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Abstract
We prove that the Minimum Program Length learning rule exhibits tempered overfitting. We obtain
tempered agnostic finite sample learning guarantees and characterize the asymptotic behavior in the
presence of random label noise.

1. Introduction

We consider the learning rule MPL (minimum program length) which selects the predictor de-
scribable with minimal program length, in some fixed Turing-complete programming language,
that fits the training set perfectly. That is, given training examples x1, . . . , xm with binary labels
y1, . . . , ym ∈ {0, 1}, MPL returns the shortest program h(·) such that for every training example xi,
h(xi) outputs its training label, yi. Such minimum description length learning is well understood in
the realizable setting [BEHW87] – if there exists some h⋆ that is perfect on the source distribution,
i.e. with zero population loss L(h⋆) = 0, then O(|h⋆| /ε) samples are enough for MPL to have
(expected) population loss at most ε, where |h⋆| is the description, or program, length of h⋆.

However, to handle noisy situations, or compete with a short program h that might not be per-
fect, the standard wisdom is to balance training error against description length, e.g. employing the
Structural Risk Minimization (SRM) principle. By minimizing the right combination of training
error and description length (or a combination tuned through validation), such an SRM predictor
can compete with any predictor h, and using a training set of size m has expected error at most [e.g.
SB14]1

inf
h

(
L(h) +O

(
|h|
m

+

√
L(h) · |h|

m

))
. (1.1)

But following recent interest in benign overfitting and interpolation learning of noisy data [e.g.
BHM18; BRT19; NDR20; BLLT20; MRSY20; HMRT; MNSBHS21; CL21, and many others], we
ask: what happens if we insist on interpolating (i.e. obtaining zero training error) and using the
interpolating MPL rule? Does MPL overfit benignly? Does it still enjoy the same guarantee (1.1)
as SRM? Is it consistent like SRM, i.e., does it converge to the Bayes optimal predictor (as long as
the Bayes optimal predictor has finite description)? Or is overfitting by MPL catastrophic, possibly

1. Shalev-Shwartz and Ben-David analyze SRM using Hoeffding’s inequality, and thus present a guarantee with excess
error O(

√
|h| /m), while the tighter guarantee (1.1) is based on Bernstein’s inequality. They call this application of

the SRM principle “MDL”, and thus use “MDL” to refer to the learning rule we refer to as “SRM”. Others, such
as Grünwald and Langford [GL07] refer to what we call SRM as “Occam Razor’s Bound” (ORB), citing Blumer,
Ehrenfeucht, Haussler, and Warmuth [BEHW87], although Blumer et al consider only the realizable case and thus
the interpolating MDL rule.
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yielding worthless predictions? Or perhaps tempered [as defined in MSAPBN22] with error worse
than the optimally balanced SRM, but still better than random guessing? If so, can we bound the
error of the interpolating MPL compared to the optimally balanced SRM? How much worse can it
be compared to the SRM guarantee (1.1) ?

We show that MPL overfitting is not benign, with asymptotic error that could be worse than
SRM. But we can bound this error away from 0.5, as a simple fixed function of the Bayes error,
depicted in Figure 1. With random label noise, we obtain a tight and precise characterization of
the asymptotic error. Furthermore, we obtain an agnostic finite sample guarantee, which holds for
any source distribution, without any realizability or specification assumptions, and tells us how well
we compete with any competitor hypothesis (not necessarily the Bayes optimal). This contrasts
with much of the existing work on benign overfitting which is distribution-specific, e.g. making
Gaussianity assumptions on the data, and often assuming the model is well specified.

Our analysis essentially follows a uniform convergence approach, and decouples the analyses of
the program length of MPL from that of the generalization error for short programs. In Section 3 we
bound the minimum program length |MPL(S)| by proving an upper bound on the program needed
to interpolate a noisy training set. Then in Section 4 we bound the expected error of any learning
rule returning short programs in terms of the length of the program. Our learning guarantees, stated
in Section 2, then follow immediately by combining the two.

Minimum Description Length terminology and Rissanen’s MDL model selection criterion
The minimum program (or description) length interpolator we study here should not be confused
with the Minimum Description Length model selection criterion [Ris78], where a two-part code is
typically considered, the first part describing a probabilistic model, and the second describing the
data using the model. Grünwald and Langford [GL07] suggest using this model selection criterion
also in a supervised learning setting, as a way of balancing the description length |h| (or almost
equivalently, the prior probability of h) with its empirical error LS(h). The resulting learning rule,
which we refer to as MDL2, can be viewed as an alternative to SRM (which Grünwald and Langford
refer to as “Occam’s Razor Bound” (ORB)), yielding a different balance between |h| and LS(h), but
generally not interpolating (i.e. not insisting on LS(h) = 0). Grünwald and Langford study MDL2
in the same agnostic supervised learning setting we employ, and show that it is inferior to SRM,
does not yield (1.1), and in fact can be asymptotically inconsistent. However, their asymptotic in-
consistency result is very different from ours in several important ways: First as we are interested
in understanding the effect of overfitting and interpolation learning, we insist on perfect fit: we view
h : x 7→ y as defining a deterministic mapping and our “description” can be viewed as a one-part
code. The interpolating learning rule we study is thus very different from the “balanced” MDL2
they study. Second, they obtain asymptotic inconsistency only in a non-well-specified setting. This
is essential since MDL2 is consistent in a well specified setting. In contrast, we show the interpo-
lating MPL is inconsistent even with random classification noise. Third, they show inconsistency
for a very specific and artificial prior, corresponding to a very restrictive description language that
is nothing like a Turing-complete language. It is easy to see that minimum description length (or
max prior) interpolation has no chance of working with such a prior. Rather, we are interested in
interpolation with short programs, i.e. with a Turing-complete description language, and show both
lack of consistency in this setting, and more interestingly an upper bound (i.e. that interpolation is
“tempered”) which rests crucially on Turing completeness. In Appendix B we comment further on
how our analysis relates to that of Grünwald and Langford.
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Figure 1: Behavior of interpolating MDL as a function of the noise level. Top curve: The function
ℓag(L

⋆), which provides an agnostic upper bound on the error of MPL, with a finite
sample gurantee that approaches this curve; Contrast with the middle curve: the function
ℓsamp(L

⋆), which is the exact asymptotic error of MPL under random label noise.

