .

Lemma 28 (Self-concordance) If ψ is the LLT of a convex function, it is self-concordant.

Proof By the definition of self-concordance and Lemma 3, it suffices to show for any h ∈ Rd,

Ey∼Dϕx [〈y − µ(Dϕx ), h〉]3 ≤ 2
(
Ey∼Dϕx

[
〈y − µ(Dϕx ), h〉2

]) 3
2
. (17)

We then note that the random variable 〈y−µ(Dϕx ), h〉 for y ∼ Dϕx follows a logconcave distribution because
affine transformations preserve logconcavity. Finally Lemma 2 of Bubeck and Eldan (2019) implies (17)
holds.

Lemma 29 Suppose F : Rd → R is L-smooth in ‖·‖. Let π be the distribution on X given by π(x) ∝
exp(−F (x)), and for any u ∈ Rd, let π(u) be the distribution given by π(u)(x) ∝ exp(−F (x+ u)). Then,
for any α ≥ 1,

Dα(π(u)‖π) ≤ αL

2
‖u‖2 .

Proof Recall that L-smoothness of F implies that for any x, y ∈ Rd,

F (x) ≤ F (y) + 〈∇F (y), y − x〉+
L

2
‖y − x‖2 . (18)

For α > 1, applying (18) on (x, x+ u) and (x+ αu, x+ u) and taking a weighted combination gives

F (x+ αu) ≤ αF (x+ u) + (1− α)F (x) +
α(α− 1)L

2
‖u‖2 .

Let Z =
∫

exp(−F (x))dx which is the normalizing constant for all π(u). Then,

Dα(π(u)‖π) =
1

α− 1
log

∫
π(u)(x)α

π(x)α−1
dx

=
1

α− 1
log

∫
1

Z
exp (−αF (x+ u)− (1− α)F (x)) dx

≤ 1

α− 1
log

∫
1

Z
exp

(
−F (x+ αu) +

α(α− 1)L

2
‖u‖2

)
dx

=
1

α− 1
log exp

(
α(α− 1)L

2
‖u‖2

)
=
αL

2
‖u‖2 .

The case α = 1 follows by taking a limit as α→ 1.
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Lemma 30 Suppose φ : R→ R is convex and self-concordant. For any x ∈ R,

exp(−φ(x))√
φ′′(x)

≥ 1

12
min

{∫ x

−∞
exp(−φ(t))dt,

∫ ∞
x

exp(−φ(t))dt

}
.

Proof Assume φ′(x) ≥ 0 (the other case will follow analogously by bounding the integral on (−∞, x]).
Define r := x+ 1

4
√
φ′′(x)

. By self-concordance (Lemma 2), for all t ∈ [x, r],

1

2
φ′′(x) ≤ φ′′(t) ≤ 2φ′′(x).

Hence, we have for all t ∈ [x, r], since φ′(x) ≥ 0,

φ(t) = φ(x) + φ′(x)(t− x) +

∫ t

x
(t− s)φ′′(s)ds ≥ φ(x) +

1

4
(t− x)2φ′′(x). (19)

We use (19) to bound the integral on [x, r]:∫ r

x
exp(−φ(t))dt ≤ exp(−φ(x))

∫ r

x
exp

(
−1

4
(t− x)2φ′′(x)

)
dt

≤ exp(−φ(x))

∫ ∞
−∞

exp

(
−1

4
(t− x)2φ′′(x)

)
dt = 2

√
π · exp(−φ(x))√

φ′′(x)
.

(20)

Next, to bound the integral on [r,∞), we first observe

φ′(r) ≥ φ′(x) +

∫ r

x
φ′′(r)dt ≥ 1

2

∫ r

x
φ′′(x)dt ≥ 1

8

√
φ′′(x).

Hence, by convexity from r,∫ ∞
r

exp(−φ(t))dt ≤
∫ ∞
r

exp
(
−φ(r)− φ′(r)(t− r)

)
dt

≤ exp(−φ(x))

∫ ∞
r

exp

(
−1

8

√
φ′′(x)(t− r)

)
dt = 8 · exp(−φ(x))√

φ′′(x)
.

(21)

We used φ(r) ≥ φ(x) by convexity and φ′(x) ≥ 0. Combining (20) and (21) yields the claim.

Lemma 31 (Modification of the localization lemma, Kannan et al. (1995), Theorem 2.7) Let f1, f2, f3, f4

be four nonnegative functions on Rd such that f1 and f2 are upper semicontinuous and f3 and f4 are lower
semicontinuous, let c1, c2 > 0, and let φ : Rd → R be convex. Then, the following are equivalent:

• For every density π : Rd → R which is 1-relatively strongly logconcave in φ,(∫
f1(x)π(x)dx

)c1 (∫
f2(x)π(x)dx

)c2
≤
(∫

f3(x)π(x)dx
)c1 (∫

f4(x)π(x)dx
)c2

.

