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Abstract
In this paper, we consider the sequential decision problem where the goal is to minimize the general
dynamic regret on a complete Riemannian manifold. The task of offline optimization on such a
domain, also known as a geodesic metric space, has recently received significant attention. The
online setting has received significantly less attention, and it has remained an open question whether
the body of results that hold in the Euclidean setting can be transplanted into the land of Riemannian
manifolds where new challenges (e.g., curvature) come into play. In this paper, we show how to get
optimistic regret bound on manifolds with non-positive curvature whenever improper learning is
allowed and propose an array of adaptive no-regret algorithms. To the best of our knowledge, this
is the first work that considers general dynamic regret and develops “optimistic” online learning
algorithms which can be employed on geodesic metric spaces.
Keywords: Riemannian Manifolds, Optimistic Online Learning, Dynamic Regret

1. Introduction

Online convex optimization (OCO) in Euclidean space is a well-developed area with numerous
applications. In each round, the learner takes an action from a decision set, while the adversary
chooses a loss function. The long-term performance metric of the learner is (static) regret, which is
defined as the difference between the learner’s cumulative loss and the loss of playing the best-fixed
decision in hindsight. As the name suggests, OCO requires both the losses and the decision set to be
convex. From the theoretical perspective, convex functions and sets are well-behaved objects with
many desirable properties that are generally required to obtain tight regret bounds.

Typical algorithms in OCO, such as mirror descent, determine how one should adjust parameter
estimates in response to arriving data, typically by shifting parameters against the gradient of the
loss. But in many cases of interest, the underlying parameter space is not only non-convex but non-
Euclidean. The hyperboloid, for example, arising from the solution set of a degree-two polynomial, is
a Riemannian manifold that has garnered interest as a tool in tree-embedding tasks (Lou et al., 2020).
On such manifolds, we do have a generalized notion of convexity, known as geodesic convexity
(Udriste, 2013). There are many popular problems of interest (Hosseini and Sra, 2015; Vishnoi, 2018;
Sra et al., 2018) where the underlying objective function is geodesically convex (gsc-convex) under a
suitable Riemannian metric. But there has thus far been significantly limited research on how to do
adaptive learning in such spaces and to understand when regret bounds are obtainable.
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Table 1: Summary of bounds. δ describes the discrepancy between the decision set and the compara-
tor set. We define ζ in Def. 1 and let BT := min{VT , FT }.

Algorithm Type Dynamic regret
RADAR Standard O(

√
ζ(1 + PT )T )

Lower bound Ω(
√
(1 + PT )T )

RADARv Gradient-variation O(
√
ζ(1+PT

δ2
+ VT )(PT + 1))

RADARs Small-loss O(
√
ζ((1 + PT )ζ + FT )(PT + 1))

RADARb Best-of-both-worlds O
(√

ζ(PT (ζ +
1
δ2 ) +BT + 1)(PT + 1) +BT lnT

)

Let N be a gsc-convex subset of a geodesic metric space M. In this paper, we consider the
problem of minimizing the general dynamic regret on N , defined as

D-RegretT :=

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut),

where x1, . . . ,xT ∈ N is the sequence of actions taken by the learner, whose loss is evaluated
relative to the sequence of “comparator” points u1, . . . ,uT ∈ N . There has been recent work
establishing that sublinear regret is possible as long as N and the ft’s are gsc-convex, for example
using a Riemannian variant of Online Gradient Descent (Wang et al., 2021). But so far there are no
such results that elicit better D-Regret using adaptive algorithms.

What do we mean by “adaptive” in this context? In the online learning literature there have
emerged three key quantities of interest in the context of sequential decision making, the comparator
path length, the gradient variation, and the comparator loss, defined respectively as:

PT :=
∑T

t=2 d(ut,ut−1), (1)

VT :=
∑T

t=2 supx∈N ∥∇ft−1(x)−∇ft(x)∥2,
FT :=

∑T
t=1 ft(ut).

Let us start by considering regret minimization with respect to path length. While it has been
observed that O(

√
(1 + PT )T ) is optimal in a minimax sense (Zhang et al., 2018), a great deal of

research for the Euclidean setting (Srebro et al., 2010; Chiang et al., 2012; Rakhlin and Sridharan,
2013) has shown that significantly smaller regret is achievable when any one of the above quantities
is small. These are not just cosmetic improvements either, many fundamental applications of online
learning rely on these adaptive methods and bounds. We give a thorough overview in Section 3.

The goal of the present paper is to translate to the Riemannian setting an array of adaptive
regret algorithms and prove corresponding bounds. We propose a family of algorithms which we
call RADAR, for Riemannian adaptive dynamic regret. The three important variants of RADAR are
RADARv, RADARs, and RADARb, we prove regret bounds on each, summarized in Table 1. We allow
improper learning for the gradient-variation bound, which means the player can choose x1, . . . ,xT
from a slightly larger set NδG (formally defined in Definition 2).

As a general matter, convex constraints on a Riemannian manifold introduce new difficulties in
optimization that are not typically present in the Euclidean case, and there has been limited work
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on addressing these. To the best of our knowledge, there are only three papers considering how to
incorporate constraints on manifolds, and these all make further assumptions on either the curvature
or the diameter of the feasible set. Martı́nez-Rubio (2022) only applies to hyperbolic and spherical
spaces. Criscitiello and Boumal (2022) works for complete Riemannian manifolds with sectional
curvature in [−K,K] but the diameter of the decision set is at most O( 1√

K
). Martı́nez-Rubio and

Pokutta (2022) mainly works for locally symmetric Hadamard manifolds. Our paper is the first to
consider the projective distortion in the online setting that applies to all Hadamard manifolds as long
as improper learning is allowed without imposing further constraints on the diameter or the curvature.

Obtaining adaptive regret guarantees in the Riemannian setting is by no means a trivial task,
as the new geometry introduces various additional technical challenges. Here is but one example:
whereas the cost of a (Bregman) projection into a feasible region can be controlled using a generalized
“Pythagorean” theorem in the Euclidean setting, this same issue becomes more difficult on a manifold
as we encounter geometric distortion due to curvature. To better appreciate this, for a Hadamard
manifold M, assume the projection of x ∈ M onto a convex subset N ⊂ M is z. While it is true
that for any y ∈ N \ {z} the angle between geodesics zx and zy is obtuse, this property is only
relevant at the tangent space of z, yet we need to analyze gradients at the tangent space of x. The use
of parallel transport between x and z unavoidably incurs extra distortion and could potentially lead
to O(T ) regret.

The last challenge comes from averaging on manifolds. For example, many adaptive OCO
algorithms rely on the meta-expert framework, described by Van Erven and Koolen (2016), that runs
several learning algorithms in parallel and combines them through appropriately-weighted averaging.
There is not, unfortunately, a single way to take convex combinations in a geodesic metric space, and
all such averaging schemes need to account for the curvature of the manifold and incorporate the
associated costs. We finally find the Fréchet mean to be a desirable choice, but the analysis must
proceed with care.

The key contributions of our work can be summarized as follows:

• We develop the optimistic mirror descent (OMD) algorithm on Hadamard manifolds1 in the
online improper learning setting. Interestingly, we also show Optimistic Hedge, a variant of
OMD, works for gsc-convex losses. We believe these tools may have significant applications
to research in online learning and Riemannian optimization.

• We combine our analysis on OMD with the meta-expert framework (Van Erven and Koolen,
2016) to get several adaptive regret bounds, as shown in Table 1.

• We develop a novel dynamic regret lower bound, which renders our O(
√
ζ(1 + PT )T ) bound

to be tight up to the geometric constant ζ.

2. Preliminaries

In this section, we introduce background knowledge of OCO and Riemannian manifolds.

OCO in Euclidean space. We first formally describe OCO in Euclidean space. For each round
t = 1, . . . , T , the learner makes a decision xt ∈ X based on historical losses f1, . . . , ft−1 where X
is a convex decision set, and then the adversary reveals a convex loss function ft. The goal of the

1. We focus on Hadamard manifolds in the main paper and extend the guarantee to CAT(κ) spaces in Appendix B.2.
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learner is to minimize the difference between the cumulative loss and that of the best-fixed decision
in hindsight: RegretT =

∑T
t=1 ft(xt) − minx∈X

∑T
t=1 ft(x), which is usually referred to as the

static regret, since the comparator is a fixed decision.
In the literature, there exist a large number of algorithms (Hazan et al., 2016) on minimizing the

static regret. However, the underlying assumption of the static regret is the adversary’s behavior does
not change drastically, which can be unrealistic in real applications. To resolve this issue, dynamic
regret stands out, which is defined as (Zinkevich, 2003)

RegretT (u1, . . . ,uT ) =
T∑
t=1

ft(xt)−
T∑
t=1

ft(ut),

where u1, . . . ,uT ∈ X is a comparator sequence. Dynamic regret receives considerable attention
recently (Besbes et al., 2015; Jadbabaie et al., 2015; Mokhtari et al., 2016; Zhang et al., 2017,
2018; Zhao et al., 2020; Wan et al., 2021; Zhao and Zhang, 2021; Baby and Wang, 2021) due to
its flexibility. However, dynamic regret can be as large as O(T ) in general. Thus, regularizations
need to be imposed on the comparator sequence to ensure no-regret online learning. A common
assumption (Zinkevich, 2003) is the path-length (see Equation (1)) of the comparator sequence to
be bounded. We refer to the corresponding dynamic regret as general dynamic regret because any
assignments to u1, . . . ,uT subject to the path-length constraint are feasible.

Riemannian manifolds. Here, we give a brief overview of Riemannian geometry, but this is a
complex subject, and we refer the reader to, e.g., Petersen (2006) for a full treatment. A Riemannian
manifold (M, g) is a smooth manifold M equipped with a Riemannian metric g. The tangent space
TxM ∼= Rd, generalizing the concept of the tangent plane, contains vectors tangent to any curve
passing x. The Riemannian metric g induces the inner product ⟨u,v⟩x and the Riemannian norm
∥u∥x =

√
⟨u,u⟩x where u,v ∈ TxM (we omit the reference point x when it is clear from the

context). We use d(x,y) to denote the Riemannian distance between x,y ∈ M, which is the greatest
lower bound of the length of all piecewise smooth curves joining x and y.

A curve connecting x,y ∈ M is a geodesic if it is locally length-minimizing. For two points
x,y ∈ M, suppose there exists a geodesic γ(t) : [0, 1] → M such that γ(0) = x, γ(1) = y and
γ′(0) = v ∈ TxM. The exponential map Expx(·) : TxM → M maps v ∈ TxM to y ∈ M.
Correspondingly, the inverse exponential map Exp−1

x (·) : M → TxM maps y ∈ M to v ∈ TxM.
Since traveling along a geodesic is of constant velocity, we indeed have d(x,y) = ∥Exp−1

x y∥x. Also,
it is useful to compare tangent vectors in different tangent spaces. Parallel transport Γy

xu translates u
from TxM to TyM and preserves the inner product, i.e., ⟨u,v⟩x = ⟨Γy

xu,Γ
y
xv⟩y.

The curvature of Riemannian manifolds reflects the extent to which the manifold differs from a
Euclidean surface. For optimization purposes, it usually suffices to consider the sectional curvature.
Following Zhang and Sra (2016); Wang et al. (2021), in this paper we mainly consider Hadamard
manifolds, which are complete and single-connected manifolds with non-positive sectional curvature.
On such manifolds, every two points are connected by a unique and distance-minimizing geodesic
by Hopf-Rinow Theorem (Petersen, 2006).

A subset N of M is gsc-convex if for any x,y ∈ N , there exists a geodesic connecting x,y
and fully lies in N . A function f : N → R is gsc-convex if N is gsc-convex and the composition
f(γ(t)) satisfies f(γ(t)) ≤ (1 − t)f(γ(0)) + tf(γ(1)) for any geodesic γ(t) ⊆ N and t ∈ [0, 1].
An alternative definition of geodesic convexity is

f(y) ≥ f(x) + ⟨∇f(x),Exp−1
x y⟩, ∀ x,y ∈ N .
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where the Riemannian gradient ∇f(x) ∈ TxM is the unique vector determined by Df(x)[v] =
⟨v,∇f(x)⟩ and Df(x)[v] is the differential of f along v ∈ TxM.

Similarly, a L-geodesically-smooth (L-gsc-smooth) function f satisfies ∥Γx
y∇f(y)−∇f(x)∥ ≤

L · d(x,y) for all x,y ∈ N , or

f(y) ≤ f(x) + ⟨∇f(x),Exp−1
x y⟩+ L

2 d(x,y)
2.

3. Related Work

In this part, we briefly review past work on OCO in Euclidean space, online optimization and
optimism on Riemannian manifolds.

3.1. OCO in Euclidean Space

Static regret. We first consider work on static regret. In Euclidean space, it is well known that
online gradient descent (OGD) guarantees O(

√
T ) and O(log T ) regret for convex and strongly

convex losses (Hazan et al., 2016), which are also minimax optimal (Abernethy et al., 2008). However,
the aforementioned bounds are not fully adaptive due to the dependence on T . Therefore, there
is a tendency to replace T with problem-dependent quantities. Srebro et al. (2010) first notice
that the smooth and non-negative losses satisfy the self-bounding property, thus establishing the
small-loss bound O(

√
F ⋆T ) where F ⋆T =

∑T
t=1 ft(x

⋆) is the cumulative loss of the best action in
hindsight. Chiang et al. (2012) propose extra-gradient to getO(

√
VT ) gradient-variation regret bound

for convex and smooth losses where VT =
∑T

t=2 supx∈X ∥∇ft−1(x) − ∇ft(x)∥22. Rakhlin and
Sridharan (2013) generalize the work of Chiang et al. (2012) and propose optimistic mirror descent,
which has become a standard tool in online learning since then.

Dynamic regret. Now we switch to the related work on dynamic regret. Zinkevich (2003) propose
to use OGD to get a O

(
ηT + 1+PT

η

)
regret bound where η is the step size, but the result turns

out to be O((1 + PT )
√
T ) since the value of PT is unknown to the learner. The seminal work of

Zhang et al. (2018) use Hedge to combine the advice of experts with different step sizes, and show a
O
(√

(1 + PT )T
)

regret. A matching lower bound is also established therein. Zhao et al. (2020)
utilize smoothness to get a gradient-variation bound, a small-loss bound, and a best-of-both-worlds
bound in Euclidean space.