Notation We write Bernoulli random variables with parameter α as Ber (α). We use H(X) to
denote the entropy of random variable. We also write H(α) to denote the entropy of a Ber (α)-
random variable. The Radon-Nikodym derivative between two distributions p and q is denoted
dp/dq, and one can informally think of dp(·) as the probability density or mass function. We
measure information in bits, and log is always base 2. The operation ⊕ denotes the XOR of two
bits. For two random variables A and B, we write A ⊥ B to mean that A and B are independent.

2. Formal Setup and Main Results

We consider learning based on m i.i.d. samples S = {(x1, y1), . . . , (xm, ym)} ∼ Dm from a
source distribution D(X,Y ) over bit-strings X and binary labels Y ∈ {0, 1}. A learning rule is
a mapping A : S 7→ h from training sets to predictors h : x 7→ y. To formalize the notion of
program length, we can think of the predictors h as programs in some prefix-unambiguous Turing
complete programming language, and we use |h| to denote program length in bits. We denote the
training error as LS(h) = 1

m1{h(xi) ̸= yi}. We say h interpolates S if LS(h) = 0 and that A is
an interpolating rule if LS(A(S)) = 0 almost surely. With this notation, we have that MPL(S) =
argminLS(h)=0 |h|. We denote the population error by L(h) = Pr

(X,Y )∼D
[1{h(xi) ̸= yi}] and we

use the same notation for the expected error of a learning rule: L(A) = E
S∼Dm

[LD(A(S))].

In order to discuss interpolation learning, we must ensure it is always indeed possible to inter-
polate. This is the case if we never encounter the same instance x with different labels, i.e.

Pr
[
X = X ′ ∧ Y ̸= Y ′] = 0 for (X,Y ), (X ′, Y ′) ∼ i.i.d. D. (2.1)

We will thus always assume (2.1). This is the case when Y is a deterministic function of X . But
we are particularly interested in noisy settings, in which case (2.1) holds, e.g., if D is non-atomic,
i.e. Pr [X = X ′] = 0. In order to discuss non-atomic distributions over bit-strings, we will allow
X ∈ {0, 1}N to be an infinite2 sequence of bits (e.g. the binary digits of a real number). The

2. To capture also finite bit strings x ∈ {0, 1}∗, we can think of padding x with an infinite number of zeros.
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programs3 we learn will only be able to access a finite number of bits of x, and it will be useful
for us to consider prefixes x[: b] consisting of the first b bits of x. Although we consider infinite bit
sequences, we will need to bound how far we need to read in order to distinguish between instances.
We formalize this notion through the following definition:

Definition 2.1 The disambiguation prefix length b(S) of a sample S is the minimal b such that for
all (xi, yi), (xj , yj) ∈ S, if xi[:b] = xj [:b], then (xi, yi) = (xj , yj). The quenched disambiguation
prefix length b(m) of a distribution D for sample size m is given by

log b(m) := E
S∼Dm

[log b(S)] ≤ log

(
E

S∼Dm
[b(S)]

)
With these definitions in hand, we are ready to state our main results.

Theorem 2.2 (Agnostic) For any source distribution D with quenched disambiguation prefix length
b(m), and any sample size m:

E
S∼Dm

[L(MPL(S))] ≤ inf
h

(
ℓag(L(h)) +O

(
|h|+ log(m · b(m))

m

))
where ℓag(α)

.
= 1− 2−H(α) = 1− αα(1− α)1−α and α < ℓag(α) < 0.5 for 0 < α < 0.5.

For a “well specified” distribution, where the label noise is independent of X , we obtain a tighter
and more precise guarantee:

Theorem 2.3 (Random Label Noise) For any source distribution D where Y |X = h⋆(X) ⊕
Ber(L⋆) for some program h⋆ and label noise L⋆, and any sample size m:∣∣∣∣ E
S∼Dm

[L(MPL(S))]− ℓsamp(L
⋆)

∣∣∣∣ ≤O

 |h⋆|+ log(m · b(m))

m
+

√
L⋆ · |h

⋆|+ log(m · b(m))

m


where ℓsamp(L

⋆)
.
= 2L⋆(1− L⋆) and L⋆ < ℓsamp(L

⋆) < ℓag(L
⋆) < 0.5 for 0 < L⋆ < 0.5.

Theorems 2.2 and 2.3 follow from plugging in Corollary 3.2 into Lemmas 4.1 and 4.2 (see Sections
3 and 4). The above Theorems hold for any finite number of samples and directly imply guarantees
on the asymptotic error of MPL:

Corollary 2.4 For any source distribution D with quenched interpolation length b(m) ≤ 2o(m)

and such that the Bayes predictor h⋆(x) = Sign(P (Y |x) − 0.5) is computable, with Bayes error
L⋆ = L(h⋆) < 0.5 then:

lim sup
m→∞

E
S∼Dm

[L(MPL(S))] ≤ ℓag(L
⋆) < 0.5

And moreover, if the noise probability is independent of X , i.e. Y ⊥X|h⋆(X), then more precisely:

lim
m→∞

E
S∼Dm

[L(MPL(S))] = ℓsamp(L
⋆) = 2L⋆(1− L⋆)

3. Formally, when discussing programs taking an infinite x as input, we can think of a RAM computer which is allowed
random access to bits of x, or a Turing Machine given access to x on an infinite tape.
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In Figure 1, we plot the general upper bound ℓag and the precise error for random label noise ℓsamp.
We see that even with random label noise, MPL overfitting is not benign, and MPL is not consistent.
Nevertheless, regardless of the noise distribution, the asymptotic error can be non-trivially bounded
as a function only of the Bayes error (or rather, the optimal error with a computable predictor), and
without any dependence on any other property of the distribution, the predictor, or the noise.