• For every a, b ∈ Rd and γ ∈ R,(∫ 1

0
f1((1− t)a+ tb)eγt−φ((1−t)a+tb)dt

)c1 (∫ 1

0
f2((1− t)a+ tb)eγt−φ((1−t)a+tb)dt

)c2
≤
(∫ 1

0
f3((1− t)a+ tb)eγt−φ((1−t)a+tb)dt

)c1 (∫ 1

0
f4((1− t)a+ tb)eγt−φ((1−t)a+tb)dt

)c2
.
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Proof The proof follows identically to the case where φ = 0, which was proven in Lovász and Simonovits
(1993); Kannan et al. (1995) via a bisection argument (see Lemma 2.5, Lovász and Simonovits (1993)). The
only fact the bisection argument relies on is that restricting logconcave densities to subsets of Rd preserves
logconcavity, which remains true for densities which are relatively strongly logconcave with respect to a
given convex function. For a more formal treatment of this generalized bisection argument, see Lemma 1 of
Gopi et al. (2023). Finally the change on the continuity assumptions on the {fi}i∈[4] follows by Remark 2.3
of Kannan et al. (1995).

Lemma 32 (Self-concordant isoperimetry) Let φ : Rd → R be convex and self-concordant, and let
f : Rd → R be m-relatively strongly convex in φ. Given any partition S1, S2, S3 of Rd,∫

S3
exp (−f(x)) dx

min
{∫

S1
exp(−f(x))dx,

∫
S2

exp(−f(x))dx
} = Ω

(√
mdφ(S1, S2)

)
,

where dφ(S1, S2) = minx∈S1,y∈S2 dφ(x, y).

Proof We assume m = 1 by rescaling φ ← mφ which results in dφ(S1, S2) ←
√
mdφ(S1, S2). We first

show that without loss of generality, we can assume

max
i∈{1,2}

∫
Si

exp(−f(x))dx∫
exp(−f(x))dx

= Ω(1). (22)

To see this, let S?1 , S
?
2 and S?3 be the partition that achieves the minimum of

β(S1, S2, S3) =

∫
S3

exp (−f(x)) dx

dφ(S1, S2) min
{∫

S1
exp(−f(x))dx,

∫
S2

exp(−f(x))dx
} .

Let δ = dφ(S?1 , S
?
2). For any z ∈ S?3 , let x ∈ S?1 minimize dφ(x, z) and let y ∈ S?2 minimize dφ(y, z). By

the triangle inequality we have
dφ(x, z) + dφ(y, z) ≥ δ

and hence max(dφ(x, z), dφ(y, z)) ≥ δ
2 . Consequently we can partition S?3 into S′3 and S′′3 such that

dφ(S?1 , S
′
3) ≥ δ

2 and dφ(S?2 , S
′′
3 ) ≥ δ

2 by placing each z into an appropriate set. Moreover, we can as-
sume without loss of generality that ∫

S′3
exp (−f(x)) dx

δ
2 min

{∫
S?1

exp(−f(x))dx,
∫
S?2

exp(−f(x))dx
} ≤ β.

as otherwise the above is true for S′′3 . Thus, β(S?1 ∪S′′3 , S?2 , S′3) ≤ β(S?1 , S
?
2 , S

?
3), proving (22) (else we may

halve the measure of S3). Given (22), it suffices to show that there is a constant C with

Cdφ(S1, S2)

∫
exp(−f(x))1S1(x)dx

∫
exp(−f(x))1S2(x)dx

≤
∫

exp(−f(x))dx
∫

exp(−f(x))1S3(x)dx.
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Using the localization lemma (Lemma 31), letting fi = 1Si for i ∈ [3] and f4 = (Cdφ(S1, S2))−1,9 it
suffices to prove for every a, b ∈ Rd and γ ∈ R,

Cdφ(S1, S2)

∫ 1

0
exp (γt− φ((1− t)a+ tb)) 1S1((1− t)a+ tb)dt

·
∫ 1

0
exp (γt− φ((1− t)a+ tb)) 1S2((1− t)a+ tb)dt

≤
∫ 1

0
exp (γt− φ((1− t)a+ tb)) dt

∫ 1

0
exp (γt− φ((1− t)a+ tb)) 1S3((1− t)a+ tb)dt.

Redefine φ(t) ← φ((1 − t)a + tb) − γt for t ∈ R, which is a one-dimensional self-concordant function,
and redefine Si ← {t | (1 − t)a + tb ∈ Si} for i ∈ [3], such that each Si is a union of intervals. It is
straightforward to check that the distance dφ(S1, S2) only increases under this transformation, because it
can only take fewer paths, and each path has the same length (the change in

√
φ′′ is negated by the change

in distance traveled by the path).
So, it suffices to consider the special one-dimensional case with γ = 0, where dφ(x, y) =

∫ y
x

√
φ′′(t)dt.

We next note that it suffices to consider the case when S3 is a single interval, i.e. for any a ≤ a′ ≤ b′ ≤ b,
we have S1 = [a, a′], S2 = [b′, b], S3 = [a′, b′], and wish to show for some constant C∫ b′

a′ exp(−φ(t))dt∫ b′
a′

√
φ′′(t)dt

≥ C
∫ a′
a exp(−φ(t))dt

∫ b
b′ exp(−φ(t))dt∫ b

a exp(−φ(t))dt
. (23)

When S3 has multiple intervals, by Theorem 2.6 in Lovász and Simonovits (1993), we show (23) for each
interval in S3 and its adjacent segments in S1 and S2, and sum over all such inequalities. By Lemma 7,
when φ is convex and self-concordant, we have for any x ∈ [a, b],

exp(−φ(x))√
φ′′(x)

≥ 1

12
min

(∫ x

a
exp(−φ(t))dt,

∫ b

x
exp(−φ(t))dt

)

which combined with
∫ b′
a′ exp(−φ(t))dt∫ b′
a′
√
φ′′(t)dt

≥ minx∈[a′,b′]
exp(−φ(x))√

φ′′(x)
shows (23).