3.2. Online Learning and Optimism on Riemannian Manifolds

In the online setting, Bécigneul and Ganea (2019) consider adaptive stochastic optimization on
Riemannian manifolds but their results only apply to the Cartesian product of one-manifolds. Maass
et al. (2022) study the restricted dynamic regret on Hadamard manifolds under the gradient-free
setting and provide O(

√
T + P ⋆T ) bound for gsc-strongly convex and gsc-smooth functions, where

P ⋆T is the path-length of the comparator formed by ut = argminx∈X ft(x). On Hadamard manifolds,
Wang et al. (2021) apply Riemannian OGD (R-OGD) to get O(

√
T ) upper bound and Ω(

√
T )

randomized lower bound. Comparatively, we focus on general and adaptive dynamic regret on
Hadamard manifolds. Our minimax lower bound is also novel.

There also exist algorithms considering optimism on Riemannian manifolds. Zhang et al. (2022)
propose Riemannian Corrected Extra Gradient (RCEG) for unconstrained minimax optimization on
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manifolds. Karimi et al. (2022) consider a Robbins-Monro framework on Hadamard manifolds which
subsumes Riemannian stochastic extra-gradient. By imposing the weakly asymptotically coercivity
and using a decaying step size, the trajectory is guaranteed to be finite (Karimi et al., 2022). However,
our paper is the first to consider the constrained case and the online setting. For the improper learning
setting, we show a constant step size achieves the same guarantee as in Euclidean space.

4. Path Length Dynamic Regret Bound on Manifolds

In this section, we present the results related to the minimax path-length bound on manifolds. Before
diving into the details, following previous work (Zinkevich, 2003; Wang et al., 2021), we introduce
some standard assumptions and definitions.

Assumption 1 M is a Hadamard manifold and its sectional curvature is lower bounded by κ ≤ 0.

Assumption 2 The decision set N is a gsc-convex compact subset of M with diameter upper
bounded by D, i.e., supx,y∈N d(x,y) ≤ D. For optimistic online learning, we allow the player
chooses decisions from NδM , which is defined in Definition 2 and the diameter becomes (D+2δM).

Assumption 3 The norm of Riemannian gradients are bounded by G, i.e., supx∈N ∥∇ft(x)∥ ≤ G.
When improper learning is allowed, we assume supx∈NδM

∥∇ft(x)∥ ≤ G.

Definition 1 Under Assumptions 1, 2, we denote ζ :=
√
−κD coth(

√
−κD). When improper

learning is allowed, ζ :=
√
−κ(D + 2δM) coth(

√
−κ(D + 2δM)), where M is in Definition 2.

Note that, on manifolds of zero sectional curvature (κ = 0), we have ζ = limx→0 x · cothx = 1.

The seminal work of Zinkevich (2003) shows that the classical OGD algorithm can minimize the
general dynamic regret in Euclidean space. Motivated by this, we consider the Riemannian OGD
(R-OGD) algorithm (Wang et al., 2021):

xt+1 = ΠN Expxt
(−η∇ft(xt)), (2)

which is a natural extension of OGD to the manifold setting. We show R-OGD can also minimizes
the general dynamic regret on manifolds. Due to page limitation, we postpone details to Appendix A.

Theorem 1 Suppose Assumptions 1, 2 and 3 hold. Then the general dynamical regret of R-OGD
defined in Equation (2) satisfies

D-RegretT ≤ D2 + 2DPT
2η

+
ηζG2T

2
. (3)

Theorem 1 implies that R-OGD yields O(PT+1
η + ηT ) general dynamic regret bound, which means

the optimal step size is η = O
(√

1+PT
T

)
. However, this configuration of η is invalid, as PT is

unknown to the learner. Although a sub-optimal choice for η, i.e., η = O
(

1√
T

)
, is accessible, the

resulting algorithm suffers O((1 + PT )
√
T ) regret.

The meta-expert framework (Van Erven and Koolen, 2016) consists of a meta algorithm and
some expert algorithm instances. The constructions are modular such that we can use different meta
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algorithms and expert algorithms to achieve different regret guarantees. For optimizing dynamic
regret, the seminal work of Zhang et al. (2018) propose Ader based on this framework. In every
round t, each expert runs OGD with a different step size, and the meta algorithm applies Hedge
to learn the best weights. The step sizes used by the experts are carefully designed so that there
always exists an expert which is almost optimal. The regret of Ader is O(

√
(1 + PT )T ), which is

minimax-optimal in Euclidean space (Zhang et al., 2018).
However, it is unclear how to extend Ader to manifolds at first glance since we need to figure

out the ”correct” way to do averaging. In this paper, we successfully resolve this problem using
the Fréchet mean and the geodesic mean. Our proposed algorithm, called RADAR, consists of N
instances of the expert algorithm (Algorithm 2), each of which runs R-OGD with a different step
size, and a meta algorithm (Algorithm 1), which enjoys a regret approximately the same as the best
expert. We denote the set of all step sizes {ηi} by H. In the t-th round, the expert algorithms submit
all xt,i’s (i = 1, . . . , N ) to the meta algorithm. Then the meta algorithm either computes the Fréchet
mean or the geodesic mean (see Algorithm 6 in Appendix E for details) as xt. After receiving ft,
the meta algorithm updates the weight of each expert wt+1,i via Hedge and sends ∇ft(xt,i) to the
i-th expert, which computes xt+1,i by R-OGD. The regret of the meta algorithm of RADAR can be
bounded by Lemma 1.

Algorithm 1: RADAR: Meta Algorithm
Data: Learning rate β, set of step sizes H,

initial weights w1,i =
N+1

i(i+1)N

for t = 1, . . . , T do
Receive xt,i from experts with stepsize ηi
xt = argminx∈N

∑
i∈[N ]wt,id(x,xt,i)

2

Observe the loss function ft
Update wt+1,i by Hedge with ft(xt,i)
Send gradient ∇ft(xt,i) to each expert

end

Algorithm 2: RADAR: Expert Algorithm
Data: A step size ηi
Let xη1,i be any point in N
for t = 1, . . . , T do

Submit xt,i to the meta algorithm
Receive gradient ∇ft(xt,i) from the
meta algorithm

Update:
xt+1,i = ΠN Expxt,i

(−ηi∇ft(xt,i))
end

Lemma 1 Under Assumptions 1, 2, 3, and setting β =
√

8
G2D2T

, the regret of Algorithm 1 satisfies

∑T
t=1 ft(xt)−

∑T
t=1 ft(xt,i) ≤

√
G2D2T

8

(
1 + ln 1

w1,i

)
.

We show that, by configuring the step sizes in H carefully, RADAR ensures a O(
√
(1 + PT )T )

bound on geodesic metric spaces.

Theorem 2 Set H =
{
ηi = 2i−1

√
D2

G2ζT

∣∣i ∈ [N ]
}

where N = ⌈12 log2(1 + 2T )⌉ + 1 and β =√
8

G2D2T
. Under Assumptions 1, 2, 3, for any comparator sequence u1, . . . ,uT ∈ N , the general

dynamic regret of RADAR satisfies

D-RegretT = O(
√
ζ(1 + PT )T ).

Remark 2 Note that if M is Euclidean space, then ζ = 1 and we get O(
√
(1 + PT )T ) regret,

which is the same as in Zhang et al. (2018).
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A disadvantage of RADAR is Θ(log T ) gradient queries are required at each round. In Euclidean
space, Zhang et al. (2018) use a linear surrogate loss to achieve the same bound by O(1) gradient
queries. But on manifolds, the existence of such functions implies the sectional curvature of the
manifold is everywhere 0 (Kristály et al., 2016). It is interesting to investigate if Ω(log T ) gradient
queries are necessary to achieve dynamic regret on manifolds. We would also like to point out that
O(log T ) is reasonable small and the work of Zhang et al. (2018) still needs O(log T ) computational
complexity per round.

Using the Busemann function as a bridge, we show the following dynamic regret lower bound,
with proof deferred to Appendix A.4.

Theorem 3 There exists a comparator sequence which satisfies
∑T

t=2 d(ut,ut−1) ≤ PT and
encounters Ω(

√
(1 + PT )T ) dynamic regret on Hadamard manifolds.

Although the regret guarantee in Theorem 2 is optimal up to constants in terms of T and PT
by considering the corresponding lower bound, it still depends on T and thus cannot adapt to mild
environments. In Euclidean space, the smoothness of losses induces adaptive regret bounds, including
the gradient-variation bound (Chiang et al., 2012) and the small-loss bound (Srebro et al., 2010). It is
then natural to ask if similar bounds can be established on manifolds by assuming gsc-smoothness.
We provide an affirmative answer to this question and show how to get problem-dependent bounds
under the RADAR framework.

5. Gradient-variation Bound on Manifolds

In this section, we show how to obtain the gradient-variation bound on manifolds under the RADAR

framework with alternative expert and meta algorithms.

Expert Algorithm. For minimax optimization on Riemannian manifolds, Zhang et al. (2022)
propose Riemannian Corrected Extra Gradient (RCEG), which performs the following iterates:

xt = Expyt
(−η∇ft−1(yt))

yt+1 = Expxt

(
−η∇ft(xt) + Exp−1

xt
(yt)

)
.

However, this algorithm does not work in the constrained case, which has been left as an open
problem (Zhang et al., 2022). The online improper learning setting (Hazan et al., 2018; Baby and
Wang, 2021) allows the decision set to be different from (usually larger than) the set of strategies we
want to compete against. Under such a setting, we find the geometric distortion due to projection can
be bounded in an elegant way, and generalize RCEG to incorporate an optimism term Mt ∈ TytM.

Definition 2 We use Mt to denote the optimism at round t and assume there exists M such that
∥Mt∥ ≤ M for all t. We define Nc = {x|d(x,N ) ≤ c} where d(x,N ) := infy∈N d(x,y). In the
improper setting, we allow the player to choose decisions from NδM .

Theorem 4 Suppose all losses ft are L-gsc-smooth on M. Under Assumptions 1, 2, 3, the iterates

x′
t = Expyt

(−ηMt)

xt = ΠNδM
x′
t

yt+1 = ΠN Expx′
t

(
−η∇ft(x′

t) + Exp−1
x′
t
(yt)

)
.

(4)
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satisfies

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut) ≤ ηζ
T∑
t=1

∥∇ft(yt)−Mt∥2 +
D2 + 2DPT

2η
.

for any u1, . . . ,uT ∈ N and η ≤ δM

G+(G2+2ζδ2M2L2)
1
2

. Specifically, we achieve ηζVT + D2+2DPT
2η

regret by choosing Mt = ∇ft−1(yt). In this case, M = G and we need η ≤ δ

1+(1+2ζδ2L2)
1
2

.

Proof sketch. We use the special case Mt = ∇ft−1(yt) to illustrate the main idea of the proof.
We first decompose ft(xt)− ft(ut) into two terms,

ft(xt)− ft(ut) = (ft(xt)− ft(x
′
t)) + (ft(x

′
t)− ft(ut))

≤G · d(xt,x′
t) + (ft(x

′
t)− ft(ut)) ≤ G · d(x′

t,yt)︸ ︷︷ ︸
troublesome term 1

+(ft(x
′
t)− ft(ut))︸ ︷︷ ︸

unconstrained RCEG

where the first inequality is because the gradient Lipschitzness condition, and the second one follows
from the non-expansiveness of the projection. For the unconstrained RCEG term, we have the
following decomposition,

ft(x
′
t)− ft(ut) ≤

1

2η
(2η2ζL2 − 1)d(x′

t,yt)
2︸ ︷︷ ︸

troublesome term 2

+ ηζ∥∇ft(yt)−∇ft−1(yt)∥2︸ ︷︷ ︸
ηζVT

+
1

2η

(
d(yt,ut)

2 − d(yt+1,ut)
2
)

︸ ︷︷ ︸
D2+2DPT

2η

where the second and the third term corresponds to the gradient variation term and the dynamic
regret term, respectively.

In the improper learning setting, we can show d(x′
t,yt) ≥ δG. Combining both troublesome

terms, it suffices to find η which satisfies

2ηG+ 2η2ζL2λ− λ ≤ 0, ∀λ := d(x′
t,yt) ≥ δG.

Remark 3 We generalize Theorem 4 from Hadamard manifolds to CAT(κ) spaces in Appendix B.2.
Note that although we allow the player to make improper decisions, VT is still defined on N instead
of NδG. For the static setting, PT = 0 and the resulting regret bound is O(

√
VT + 1

δ ). Also, in this
setting, we can use an adaptive step-size

ηt = min

 1√
1 +

∑t
s=2 ∥∇ft(yt)−∇ft−1(yt)∥2

,
δ

1 + (1 + 2ζδ2L2)
1
2


to eliminate the dependence on VT .
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Meta algorithm. Intuitively, we can run OMD with different step sizes and apply a meta algorithm
to estimate the optimal step size. Previous studies in learning with multiple step sizes usually adopt
Hedge to aggregate the experts’ advice. However, the regret of Hedge is O(

√
T lnN) and thus is

undesirable for our purpose. Inspired by optimistic online learning (Rakhlin and Sridharan, 2013;
Syrgkanis et al., 2015), Zhao et al. (2020) adopt Optimistic Hedge as the meta algorithm to get
O(
√
(VT + PT )PT ) gradient-variation bound. After careful analysis, we show Optimistic Hedge

works for gsc-convex losses regardless of the geometric distortion and get the desired gradient-
variation bound.

Algorithm 3: RADARv: Expert Algorithm
Data: A step size ηi
Let xη1,i be any point in N
for t = 1, . . . , T do

Submit xt,i to the meta algorithm
Receive gradient ∇ft(·) from the meta algorithm
Each expert runs Equation (4) with Mt = ∇ft−1(yt), M = G and step size ηi

end

Algorithm 4: RADARv: Meta Algorithm

Data: A learning rate β, a set of step sizes H, initial weights w1,i = w0,i =
1
N

for t = 1, . . . , T do
Receive all xt,i’s from experts with step size ηi
x̄t = argminx∈NδG

∑
i∈[N ]wt−1,id(x,xt,i)

2

Update wt,i ∝ exp
(
−β
(∑t−1

s=1 ℓs,i +mt,i

))
by Equation (5)

xt = argminx∈NδG

∑
i∈[N ]wt,id(x,xt,i)

2

Observe ft(·) and send ∇ft(·) to experts
end

We denote ℓt,mt ∈ RN as the surrogate loss and the optimism at round t. The update rule of
Optimistic Hedge is:

wt,i ∝ exp
(
−β
(∑t−1

s=1 ℓs,i +mt,i

))
,

which achieves adaptive regret due to the optimism. The following technical lemma (Syrgkanis
et al., 2015) is critical for our analysis of Optimistic Hedge, and the proof is in Appendix B.3 for
completeness.