Bounding the quenched interpolation length. We can bound b in terms of the min-entropy rate
Hmin(X[: b])/b, where recall the min-entropy is defined as Hmin(X)

.
= −maxx logP (X = x).

For distributions uniform over N outcomes, this is equal to logN , which is also the Shannon en-
tropy. But otherwise it can be smaller and captures the “worst case” randomness. The quenched
interpolation length b(m) is roughly the length that ensures no collisions in a sample of size m, i.e.,
such that m2 · Pr [X[:b] = X ′[:b] ] ≤ m22−Hmin(X[:b]) ≪ 1, and so Hmin(X[: b̃]) ≈ O(logm).
If the bits of X are uniform and independent, then the min-entropy rate is 1, Hmin(X[: b]) = b
and we have b = O(logm). We can afford a much lower min-entropy rate. Any constant rate
(e.g. when a small constant fraction of the bits are slightly bounded away from from being fixed con-
ditioned on the previous bits), or arbitrary small polynomial rate Hmin(X[:b]) = Ω(bρ), still yields
log b = O(log logm). Even a logarithmically small min entropy rate, Hmin(X[: b]) = Ω(log b)
still ensures log b(m) = O(logm), and so we can ignore the dependence on b in our results. This
happens, e.g., when differences between instances become increasingly sparse, with the entropy of
the ith bit (conditioned on the previous bits) behaving like 1/i. If the min-entropy rate is even lower,
down to Hmin(X[: b]) = log log b + ω(1), we still have b(m) ≤ 2o(m) and the limits in Corollary
2.4 are still valid.

3. Constructing a Short Interpolating Predictor

Our goal in this section is to bound the length of a program that interpolates a noisy sample. In fact,
we prove a deterministic worst-case bound on the program length needed to interpolate any given
training set.

Overview and intuition: How can we construct a short program interpolating a noisy sample?

One approach is to memorize the sample S, or better yet, encode a good predictor h and then
memorize all points in the sample that do not agree with h. Such an interpolating predictor would
generalize as well as h (since test examples will mostly not match the memorized examples). But
is it the shortest? It would require storing all instances xi that do not agree with h, and thus a
description length of LS(h) ·m · b(S).

The key is that we do not need to memorize the identities of the instances xi in the sample. We
only need to remember the labels yi, and so we can hope to prevent the description length from
scaling linearly with b. To encode the information in the labels yi, or rather their disagreement with
h(xi), we should need only m ·H(L(h)) bits.

One approach to doing so is to hash the instances and store the labels (or disagreements) of the
hash values. We could do this if our hash function has no collisions on S. The challenge in this
approach is to determine how many bits are required to encode a hash function that is collision-free
on S. Observe that such a function cannot be totally independent of S, since any hash function
would have collisions on some S. Hence, any such hash function requires a description with super-
constant length.
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We take a more direct approach. We ask how difficult it would be to find and describe a “hash
function” mapping instances to single bits such that the output values on the sample are exactly
what we need them to be. Consider using a “random” binary function hash(x) where hash(x) ∼
(Ber (L(h))). Such a random function will interpolate with probability roughly L(h)L(h)m(1 −
L(h))(1−L(h))m = 2−mH(L(h)). If we use a pseudo-random generator with seed length ≫ mH(L(h)),
one of the ≫ 2mH(α) “random” functions, corresponding to some specific seed value, should hope-
fully interpolate. We can then describe this function through its corresponding seed.

But how can we guarantee that some seed would work? To match the above probability calcula-
tion to the output of a pseudo-random generator (PRG), we need a PRG that generates N bits that are
m-way independent and marginally Ber (α) using a seed of length mH(α)+O(logm+log logN)

(we need to generate N = 2b bits, for each possible input x). We are not aware of any explicit
PRG allowing this. Instead, the approach we take is to prove such a PRG must exist (Lemma 3.3)
and then describe it as “the lexicographically first such PRG.” This is a perfectly valid and precise
description that can be encoded as a constant length program.

Notice that unlike the expensive instance memorization approach, the random hash predictor
will not generalize as well as h. The output hash(x) will have the same bias L(h) on test instances,
leading to a test error of 2L(h)(1−L(h)) (we make a mistake either if h does and we didn’t correct
it, or if h didn’t make a mistake but we accidentally corrected it). In Section 4, we show through
Lemma 4.2 that the MPL predictor indeed behaves this way.

Formal results. We establish a worst-case (deterministic) bound on the program length needed to
memorize any labels (which we can think of as noise), in terms of the the bias of the labels. We then
use this to describe a short program that interpolates the disagreement vs. a reference predictor on a
random training set.

Theorem 3.1 Let S = {(xi, yi), for i ∈ [m]}, where xi ∈ {0, 1}b, yi ∈ {0, 1}, and the xi are
pairwise distinct. Then, there exists a program h of length

|h| = m ·H
(∑

i yi
m

)
+ 3 logm+ log b+O(1)

such that for all (xi, yi) ∈ S, we have h(xi) = yi.

For any program h, we can apply Theorem 3.1 to the “labels” yi⊕h(xi) to obtain the following:

Corollary 3.2 For S ∼ Dm with quenched interpolation length b, we have

E
S
[|MPL(S)|] ≤ min

programs h

{
|h|+m ·H(L(h)) +O

(
logm+ log b(m)

)}
.