Lemma 33 (TV of induced distributions) For x, x′ ∈ Rd with dψ(x, x′) ≤ 1
4 ,
∥∥Dϕx −Dϕx′∥∥TV ≤

1
2 .

Proof Let h = x′ − x and note that the KL divergence between Dϕx and Dϕx′ may be rewritten as

DKL
(
Dϕx‖D

ϕ
x′
)

= Ey∼Dϕx

[
log

dDϕx
dDϕx′

(y)

]
= Ey∼Dϕx

[
ψ(x′)− ψ(x)− 〈h, y〉

]
= ψ(x′)− ψ(x)− 〈h,∇ψ(x)〉 .

In the last equation, we used Lemma 3. We recognize that the KL divergence is the Bregman divergence
(first-order Taylor approximation) in ψ, and hence letting xt = x + th for t ∈ [0, 1] such that x0 = x and
x1 = x′, we continue bounding

DKL
(
Dϕx‖D

ϕ
x′
)

=

∫ 1

0
(1− t)∇2ψ(xt)[h, h]dt

≤
∫ 1

0
4(1− t)∇2ψ(x)[h, h]dt ≤ 1

2
.

9. Without loss of generality we can assume S1 and S2 are closed (implying S3 is open) by taking their closures. This implies f1,
f2 are upper semicontinuous and f3, f4 are lower semicontinuous.

31



GOPI LEE LIU SHEN TIAN

The first inequality used that when dψ(x, x′) ≤ 1
4 , Lemma 1 shows ‖xt − x‖x ≤ ‖x′ − x‖x ≤

1
2 , so

Lemma 2 gives∇2ψ(xt) � 4∇2ψ(x); the second used ‖h‖x ≤
1
2 . Finally by Pinsker’s inequality,

∥∥Dϕx −Dϕx′∥∥TV ≤
√

1

2
DKL(Dϕx‖Dϕx′) ≤

1

2
.

Appendix C. Deferred proofs from Section 4

Throughout this section, we assume the setting in Problem 10, and fix some y ∈ Rd. We provide a sampler
for the marginal density πy (following notation (9)), and denote the component of the density independent
of F by γy, i.e.

dγy(x) ∝ exp (−ηµψ(x)− (ψ(x)− 〈x, y〉)) 1X (x)dx. (24)

By Lemma 5, γy (and hence πy) is 1
η -strongly logconcave in ‖·‖X . Our rejection sampler leverages this

fact and the stochastic nature of F to build a rejection sampling scheme similarly to Gopi et al. (2022). For
completeness, we state our Algorithm 2 below, and provide the details of its analysis here.

Algorithm 2: InnerLoop(y, δ,X , F, ϕ, µ)

1 Input: δ ∈ (0, 1
2), y ∈ Rd, X , F, ϕ in the setting of Problem 10 for 1

η ≥ 104G2 log 1
δ

2 Output: Sample within total variation distance δ of

dπy(x) ∝ exp (−F (x)− ηµψ(x)− (ψ(x)− 〈x, y〉)) 1x∈X dx.

3 u← 1, ρ← 1
4 while u > 1

2ρ do
5 Sample x1, x2 ∼ γy defined in (24) independently
6 ρ← 1, u ∼unif. [0, 1]
7 Draw a ∈ N such that for all b ∈ N, Pr[a ≥ b] = 1

b!
8 for b ∈ [a] do
9 Draw ji,b ∼ I for i ∈ [b]

10 ρ← ρ+
∏
i∈[b](fji,b(x2)− fji,b(x1))

11 end
12 end
13 Return: x1

In order to analyze Algorithm 2, we first state a general result about concentration of Lipschitz functions
with respect to a strongly logconcave measure, in general norms. The following is a direct adaptation of
standard results on log-Sobolev inequalities contained in Ledoux (1999); Bobkov and Ledoux (2000).

Lemma 34 (Ledoux (1999), Section 2.3 and Bobkov and Ledoux (2000), Proposition 3.1) Let X ∼ π
for density π : X → R which is µ-strongly logconcave in ‖·‖X , and let ` : X → R be G-Lipschitz in ‖·‖X .
For all t ≥ 0,

Pr
x∼π

[`(x) ≥ Eπ[`] + t] ≤ exp

(
− µt

2

2G2

)
.

32



ALGORITHMIC ASPECTS OF THE LLT

In the remainder of the section, let π̃y be the distribution of the output of Algorithm 2 and recall the
target stationary distribution is πy. When ρ is clear from context, we define ρ̄ := med(0, ρ, 2) to be the
truncation of ρ to [0, 2]. We also denote the index set drawn on Line 9 by

J := {ji,b}b∈[a],i∈[b] ,

when a is clear from context. We first provide the following characterization of ‖πy − π̃y‖TV.