Lemma 4 For any i ∈ [N ], Optimistic Hedge satisfies∑T
t=1 ⟨wt, ℓt⟩ − ℓt,i ≤ 2+lnN

β + β
∑T

t=1 ∥ℓt −mt∥2∞ − 1
4β

∑T
t=2 ∥wt −wt−1∥21

Following the insightful work of Zhao et al. (2020), we also adopt the Optimistic Hedge algorithm
as the meta algorithm, but there are some key differences in the design of the surrogate loss and
optimism. To respect the Riemannian metric, we propose the following:

ℓt,i =
〈
∇ft(xt),Exp−1

xt
xt,i
〉

mt,i =
〈
∇ft−1(x̄t),Exp−1

x̄t
xt,i
〉 (5)

10
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where xt and x̄t are Fréchet averages of xt,i w.r.t. linear combination coefficients wt and wt−1

respectively. Under the Fréchet mean, we can show

ft(xt)− ft(xt,i) ≤ ⟨wt, ℓt⟩ − ℓt,i,

which ensures Lemma 4 can be applied to bound the meta-regret and the geodesic mean does not
meet this requirement. We also emphasize that the design of the surrogate loss and optimism is
highly non-trivial. As we will see in the proof of Theorem 5, the combination of the surrogate loss
and the gradient-vanishing property of the Fréchet mean ensures Lemma 4 can be invoked to upper
bound the regret of the meta algorithm. However, mt cannot rely on xt thus, we need to design
optimism based on the tangent space of x̄t, which incurs extra cost. Luckily, under Equation (5), we
find a reasonable upper bound of this geometric distortion by showing

∥ℓt −mt∥2∞ ≤ O(1) · sup
x∈NδG

∥∇ft(x)−∇ft−1(x)∥2 +O(1) · d(xt, x̄t)2

≤ O(1) · sup
x∈NδG

∥∇ft(x)−∇ft−1(x)∥2 + Õ(1) · ∥wt −wt−1∥21.

Thus we can apply the negative term in Lemma 4 to eliminate undesired terms in ∥ℓt −mt∥2∞.
Algorithms 3 and 4 describe the expert algorithm and meta algorithm of RADARv. We show the

meta-regret and total regret of RADARv in Theorems 5 and 6, respectively. Detailed proof in this
section is deferred to Appendix B.

Theorem 5 Assume all losses are L-gsc-smooth on M. Then under Assumptions 1, 2, 3, the regret
of Algorithm 4 satisfies:

T∑
t=1

ft(xt)−
T∑
t=1

ft(xt,i)

≤2 + lnN

β
+ 3D2β(VT +G2) +

T∑
t=2

(
3β(D4L2 +D2G2ζ2)− 1

4β

)
∥wt −wt−1∥21.

Theorem 6 Let β = min

{√
2+lnN
3D2VT

, 1√
12(D4L2+D2G2ζ2)

}
, H =

{
ηi = 2i−1

√
D2

8ζG2T

∣∣i ∈ [N ]
}

,

where N =

⌈
1
2 log

8ζδ2G2T

(1+(1+2ζδ2L2)
1
2 )2

⌉
+ 1. Assume all losses are L-gsc-smooth on M and allow

improper learning. Under Assumptions 1, 2 and 3, the regret of RADARv satisfies

D-RegretT = O
(√

ζ(VT + (1 + PT )/δ2)(1 + PT )
)
.

In Theorem 6, β relies on VT , and this dependence can be eliminated by showing a variant of Lemma
4 with an adaptive learning rate βt.

6. Small-loss Bound on Manifolds

For dynamic regret, the small-loss bound replaces the dependence on T by FT =
∑T

t=1 ft(ut),
which adapts to the function values of the comparator sequence. In Euclidean space, Srebro et al.

11
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(2010) show this adaptive regret by combining OGD with the self-bounding property of smooth and
non-negative functions, which reads ∥∇f(x)∥22 ≤ 4L · f(x) where L is the smoothness constant.
We show a similar conclusion on manifolds and defer proof details in this part to Appendix C.

Lemma 5 Suppose f : M → R is both L-gsc-smooth and non-negative on its domain where M is
a Hadamard manifold, then we have ∥∇f(x)∥2 ≤ 2L · f(x).

To facilitate the discussion, we denote F̄T =
∑T

t=1 ft(xt) and F̄T,i =
∑T

t=1 ft(xt,i). We use
R-OGD as the expert algorithm (Algorithm 2) and Hedge with surrogate loss

ℓt,i =
〈
∇ft(xt),Exp−1

xt
xt,i
〉

as the meta algorithm (Algorithm 1). The following Lemma considers the regret of a single expert
and shows that R-OGD achieves a small-loss dynamic regret on geodesic metric spaces.

Lemma 6 Suppose all losses are L-gsc-smooth and non-negative on M. Under Assumptions 1, 2,
by choosing any step size η ≤ 1

2ζL , R-OGD achieves O
(
PT
η + ηFT

)
regret.

Again, we can not directly set η = O
(
1+PT
FT

)
because PT is unknown, which is precisely why

we need the meta algorithm. The meta-regret of Hedge is as follows.

Lemma 7 Suppose all losses are L-gsc-smooth and non-negative on M. Under Assumptions 1, 2,

by setting the learning rate of Hedge as β =
√

(2+lnN)
D2F̄T

, the regret of the meta algorithm satisfies

∑T
t=1 ft(xt)−

∑T
t=1 ft(xt,i) ≤ 8D2L(2 + lnN) +

√
8D2L(2 + lnN)FT,i.

Now as we have the guarantee for both the expert algorithm and the meta algorithm, a direct
combination yields the following general dynamic regret guarantee.

Theorem 7 Suppose all losses are L-gsc-smooth and non-negative on M. Under Assumptions 1,
2. Setting H =

{
ηi = 2i−1

√
D

2ζLGT

∣∣i ∈ [N ]
}

where N = ⌈12 log
GT

2LDζ ⌉ + 1 and β =
√

(2+lnN)
D2F̄T

.
Then for any comparator u1, . . . ,uT ∈ N , we have

D-RegretT = O(
√
ζ(ζ(PT + 1) + FT )(PT + 1)).

Remark 8 If we take M as Euclidean space, the regret guarantee shown in Theorem 7 becomes
O(
√
(PT + FT + 1)(PT + 1)), which matches the result of Zhao et al. (2020).

7. Best-of-both-worlds Bound on Manifolds

Now we already achieve the gradient-variation bound and the small-loss bound on manifolds. To
highlight the differences between them, we provide an example in Appendix D.1 to show under
certain scenarios, one bound can be much tighter than the other. The next natural question is, is that
possible to get a best-of-both-worlds bound on manifolds?

12



DYNAMIC REGRET ON GEODESIC METRIC SPACES

We initialize N := Nv +N s experts as shown in Theorems 6 and 7 where Nv and N s are the
numbers of experts running OMD and R-OGD, respectively. For each expert i ∈ [N ], the surrogate
loss and the optimism are

ℓt,i =
〈
∇ft(xt),Exp−1

xt
xt,i
〉

mt,i = γt
〈
∇ft−1(x̄t),Exp−1

x̄t
xt,i
〉
.

(6)

γt controls the optimism used in the meta algorithm. When γt = 1, the optimism for the gradient-
variation bound is recovered, and γt = 0 corresponds to the optimism for the small-loss bound.

Following Zhao et al. (2020), we use Hedge for two experts to get a best-of-both-worlds bound.
The analysis therein relies on the strong convexity of ∥∇ft(xt)−m∥22 in m, which is generally not
the case on manifolds. So an alternative scheme needs to be proposed. We denote

mv
t,i =

〈
∇ft−1(x̄t),Exp−1

x̄t
xt,i
〉

ms
t,i = 0,

(7)

while mv
t and ms

t be the corresponding vectors respectively. Then mt = γtm
v
t +(1− γt)m

s
t , which

is exactly the combination rule of Hedge. The function ∥ℓt −m∥2∞ is convex with respect to m
but not strongly convex so we instead use dt(m) := ∥ℓt −m∥22 for Hedge, and the learning rate is
updated as

γt =
exp

(
−τ
(∑t−1

r=1 dr(m
v
r)
))

exp
(
−τ
(∑t−1

r=1 dr(m
v
r)
))

+ exp
(
−τ
(∑t−1

r=1 dr(m
s
r)
)) (8)

Algorithm 5 summarizes the meta algorithm as well as the expert algorithm for RADARb.

Algorithm 5: RADARb: Algorithm
Data: Learning rates β for Optimistic Hedge and γt for Hedging the two experts, H = {ηi}

consists of N = Nv +N s step sizes, τ = 1
8NG2D2

for t = 1, . . . , T do
Run Algorithms 3 and 2 on the first Nv experts and the later N s experts, resp.
x̄t = argminx∈NδG

∑
i∈[N ]wt−1,id(x,xt,i)

2

Update γt as in Equation (8)
Update wt,i ∝ exp

(
−β
(∑t−1

s=1 ℓs,i +mt,i

))
by Equation (6)

xt = argminx∈NδG

∑
i∈[N ]wt,id(x,xt,i)

2

Observe ft and send ∇ft(·) to each expert
end

In Theorem 8 we show the guarantee of the meta algorithm of RADARb and postpone proof
details of this section to Appendix D.

Theorem 8 Setting learning rates τ = 1
8NG2D2 and

β = min

{√
2 + lnN

N(D2min{3(VT +G2), F̄T }+ 8G2D2 ln 2)
,

1√
12(D4L2 +D2G2ζ2)

}
.
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Suppose all losses are L-gsc-smooth and non-negative on M. Under Assumptions 1, 2, 3, the
regret of the meta algorithm satisfies

∑T
t=1 ft(xt)−

∑T
t=1 ft(xt,i) = O

(√
lnT min{VT , F̄T }

)
where N = Nv +N s and F̄T =

∑T
t=1 ft(xt).

Finally, we show the regret of RADARb is bounded by the smaller of two problem-dependent
bounds as follows.

Theorem 9 Suppose all losses are L-gsc-smooth and non-negative on M and allow improper
learning. Under Assumptions 1, 2, 3, if we set the set of candidate step sizes as

H = Hv ∪Hs, (9)

where Hv and Hs are sets of step sizes in Theorem 6 with N = Nv and Theorem 7 with N = N s

respectively. Then Algorithm 5 satisfies

D-RegretT = O
(√

ζ(PT (ζ + 1/δ2) +BT + 1)(1 + PT ) + lnT ·BT
)

where BT := min{VT , FT }.

Remark 9 Comparing to the result in Zhao et al. (2020), we find the result of Theorem 9 has an
additional

√
lnT factor, which comes from our construction of hedging two experts. It will be

interesting to remove this dependence.

8. Conclusion

In this paper, we consider adaptive online learning on Riemannian manifolds. Equipped with the idea
of learning with multiple step sizes and optimistic mirror descent, we derive a series of no-regret
algorithms that adapt to quantities reflecting the intrinsic difficulty of the online learning problem
in different aspects. In the future, it is interesting to investigate how to achieve optimistic online
learning in the proper learning setting. Moving forward, one could further examine whether Ω(log T )
gradient queries in each round are truly necessary. A curvature-dependent lower bound like the one
in Criscitiello and Boumal (2022) for Riemannian online optimization also remains open.
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Appendix A. Omitted Proof for Section 4

A.1. Proof of Theorem 1

We denote x′
t+1 = Expxt

(−η∇ft(xt)) and start from the geodesic convexity:

ft(xt)− ft(ut)
(1)

≤⟨∇ft(xt),−Exp−1
xt

(ut)⟩

=
1

η
⟨Exp−1

xt
x′
t+1,Exp−1

xt
ut⟩

(2)

≤ 1

2η

(
∥Exp−1

xt
ut∥2 − ∥Exp−1

x′
t+1

ut∥2 + ζ∥Exp−1
xt

x′
t+1∥2

)
(3)

≤ 1

2η

(
∥Exp−1

xt
ut∥2 − ∥Exp−1

xt+1
ut∥2

)
+
ηζG2

2

=
1

2η

(
∥Exp−1

xt
ut∥2 − ∥Exp−1

xt+1
ut+1∥2 + ∥Exp−1

xt+1
ut+1∥2 − ∥Exp−1

xt+1
ut∥2

)
+
ηζG2

2
(4)

≤ 1

2η

(
∥Exp−1

xt
ut∥2 − ∥Exp−1

xt+1
ut+1∥2 + 2D∥Exp−1

ut
ut+1∥

)
+
ηζG2

2
,

(10)

where for the second inequality we use Lemma 21, while the third is due to Lemma 23 and Assump-
tion 3. For the last inequality, we invoke triangle inequality and Assumption 2.

WLOG, we can assume uT+1 = uT and sum from t = 1 to T :

T∑
t=1

ft(xt)− ft(ut) ≤
D2

2η
+
DPT
η

+
ηζG2T

2
. (11)

A.2. Proof of Lemma 1

This is a generalization of (Cesa-Bianchi and Lugosi, 2006, Theorem 2.2) to the Riemannian manifold.
Let Lt,i =

∑t
s=1 fs(xs,i) and Wt =

∑N
i=1w1,ie

−βLt,i . We have the following lower bound for
lnWT ,

ln(WT ) = ln

∑
i∈[N ]

w1,ie
−βLt,i

 ≥ −β min
i∈[N ]

(
LT,i +

1

β
ln

1

w1,i

)
.

For the next step, we try to get an upper bound on lnWT . When t ≥ 2, we have

ln

(
Wt

Wt−1

)
= ln

∑
i∈[N ]w1,ie

−βLt−1,ie−βft(xt,i)∑
i∈[N ]w1,ie−βLt−1,i

= ln

∑
i∈[N ]

wt,ie
−βft(xt,i)

 ,

where the updating rule of Hedge

wt,i =
w1,ie

−βLt−1,i∑
j∈[N ]w1,je−βLt−1,j
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is applied. Therefore

lnWT = lnW1 +

T∑
t=2

ln

(
Wt

Wt−1

)
=

T∑
t=1

ln

∑
i∈[N ]

wt,ie
−βft(xt,i)


≤

T∑
t=1

−β
∑
i∈[N ]

wt,ift(xt,i) +
β2G2D2

8

 ≤
T∑
t=1

(
−βft(xt) +

β2G2D2

8

)
,

(12)

where the first inequality follows from Hoeffding’s inequality and ft(x⋆) ≤ ft(x) ≤ ft(x
⋆) +G ·D

holds for any x ∈ N and x⋆ = argminx∈N ft(x), and the second inequality is due to both the
Fréchet mean and the geodesic mean satisfy Jensen’s inequality. For the Fréchet mean, we can apply
Lemma 24. While Lemmas 19 and 26 ensure the geodesic mean satisfies the requirement.