Proof For any program h and any S, let h̃S be the short program ensured by Theorem 3.1 for
S̃ =

{ (
xi[:b(S)] , yi ⊕ h(xi)

)}
. If S̃ has repeated points, we remove them—Lemma A.6 in the

Appendix shows that removing duplicates can only reduce mH(
∑

yi/m), and so also the guaran-
teed length. The program hS(x) = h(x)⊕ h̃S(x[:b(S)]) interpolates S and is of length

|h|+
∣∣∣h̃S∣∣∣+ log(b(S)) +O(1) ≤ |h|+mH(LS(h)) +O(logm+ log b(S)).
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Taking an expectation over S and recalling E [H(LS(h))] ≤ H(E [LS(h)]) = H(L(h)) yields
Corollary 3.2.

The key ingredient to proving Theorem 3.1 is a PRG based on a short seed length that can be
used to generate “random” binary function hash(x) with hash(x) ∼ Ber(α), where α =

∑
i yi/m.

To make this precise, we consider a family of hash functions, indexed by a seed of length r, or in
other words a seeded hash function of the form hash(seed, x), where we will show that for every S,
there exists a seed such that x 7→ hash(seed, x) interpolates S. In Lemma 3.3, we show that such a
seeded hash function exist and bound the required seed length.

Lemma 3.3 For all m, b ∈ N and all k ≤ m, and for

r = m ·H (k/m) + logm+ log b+ 1

there exists a function hash : {0, 1}r × {0, 1}b → {0, 1} such that for all distinct x1, . . . , xm ∈
{0, 1}b and all y1, . . . , ym ∈ {0, 1} with

∑
i yi = k, there exists seed ∈ {0, 1}r, such that for all i,

hash(seed, xi) = yi.

Proof To show existence, we use the probabilistic method. Specifically, we will show that a ran-
dom function G : {0, 1}r × {0, 1}b → {0, 1} has positive probability of satisfying the Lemma
requirements.

Let α = 1/m ·
∑m

i=1 yi. Choose G at random by setting G(seed, x) = 1 with probability
α independently over all choices of seed and x. We will say that G fails if there exists some
S = {(xi, yi), for i ∈ [m]} (with xi ̸= xj and

∑
i yi = k) for which there is no corresponding seed

such that interpolates S, i.e. s.t. ∀iG(seed, xi) = yi.
For a fixed S and seed, the probability seed interpolates S is exactly ααm(1 − α)(1−α)m =

2−m·H(α), and so the probability there is no seed that interpolates S is
(
1− 2mH(α)

)(2r)
. Taking a

union bound over all choices of S yields

Pr
G
[G fails] = Pr

G
[there exists S on which G fails] ≤

∑
S

Pr
G
[there is no seed that interpolates S]

=
∑
S

(
1− 2−m·H(α)

)2r
=

(
m

k

)(
2b

m

)
·
(
1− 2−m·H(α)

)2r
< exp

(
m ln(2) +mb ln(2)− 2−m·H(α) · 2r

)
< exp (0) = 1 (3.1)

where in the last inequality we plugged in the prescribed seedlength r. Thus, Pr
G
[G fails] > 0, and

there exists at least one function G that satisfies Lemma 3.3.

Lemma 3.3 establishes the existence of such a seeded hash function. However, to actually use
it in a short program, we not only need the seed to be short, but also the description of the function
hash to be short. Lemma 3.3 does not provide such a description as it is non-constructive, and we are
not aware of any explicit construction. Fortunately, as we are not concerned with runtime, we can
describe hash through a (short and explicit) program that enumerates over all 22

r+b
possible func-

tions and picks the first one lexicographically. Using this “explicit” short programmatic description
of hash, we finish the proof of Theorem 3.1.
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Proof [Theorem 3.1] Let GenHash be a program that takes as input three integers (m, k, b), cal-
culates r based on them as defined in Lemma 3.3, enumerates over all functions G : {0, 1}r ×
{0, 1}b → {0, 1}, and returns the lexicographically first function that satisfies Lemma 3.3. The size
of the output of GenHash, which is a huge lookup table, depends on its inputs, but the function de-
scription itself is fixed, with fixed length |GenHash| (e.g. |GenHash| < 1000 in compressed Python
or C++ with standard libraries). Our program for interpolating S is

hS(x) = GenHash(m, k, bitlength(x))(seed, x) (3.2)

where k =
∑

i yi and seed is the seed the interpolates S using the lexicographically first function
that satisfies Lemma 3.3. This seed is hard-coded into the program. The description length of
program is thus |GenHash| + |m| + |k| + |seed| + O(1) = r + 2 logm + O(1) = mH(m/k) +
3 logm+ log b+O(1) (where here |a| is the description length of a).

Tightness of dependence on Disambiguation Prefix Length. One might wonder whether it is
possible to avoid, or improve, the dependence on b in Theorem 3.1 and thus on b in Corollary
3.2. Unfortunately, this is not possible. To see this, for any b, we will construct a sample S =
{(x1, y1), (x2, y2)}, with x1, x2 ∈ {0, 1}b that cannot be interpolated using any program of length
less than log b. We will do so by associating for every x ∈ {0, 1}b, a vector ϕ(x) ∈ {0, 1}N
consisting of the output of running each of the N < b programs of length < log b on x. I.e. ϕ(x)[i] =
hi(x), where hi is the lexicographical ith program (and we can set ϕ(x)[i] = 0 if the program
doesn’t stop and output a valid value). There are 2b different xs, but only 2N < 2b possible ϕ(x).
Hence, there must be two inputs x1 ̸= x2 with ϕ(x1) = ϕ(x2), i.e. such that no short program can
distinguish between them. The sample S = {(x1, 0), (x2, 1)} can thus not be interpolated by any
program of length less than log b.

4. Generalization

After establishing in Section 3 an upper bounds on the length of MPL(S), we will now prove
Theorems 2.2 and 2.3 by combining these with guarantees on the generalization error of any learning
rule outputting a short program.