Lemma 35 Define rx to be the random variable E[ρ | x1 = x] (where the expectation is over x2, a, and
the random indices J , and similarly let r̄x := E[ρ̄ | x1 = x]. Then,

‖πy − π̃y‖TV ≤ Ex∼γy |rx − r̄x| .

Proof First, by definition of πy, we have

πy(x) =
exp(−F (x))γy(x)∫

exp(−F (w))γy(w)dw
= γy(x) · exp(−F (x))

Ew∼γy exp(−F (w))
. (25)

Moreover, by definition of the algorithm,

π̃y(x) =
γy(x) Pr[u ≤ 1

2ρ | x1 = x]

Pr[u ≤ 1
2ρ]

=
γy(x)E[ρ̄ | x1 = x]

E[ρ̄]
(26)

where all probabilities and expectations are x2, a, and J . Furthermore, note that for fixed b ∈ [a],

EJ

∏
i∈[b]

(fji,b(x2)− fji,b(x1))

 = (Ej∼I [fj(x2)− fj(x1)])b = (F (x2)− F (x1))b.

Hence, taking expectations over a, we have for any fixed x1, x2,

E [ρ | x1, x2] =
∑
b≥0

Pr[a ≥ b](F (x2)− F (x1))b

=
∑
b≥0

1

b!
(F (x2)− F (x1))b = exp (F (x2)− F (x1)) .

(27)

Next, by combining (25) and (26), we have

‖π − π̃‖TV =
1

2

∫ ∣∣∣∣ exp(−F (x))

Ew∼γy exp(−F (w))
− E[ρ̄ | x1 = x]

E[ρ̄]

∣∣∣∣ γy(x)dx

=
1

2
Ex∼γy

[∣∣∣∣ exp(−F (x))

Ew∼γy exp(−F (w))
− E[ρ̄ | x1 = x]

E[ρ̄]

∣∣∣∣] .
By taking expectations over x2 in (27), and recalling the definitions of rx, r̄x, we obtain rx = E[ρ | x1 =
x] = exp(−F (x))Ex2∼γy exp(F (x2)). We thus have

‖π − π̃‖TV =
1

2
Ex∼γy

[∣∣∣∣ rx
Ew∼γyrw

− r̄x
Ew∼γy r̄w

∣∣∣∣] .
Next, we lower bound Ew∼γyrw as follows. By taking expectations over (27) and using independence of x1

and x2, we have that for the random variable Z = exp(−F (x)) where x ∼ γy, we have

Ew∼γyrw = (EZ) ·
(
EZ−1

)
≥ 1, (28)
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where we used Jensen’s inequality which implies the last inequality for any nonnegative random variable Z.
Finally, combining the above two displays, we derive the desired bound as follows:

1

2
Ex∼γy

[∣∣∣∣ rx
Ew∼γyrw

− r̄x
Ew∼γy r̄w

∣∣∣∣] ≤ 1

2
Ex∼γy

[∣∣∣∣ rx
Ew∼γyrw

− r̄x
Ew∼γyrw

∣∣∣∣]
+

1

2
Ex∼γy

[∣∣∣∣ r̄x
Ew∼γyrw

− r̄x
Ew∼γy r̄w

∣∣∣∣]
≤ 1

2
Ex∼γy [|rx − r̄x|] +

Ex∼γy [|r̄x|]
2

·
∣∣∣∣ 1

Ew∼γy r̄w
− 1

Ew∼γyrw

∣∣∣∣
=

1

2
Ex∼γy [|rx − r̄x|] +

1

2

∣∣∣∣1− Ex∼γy r̄x
Ex∼γyrx

∣∣∣∣
≤ 1

2
Ex∼γy [|rx − r̄x|] +

1

2|Ex∼γyrx|
· Ex∼γy [|rx − r̄x|]

≤ Ex∼γy [|rx − r̄x|] .

In the second and last inequalities, we use the bound (28). The third line follows since r̄x is always nonneg-
ative by definition, and the third inequality used convexity of | · |.

Lemma 35 shows it remains to bound Ex∼γy |rx − r̄x|. Fixing x1 and x2, we know ρ and ρ̄ as random
variables of a and J are equal, except for the effect of truncating ρ to [0, 2]. Hence,

Ex∼γy |rx − r̄x| ≤ E[|ρ|1ρ 6∈[0,2]]. (29)

In the remainder of the section, define

H :=

⌈
10 log

1

δ

⌉
. (30)

We then let
λ :=

∑
b>H

1a≥b
∏
i∈[b]

(fji,b(x2)− fji,b(x1)),

σ :=

H∑
b=0

1a≥b
∏
i∈[b]

(fji,b(x2)− fji,b(x1)),

(31)

be random variables depending on the choices of x1, x2, a,J , where λ captures the effect of the “large” b,
and σ captures the effect of the “small” b (where the b = 0 term is 1 by convention). Since ρ = σ + λ, in
light of (29) it suffices to bound E[|σ|1ρ6∈[0,2]] + E[|λ|1ρ 6∈[0,2]], as

Ex∼γy |rx − r̄x| ≤ E[|ρ|1ρ 6∈[0,2]] ≤ E[|σ|1ρ6∈[0,2]] + E[|λ|1ρ 6∈[0,2]]. (32)

We next provide bounds on λ and σ, using small modifications to Gopi et al. (2022).