Combining the lower and upper bound for lnWT , we see

−β min
i∈[N ]

(
LT,i +

1

β
ln

1

w1,i

)
≤

T∑
t=1

(
−βft(xt) +

β2G2D2

8

)
.

After simplifying, we get

T∑
t=1

ft(xt)− min
i∈[N ]

(
T∑
t=1

ft(xt,i) +
1

β
ln

1

w1,i

)
≤ βG2D2T

8
.

Setting β =
√

8
G2D2T

, we have

T∑
t=1

ft(xt)−
T∑
t=1

ft(xt,i) ≤
√
G2D2T

8

(
1 + ln

1

w1,i

)
.

A.3. Proof of Theorem 2

Each expert performs R-OGD, so by Theorem 1 we have

T∑
t=1

ft(xt,i)− ft(ut) ≤
D2 + 2DPT

2η
+
ηζG2T

2
. (13)

holds for any i ∈ [N ]. Now it suffices to verify that there always exists ηk ∈ H which is close to the
optimal stepsize

η⋆ =

√
D2 + 2DPT

ζG2T
. (14)

By Assumption 2,

0 ≤ PT =

T∑
t=2

d(ut−1,ut) ≤ TD.

Thus √
D2

TG2ζ
≤ η∗ ≤

√
D2 + 2TD2

TG2ζ
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It is obvious that

minH =

√
D2

TG2ζ
, and maxH ≥ 2

√
D2 + 2TD2

TG2ζ

Therefore, there exists k ∈ [N − 1] such that

ηk = 2k−1

√
D2

TG2ζ
≤ η∗ ≤ 2ηk (15)

The dynamic regret of the k-th expert is

T∑
t=1

ft(xt,k)−
T∑
t=1

ft (ut)

(1)

≤ D2

2ηk
+
DPT
ηk

+

(
ηkTG

2ζ

2

)
(2)

≤D2

η∗
+

2DPT
η∗

+

(
η∗TG2ζ

2

)
=
3

2

√
TG2ζ (D2 + 2DPT ).

(16)

The second inequality follows from Equation (15) and we use Equation (14) to derive the last equality.
Since the initial weight of the k-th expert satisfies

w1,k =
N + 1

k(k + 1)N
≥ 1

(k + 1)2
,

the regret of the meta algorithm with respect to the k-th expert is bounded by

T∑
t=1

ft(xt)−
T∑
t=1

ft(xt,k) ≤
√
G2D2T

8
(1 + 2 ln(k + 1)) (17)

in view of Lemma 1. Combining Equations (16) and (17), we have

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut)

≤3

2

√
TG2ζ (D2 + 2DPT ) +

√
G2D2T

8
(1 + 2 ln(k + 1))

≤

√
2

(
9

4
TG2ζ (D2 + 2DPT ) +

G2D2T

8
(1 + 2 ln(k + 1))2

)
=O

(√
ζ(1 + PT )T

)
,

(18)

where
√
a+

√
b ≤

√
2(a+ b) is applied to derive the second inequality, and for the equality follows

from ln k = O(log logPT ) = o(
√
PT ).
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A.4. Minimax Dynamic Regret Lower Bound on Hadamard Manifolds

In this part, we first establish a Ω(
√
T ) minimax static regret lower bound on Hadamard manifolds

following the classical work of Abernethy et al. (2008), then follow the reduction in Zhang et al.
(2018) to get its dynamic counterpart. We focus on the manifold of SPD matrices (Bhatia, 2009)
Sn++ = {p : p ∈ Rn×n, p = pT and p ≻ 0n×n}, which becomes Hadamard when equipped with
the affine-invariant metric ⟨U, V ⟩p = tr(p−1Up−1V ) where tr(·) is the trace operator. The tangent
space of Sn++ is Sn = {U : U ∈ Rn×n, U = UT }. Under the affine-invariant metric, we have

ExppU = p
1
2 exp

(
p−

1
2Up−

1
2

)
p

1
2

Exp−1
p q = p

1
2 log

(
p−

1
2 qp−

1
2

)
p

1
2

d(p, q) =

√√√√ n∑
i=1

(log λi(q
− 1

2 pq−
1
2 ))2.

For technical reason, we restrict the manifold to be the manifold of SPD matrices with diagonal
entries Dn

++ = {p : p ∈ Rn×n, pi,i > 0, p is diagonal} and its tangent space is Dn = {U : U ∈
Rn×n, U is diagonal}. A key component in the proof is the Busemann function (Ballmann, 2012) on
Dn

++ equipped with affine-invariant metric has a closed form, which we describe as follows.

Definition 3 (Ballmann, 2012) Suppose M is a Hadamard manifold and c : [0,∞) is a geodesic
ray on M with ∥ċ(0)∥ = 1. Then the Busemann function associated with c is defined as

bc(p) = lim
t→∞

(d(p, c(t))− t).

Busemann functions enjoy the following useful properties.

Lemma 10 (Ballmann, 2012) A Busemann function bc satisfies

1) bc is gsc-convex;

2) ∇bc(c(t)) = ċ(t) for any t ∈ [0,∞);

3) ∥∇bc(p)∥ ≤ 1 for every p ∈ M.

Lemma 11 (Bridson and Haefliger, 2013, Chapter II.10) On Dn
++, suppose c(t) = ExpI(tX),

p = ExpI(Y ) and ∥X∥ = 1, then the Busemann function is

bc(p) = −tr(XY ).
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Proof We first compute

d(p, c(t))2 =d(ExpI(Y ),ExpI(tX))2

=d(eY , etX)2

=

n∑
i=1

(log λi(e
−tX+Y ))2

=d(I, eY−tX)2

=d(I,ExpI(Y − tX))2

=∥Y − tX∥2

=tr((Y − tX)(Y − tX))

=tr(Y 2)− 2t · tr(XY ) + t2 · tr(X2),

(19)

where we use facts that ExpI(X) = eX and d(p, q) =
√∑n

i=1(log λi(q
− 1

2 pq−
1
2 ))2. Meanwhile,

lim
t→∞

d(p, c(t))

t
= 1

due to the triangle inequality on △(p, c(0), c(t)). Therefore,

bc(p) = lim
t→∞

(d(p, c(t))− t)

= lim
t→∞

d(p, c(t))2 − t2

2t

=− tr(XY ).

Remark 12 We consider Dn
++ to ensure X and Y commute thus also eY and etX commute. This is

necessary to get a closed form of the Busemann function.

Now we describe the minimax game on Dn
++. Each round t, the player chooses pt from

N = {p : d(p, I) ≤ D
2 } = {p : p = ExpI(Y ), ∥Y ∥ ≤ D

2 }, and the adversary is allowed to pick a
geodesic ct, which determines a loss function in

Ft ={αtGtbc(p) : ∥ċ(0)∥ = 1, αt ∈ [0, 1]}
={αtGt · −tr(XtY ) : ∥Xt∥ = 1, αt ∈ [0, 1]}
={−tr(XtY ) : ∥Xt∥ ≤ Gt}

(20)

The domain is gsc-convex by Lemmas 28 and 29. Each loss function is gsc-convex and has a gradient
upper bound Gt using the second item of Lemma 10. WLOG, we assume D = 2, and the value of
the game is

VT (N , {Ft}) := inf
∥Y1∥≤1

sup
∥X1∥≤G1

. . . inf
∥YT ∥≤1

sup
∥XT ∥≤GT

[
T∑
t=1

−tr(XtYt)− inf
∥Y ∥≤1

T∑
t=1

−tr(XtY )

]
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Lemma 13 The value of the minimax game VT can be written as

VT (N , {Ft}) = inf
∥Y1∥≤1

sup
∥X1∥≤G1

. . . inf
∥YT ∥≤1

sup
∥XT ∥≤GT

[
T∑
t=1

−tr(XtYt) +

∥∥∥∥∥
T∑
t=1

Xt

∥∥∥∥∥
]

Proof This is obvious due to Cauchy–Schwarz inequality:

inf
∥Y ∥≤1

T∑
t=1

−tr(XtY ) = − sup
∥Y ∥≤1

tr

(
T∑
t=1

XtY

)
= −

∥∥∥∥∥
T∑
t=1

Xt

∥∥∥∥∥ .

Lemma 14 For n > 2, the adversary guarantees at least
√∑T

t=1G
2
t regardless of the player’s

strategy.

Proof Each round, after the player chooses Yt, the adversary chooses Xt such that ∥Xt∥ = Gt,
⟨Xt, Yt⟩ = 0 and

〈
Xt,

∑t−1
s=1Xs

〉
= 0. This is always possible when n > 2. Under this strategy,∑T

t=1−tr(XtYt) = 0 and we can show
∥∥∥∑T

t=1Xt

∥∥∥ =
√∑T

t=1G
2
t by induction. The case for

T = 1 is obvious. Assume
∥∥∥∑t−1

s=1Xs

∥∥∥ =
√∑t−1

s=1G
2
s, then

∥∥∥∥∥
t∑

s=1

Xs

∥∥∥∥∥ =

∥∥∥∥∥
t−1∑
s=1

Xs +Xt

∥∥∥∥∥ =

√√√√∥∥∥∥∥
t−1∑
s=1

Xs

∥∥∥∥∥
2

+ ∥Xt∥2 =

√√√√ t∑
s=1

G2
t .

where the second equality is due to
〈
Xt,

∑t−1
s=1Xs

〉
= 0.

Lemma 15 Let X0 = 0. If the player plays

Yt =

∑t−1
s=1Xs√∥∥∥∑t−1

s=1Xs

∥∥∥2 +∑T
s=tG

2
s

,

then

sup
∥X1∥≤G1

sup
∥X2∥≤G2

. . . sup
∥XT ∥≤GT

[
T∑
t=1

−tr(XtYt) +

∥∥∥∥∥
T∑
t=1

Xt

∥∥∥∥∥
]
≤

√√√√ T∑
t=1

G2
t .

Proof Let Γ2
t =

∑T
s=tG

2
s, ΓT+1 = 0 and X̃t =

∑t
s=1Xs. We define

Φt(X1, . . . , Xt−1) =

t−1∑
s=1

−tr(XsYs) +

√√√√∥∥∥∥∥
t−1∑
s=1

Xs

∥∥∥∥∥
2

+ Γ2
t
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and Φ1 =
√∑T

t=1G
2
t . We further let

Ψt(X1, . . . , Xt−1) = sup
∥Xt∥≤Gt

. . . sup
∥XT ∥≤GT

[
T∑
s=1

−tr(XsYs) +

∥∥∥∥∥
T∑
s=1

Xs

∥∥∥∥∥
]

be the payoff of the adversary when he plays X1, . . . , Xt−1 and then plays optimally.
We do backward induction for this argument, which means for all t ∈ {1, . . . , T + 1},

Ψt(X1, . . . , Xt−1) ≤ Φt(X1, . . . , Xt−1).

The case of t = T + 1 is obvious because ΨT+1 = ΦT+1. Assume the argument holds for t+ 1 and
we try to show the case for t.

Ψt(X1, . . . , Xt−1)

= sup
∥Xt∥≤Gt

Ψt+1(X1, . . . , Xt)

≤ sup
∥Xt∥≤Gt

Φt+1(X1, . . . , Xt)

=

t−1∑
s=1

−tr(XsYs) + sup
∥Xt∥≤Gt

−tr(XtYt) +

√√√√∥∥∥∥∥
t∑

s=1

Xs

∥∥∥∥∥
2

+ Γ2
t+1

 .
(21)

Now it suffices to show

sup
∥Xt∥≤Gt

−tr(XtYt) +

√√√√∥∥∥∥∥
t∑

s=1

Xs

∥∥∥∥∥
2

+ Γ2
t+1

 ≤

√√√√∥∥∥∥∥
t−1∑
s=1

Xs

∥∥∥∥∥
2

+ Γ2
t

to establish our argument. Recall that

Yt =

∑t−1
s=1Xs√∥∥∥∑t−1

s=1Xs

∥∥∥2 +∑T
s=tG

2
s

,

and denote X̃t−1 =
∑t−1

s=1Xs. It turns out that what we need to show is

sup
∥Xt∥≤Gt

−tr


〈
Xt, X̃t−1

〉
√

∥X̃t−1∥2 + Γ2
t

+
√
∥X̃t−1 +Xt∥2 + Γ2

t+1 ≤
√
∥X̃t−1∥2 + Γ2

t .

We use the Lagrange multiplier method to prove this argument. Let

g(Xt) = −tr


〈
Xt, X̃t−1

〉
√
∥X̃t−1∥2 + Γ2

t

+
√

∥X̃t−1 +Xt∥2 + Γ2
t+1 + λ(∥Xt∥2 −G2

t ),

25



HU WANG ABERNETHY

then the stationary point of g satisfies

∂g(Xt)

∂Xt
= − X̃t−1√

∥X̃t−1∥2 + Γ2
t

+
X̃t−1 +Xt√

∥X̃t−1 +Xt∥2 + Γ2
t+1

+ 2λXt = 0

and
λ(∥Xt∥2 −G2

t ) = 0.

We first consider that X̃t−1 is co-linear with Xt. When λ = 0, we have Xt = cX̃t−1 where

c =
Γt+1

Γt
− 1.

If X̃t−1 is co-linear with Xt and λ ̸= 0, we know ∥Xt∥ = Gt and again let Xt = Gt
X̃t−1

∥X̃t−1∥
or

Xt = −Gt X̃t−1

∥X̃t−1∥
. Then we need to ensure

g(cX̃t−1) ≤
√
∥X̃t−1∥2 + Γ2

t

holds for c = Γt+1

Γt
− 1, Gt

∥X̃t−1∥
and − Gt

∥X̃t−1∥
.

By Lemma 16, it suffices to verify

(c2 − 1)∥X̃t−1∥2Γ2
t + (∥X̃t−1∥2 + Γ2

t )Γ
2
t+1 ≤ Γ4

t .

If c = Γt+1

Γt
− 1, we have to ensure

(c2 − 1)∥X̃t−1∥2Γ2
t + (∥X̃t−1∥2 + Γ2

t )Γ
2
t+1 − Γ4

t

=

(
Γ2
t+1

Γ2
t

− 2
Γt+1

Γt

)
∥X̃t−1∥2Γ2

t + ∥X̃t−1∥2Γ2
t+1 + Γ2

tΓ
2
t+1 − Γ4

t

=2(Γt+1 − Γt)Γt+1∥X̃t−1∥2 + Γ2
t (Γ

2
t+1 − Γ2

t ) ≤ 0.