Agnostic guarantees and proof of Theorem 2.2. The following generalization guarantee in terms
of program length is a a tight version of the standard description-length based guarantee:

Lemma 4.1 For any distribution D, any interpolating learning rule A, and any sample size m:

− log

(
1− E

S∼Dm
[L(A(S))]

)
≤ I(S;A(S))

m
≤ E [|A(S)|]

m
.

We can obtain a high probability version of the Lemma 4.1, in terms of sup |A(S)|, using a union
bound over all short programs. This is also a special case of the PAC-Bayes Bound [McA03], noting
that DKL(0 ∥ β) = − log(1 − β). Raginsky, Rakhlin, Tsao, Wu, and Xu [RRTWX16], Russo and
Zou [RZ19], and Xu and Raginsky [XR17] obtain similar (and more general) bounds, but bound
L(A)2 rather than − log(1−L(A)) on the left-hand side. Since in our case the right-hand-side will
not vanish, this distinction is significant—a tight bound, even up to constant factors, is essential for
obtaining tempered overfitting guarantees.
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For completeness, we provide a proof of Lemma 4.1, which we will also use as a basis for a more
refined analysis in Lemma 4.2. The proof captures the following information argument: Suppose
that the error rate of A(S) outside S is very different from its error rate inside S. Then, one could
apply A(S) to a large number of samples from D and gain information about which samples were
more likely to be in S. In other words, this yields a lower bound on I(S;A(S)).
Proof [Proof of Lemma 4.1] Without loss of generality, we will assume that A is symmetric over the
training examples–otherwise, consider a randomized rule that first randomly permutes that training
examples and then applies A to this permuted training set. The Distribution over training sets and

We denote U = A(S). Observe that U is a random variable. We have

E [|U|] ≥ H(U) ≥ I(S;U) ≥
∑
i

I((Xi, Yi);U) = mI((X1, Y1);U) (4.1)

where the first inequality is Shannon’s source coding bound and the third inequality is due to the
independence of (Xi, Yi) (Lemma A.3 in the Appendix). In the third inequality we assumed, with-
out loss of generality, that A is symmetric over the training examples—otherwise, consider a rule
U = A(π(S)) that first randomly permutes S and then applies A to the random permutation. Since
S and a random permutation of S are identically distributed, the distribution of U, and thus its
expected error, are also unchanged.

To analyze I((X1, Y1);U), we rely on the variational bound I(A;B) ≥ E
A,B∼p

[
log dq(A|B)

dpA(A)

]
,

where p(A,B) is the true joint distribution, with marginal pA, and q(A|B) is any proposed condi-
tional distribution (Lemma A.2). In our case, we use the proposal distribution q(X1, Y1|U) defined
by

dq(x, y|u) = 1
Zu
1{u(x) = y} dp(x, y) (4.2)

where p(x, y) is the true marginal over X1, Y1 (i.e. the source distribution D), and
Zu = E

X,Y∼p
[1{u(X) = Y }] = 1 − L(u). This proposal distribution amounts to bounding the

mutual information by the information U tells us about (X1, Y1) by telling us that (X1, Y1) satisfies
U(X) = Y (since U = A(S) interpolates the training points). We now calculate.

I((X1, Y1);U) ≥ E
S

[
log

(
dq(X1, Y1|U)
dp(X1, Y1)

)]
= E

S

[
log

(
1{U(X1) = Y1}

ZU

)]
= E

S

[
log

1

ZU

]
= E

S
[− log (1− L(U))] ≥ − log

(
1− E

S
[L(U)]

)
(4.3)

Recalling that U = A(S), and combining (4.1) and (4.3) we obtain the statement of Lemma 4.1.

Proof of Theorem 2.2. Plugging Corollary 3.2 into Lemma 4.1. we have for any h,

E [L(MPL(S))] ≤ 1− 2−H(L(h))−(|h|+O(logm+log b(m)))/m. (4.4)

As m → ∞, the right hand side converges to ℓag(L(h)) = 1−2−H(L(h)). We now use the following
inequality (proved as Lemma A.4 in the Appendix) to bound the convergence rate to ℓag(L(h)):

For C ≥ 0 and 0 ≤ α ≤ 1, 1− 2−H(α)−C ≤ 1− 2−H(α) + C (Lemma A.4)

Combining (4.4) and (Lemma A.4) yields Theorem 2.2.
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Tightness of agnostic generalization guarantee. Before continuing, we note that Lemma 4.1
is tight, and we cannot hope to get a better guarantee solely in terms of program length. To see
this, consider a distribution D where X is i.i.d. uniform bits, and Y = 0. Although this is a very
easy distribution to interpolate, consider, for any 0 < α ≤ 0.5, an interpolating learning rule A
that searches for a random function hash(x) that interpolates the data, where hash(x) ∼ Ber (α)
independently for all x. Using arguments similar to the proof of Theorem 3.1, we can calculate that
the probability of such a function interpolating the data is (1 − α)m, and we can therefore encode
such a function using E [|A(S)|] = O(m log(1−α)+ logm) bits. For large m, the right-hand-side
of Lemma 4.1 is therefore log(1− α) + o(1). This is tight since L(A) = α = 1− 2log(1−α).

Random label noise and proof of Theorem 2.3. Although Lemma 4.1 is worst-case optimal, we
show a tighter generalization guarantee for well specified distributions with independent label noise:

Lemma 4.2 For any source distribution D such that Y |X = h⋆(X)⊕ Ber(L⋆), any learning rule
A(S) returning an interpolating program, and any sample size m, we have

DKL

(
L⋆

∥∥∥∥ E
S

[
Pr

X∼D
[A(S)(X) ̸= h⋆(X)]

])
≤

E
S
[|A(S)|]−m ·H (L⋆)

m
(A)

and therefore

|L(A)− 2L⋆(1− L⋆)| ≤O

E
S
[|A(S)|]−m ·H(L⋆)

m
+

√
L⋆ ·

E
S
[|A(S)|]−m ·H(L⋆)

m

 .