Lemma 36 For λ defined in (31),

E
[
|λ|1ρ6∈[0,2]

]
≤ δ

4
.

Proof Clearly, it suffices to show E|λ| ≤ δ
4 . Define random variables,

∆i := |fi(x2)− fi(x1)|, ∆ := Ei∼I∆i,
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whose randomness comes from x1, x2 ∼ γy. By definition,

E|λ| =
∑
b>H

1

b!
Ex1,x2∼γ [∆]B.

Define Φ(t) :=
∑

b>H
tb

b! . For H = d10 log 1
δ e, it is straightforward to check Φ(t) ≤ δ

16 for any |t| ≤ 1,
and for all nonnegative t, Φ(t) ≤ exp(t). Hence, letting p∆ be the density of ∆,

E|λ| ≤ δ

16
+ E[1∆>1e

∆] ≤ δ

16
+

∫ ∞
1

exp (d∆e) p∆(∆)d∆

≤ δ

16
+
∑
k≥1

exp(k + 1) Pr
x1,x2∼γ

[∆ ≥ k].
(33)

It now suffices to bound on Pr[∆ ≥ k]. Define a function hx1,x2(k) := Pri∼I [|fi(x1)−fi(x2)| ≥ k]. Since
each fi is G-Lipschitz, and γy is 1

12η -strongly logconcave in by Lemma 5, by Lemma 34:

Ex1,x2 [hx1,x2(k)] = Pr
x1,x2,i∼I

[|fi(x1)− fi(x2)| ≥ k] ≤ 4 exp

(
− k2

96ηG2

)
,

and so by Markov’s inequality we have

Pr
x1,x2

[hx1,x2(k) ≥ e−t] ≤ 4 exp

(
t− k2

96ηG2

)
. (34)

For fixed x1, x2, as each fi is G-Lipschitz in ‖·‖X , |fi(x1)− fi(x2)| ≤ G ‖x1 − x2‖X , and hence

Ei∼I [|fi(x1)− fi(x2)|] ≤ min
k≥0

k + hx1,x2(k) ·G ‖x1 − x2‖X .

This then shows that if for some k, hx1,x2(k) ≤ exp(− k2

192ηG2 ),

Ei∼I [|fi(x1)− fi(x2)|] ≤ k + exp

(
− k2

192ηG2

)
·G ‖x1 − x2‖X ,

which implies via (34) that

Pr
x1,x2

[
∆ ≥ k + exp

(
− k2

192ηG2

)
·G ‖x1 − x2‖X

]
≤ Pr

x1,x2

[
hx1,x2(k) ≥ exp

(
− k2

192ηG2

)]
≤ 4 exp

(
− k2

192ηG2

)
.

(35)

Further, since ‖x1 − Ex1‖X is a 1-Lipschitz function in x1 with a nonnegative mean, by Lemma 34,

Pr [‖x1 − x2‖X ≥ k] ≤ 2 Pr [‖x1 − Ex1‖X ≥ k] ≤ 2 exp

(
− k2

96ηG2

)
. (36)

Combining (35) and (36),

Pr
x1,x2

[∆ ≥ 2k] = Pr
x1,x2

[
∆ ≥ 2k ∧ ‖x1 − x2‖X ≥

k

G

]
+ Pr
x1,x2

[
∆ ≥ 2k ∧ ‖x1 − x2‖X ≤

k

G

]
≤ 2 exp

(
− k2

96ηG2

)
+ Pr
x1,x2

[
∆ ≥ k + exp

(
− k2

192ηG2

)
G ‖x1 − x2‖X

]
≤ 6 exp

(
− k2

192ηG2

)
.

(37)
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Plugging (37) into (33), and using η−1 ≥ 104G2 log 1
δ , we have the desired

E(|λ|1ρ/∈[0,2]) ≤
δ

16
+
∞∑
k=1

6 exp

(
k − k2

768ηG2

)
≤ δ

4
.

Lemma 37 For σ defined in (31),

E
[
|σ|1ρ 6∈[0,2]

]
≤ δ

4
.

Proof We begin by bounding, analogously to (33),

E[|σ|1ρ/∈[0,2]] ≤ 2H Pr[ρ /∈ [0, 2]] +
∑
k≥1

Pr
[
|σ| > 2kH

]
2(k+1)H . (38)

Recall when a ≤ H , |J | ≤ 1
2H

2. By a union bound over Lemma 34,

Pr
x1,x2

[
|fi(x1)− fi(x2)| ≥ 2k

3
∀i ∈ J

]
≤ H2 exp

(
− 4k

864ηG2

)
.

If for each i ∈ J , |fi(x1)− fi(x2)| ≤ 2k

3 , we have for k ≥ 1

|σ| =
H∑
b=0

1a≥b
∏
i∈[b]

(fji,b(x2)− fji,b(x1)) ≤ 1 +

H∑
b=1

(
2k

3

)b
≤ 2kH ,

which implies that Pr[|σ| ≥ 2kH ] ≤ H2 exp(− 4k

864ηG2 ) and hence using our choice of η ≤ 1
500G2H

,

∞∑
k=1

2(k+1)H Pr
[
|σ| > 2kH

]
≤
∞∑
k=1

2(k+1)HH2 exp

(
− 4k

864ηG2

)

≤
∞∑
k=1

24kH exp(−2 · 4kH) ≤
∞∑
k=1

2−kH ≤ δ

8
.