(22)

For the case where c2 = G2
t

∥X̃t−1∥2
, we have

(c2 − 1)∥X̃t−1∥2Γ2
t + (∥X̃t−1∥2 + Γ2

t )Γ
2
t+1 − Γ4

t

=

(
G2
t

∥X̃t−1∥2
− 1

)
∥X̃t−1∥2Γ2

t + (∥X̃t−1∥2 + Γ2
t )Γ

2
t+1 − Γ4

t

=Γ2
t (G

2
t + Γ2

t+1 − Γ2
t )−G2

t ∥X̃t−1∥2

=−G2
t ∥X̃t−1∥2 ≤ 0.

(23)

The only case left is when Xt is not parallel to X̃t−1. λ = 0 implies Xt = 0 and thus

g(0) =
√
∥X̃t−1∥2 + Γ2

t+1 ≤
√

∥X̃t−1∥2 + Γ2
t .

If λ ̸= 0 then ∥Xt∥ = G. We have

− X̃t−1√
∥X̃t−1∥2 + Γ2

t

+
X̃t−1√

∥X̃t−1 +Xt∥2 + Γ2
t+1

= 0
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which in turn implies
〈
Xt, X̃t−1

〉
= 0. This is the maximum point of g as now

g(Xt) =

√
∥X̃t−1∥2 + Γ2

t .

Thus we finished the induction step and the lemma was established.

Lemma 16

−tr


〈
Xt, X̃t−1

〉
√
∥X̃t−1∥2 + Γ2

t

+
√
∥X̃t−1 +Xt∥2 + Γ2

t+1 ≤
√
∥X̃t−1∥2 + Γ2

t .

holds for Xt = cX̃t−1 iff

(c2 − 1)∥X̃t−1∥2Γ2
t + (∥X̃t−1∥2 + Γ2

t )Γ
2
t+1 ≤ Γ4

t .

Proof The statement we want to show is

− c∥X̃t−1∥2√
∥X̃t−1∥2 + Γ2

t

+
√
∥X̃t−1∥2(1 + c)2 + Γ2

t+1 ≤
√
∥X̃t−1∥2 + Γ2

t .

Let α = ∥X̃t−1∥2, β = Γ2
t and γ = Γ2

t+1. Following a series of algebraic manipulations, we get

(c2 − 1)αβ + (α+ β)γ ≤ β2.

And the argument is proved after plugging back α, β, γ.

Theorem 10 There exists a game on Dn
++ such that we can exactly compute the value of the

minimax regret. Specifically, the decision set of the player is N = {p : p = ExpI(Y ), ∥Y ∥ ≤ D
2 },

and the adversary is allowed to pick a loss function in

Ft = {αtGtbc(p) : ∥ċ(0)∥ = 1, αt ∈ [0, 1]} = {−tr(XtY ) : ∥Xt∥ ≤ Gt}.

Then the minimax value of the game is

VT (N , {Ft}) =
D

2

√√√√ T∑
t=1

G2
t .

In addition, the optimal strategy of the player is

Yt =

∑t−1
s=1Xs√∥∥∥∑t−1

s=1Xs

∥∥∥2 +∑T
s=tG

2
s

.
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Proof The proposition is a direct conclusion of Lemmas 13, 14, and 15.

Theorem 11 There exists a comparator sequence which satisfies
∑T

t=2 d(ut,ut−1) ≤ PT and the
dynamic minimax regret lower bound on Hadamard manifolds is Ω(G

√
D2 +DPT ).

Proof We combine Theorem 10 with a reduction in Zhang et al. (2018) to finish the proof. By
Theorem 10 we have

VT = inf
∥Y1∥≤1

sup
∥X1∥≤G

. . . inf
∥YT ∥≤1

sup
∥XT ∥≤G

[
T∑
t=1

−tr(XtYt)− inf
∥Y ∥≤1

T∑
t=1

−tr(XtY )

]
=
GD

√
T

2
.

Note that the path-length is upper bounded by TD. For any τ ∈ [0, TD], we define the set of
comparators with path-length bounded by τ as

C(τ) =

{
u1, . . . ,uT ∈ N :

T∑
t=2

d(ut,ut−1) ≤ τ

}
where N = {u : d(I,u) ≤ D

2 } is a gsc-convex subset and the minimax dynamic regret w.r.t. C(τ)
is

VT (C(τ)) = inf
∥Y1∥≤1

sup
∥X1∥≤G

. . . inf
∥YT ∥≤1

sup
∥XT ∥≤G

[
T∑
t=1

−tr(XtYt)− inf
u1,...,uT∈C(τ)

T∑
t=1

−tr(XtExp−1
I ut)

]
.

We distinguish two cases. When τ ≤ D, we invoke the minimax static regret directly to get

VT (C(τ)) ≥ VT =
GD

√
T

2
. (24)

For the case of τ ≥ D, WLOG, we assume ⌈τ/D⌉ divides T and let L be the quotient. We construct
a subset of C(τ), named C ′(τ), which contains comparators that are fixed for each consecutive L
rounds. Specifically,

C ′(τ) =
{
u1, . . . ,uT ∈ N : u(i−1)L+1 = . . .uiL, ∀i ∈ [1, ⌈τ/D⌉]

}
.

Note that the path-length of comparators in C ′(τ) is at most (⌈τ/D⌉ − 1)D ≤ τ , which implies
C ′(τ) is a subset of C(τ). Thus we have

VT (C(τ)) ≥ VT (C ′(τ)). (25)

The objective of introducing C ′(τ) is we can set u(i−1)L+1 = · · · = u(iL) to be the offline minimizer
of the i-th segment and invoke the minimax lower bound for the static regret for each segment. Thus
we have

VT (C ′(τ))

= inf
∥Y1∥≤1

sup
∥X1∥≤G

. . . inf
∥YT ∥≤1

sup
∥XT ∥≤G

[
T∑
t=1

−tr(XtYt)− inf
u1,...,uT∈C′(τ)

T∑
t=1

−tr(XtExp−1
I ut)

]

= inf
∥Y1∥≤1

sup
∥X1∥≤G

. . . inf
∥YT ∥≤1

sup
∥XT ∥≤G

 T∑
t=1

−tr(XtYt)−
⌈τ/D⌉∑
i=1

inf
∥Y ∥≤1

iL∑
t=(i−1)L+1

−tr(XtY )


=⌈τ/D⌉GD

√
L

2
=
GD

√
T ⌈τ/D⌉
2

≥ G
√
TDτ

2
.

(26)
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Combining Equations (24), (25) and (26) yields

VT (C(τ)) ≥
G

2
max(D

√
T ,

√
TDτ) = Ω(G

√
T (D2 +Dτ)).

Appendix B. Omitted Proof for Section 5

B.1. Proof of Theorem 4

We first argue Nc is gsc-convex for any c ≥ 0 to ensure the algorithm is well-defined. By Lemma
28, d(x,N ) is gsc-convex on Hadamard manifolds. The sub-level set of a gsc-convex function is a
gsc-convex set due to Lemma 29, which implies Nc is gsc-convex. We notice that

ft(xt)− ft(ut) = (ft(xt)− ft(x
′
t)) + (ft(x

′
t)− ft(ut))

and derive upper bounds for two terms individually. If x′
t ∈ NδM then x′

t = xt and ft(xt)−ft(x′
t) =

0. If this is not the case, by Lemma 23, we have

d(x′
t,xt) ≤ d(x′

t, z) ≤ d(x′
t,yt)

where z is the intersection of Nδ and the geodesic segment connecting x′
t and yt. Thus

ft(xt)− ft(x
′
t) ≤

〈
∇ft(xt),−Exp−1

xt
x′
t

〉
≤ ∥∇ft(xt)∥ · d(x′

t,xt) ≤ G · d(x′
t,yt), (27)

where we notice xt ∈ NδM and use Assumption 3. Let y′
t+1 = Expx′

t

(
−η∇ft(x′

t) + Exp−1
x′
t
(yt)

)
.

The second term ft(x
′
t)− ft(ut) can be bounded by

ft(x
′
t)− ft(ut)

(1)

≤ −⟨Exp−1
x′
t
(ut),∇ft(x′

t)⟩

=
1

η
⟨Exp−1

x′
t
(ut),Exp−1

x′
t
(y′
t+1)− Exp−1

x′
t
(yt)⟩

(2)

≤ 1

2η

(
ζd(x′

t,y
′
t+1)

2 + d(x′
t,ut)

2 − d(y′
t+1,ut)

2
)
− 1

2η

(
d(x′

t,yt)
2 + d(x′

t,ut)
2 − d(yt,ut)

2
)

=
1

2η

(
ζd(x′

t,y
′
t+1)

2 − d(x′
t,yt)

2 + d(yt,ut)
2 − d(y′

t+1,ut)
2
)

=
1

2η

(
ζ∥ − η∇ft(x′

t) + Exp−1
x′
t
(yt)∥2 − d(x′

t,yt)
2 + d(yt,ut)

2 − d(y′
t+1,ut)

2
)

=
1

2η

(
ζ∥ − η∇ft(x′

t) + ηΓ
x′
t

ytMt∥2 − d(x′
t,yt)

2 + d(yt,ut)
2 − d(y′

t+1,ut)
2
)

(3)

≤ 1

2η

(
ζ∥ − η∇ft(x′

t) + ηΓ
x′
t

ytMt∥2 − d(x′
t,yt)

2 + d(yt,ut)
2 − d(yt+1,ut)

2
)

(28)

where the second inequality follows from Lemmas 21 and 22 and the third one is due to the non-
expansive property of projection onto Hadamard manifolds. We apply Γy

xExp−1
x y = −Exp−1

y x to
derive the last equality.
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Now we can get the desired squared term ∥∇ft(yt)−Mt∥2 by considering

∥∇ft(x′
t)− Γ

x′
t

ytMt∥2

=∥∇ft(x′
t)− Γ

x′
t

yt∇ft(yt) + Γ
x′
t

yt∇ft(yt)− Γ
x′
t

ytMt∥2

≤2
(
∥∇ft(x′

t)− Γ
x′
t

yt∇ft(yt)∥2 + ∥Γx′
t

yt∇ft(yt)− Γ
x′
t

ytMt∥2
)

≤2L2d(x′
t,yt)

2 + 2∥∇ft(yt)−Mt∥2,

(29)

where in the first inequlity we use ∥x+ y∥2 ≤ 2∥x∥2 + 2∥y∥2 holds for any SPD norm ∥ · ∥, and
the second inequality is due to the smoothness of f and parallel transport is an isometry. Combining
Equations (27), (28) and (29), we have

ft(xt)− ft(ut)

≤Gd(x′
t,yt) +

ηζ

2

(
2∥∇ft(yt)−Mt∥2 + 2L2d(x′

t,yt)
2
)

− 1

2η
d(x′

t,yt)
2 +

1

2η
(d(yt,ut)

2 − d(yt+1,ut)
2)

≤ηζ∥∇ft(yt)−Mt∥2 +
1

2η

(
2ηG+ 2η2ζL2d(x′

t,yt)− d(x′
t,yt)

)
d(x′

t,yt)

+
1

2η
(d(yt,ut)

2 − d(yt+1,ut)
2).

(30)

Now we show
1

2η

(
2ηG+ 2η2ζL2d(x′

t,yt)− d(x′
t,yt)

)
d(x′

t,yt) ≤ 0 (31)

holds for any t ∈ [T ]. First we consider the case that d(x′
t,yt) ≤ δM , which means x′

t ∈ NδM and
ft(xt) = ft(x

′
t). Thus Equation (31) is implied by

2η2ζL2d(x′
t,yt)− d(x′

t,yt) ≤ 0,

which is obviously true by considering our assumption on η:

η ≤ δM

G+ (G2 + 2ζδ2M2L2)
1
2

≤ 1√
2ζL2

.

When d(x′
t,yt) ≥ δM , to simplify the proof, we denote λ = d(x′

t,yt) and try to find η such that

h(η;λ) := 2ηG+ 2η2ζL2λ− λ ≤ 0 (32)

holds for any λ ≥ δM . We denote the only non-negative root of h(η;λ) as η(λ), which can be
solved explicitly as

η(λ) =
−G+ (G2 + 2ζλ2L2)

1
2

2ζλL2
.

Applying Lemma 25 with a = G and b = 2ζL2, we know η(λ) increases on [0,∞). Thus
η(λ) ≥ η(δM) holds for any λ ≥ δM . Combining with the fact that h(0;λ) = −λ < 0, we know
h(η;λ) ≤ 0 holds for any η ≤ η(λ), so we can simply set

η ≤ min
λ
η(λ) = η (δM) =

δM

G+ (G2 + 2ζδ2M2L2)
1
2

.
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to ensure h(η;λ) ≤ 0 always holds.
Now it suffices to bound

T∑
t=1

1

2η
(d(yt,ut)

2 − d(yt+1,ut)
2)

≤d(y1,u1)
2

2η
+

T∑
t=2

(
d(yt,ut)

2 − d(yt,ut−1)
2
)

2η

≤D
2

2η
+ 2D

∑T
t=2 d(ut,ut−1)

2η
=
D2 + 2DPT

2η
.

(33)

Finally, we apply the telescoping-sum on Equation (30),

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut) ≤ ηζ

T∑
t=1

∥∇ft(yt)−Mt∥2 +
D2 + 2DPT

2η
. (34)

B.2. Extension of Theorem 4 to CAT(κ) Spaces

In this part, we show how to get optimistic regret bound on CAT(κ) spaces, the sectional curvature
of which is upper bounded by κ. Note that Hadamard manifolds are complete CAT(0) spaces. To
proceed, we make the following assumption.

Assumption 4 The sectional curvature of manifold M satisfies −κ1 ≤ κ ≤ κ2 where κ1 ≥ 0. We
define

D(κ) :=

{
∞, κ ≤ 0
π√
κ
, κ > 0.

The diameter of the gsc-convex set N ⊂ M is D and we assume D + 2δM ≤ D(κ2). The gradient
satisfies supx∈NδM

∥∇ft(x)∥ ≤ G.

Lemma 17 (Alimisis et al., 2020, Corollary 2.1) Let M be a Riemannian manifold with sectional
curvature upper bounded by κ2 and N ⊂ M be a gsc-convex set with diameter upper bounded by
D(κ2). For a geodesic triangle fully lies within N with side lengths a, b, c, we have

a2 ≥ ξ(κ2, D)b2 + c2 − 2bc cosA

where ξ(κ2, D) =
√
−κ2D coth(

√
−κ2D) when κ2 ≤ 0 and ξ(κ2, D) =

√
κ2D cot(

√
κ2D) when

κ2 > 0.