(B)

The proof is again information-theoretic based on the following intuition: The agreement rate of
A(S) with h⋆ inside S is exactly L⋆. If the agreement rate outside S differs significantly, we can
use it to construct a predictor for which xs are in S. Hence, the output of A(S) has information
about the Xis. But A(S) needs at least mH(L⋆) bits of information just for encoding the noise on
the labels, and so if its description length is not much more than mH(L⋆), it cannot also contain
information about which xs are in S (i.e. it does not have enough information capacity for also
memorizing anything about the Xis).
Proof [Proof of Lemma 4.2] Denoting U = A(S) as before, and again assuming symmetry without
loss of generality, we have

E [|U|] ≥ mI(X1, Y1;U) = m(X1;U) +mI(Y1;U|X1) (4.5)

where the inequality is the same as in the proof of Lemma 4.1. We evaluate:

I(Y1;U|X1) = H(Y1|X1)−H(Y1|U, X1) = H(L⋆)− 0 = H(L⋆) (4.6)

where in the second equality, the first term follows since Y1|X1 ∼ Ber (L⋆) based on the noise
model, and the second is because Y1 = U(X1) is a deterministic function of U, X1.

In order to bound I(X1;U), it will be convenient to define Ũ, which is a deterministic function of
U (and hence also a random variable) with Ũ(x) = U(x)⊕h⋆(x) (recall h⋆ is fixed and deterministic
here). We will also denote L̃ = E [Pr [U(X) ̸= h⋆(X)]] = E

[
Ũ(X)

]
the disagreement probability

10
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we want to bound. Now, to bound I(X1;U), we will use the same variational bound, this time with
the proposal distribution:

dqX|U(x|u) =
1

Zu

pBer(L⋆)(ũ(x))

pBer(L̃)(ũ(x))
dp(x) (4.7)

where pBer(α)(0) = 1−α, pBer(α)(1) = α is the Bernoulli probability mass function, and again p(x)
is the true (population) marginal. This proposal distribution is the best we can do solely in terms of
ũ(x), since we know that inside S we have Ũ(X1) = U(X1)⊕ h⋆(X1) = Y1 ⊕ h⋆(X1) ∼ Ber (L⋆)

while for a random X , Ũ(X) = U(X) ⊕ h⋆(X) ∼ Ber
(
L̃
)

, by definition of L̃. We calculate the
partition function.

Zu = E
X∼p

[
pBer(L⋆) (ũ(X))

pBer(L̃) (ũ(X))

]
= Pr

X
[ũ(X) = 1] · L

⋆

L̃
+ Pr

X
[ũ(X) = 0] · 1− L⋆

1− L̃
(4.8)

Taking an expectation over U, we have E [ZU] =
L⋆

L̃
· L̃ + 1−L⋆

1−L̃
· (1 − L̃) = 1. Applying the

variational bound (Lemma A.2) we have:

I(X1;U) ≥ E
X1,U

[
log

(
dq(X1|U)
dp(X1)

)]
= E

X1,U

log
pBer(L⋆)(Ũ(X1))

pBer(L̃)(Ũ(X1))
· 1

ZU


≥ E

Ũ(X1)∼Ber(L⋆)

log
pBer(L⋆)(Ũ(Xi))

pBer(L̃)(Ũ(Xi))

− log

(
E
U
[ZU]

)
= DKL

(
L⋆
∥∥∥ L̃
)

(4.9)

Where the inequality is due to Jensen on the second term, and we then use E [ZU] = 1.
Plugging in (4.9) and (4.6) into (4.5) yields part (A) of the Lemma. To obtain part (B), we first

use the inequality |β − α| ≤ 2DKL(α ∥ β)+
√
2αDKL(α ∥ β) (Lemma A.5) to obtain

∣∣∣L̃− L⋆
∣∣∣ ≤

2R+
√
2L⋆R, where R is the right hand side of part (A). And since L(A) = L̃(1−L⋆)+(1−L̃)L⋆,

we have |L(A)− 2L⋆(1− L⋆)| = (1 − 2L⋆)
∣∣∣L̃− L̃

∣∣∣ ≤ ∣∣∣L̃− L̃
∣∣∣. Combining the two inequalities

yields part (B).

Proof of Theorem 2.3. Plugging in Corollary 3.2 into Part (B) of Lemma 4.2 yields Theorem 2.3.

5. Tightness and Discussion

For MPL interpolation in the presence of random label noise, we provide a precise characterization
of the effect of overfitting. In this case, unlike the optimally tuned SRM, which converges to the
Bayes optimal predictor, the interpolating MPL predictor will converge to sampling from the poste-
rior, yielding up to twice the Bayes error. This is similar to the behavior of a 1-nearest-neighbor rule
(although the actual predictions will of course be very different), the observed behavior of certain
neural networks [NB20], and perhaps kernels [MSAPBN22]. This is a “tempered” behavior, where
for any non-trivial Bayes error 0 ≤ L⋆ ≤ 0.5, the limiting MPL error L⋆ < ℓsamp(L

⋆) < 0.5 is
strictly worse than Bayes, but still provides an edge over random guessing.

11
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In the more general agnostic case, we give only an upper bound, depicted in Figure 1. Although
strictly worse than the sampling behavior with random label noise, this behavior is still tempered
(Corollary 2.4): if some computable function has non-trivial error L(h) < 0.5, the optimally tuned
SRM will converge to at most this error, and MPL might suffer due to overfitting, but we will still
yield (as m → ∞) an edge over random guessing and error at most ℓag(L(h)) < 0.5.

A uniform convergence approach. Although we use an information-theoretic approach in our
generalization proofs, the proofs essentially rely on a uniform guarantee over all short programs. In
particular, they hold for any interpolation rule, not only MPL. The connection to MPL is only real-
ized by plugging in the program length we can ensure for MPL. This is similar in spirit to the uni-
form convergence of interpolator arguments of Koehler, Zhou, Sutherland, and Srebro [KZSS21],
which separately bound the norm of the min-norm predictor, and then analyze uniform convergence
over the appropriate norm ball.