(39)

It remains to bound Pr[ρ /∈ [0, 2]]. Recall Pr[a > H] ≤ 1
H! so since a ≤ H =⇒ σ = ρ, Pr[ρ /∈ [0, 2]] ≤

1
H! + Pr[σ /∈ [0, 2]]. Next, by a union bound over Lemma 34 and 1

2H
2 indices in J ,

Pr
x1,x2

[
|fi(x1)− fi(x2)| ≥ 1

2
∀i ∈ I

]
≤ 2H2 exp

(
− 1

384ηG2

)
.

Under the event that |fi(x1) − fi(x2)| ≤ 1
2 for all i ∈ I, 0 ≤ σ ≤ 2 by definition. Hence we know

Pr[σ /∈ [0, 2]] ≤ 2H2 exp(− 1
384ηG2 ) and by our setting that H > 10 log 1

δ , we have

Pr[ρ /∈ [0, 2]] · 2H ≤ 2H
(

2H2 exp

(
− 1

384ηG2

)
+

1

H!

)
≤ δ

8
. (40)

Combining (38), (39) and (40) completes the proof.

Putting together these pieces, we finally obtain the following guarantee on Algorithm 2.
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Proposition 38 If η−1 = Ω(G2 log 1
δ ) for an appropriate constant, Algorithm 2 obtains total variation

distance to πy at most δ. In expectation, Algorithm 2 queries O(1) random fi and O(1) samples from γy.

Proof The total variation distance bound comes from combining Lemma 35, (32), Lemma 36, and Lemma 37.
Further, the end probability of each “while” loop is Pr[u ≤ 1

2ρ] = E[ρ̄] = Ex∼γ r̄x ≥ Ex∼γyrx −
Ex∼γy |r̄x − rx|. We proved in (28) that Ex∼γyrx ≥ 1, and combining (32), Lemma 36 and Lemma 37,
shows Ex∼γy |r̄x − rx| ≤ δ ≤ 1

2 . Hence the expected number of loops is ≤ 2, and each loop draws two
samples from γy, and O(1) many fi in expectation since Ea2 = O(1).

Finally, we prove the following (exponentially) warm start result from the main body.

Lemma 39 The density dν(x) ∝ exp(−ηµψ(x))1X (x)dx is exp(GD)-warm for π defined in (7).

Proof Note that for all x,w ∈ X , |F (x)− F (w)| ≤ GD. Further recall π ∝ exp(−F )ν. We conclude by

exp (−F (x)) ν(x)∫
X exp(−F (w))ν(w)dw

·
∫
X ν(w)dw
ν(x)

=

∫
X ν(w)dw∫

X exp(F (x)− F (w))ν(w)dw
≤ exp (GD) .

Appendix D. Information-theoretic lower bound

In this section, we show that prior information-theoretic lower bounds from Duchi et al. (2015) and Gopi
et al. (2022) can be straightforwardly extended to the settings studied by this paper to show that the value
oracle complexities used by our algorithms in Sections 3 and A are near-optimal. We first recall some
notation from prior work and summarize previous results we will leverage.

Setup. We consider the setting of stochastic optimization where there is a distribution over distributions
{Pv}v indexed by v. An index v is randomly selected, and we consider algorithms interacting with Pv in
one of two different ways. Letting k ∈ N andX ⊂ Rd, Duchi et al. (2015) defined a family of algorithms Ak
such thatA ∈ Ak can (adaptively) query a sequence of k values f(x; s) where x ∈ X and s is a fresh random
sample fromPv. The follow-up work Gopi et al. (2022) defined another family of algorithms Bk which takes
as input a dataset D = {si}i∈[n] and can (adaptively) query a sequence of k values f(x; s) where x ∈ X
and s ∈ D. These algorithm families model the SCO and ERM problems stated in Problem 22, without the
privacy requirement. In a slight abuse of notation, we denote the output of an algorithm A ∈ Ak ∪ Bk in
a SCO or ERM problem corresponding to a distribution P by A(P), where A ∈ Bk also depends on the
dataset received.

Both Duchi et al. (2015); Gopi et al. (2022) let v be drawn uniformly at random from V := {−1, 1}d
and let

Pv := N
(
κv, σ2Id

)
, f(x; s) := 〈s, x〉

for parameters κ, σ to be chosen. We fix this notation throughout this section. For any algorithmA ∈ Ak∪Bk
corresponding to a set X and a distribution P , we define the optimality gap

εk(A,X ,P) := E [Es∼Pf(A(P); s)]−min
x∈X

Es∼Pf(x; s),

where the first outer expectation is over any randomness inA, as well as in the samples used. We also define
the minimax risk over a family of distributions P ,

ε?k(Ak ∪ Bk, P,X ) := inf
A∈Ak∪Bk

sup
P∈P

εk (A,P,X ) .
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For p ∈ [1, 2], we let PG,p denote the family of distributions P over vectors s such that

Es∼P ‖s‖2q ≤ G
2, where

1

p
+

1

q
= 1.