Definition 4 We define ζ = ζ(−κ1, D + 2δM) and ξ = ξ(κ2, D + 2δM) where ξ(·, ·) and ζ(·, ·)
are defined in Lemmas 17 and 21, respectively.

Lemma 18 (Bridson and Haefliger, 2013) For a CAT(κ) space M, a ball of diameter smaller than
D(κ) is convex. Let C be a convex subset in M. If d(x, C) ≤ D(κ)

2 then d(x, C) is convex and there
exists a unique point ΠC(x) ∈ C such that d(x,ΠC(x)) = d(x, C) = infy∈C d(x,y).
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Theorem 12 Suppose all losses ft are L-gsc-smooth on M. Under Assumptions 4, the iterates

x′
t = Expyt

(−ηMt)

xt = ΠNδM
x′
t

yt+1 = ΠN Expx′
t

(
−η∇ft(x′

t) + Exp−1
x′
t
(yt)

)
.

(35)

satisfies ∑T
t=1 ft(xt)−

∑T
t=1 ft(ut) ≤ ηζ

∑T
t=1 ∥∇ft(yt)−Mt∥2 + D2+2DPT

2η .

for any u1, . . . ,uT ∈ N and η ≤ min

{
ξδM

G+(G2+2ζξδ2M2L2)
1
2
, D(κ2)
2(G+2M)

}
.

Proof We highlight key differences between the proof of Theorem 4. Again we let y′
t+1 =

Expx′
t

(
−η∇ft(x′

t) + Exp−1
x′
t
(yt)

)
. First, we need to argue the algorithm is well-defined. The

diameter of NδM is at most D + 2δM by triangle inequality, so NδM is gsc-convex by Assumption
4 and Lemma 18. We also need to ensure that d(x′

t,NδM ) ≤ D(κ2)
2 and d(y′

t+1,N ) ≤ D(κ2)
2 and

apply Lemma 18 to show the projection is unique and non-expansive. For d(x′
t,NδM ), we have

d(x′
t,NδM ) ≤ d(x′

t,yt) ≤ ηM ≤ D(κ2)

2
.

by η ≤ D(κ2)
2(G+2M) . Similarly, for d(y′

t+1,N )

d(y′
t+1,N ) ≤ d(y′

t+1,yt) ≤ d(y′
t+1,x

′
t) + d(yt,x

′
t)

≤∥ − η∇ft(x′
t) + ηΓ

x′
t

ytMt∥+ ηM

≤η(G+ 2M) ≤ D(κ2)

2
.

We can bound ft(xt)− ft(x
′
t) in the same way as Theorem 4, but we now use Lemmas 17 and 21 to

bound ft(x′
t)− ft(ut).

ft(x
′
t)− ft(ut)≤− ⟨Exp−1

x′
t
(ut),∇ft(x′

t)⟩

=
1

η
⟨Exp−1

x′
t
(ut),Exp−1

x′
t
(y′
t+1)− Exp−1

x′
t
(yt)⟩

≤ 1

2η

(
ζd(x′

t,y
′
t+1)

2 + d(x′
t,ut)

2 − d(y′
t+1,ut)

2
)
− 1

2η

(
ξd(x′

t,yt)
2 + d(x′

t,ut)
2 − d(yt,ut)

2
)
.

(36)

Finally, we need to show

2ηG+ 2η2ζL2d(x′
t,yt)− ξd(x′

t,yt) ≤ 0 (37)

Following the proof of Theorem 4, we find

η ≤ ξδM

G+ (G2 + 2ζξδ2M2L2)
1
2

satisfies the required condition. The guarantee is thus established.

32



DYNAMIC REGRET ON GEODESIC METRIC SPACES

B.3. Proof of Lemma 4

We first show

T∑
t=1

⟨ℓt,wt −w∗⟩ ≤ lnN +R(w∗)

β
+ β

T∑
t=1

∥ℓt −mt∥2∞ − 1

2β

T∑
t=1

(
∥wt −w′

t∥21 + ∥wt −w′
t−1∥21

)
(38)

holds for any w∗ ∈ ∆N , where

wt = argmin
w∈∆N

β

〈
t−1∑
s=1

ℓs +mt,w

〉
+R(w), t ≥ 1

and

w′
t = argmin

w∈∆N

β

〈
t∑

s=1

ℓs,w

〉
+R(w), t ≥ 0.

Note that R(w) =
∑

i∈[N ]wi lnwi is the negative entropy. According to the equivalence between
Hedge and follow the regularized leader with the negative entropy regularizer, we have wt,i ∝
e−β(

∑t−1
s=1 ℓs,i+mt,i) and w′

t,i ∝ e−β(
∑t

s=1 ℓs,i). To prove Equation (38), we consider the following
decomposition:

⟨ℓt,wt −w∗⟩ =
〈
ℓt −mt,wt −w′

t

〉
+
〈
mt,wt −w′

t

〉
+
〈
ℓt,w

′
t −w∗〉 .

Since R(·) is 1-strongly convex w.r.t. the ℓ1 norm, by Lemma 31, we have ∥wt −w′
t∥1 ≤ β∥ℓt −

mt∥∞ and 〈
ℓt −mt,wt −w′

t

〉
≤ ∥ℓt −mt∥∞∥wt −w′

t∥1 ≤ β∥ℓt −mt∥2∞
by Hölder’s inequality. Hence it suffices to show

T∑
t=1

〈
mt,wt −w′

t

〉
+
〈
ℓt,w

′
t −w∗〉 ≤ lnN +R(w∗)

β
− 1

2β

T∑
t=1

(
∥wt −w′

t∥21 + ∥wt −w′
t−1∥21

)
(39)

to prove Equation (38).
Equation (39) holds for T = 0 because R(w∗) ≥ − lnN holds for any w∗ ∈ ∆N . To proceed,

we need the following proposition:

g(w∗) +
c

2
∥w −w∗∥2 ≤ g(w) (40)

holds for any c-strongly convex g(·) : W → R where w∗ = argminw∈W g(w). This fact can be
easily seen by combining the strong convexity and the first-order optimality condition for convex
functions.

Assume Equation (39) holds for round T − 1 (T ≥ 1) and we denote

CT =
1

2β

T∑
t=1

(
∥wt −w′

t∥21 + ∥wt −w′
t−1∥21

)
.
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Now for round T ,

T∑
t=1

(〈
mt,wt −w′

t

〉
+
〈
ℓt,w

′
t

〉)
(1)

≤
T−1∑
t=1

〈
ℓt,w

′
T−1

〉
+

lnN +R(w′
T−1)

β
− CT−1 +

〈
mT ,wT −w′

T

〉
+
〈
ℓT ,w

′
T

〉
(2)

≤
T−1∑
t=1

⟨ℓt,wT ⟩+
lnN +R(wT )

β
− CT−1 +

〈
mT ,wT −w′

T

〉
+
〈
ℓT ,w

′
T

〉
− 1

2β
∥wT −w′

T−1∥21

=

(
T−1∑
t=1

⟨ℓt,wT ⟩+ ⟨mT ,wT ⟩+
lnN +R(wT )

β

)
+
〈
ℓT −mT ,w

′
T

〉
− CT−1 −

1

2β
∥wT −w′

T−1∥21

(3)

≤

(
T−1∑
t=1

〈
ℓt,w

′
T

〉
+
〈
mT ,w

′
T

〉
+

lnN +R(w′
T )

β

)
+
〈
ℓT −mT ,w

′
T

〉
− CT−1 −

1

2β
∥wT −w′

T−1∥21 −
1

2β
∥wT −w′

T ∥21

=
T∑
t=1

〈
ℓt,w

′
T

〉
+

lnN +R(w′
T )

β
− CT

(4)

≤
T∑
t=1

⟨ℓt,w∗⟩+ lnN +R(w∗)

β
− CT .

(41)

The first inequality is due to the induction hypothesis with w⋆ = w′
T−1. The second and the third ones

are applications of Equation (40). Specifically, w′
T−1 and wT minimize

∑T−1
t=1 β ⟨ℓt,w⟩ + R(w)

and
∑T−1

t=1 β ⟨ℓt,w⟩ + β ⟨mT ,w⟩ + R(w) respectively. The forth inequality follows from w′
T

minimizes β
∑T

t=1 ⟨ℓt,w⟩+R(w).

We now demonstrate how to remove the dependence on w′
t:

1

2β

T∑
t=1

(
∥wt −w′

t∥21 + ∥wt −w′
t−1∥21

)
≥ 1

2β

T∑
t=1

(
∥wt −w′

t∥21 + ∥wt+1 −w′
t∥21
)
− 1

2β
∥wT+1 −w′

T ∥21

≥ 1

4β

T∑
t=2

∥wt −wt−1∥21 −
2

β
,

(42)

where the last inequality follows from ∥x+ y∥2 ≤ 2(∥x∥2 + ∥y∥2) holds for any norm. Now the
proof is completed by combining Equations (38) and (42).
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B.4. Proof of Theorem 5

We first show ft(xt)− ft(xt,i) ≤ ⟨wt, ℓt⟩ − ℓt,i so that Lemma 4 can be invoked to bound the regret
of the meta algorithm. We start from gsc-convexity,

ft(xt)− ft(xt,i) ≤ −
〈
∇ft(xt),Exp−1

xt
xt,i
〉

=

〈
∇ft(xt),

N∑
j=1

wt,jExp−1
xt

xt,j

〉
−
〈
∇ft(xt),Exp−1

xt
xt,i
〉

=
N∑
j=1

wt,jℓt,j − ℓt,i = ⟨wt, ℓt⟩ − ℓt,i,

(43)

where the first equality is due to the gradient of
∑N

i=1wt,id(x,xt,i)
2 vanishes at xt. Now we can

bound the regret as

T∑
t=1

ft(xt)− ft(xt,i) ≤
T∑
t=1

⟨wt, ℓt⟩ − ℓt,i

≤2 + lnN

β
+ β

T∑
t=1

∥ℓt −mt∥2∞ − 1

4β

T∑
t=2

∥wt −wt−1∥21

(44)

It now suffices to bound ∥ℓt −mt∥2∞ in terms of the gradient-variation VT and ∥wt −wt−1∥21. We
start with the definition of the infinity norm.

∥ℓt −mt∥2∞
=max
i∈[N ]

(ℓt,i −mt,i)
2

=max
i∈[N ]

(〈
∇ft(xt),Exp−1

xt
xt,i
〉
−
〈
∇ft−1(x̄t),Exp−1

x̄t
xt,i
〉)2

=max
i∈[N ]

(〈
∇ft(xt),Exp−1

xt
xt,i
〉
−
〈
∇ft−1(xt),Exp−1

xt
xt,i
〉
+
〈
∇ft−1(xt),Exp−1

xt
xt,i
〉

−
〈
Γxt
x̄t
∇ft−1(x̄t),Exp−1

xt
xt,i
〉
+
〈
Γxt
x̄t
∇ft−1(x̄t),Exp−1

xt
xt,i
〉
−
〈
Γxt
x̄t
∇ft−1(x̄t),Γ

xt
x̄t

Exp−1
x̄t

xt,i
〉 )2

(1)

≤3max
i∈[N ]

(〈
∇ft(xt)−∇ft−1(xt),Exp−1

xt
xt,i
〉2

+
〈
∇ft−1(xt)− Γxt

x̄t
∇ft−1(x̄t),Exp−1

xt
xt,i
〉2

+
〈
Γxt
x̄t
∇ft−1(x̄t),Exp−1

xt
xt,i − Γxt

x̄t
Exp−1

x̄t
xt,i
〉2 )

(2)

≤3

(
D2 sup

x∈N
∥∇ft(x)−∇ft−1(x)∥2 +D2L2d(xt, x̄t)

2 +G2∥Exp−1
xt

(xt,i)− Γxt
x̄t

Exp−1
x̄t

(xt,i)∥2
)

(45)

where the first inequality relies on fact that (a+ b+ c)2 ≤ 3(a2 + b2 + c2) holds for any a, b, c ∈ R,
and the second one follows from Assumptions 2, 3, L-gsc-smoothness and Hölder’s inequality.

By Lemma 27, for a Hadamard manifold with sectional curvature lower bounded by κ, h(x) :=
1
2d(x,xt,i)

2 is
√
κD

tanh(
√
κD)

-smooth (which is exactly ζ as in Definition 1) on Hadamard manifolds.
Thus

∥Exp−1
xt

(xt,i)− Γxt
x̄t

Exp−1
x̄t

(xt,i)∥ = ∥ − ∇h(xt) + Γxt
x̄t
∇h(x̄t)∥ ≤ ζd(xt, x̄t). (46)
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We need to bound d(xt, x̄t) in terms of ∥wt − wt−1∥1 to make full use of the negative term in
Lemma 4. By Lemma 20

d(xt, x̄t) ≤
N∑
i=1

wt,i · d(xt,i,xt,i) +D∥wt −wt−1∥1 = D∥wt −wt−1∥1. (47)

Combining Equations (44), (45), (46) and (47), we have

T∑
t=1

ft(xt)−ft(xt,i) ≤
2 + lnN

β
+3βD2(VT+G

2)+
T∑
t=2

(
3β(D4L2 +D2G2ζ2)− 1

4β

)
∥wt−wt−1∥21,

(48)
where the 3βD2G2 term is due to the calculation of VT starts from t = 2, while w0 = w1 ensures
x1 = x̄1 and thus d(x1, x̄1) = 0.

B.5. Proof of Theorem 6

The optimal step size, according to Theorem 4 is

η⋆ = min

{
δ

1 + (1 + 2ζδ2L2)
1
2

,

√
D2 + 2DPT

2ζVT

}
.

Based on Assumption 3, we know VT has an upper bound VT =
∑T

t=2 supx∈N ∥∇ft(x) −
∇ft−1(x)∥2 ≤ 4G2T . Therefore, η⋆ can be bounded by√

D2

8ζG2T
≤ η⋆ ≤ δ

1 + (1 + 2ζδ2L2)
1
2

.

According to the construction of H,

minH =

√
D2

8ζG2T
, maxH ≥ 2

δ

1 + (1 + 2ζδ2L2)
1
2

.

Therefore, there always exists k ∈ [N ] such that ηk ≤ η⋆ ≤ 2ηk. We can bound the regret of the
k-th expert as

T∑
t=1

ft(xt,k)−
T∑
t=1

ft(ut) ≤ ηkζVT +
D2 + 2DPT

2ηk
≤ η⋆ζVT +

D2 + 2DPT
η⋆

≤ζVT

√
D2 + 2DPT

2ζVT
+ (D2 + 2DPT ) ·max

{√
2ζVT

D2 + 2DPT
,
1 + (1 + 2ζδ2L2)

1
2

δ

}

=
3

2

√
2(D2 + 2DPT )ζVT + (D2 + 2DPT )

1 + (1 + 2ζδ2L2)
1
2

δ
.