Tempered overfitting with finite samples. An important feature of our results is that we do
not look only at the asymptotic behavior, but ask also about the effect of overfitting with a finite
number of samples. This allows us to draw a comparison against the finite-sample agnostic SRM
guarantee (1.1). In particular, with finite m, the competitor h with which we want to compete (i.e. the
one minimizing the right hand side of (1.1)) might be different and depend on m. Indeed, our
finite sample agnostic guarantee (Theorem 2.2) shows that we can compete with the m-dependent
h with which SRM competes, with a “tempered” effect on the error. This is similar in spirit to
the study of how minimum norm interpolation can adapt the approximation error to the sample
complexity as recently studied by Misiakiewicz [Mis22] and Xiao, Pennington, Misiakiewicz, Hu,
and Lu [XPMHL22].

Tightness of agnostic guarantee. One might ask whether our agnostic upper bound is tight and
whether it is possible to identify its exact behavior.

First, we point out that MPL might yield limiting error anywhere between the Bayes error and
the error of the sampling predictor, i.e. anywhere in the red region between the Bayes optimal line
and sampling curve in Figure 1. To see this, consider a source distribution where X[1] ∼ Ber (α),
the remaining bits of X are i.i.d.Ber (0.5), and Y = X[2] if X[1] = 0, but Y = Ber (β) if X[1] = 1.
It is easy to verify that L⋆ = αβ while L(MPL)

m→∞→ LMPL = 2αβ(1−β), which allows us to get
any 0 ≤ L⋆ ≤ LMPL ≤ ℓsamp(L

⋆) ≤ 0.5 by varying α and β. This is the same sampling behavior
and same asymptotic error that will be reaches by other sampling-type over-fitting predictors, such
as 1-nearest-neighbor.

We do not know whether there are source distributions for which MPL will yield errors above
the sampling curve ℓsamp (the green region in Figure 1), or whether the difference between ℓsamp and
ℓag is due to a looseness in Theorem 2.2. In Sections 3 and Section 4 we argued that the description
length bound in Corollary 3.2 and the generalization bound in terms of program length in Lemma
4.1 are tight. This implies our proof technique, which separately asks what length programs we
need to consider and then uses what is essentially a uniform generalization guarantee for all short
programs, cannot improve beyond Theorem 2.2 (in the agnostic case). But although this proof
technique cannot be improved, it is possible that by analyzing specific properties of the MPL, it is
possible to significantly strengthen 2.2, perhaps replacing ℓag with ℓsamp also in the agnostic case,
and we leave this as an open question.

12
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It is useful to note that if the posterior η(x) = P (Y = 1|x) is computable, MPL should also
converge to a sampling classifier and yield limiting error L(MPL)

m→∞→ LMPL ≤ ℓsamp(L
∗) where

L⋆ is the Bayes error. In fact, we suspect it is possible to generalize Theorem 2.3 to show

E
X

[
DKL

(
η(X)

∥∥∥∥ Pr
S
[MPL(S)(X) = 1]

)]
≤ |η|+O(logm+ log b(m))

m
, (5.1)

where |η| is the description length of the (computable) posterior η. This is a more general situation
than random label noise added to a computable Bayes optimal predictor, where η(x) = L⋆ +
h⋆(1 − 2L⋆). The scenario where MPL might yield error above ℓsamp(L(h

⋆)), is thus when the
Bayes predictor h⋆(x) = Sign(η(X)− 0.5) is computable, but the posterior η(x) itself is not. Even
without getting to non-computability, we can consider a situation where the Bayes optimal predictor
has a very short description, but the posterior requires a much longer program, and ask whether this
would result in large gaps between the optimally balanced SRM and the interpolating MPL.

Different notions of description length and different inductive bias. We considered minimum
description length interpolation learning in the Turing or Kolmogorov sense, i.e. by minimizing
program length. This is arguably the most general notion of description length if we would like the
learned predictor to actually be computable.

Still, one can instead think more abstractly of logical descriptions that allow quantifiers over
infinite domains. Our results hold also in these more general settings, or any other notion that
subsumes or extend Turing computation. More specifically, the only descriptive power we require
is that we can describe “lexicographically first function satisfying Lemma 3.3.”

Alternatively, one might consider more limited notions of description, e.g. limiting to only pro-
grams with short runtime. Specifically, one can consider the learning rule4 MinRuntime that selects
the program with the minimal (worst case) runtime that interpolates S. Or almost equivalently (up
to some polynomial relationship), we can further restrict the set of functions to neural networks and
study the learning rule MinNetwork, which returns the neural network5 with the minimal number of
edges that interpolates the training set. Our analysis does not apply to MinRuntime or MinNetwork
since the short program we construct has a doubly-exponential runtime. An explicit and efficiently
computable pseudo-random generator, generating N bits that are (approximately) m-way indepen-
dent and marginally Ber (α) using a seed length of m · H(α) + O(logm + log logN) (or even
a worse dependence on N ), would extend our results to min-runtime or min-size-neural-network
interpolation.

More generally, our analysis can be viewed as providing a sufficient condition on an inductive
bias c(h) such that minimum-c(h) interpolation exhibits tempered overfitting. Roughly speaking, as
long as the inductive bias allows us to encode “random function” with capacity (i.e. the capacity of
the sublevel set of c(·) containing these random functions) not much larger than the capacity of the
set of such “random functions”, it should be the case that minimum-c(h) interpolation is tempered
in the sense of Theorems 2.2 and 2.3.

4. While still abstract, the learning rule MinRuntime is more useful as a reference universal rule, since we want
our predictor to not merely be computable, but also be tractable with reasonable runtime [Val84]. Additionally,
MinRuntime ∈ NP, and for all we know might be poly-time computable, unlike MPL which is uncomputable.