Our lower bounds in this section will be on ε?k(Ak ∪ Bk, PG,p,X ), where X is a scaled `p ball. The family
PG,p induces random linear functions 〈s, ·〉 with gradient s, and hence P ∈ PG,p implies that the induced
function Es∼P 〈s, ·〉 has a bounded-variance gradient oracle in the `p norm via queries to P . We use the
following facts from prior work in our proofs.

Lemma 40 (Section 5.1, Duchi et al. (2015)) Let X be the `p ball of diameter D for p ∈ [1, 2]. For any
v ∈ V and x ∈ X , letting x?v := minx∈X Es∼Pvf(x; s), and letting 1(sign(a) = sign(b)) be the 0-1
function which is 1 if and only if the signs of a and b agree,

Es∼Pv [f(x; s)]− Es∼Pv [f(x?v; s)] ≥
(1− 1

p)κD

2d
1
p

∑
j∈[d]

1 (sign(xj) = sign(vj)) .

Lemma 40 shows that it suffices to lower bound the expected Hamming distance between the signs of
an estimate x and a randomly sampled −v. Such a lower bound was given in Duchi et al. (2015); Gopi et al.
(2022) for estimates returned by A ∈ Ak ∪ Bk via information-theoretic arguments.

Lemma 41 (Section 5.1, Duchi et al. (2015), Lemma 7.4, Gopi et al. (2022)) Let X be the `p ball of di-
ameter D, and let A ∈ Ak ∪ Bk be parameterized by X and Pv. Then

Ev∼unif.V

∑
j∈[d]

1(sign(A(Pv)j) = sign(vj))

 ≥ d

2

(
1− κ

√
k

σ
√
d

)
.

To lower bound the oracle query complexity of our sampler we use the following standard result.

Lemma 42 (De Klerk and Laurent (2018), Corollary 1) Let X ⊂ Rd be compact and convex, f : X →
R be convex, τ > 0, and π be the density over X proportional to exp(−τf). Then,

Ex∼π[f(x)]−min
x∈X

f(x) ≤ d

τ
.

Lower bounds. We now state three lower bounds generalizing results from Duchi et al. (2015); Gopi et al.
(2022). Our results follow straightforwardly from Lemmas 40, 41, and 42 with appropriate parameters.

Proposition 43 (Minimax risk lower bound, PG,p) LetG,D > 0, and let p ∈ [1, 2], q ≥ 2 satisfy 1
p+ 1

q =
1. Let X be the `p ball of diameter D. Then,

ε?k (Ak ∪ Bk, PG,p,X ) = Ω

(
GDmax

(
1− 1

p
,

1

log d

)
min

(
1,

√
d

k log d

))
.

Proof Throughout the proof, let κ = σ
√
d

2
√
k

, and let

σ =
Gd
− 1
q√

d
k + 4 log d

. (41)

38



ALGORITHMIC ASPECTS OF THE LLT

By well-known bounds on the expected maximum of d standard Gaussians, we have

Es∼Pv
[
‖s‖2q

]
≤ 2κ2 ‖v‖2q + 2Eu∼N (0,σ2Id)

[
‖u‖2q

]
≤ 2κ2d

2
q + 2d

2
qEu∼N (0,σ2Id)

[
‖u‖2∞

]
≤ σ2d

2
q

(
d

k
+ 4 log d

)
≤ G2.

Hence, Pv ∈ PG,p for all v ∈ V , so it suffices to lower bound εk(A,Pv,X ). Combining Lemmas 40 and 41
with our choices of parameters,

εk(A,Pv,X ) ≥
(1− 1

p)κDd
1− 1

p

8
= Ω

(
GD

(
1− 1

p

)
min

(
1,

√
d

k log d

))
.

The conclusion then follows because for p ≤ 1 + 1
log d , choosing a larger value of p only affects problem

parameters by constant factors by norm conversions.

We give a slight extension of Proposition 43 for the family PG,p of distributions over linear functions 〈s, ·〉,
where s is required to satisfy ‖s‖q ≤ G with probability 1, by simply truncating a draw from Pv. This
family is compatible with the setting in Problem 22.

Corollary 44 (Minimax risk lower bound, PG,p) In the setting of Proposition 43,

ε?k
(
Ak ∪ Bk, PG,p,X

)
= Ω

(
GDmax

(
1− 1

p
,

1

log d

)
min

(
1,

√
d

k log(dk)

))
.

Proof We define a distribution Pv as follows: first s ∼ Pv, and then if ‖s‖q ≥ G, we set s ← 0. By
adjusting the logarithmic term in (41) to be O(log(dk)), with probability at most poly((dk)−1), all k draws
from Pv and Pv used are identical by a union bound. Further, due to problem constraints the function error
is always at most GD. So, the risk is affected by at most GD · poly((dk)−1).

Corollary 44 shows that when β in Assumption 24 is polynomially bounded, the value oracle com-
plexities used by Theorem 25 for both DP-SCO and DP-ERM are optimal up to logarithmic factors for the
expected excess risk bounds they produce, even without the requirement of privacy. Finally, we show that
the value oracle complexity of our sampler in Theorem 16 is also near-optimal.