(49)

Since the dynamic regret can be decomposed as the sum of the meta-regret and the expert-regret,

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut) =

T∑
t=1

ft(xt)−
T∑
t=1

ft(xt,k) +

T∑
t=1

ft(xt,k)−
T∑
t=1

ft(ut).
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Applying Theorem 5 with β ≤ 1√
12(D4L2+D2G2ζ2)

, we have

(
3β(D4L2 +D2G2ζ2)− 1

4β

)
≤ 0

and
T∑
t=1

ft(xt)−
T∑
t=1

ft(xt,i) ≤
2 + lnN

β
+ 3βD2(VT +G2).

We need to consider two cases based on the value of β.

If
√

2+lnN
3D2(VT+G2)

≤ 1√
12(D4L2+D2G2ζ2)

, then

T∑
t=1

ft(xt)−
T∑
t=1

ft(xt,i) ≤ 2
√
3D2(VT +G2)(2 + lnN).

Otherwise, we have

T∑
t=1

ft(xt)−
T∑
t=1

ft(xt,i) ≤ 2(2 + lnN)
√
12(D4L2 +D2G2ζ2).

In sum,

T∑
t=1

ft(xt)−
T∑
t=1

ft(xt,i)

≤max
{
2
√

3D2(VT +G2)(2 + lnN), 2(2 + lnN)
√
12(D4L2 +D2G2ζ2)

}
.

(50)

Combining Equations (50) and (49), we have

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut)

≤max
{
2
√

3D2(VT +G2)(2 + lnN), 2(2 + lnN)
√
12(D4L2 +D2G2ζ2)

}
+

3

2

√
2(D2 + 2DPT )ζVT + (D2 + 2DPT )

1 + (1 + 2ζδ2L2)
1
2

δ

=O
(√

(VT + ζ2 lnN) lnN
)
+O

(√
ζ(VT + (1 + PT )/δ2)(1 + PT )

)
=O

(√
ζ(VT + (1 + PT )/δ2)(1 + PT )

)
,

(51)

where we use O(·) to hide O(log log T ) following Luo and Schapire (2015) and Zhao et al. (2020)
and N = O(log T ) leads to lnN = O(log log T ).
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Appendix C. Omitted Proof for Section 6

C.1. Proof of Lemma 5

By L-gsc-smoothness, we have

f(y) ≤ f(x) +
〈
∇f(x),Exp−1

x (y)
〉
+
L · d(x,y)2

2
.

Setting y = Expx
(
− 1
L∇f(x)

)
, we have

0 ≤f(y) ≤ f(x)− 1

L
∥∇f(x)∥2 + L

2
· 1

L2
∥∇f(x)∥2

=f(x)− 1

2L
∥∇f(x)∥2,

(52)

where we use the non-negativity of f . The above inequality is equivalent to

∥∇f(x)∥2 ≤ 2L · f(x),

in which the constant is two times better than that of Srebro et al. (2010).

C.2. Proof of Lemma 6

The proof is similar to the proof of Theorem 1. Let x′
t+1 = Expxt

(−η∇ft(xt)), then analog to
Equation (10), we have

ft(xt)− ft(ut) ≤
1

2η

(
∥Exp−1

xt
ut∥2 − ∥Exp−1

xt+1
ut+1∥2 + 2D∥Exp−1

ut
ut+1∥

)
+
ηζ∥∇ft(xt)∥2

2

≤ 1

2η

(
∥Exp−1

xt
ut∥2 − ∥Exp−1

xt+1
ut+1∥2 + 2D∥Exp−1

ut
ut+1∥

)
+ ηζLft(xt),

(53)

where for the second inequality we apply Lemma 5. WLOG, we can assume uT+1 = uT and sum
from t = 1 to T :

T∑
t=1

(ft(xt)− ft(ut)) ≤
D2 + 2DPT

2η
+ ηζL

T∑
t=1

ft(xt).

After simplifying, we get

T∑
t=1

(ft(xt)− ft(ut)) ≤
D2 + 2DPT
2η(1− ηζL)

+
ηζL

∑T
t=1 ft(ut)

1− ηζL

=
D2 + 2DPT
2η(1− ηζL)

+
ηζLFT
1− ηζL

≤D
2 + 2DPT

η
+ 2ηζLFT

=O

(
1 + PT
η

+ ηFT

)
.

(54)

where η ≤ 1
2ζL is used to obtain the second inequality.
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C.3. Proof of Lemma 7

We again apply Lemma 4, with the surrogate loss ℓt,i =
〈
∇ft(xt),Exp−1

xt
xt,i
〉

and the optimism
mt,i = 0 for any i ∈ [N ]. In this way,

T∑
t=1

ft(xt)−
T∑
t=1

ft(xt,i)

≤−
T∑
t=1

〈
∇ft(xt),Exp−1

xt
xt,i
〉
=

T∑
t=1

⟨wt, ℓt⟩ − wt,i

≤2 + lnN

β
+ β

T∑
t=1

∥ℓt∥2∞ − 1

4β

T∑
t=2

∥wt −wt−1∥21

≤2 + lnN

β
+ βD2

T∑
t=1

∥∇ft(xt)∥2

≤2 + lnN

β
+ 2βD2L

T∑
t=1

ft(xt) =
2 + lnN

β
+ 2βD2LF̄T ,

(55)

where the second inequality follows from Lemma 4, the third one follows from Assumption 2 and
Hölder’s inequality, while the last inequality is due to Lemma 5. By setting β =

√
2+lnN
2LD2F̄T

, the
regret of the meta algorithm is upper bounded by

T∑
t=1

ft(xt)−
T∑
t=1

ft(xt,i) ≤
√
8D2L(2 + lnN)F̄T =

√√√√8D2L(2 + lnN)
T∑
t=1

ft(xt). (56)

Although F̄T is unknown similar to the case of Optimistic Hedge, we can use techniques like the

doubling trick or a time-varying step size βt = O

(
1√
1+F̄t

)
to overcome this hurdle.

The RHS of Equation (56) depends on the cumulative loss of xt, which remains elusive. Here
we apply an algebraic fact that x− y ≤

√
ax implies x− y ≤ a+

√
ay holds for any non-negative

x, y and a. Then

T∑
t=1

ft(xt)−
T∑
t=1

ft(xt,i) ≤ 8D2L(2 + lnN) +
√
8D2L(2 + lnN)F̄T,i (57)

where we remind F̄T,i =
∑T

t=1 ft(xt,i).

C.4. Proof of Theorem 7

Recall the regret of the meta algorithm as in Lemma 7:

T∑
t=1

ft(xt)−
T∑
t=1

ft(xt,i) ≤ 8D2L(2 + lnN) +
√

8D2L(2 + lnN)F̄T,i. (58)
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On the other hand, we know the regret can be decomposed as

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut) =

T∑
t=1

ft(xt)−
T∑
t=1

ft(xt,i) +

T∑
t=1

ft(xt,i)−
T∑
t=1

ft(ut)

=

T∑
t=1

ft(xt)−
T∑
t=1

ft(xt,i) + F̄T,i − FT .

(59)

We can first show there exists an almost optimal step size and bound the regret of the corresponding
expert. That regret immediately provides an upper bound of F̄T,i in terms of FT . This argument
eliminates the dependence on F̄T,i and leads to a regret bound solely depending on FT and PT .

Now we bound the regret of the best expert. Note that due to Lemma 6, the optimal step size is

η = min
{

1
2ζL ,

√
D2+2DPT
2ζLFT

}
. According to Assumptions 2, 3, FT ≤ GDT . Thus the optimal step

size η⋆ is bounded by √
D

4LGT
≤ η⋆ ≤ 1

2ζL
.

Due to our construction of H, there exists k ∈ [N ] such that ηk ≤ η⋆ ≤ 2ηk.
According to Lemma 6,

T∑
t=1

ft(xt,k)−
T∑
t=1

ft(ut)

≤ D2 + 2DPT
2ηk(1− ηkζL)

+
ηkζLFT
1− ηkζL

≤ D2 + 2DPT
ηk

+ 2ηkζLFT

≤2(D2 + 2DPT )

η⋆
+ 2η⋆ζLFT

≤2(D2 + 2DPT )

(
2ζL+

√
2ζLFT

D2 + 2DPT

)
+ 2ζLFT ·

√
D2 + 2DPT

2ζLFT

=4ζL(D2 + 2DPT ) + 3
√
2ζLFT (D2 + 2DPT )

≤
√
2 (16ζ2L2(D2 + 2DPT )2 + 18ζLFT (D2 + 2DPT ))

(60)

where we apply η⋆ ≤
√

D2+2DPT
2ζLFT

, 1
η⋆ ≤ 2ζL+

√
2ζLFT

D2+2DPT
and

√
a+

√
b ≤

√
2(a+ b).

Now as we combine Equations (58), (59), (60),

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut)

≤8D2L(2 + lnN) +
√
8D2L(2 + lnN)F̄T,k +

√
2 (16ζ2L2(D2 + 2DPT )2 + 18ζLFT (D2 + 2DPT ))

≤8D2L(2 + lnN) +

√
8D2L(2 + lnN)

(
FT +

√
2 (16ζ2L2(D2 + 2DPT )2 + 18ζLFT (D2 + 2DPT ))

)
+
√
2 (16ζ2L2(D2 + 2DPT )2 + 18ζLFT (D2 + 2DPT ))

=O(
√
ζ(ζ(1 + PT ) + FT )(PT + 1)).

(61)
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where we again use O(·) to hide the log log T term.

Appendix D. Omitted Proof for Section 7

D.1. Necessity of Best-of-both-worlds Bound

We highlight the necessity of achieving a best-of-both-worlds bound by computing the Fréchet mean
in the online setting on the d-dimensional unit Poincaré disk. The Poincaré disk looks like a unit ball
in Euclidean space, but its Riemannian metric blows up near the boundary:

⟨u,v⟩x =
4 ⟨u,v⟩2

(1− ∥x∥22)2

and has constant sectional curvature −1. We use 0 to denote the origin of the Poincaré ball and ei to
be the i-th unit vector in the standard basis. The Poincaré ball has the following property (Lou et al.,
2020):

d(x,y) = arcosh

(
1 +

2∥x− y∥22
(1− ∥x∥22)(1− ∥y∥22)

)
Exp−1

0 y = arctanh(∥y∥2)
y

∥y∥2
.

Now consider the following loss function

ft(x) =

2d∑
i=1

d(x,xt,i)
2

2d

where xt,i =
t
2T ei for 1 ≤ i ≤ d and xt,i = − t

2T ei−d for d+ 1 ≤ i ≤ 2d. We choose N to be
the convex hull of ±1

2ei, i = 1, . . . , d. And the comparator is ut = argminut∈N ft(ut) which is
indeed the origin 0 due to symmetry. Now we can bound VT by

VT =

T∑
t=2

sup
x∈N

∥∇ft(x)−∇ft−1(x)∥2

=
1

4d2

T∑
t=2

sup
x∈N

∥∥∥∥∥
2d∑
i=1

(
Exp−1

x xt,i − Exp−1
x xt−1,i

)∥∥∥∥∥
2

≤ 1

4d2

T∑
t=2

c ·

(
2d∑
i=1

d(xt,i,xt−1,i)

)2

=

T∑
t=2

c

(
arcosh

(
1 +

2( t
2T − t−1

2T )2

(1− ( t
2T )

2)(1− ( t−1
2T )2)

))2

≤
T∑
t=2

c

(
arcosh

(
1 +

8

9T 2

))2

≤
T∑
t=2

c ·

(
8

9T 2
+

√
64

81T 4
+

16

9T 2

)2

=
T∑
t=2

c ·O
(

1

T 2

)
= O

(
1

T

)
,

(62)
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where the first inequality is due to triangle inequality and Lemma 30. We note that c is a constant
depending on the diamater of N and the sectional curvature of M. The second one is due to t ≤ T ,
while the third inequality follows from arcosh(1 + x) ≤ x+

√
x2 + 2x.

Similarly, we can evaluate FT

FT =
T∑
t=1

ft(ut) =
T∑
t=1

ft(0) =
T∑
t=1

2d∑
i=1

d(0,xt,i)
2

2d

=
T∑
t=1

arcosh

(
1 + t2

4T 2

1− t2

4T 2

)
=

∫ T

0
arcosh

(
1 + t2

4T 2

1− t2

4T 2

)
dt+O(1)

=2T

∫ 1
2

0
arcosh

1 + a2

1− a2
da+O(1)

=2T

(
a · arcosh 1 + a2

1− a2
+ ln(1− a2)

) ∣∣ 12
0
+O(1) = Θ(T ).

(63)

When the input losses change smoothly, VT ≪ FT and the gradient-variation bound is much tighter
than the small-loss bound.

There also exist scenarios in which the small-loss bound is tighter. We still consider computing
the Fréchet mean on the Poincaré disk

ft(x) =

n∑
i=1

d(x,xt,i)
2/n,

but assume xt,i = yi when t is odd and xt,i = −yi when t is even. We restrict y1, . . . ,yn ∈
B(e12 , T

−α) where B(p, r) is the geodesic ball centered at p and with radius r. N is the convex hull of
B(e12 , T

−α)∪B(−e1
2 , T

−α). Since the input sequence is alternating, supx∈N ∥∇ft(x)−∇ft−1(x)∥2
is a constant over time, and we can lower bounded it by

sup
x∈N

∥∇ft(x)−∇ft−1(x)∥2

= sup
x∈N

∥∥∥∥∥ 1n
(

n∑
i=1

Exp−1
x xt,i −

n∑
i=1

Exp−1
x xt−1,i

)∥∥∥∥∥
2

= sup
x∈N

∥∥∥∥∥ 2n
n∑
i=1

Exp−1
x yi

∥∥∥∥∥
2

≥ 4

n2

∥∥∥∥∥
n∑
i=1

Exp−1
0 yi

∥∥∥∥∥
2

=
4

n2

∥∥∥∥∥∥
(

n∑
i=1

Exp−1
0 yi

)∥
∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
(

n∑
i=1

Exp−1
0 yi

)⊥
∥∥∥∥∥∥
2

≥ 4

n2

∥∥∥∥∥∥
(

n∑
i=1

Exp−1
0 yi

)∥
∥∥∥∥∥∥
2

≥ 4

n2

∥∥∥∥n · arctanh
(
1

2
− T−α

)
e1

∥∥∥∥2
0

=16 arctanh2
(
1

2
− T−α

)
≥16

(
1
2 − T−α

3
2 − T−α

)2

= Ω(1).