Corollary 45 In the setting of Proposition 43, let r : X → R be 1-strongly convex in ‖·‖p with additive
range O(D2 min(log d, 1

p−1)). Let I be a distribution over i such that all fi : X → R are G-Lipschitz

in ‖·‖p, and let F := Ei∼Ifi. No algorithm using o(G
2

µ log−4 d) value oracle queries to some fi samples
within total variation

o

(
min

(
1

log d
,

√
d

k log3(dk)

))
of the density proportional to exp(−F − µr(x))1X (x).

Proof Assume for contradiction thatA is an algorithm satisfying the stated criterion using k = o(G
2

µ log−4 d)
value oracle queries, and let F be minimized by x? ∈ X . We choose

µ =
d

D2 min(log d, 1
p−1)

.
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Lemma 42 then shows that the sampled x satisfies

Ex∼A [F (x)]− F (x?) ≤ µ (r(x?)− r(x)) + d+GD · o

(
min

(
1

log d
,

√
d

k log3(dk)

))

= O(d) + o

(
GD

log d
min

(
1,

√
d

k log(dk)

))
.

For the given values of k and µ, this contradicts Corollary 44.

Corollary 45 implies that for samplers with value query complexity depending polylogarithmically on
the total variation distance, G

2

µ queries are required (up to polylogarithmic factors). This applies to the set-
ting of our sampler in Theorem 16; we also note that the LLT-based regularizers we use in our `p applications
(Appendix A.2) satisfy the additive range bound in Corollary 45.

Appendix E. Lower bound on the range of ψ1,1

In this section, we provide a lower bound on the range of ψ1,1 (10) which grows with the dimension d,
demonstrating non-scale invariance of our family of LLTs. Recall that ψ1,1(x) is defined by

ψ1,1(x) := log

(∫
exp

(
〈x, y〉 − ‖y‖2∞

)
dy
)
.

Lemma 46 The additive range of ψ1,1 over {x ∈ Rd | ‖x‖1 ≤ 1} is Ω(
√
d).

Proof Throughout the proof denote for simplicity ψ := ψ1,1 and let

Dϕx (y) ∝ exp
(
〈x, y〉 − ‖y‖2∞

)
.

Then, following (11), we can write ψ(x)− ψ(0) as

ψ(x)− ψ(0) = log
[
Ey∼Dϕ0 exp(〈x, y〉)

]
,

where Dϕ0 ∝ exp(−‖y‖2∞). Let π be the probability density on R≥0 such that

dπ(r) ∝ rd−1 exp(−r2)dr.

Here, dπ(r) is the density of the scalar quantity r = ‖y‖∞ for y ∼ Dϕ0 . Note that the distribution of y
conditioned on ‖y‖∞ = r is uniform over the surface of the `∞ ball, where one random coordinate is set to
±r, and the remaining coordinates are uniform on a d − 1 dimensional hypercube with side length r. We
denote this distribution as Pr, and write

Ey∼Dϕ0 exp(〈x, y〉) = Er∼π [Ey∼Pr exp(〈x, y〉)]

= Er∼π

1

d

∑
i?∈[d]

1

2

∑
yi?∈{−r,r}

exp(xi?yi?)
∏
i 6=i∗

∫ r

−r

1

2r
exp(xiyi)dyi

 .
Let x = e1 and g(r)

i? = exp(xi?r)
∏
i 6=i?

∫ r
−r

1
2r exp(xiyi)dyi. Then,

Ey∼Dϕ0 exp(〈x, y〉) ≥ 1

2d

∑
i?∈[d]

Er∼π(r)g
(r)
i?
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since this drops terms where yi? = −r. When i? = 1, we have g(r)
i? = exp(r). When i? 6= 1, we have

g
(r)
i? =

∫ r

−r

1

2r
exp(y1)dy1 =

1

2r
(exp(r)− exp(−r)) .

Now, consider r1 =
√

d−1
2 . For any r ≤ r1, d

dr [(d− 1) log r − r2] = d−1
r − 2r ≥ 0. Thus, we have

I :=

∫ 1
2
r1

0
exp((d− 1) log r − r2)dr ≤

∫ r1

1
2
r1

exp((d− 1) log r − r2)dr. (42)

Letting Z :=
∫∞

0 exp((d− 1) log r − r2)dr, (42) shows that∫ ∞
1
2
r1

exp((d− 1) log r − r2)dr = Z − I ≥ Z − 1

2
Z =

1

2
Z.

Then, for all i? ∈ [d],

Er∼πgi? =

∫∞
0 exp((d− 1) log r − r2)g

(r)
i? dr

Z

≥

∫∞
1
2
r1

exp((d− 1) log r − r2)g
(r)
i? dr

Z

≥
2
∫∞

1
2
r1

exp((d− 1) log r − r2)g
(r)
i? dr∫∞

1
2
r1

exp((d− 1) log r − r2)dr

≥ 2 min
r≥r1

exp(r − log(4r)) = 2 exp(r1 − log(4r1)).

The fourth step follows from g
(r)
i? ≥

1
4r exp(r) for r ≥ r1. The last step follows from r − log 4r increases

on r ≥ r1. Combining with Ey∼P0 exp(〈x, y〉) ≥ 1
2d

∑
i?∈[d] Er∼π(r)gi? ,

ψ(x)− ψ(0) = logEy∼P0 exp(〈x, y〉) ≥ log

(
d− 1

d
exp(r1 − log(4r1))

)
= Ω(

√
d).
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