(64)
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where we use a∥ and a⊥ to denote components parallel and orthogonal to the direction of e1,
respectively. The key observation is the lower bound attains when

(∑n
i=1 Exp−1

0 yi
)⊥ is zero, and

each yi has the smallest component along e1, i.e., yi =
(
1
2 − T−α) e1. We also use arctanh(x) ≥

x
1+x . Thus we have VT = Ω(T ). Now we consider FT . By Lemma 24, we know that ut lies within
the same geodesic ball as xt,i, i ∈ [n]. Thus

FT =

T∑
t=1

ft(ut) =

T∑
t=1

n∑
i=1

d(ut,xt,i)
2/n ≤ T ·

(
2

Tα

)2

= O(T 1−2α).

We can see whenever α > 0, FT = o(T ) but VT = Ω(T ).

D.2. Proof of Theorem 8

By Lemma 4 we have

T∑
t=1

ft(xt)− ft(xt,i) ≤
2 + lnN

β
+ β

T∑
t=1

∥ℓt −mt∥2∞ − 1

4β

T∑
t=2

∥wt −wt−1∥21 (65)

We bound
∑T

t=1 ∥ℓt − mt∥2∞ in terms of
∑T

t=1 ∥ℓt − mv
t ∥2∞ and

∑T
t=1 ∥ℓt − ms

t∥2∞ as follows.
By Assumptions 2 and 3, ∥ℓt − mt∥22 ≤ 4NG2D2 and we can compute dt(m) = ∥ℓt − m∥22 is

1
8NG2D2 -exp-concave. . We have

T∑
t=1

∥ℓt −mt∥2∞ ≤
T∑
t=1

∥ℓt −mt∥22

≤min

{
T∑
t=1

∥ℓt −mv
t ∥22,

T∑
t=1

∥ℓt −ms
t∥22

}
+ 8NG2D2 ln 2

≤N min

{
T∑
t=1

∥ℓt −mv
t ∥2∞,

T∑
t=1

∥ℓt −ms
t∥2∞

}
+ 8NG2D2 ln 2,

(66)

where for the second inequality we use Lemma 32 and for the first and the third one the norm
inequality ∥x∥∞ ≤ ∥x∥2 ≤

√
N∥x∥∞ is used.

Combining Equations (50), (65), (66) and Lemma 7, we have

T∑
t=1

ft(xt)−
T∑
t=1

ft(xt,i) ≤
2 + lnT

β
+ βN

(
D2min{3VT , F̄T }+ 8G2D2 ln 2

)
holds for any β ≤ 1√

12(D4L2+D2G2ζ2)
and i ∈ [N ].

Suppose β⋆ =
√

2+lnN
N(D2 min{3(VT+G2),F̄T }+8G2D2 ln 2)

≤ 1√
12(D4L2+D2G2ζ2)

, then

T∑
t=1

ft(xt)−
T∑
t=1

ft(xt,i) ≤ 2
√
(2 + lnN)N(D2min{3(VT +G2), F̄T }+ 8G2D2 ln 2).
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Otherwise
T∑
t=1

ft(xt)−
T∑
t=1

ft(xt,i) ≤ 2(2 + lnN)
√
12(D4L2 +D2G2ζ2).

In sum, we have

T∑
t=1

ft(xt)−
T∑
t=1

ft(xt,i)

≤max

{
2
√
(2 + lnN)N(D2min{3(VT +G2), F̄T }+ 8G2D2 ln 2), 2(2 + lnN)

√
12(D4L2 +D2G2ζ2)

}
=O(log T ·min{VT , F̄T }).

(67)

D.3. Proof of Theorem 9

By Theorem 8, we know

T∑
t=1

ft(xt)−
T∑
t=1

ft(xt,i) = O

(√
lnT (min{VT , F̄T })

)

holds for any i ∈ [Nv +N s]. WLOG, we assume k and k′ to be indexes of the best experts for the
gradient-variation bound and the small-loss bound, respectively. Then by Theorem 6,

T∑
t=1

ft(xt,k)− ft(ut) ≤
3

2

√
2(D2 + 2DPT )ζVT + (D2 + 2DPT )

1 + (1 + 2ζδ2L2)
1
2

δ
(68)

while by Theorem 7,

T∑
t=1

ft(xt,k′)− ft(ut) ≤
√

2 (16ζ2L2(D2 + 2DPT )2 + 18ζLFT (D2 + 2DPT )). (69)

Since the regret admits the following decompositions

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut)

=

T∑
t=1

ft(xt)−
T∑
t=1

ft(xt,k) +
T∑
t=1

ft(xt,k)−
T∑
t=1

ft(ut)

=

T∑
t=1

ft(xt)−
T∑
t=1

ft(xt,k′) +

T∑
t=1

ft(xt,k′)−
T∑
t=1

ft(ut)

,

(70)
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we indeed have

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut)

≤O
(√

lnT (min{VT , F̄T })
)
+min

{
3

2

√
2(D2 + 2DPT )ζVT + (D2 + 2DPT )

1 + (1 + 2ζδ2L2)
1
2

δ
,√

2 (16ζ2L2(D2 + 2DPT )2 + 18ζLFT (D2 + 2DPT ))
}

=O

(√
lnT (min{VT , F̄T })

)
+O

(
min

{√
ζ(1 + PT )((1 + PT )/δ2 + VT ),

√
ζ(1 + PT )(ζ(1 + PT ) + FT )

})
(71)

Note that F̄T can be processed similarly as in Lemma 7 and Theorem 7 to get FT . In sum, the regret
is bounded by

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut) = O
(√

ζ(PT (ζ + 1/δ2) + min{VT , FT }+ 1)(1 + PT ) + lnT min{VT , FT }
)
.

Appendix E. Technical Lemmas

We need the following technical lemmas.

Lemma 19 (Bento et al., 2021, Theorem 2.1) Suppose f : M → R is geodesically convex and M is
Hadamard. The geodesic mean x̄k w.r.t coefficients a1, . . . , aN (

∑N
i=1 ai = 1, ai ≥ 0) is defined as:

x̄1 = x1

x̄k = Expx̄k−1

(
ak∑k
i=1 ai

Exp−1
x̄k−1

xk

)
, k > 1.

(72)

Then we have

f(x̄N ) ≤
N∑
i=1

aif(xi). (73)

Proof
We use induction to show a stronger statement

f(x̄k) ≤
k∑
i=1

ai∑k
j=1 aj

f(xi)

holds for k = 1, . . . , N .
For k = 1, this is obviously true because x̄1 = x1. Suppose

f(x̄k) ≤
k∑
i=1

ai∑k
j=1 aj

f(xi)
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holds for some k, then by geodesic convexity,

f(x̄k+1) ≤

(
1− ak+1∑k+1

j=1 aj

)
f(x̄k) +

ak+1∑k+1
j=1 aj

f(xk+1)

≤
k∑
i=1

ai∑k+1
j=1 aj

f(xi) +
ak+1∑k+1
j=1 aj

f(xk+1)

=

k+1∑
i=1

aif(xi)∑k+1
j=1 aj

.

(74)

The first inequality is due to gsc-convexity: for the geodesic determined by γ(0) = x̄k and

γ(1) = xk+1 we have x̄k+1 = γ

(
ak+1∑k+1
i=1 ai

)
and thus f(γ(t)) ≤ (1 − t)f(γ(0)) + tf(γ(1)). For

the second inequality, we use the induction hypothesis. Given
∑N

i=1 ai = 1, the lemma is proved.

The computation of the geodesic averaging is summarized in Algorithm 6, which serves as a
sub-routine of RADAR.

Algorithm 6: Geodesic Averaging
Data: N points x1, . . . ,xN ∈ N and N real weights w1, . . . , wN .
Let x̄1 = x1

for k = 2, . . . , N do
x̄k = Expx̄k−1

(
wk∑k
i=1 wi

Exp−1
x̄k−1

xk

)
end
Return x̄N .

Lemma 20 Suppose x1, . . . ,xN ,y1, . . . ,yN ∈ N where N is a gsc-convex subset of a Hadamard
manifold M and the diameter of N is upper bounded by D. Let x̄ and ȳ be the weighted Fréchet
mean with respect to coefficient vectors a and b (a,b ∈ ∆N ), defined as x̄ = argminx∈N

∑N
i=1 ai ·

d(x,xi)
2 and ȳ = argminy∈N

∑N
i=1 bi · d(y,yi)2. Then we have

d(x̄, ȳ) ≤
N∑
i=1

ai · d(xi,yi) +D
N∑
i=1

|ai − bi|. (75)

Proof Recall that on Hadamard manifolds, the following inequality (Sturm, 2003, Prop. 2.4)

d(x,y)2 + d(u,v)2 ≤ d(x,v)2 + d(y,u)2 + 2d(x,u) · d(y,v)

holds for any x,y,u,v ∈ M. A direct application of the above inequality yields

d(xi, ȳ)
2 + d(yi, x̄)

2 ≤ d(xi, x̄)
2 + d(yi, ȳ)

2 + 2d(x̄, ȳ) · d(xi,yi) ∀i ∈ [N ]. (76)

By (Bacák, 2014a, Theorem 2.4):

N∑
i=1

ai · d(xi, x̄)2 +
N∑
i=1

bi · d(yi, ȳ)2 + 2d(x̄, ȳ)2 ≤
N∑
i=1

ai · d(xi, ȳ)2 +
N∑
i=1

bi · d(yi, x̄)2 (77)
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Multiplying Equation (76) by ai, summing from i = 1 to n and adding Equation (77), we have

2d(x̄, ȳ)2 ≤2d(x̄, ȳ)

N∑
i=1

ai · d(xi,yi) +
N∑
i=1

(ai − bi)d(yi, ȳ)
2 +

N∑
i=1

(bi − ai)d(yi, x̄)
2

=2d(x̄, ȳ)

N∑
i=1

ai · d(xi,yi) +
N∑
i=1

(ai − bi) · (d(yi, ȳ)− d(yi, x̄)) · (d(yi, ȳ) + d(yi, x̄))

≤2d(x̄, ȳ)
N∑
i=1

ai · d(xi,yi) + 2D
N∑
i=1

|ai − bi|d(x̄, ȳ),

(78)

where for the last inequality we use the triangle inequality for geodesic metric spaces and Assumption
2. Now dividing both sides by 2d(x̄, ȳ) and we complete the proof.

Lemma 21 (Zhang and Sra, 2016, Lemma 5). Let M be a Riemannian manifold with sectional
curvature lower bounded by κ ≤ 0. Consider N , a gsc-convex subset of M with diameter D. For a
geodesic triangle fully lies within N with side lengths a, b, c, we have

a2 ≤ ζ(κ,D)b2 + c2 − 2bc cosA

where ζ(κ,D) :=
√
−κD coth(

√
−κD).

Lemma 22 (Sakai, 1996, Prop. 4.5) Let M be a Riemannian manifold with sectional curvature
upper bounded by κ ≤ 0. Consider N , a gsc-convex subset of M with diameter D. For a geodesic
triangle fully lies within N with side lengths a, b, c, we have

a2 ≥ b2 + c2 − 2bc cosA.

Lemma 23 (Bacák, 2014b, Theorem 2.1.12) Let (H, d) be a Hadamard space and C ⊂ H be a
closed convex set. Then ΠCx is singleton and d(x,ΠCx) ≤ d(x, z) for any z ∈ C \ {ΠCx}.

Lemma 24 (Sturm, 2003, Prop. 6.1 and Theorem 6.2) Suppose x1, . . . ,xN ∈ N where N is a
bounded gsc-convex subset of a Hadamard space. x̄ is the weighted Fréchet mean of x1, . . . ,xN ∈ N
w.r.t. non-negative w1, . . . , wN such that

∑
i=1wi = 1 and f : N → R is a gsc-convex function.

Then x̄ ∈ N and

f(x̄) ≤
N∑
i=1

wif(xi).

Lemma 25 Let

g(x) :=
−a+ (a2 + bx2)

1
2

x
,

where a, b ∈ R+, then g(x) increases on [0,∞).
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Proof Taking the derivative w.r.t. x, we have

g′(x) =
1
2 · 2bx(a2 + bx2)−

1
2 · x− (−a+ (a2 + bx2)

1
2 ) · 1

x2

=
bx2 − (−a

√
a2 + bx2 + a2 + bx2)

x2
√
a2 + bx2

=
a
√
a2 + bx2 − a2

x2
√
a2 + bx2

≥ 0

holds for any x > 0. By L’Hôpital’s rule, g(0) = 0 and g′(0) = b
2a . Thus we know g(x) increases

on [0,∞).

Lemma 26 (Zhou and Huang, 2019, Theorem 3.1) On a Hadamard manifold M, a subset C
gsc-convex, iff it contains the geodesic convex combinations of any countable points in C.

Lemma 27 (Ahn and Sra, 2020, Prop. H.1) Let M be a Riemannian manifold with sectional
curvatures lower bounded by −κ < 0 and the distance function d(x) = 1

2d(x,p)
2 where p ∈ M.

For D ≥ 0, d(·) is gsc-smooth within the domain {u ∈ M : d(u,p) ≤ D}.

Lemma 28 (Ballmann, 2012, Corollary 5.6) Let M be a Hadamard space and C ⊂ M a convex
subset. Then d(z, C) is gsc-convex for z ∈ M.

Lemma 29 (Bacák, 2014b, Section 2.1) Let H be a Hadamard manifold, f : H → (−∞,∞) be a
convex lower semicontinuous function. Then any β-sublevel set of f :

{x ∈ H : f(x) ≤ β}

is a closed convex set.

Lemma 30 (Sun et al., 2019, Lemma 4) Let the sectional curvature of M is in [−K,K] and
x,y, z ∈ M with pairwise distance upper bounded by R. Then

∥Exp−1
x y − Exp−1

x z∥ ≤ (1 + c(K)R2)d(y, z).

Lemma 31 (Duchi et al., 2012, Lemma 2) Let

ΠψX (z, α) = argmin
x∈X

⟨z,x⟩+ ψ(x)

α

where ψ(·) is 1-strongly convex w.r.t. ∥ · ∥, then

∥ΠψX (u, α)−ΠψX (v, α)∥ ≤ α∥u− v∥⋆.

Lemma 32 (Cesa-Bianchi and Lugosi, 2006, Prop. 3.1 and Theorem 3.2) Suppose the loss function
ℓt is exp-concave for η > 0, then the regret of Hedge is lnN

η , where N is the number of experts.
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