5. More formally, we fix the activation function, e.g. to ReLU activation, and search over all architecture graphs and all
edge weights.
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Tightness of dependence on the Disambiguation Prefix Length. Another open technical ques-
tion is whether the mild dependence on the quenched disambiguation prefix length in Theorems 2.2
and 2.3 is necessary. Again, we argue that it is necessary for bounding the description length, and
so for our proof technique. But the examples which require long programs due to the differences
between instances being hidden in far-away and hard-to-describe bits, do not show these long pro-
grams do not generalize well. We do not know and leave it open whether the dependence on b in
Theorems 2.2 and 2.3 is necessary, or whether different techniques and specific analysis of the MPL
can avoid these.

Summary. With the growing interest in noisy interpolation learning, and obtaining an under-
standing and characterization of the “benignness” and/or harm of overfitting, we find it instructive
to consider what is perhaps the most basic and fundamental learning principal, with roots going
back to the first discussions of machine learning and inductive inference [Sol60]. We hope that our
study will help direct the search for the fundamental principles of what “makes” overfitting benign
or catastrophic. We would also like to see our tempered finite sample agnostic guarantee (Theorem
2.2) as a template for studying how overfitting compares with the optimally balanced approached
(the SRM guarantee of (1.1) in our case), instead of focusing on comparing the asymptotic behavior
and seeking consistency, which is frequently less relevant for learning.
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Appendix A. Identities and Inequalities from Information Theory

We present and either cite or prove several identities and inequalities we use in our proofs.

Lemma A.1 (Chain Rule of Mutual Information; see p. 42 of [CT06]) For any random variables
A1, A2, and B,

I((A1, A2);B) = I(A2;B|A1) + I(A1;B).

Lemma A.2 Let A and B be any two random variables with associated marginal distributions pA,
pB , and joint pA,B . Let qA|B be any conditional distribution (i.e. such that for any b, qA|B(·, b) is a
normalized non-negative measure). Then:

I(A;B) ≥ E
A,B∼pA,B

[
log

(
dqA|B(A|B)

dpA(A)

)]
Proof The proof essentially uses the chain rule for KL-divergence. We write

I(A;B) = DKL

(
pA|B

∥∥ pA
)
= E

A,B∼pA,B

[
log

(
dpA|B(A|B)

dpA(A)

)]
(A.1)

= E
A,B∼pA,B

[
log

(
dpA|B(A|B)

dpA(A)
·
dqA|B(A|B)

dqA|B(A|B)

)]
(A.2)

= E
A,B∼pA,B

[
log

(
dqA|B(A|B)

dpA(A)

)]
+ E

A,B∼pA,B

[
log

(
dpA|B(A|B)

dqA|B(A|B)

)]
(A.3)

= E
A,B∼pA,B

[
log

(
dqA|B(A|B)

dpA(A)

)]
+ E

B∼pB

[
DKL

(
pA|B

∥∥ qA|B
)]

(A.4)

≥ E
A,B∼pA,B

[
log

(
dqA|B(A|B)

dpA(A)

)]
(A.5)

where the inequality follows from the non-negativity of the KL divergence.

Lemma A.3 Let A1, A2, B be random variables where A1 and A2 are independent. Then

I((A1, A2);B) ≥ I(A1;B) + I(A2;B).

Proof We use Lemma A.2 with the conditional distribution qA1,A2|B = pA1|B · pA2|B below.

I((A1, A2);B) ≥ E
A1,A2,B

[
log

(
dpA1|B(A1|B) · dpA2|B(A2|B)

dpA1,A2(A1, A2)

)]
(A.6)

= E
A1,B

[
log

(
dpA1|B(A1|B)

dpA1(A1)

)]
+ E

A2,B

[
log

(
dpA2|B(A2|B)

dpA2(A2)

)]
(A.7)

= I(A1;B) + I(A2;B)

This concludes the proof of Lemma A.3.
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Lemma A.4 For C ≥ 0 and 0 ≤ α ≤ 1, 1− 2−H(α)−C ≤ ℓag(α) + C.

Proof We first prove that for all α, β ∈ (0, 1) such that β ≥ 1− 2−H(α), we have

log

(
1

1− β

)
−H(α) ≥ β −

(
1− 2−H(α)

)
. (A.8)

Let g(a) := − log (1− a)−a. Notice that the derivative of g(a) is g′(a) = −1+(ln(2)− a ln(2))−1.
First, we show that for all a ∈ (0, 1), we have g(a) ≥ 0. We do so by showing that g(0) = 0

and that g(a) is increasing on a ∈ (0, 1). It is easy to see that equality is achieved at a = 0, so it is
enough to show that g′(a) ≥ 0 for all a ≥ 0. This follows immediately since ln(2) < 0.

Next, we analyze g(β) − g(1 − 2−H(α)). Since g(·) is nonnegative and increasing, and since
we assume β ≥ 1 − 2−H(α), we have g(β) − g(1 − 2−H(α)) ≥ 0. Inequality A.8 follows from
expanding the definition of g(·) and rearranging.

We now turn to proving the statement of Lemma A.4. Set β = 1− 2−H(α)−C and notice that

1− 2−H(α)−C = β ≤ log

(
1

1− β

)
−H(α) + ℓag(α) =

(
1− 2−H(α)

)
+ C = ℓag(α) + C

which, after rearranging, recovers the statement of Lemma A.4.

Lemma A.5 (Following McAllester [McA03], page 4) Let α, β ∈ [0, 1]. Then

|β − α| ≤
√

2αDKL(α ∥ β) + 2DKL(α ∥ β).

Proof We handle the cases β ≥ α and β ≤ α separately. We first, consider β ≥ α and show an
upper bound on β. We will show

DKL(α ∥ β)− (β − α)2

2β
≥ g(1)α (β) := DKL(α ∥ β)− (β − α)2

(2 ln 2)β
≥ 0. (A.9)

To show (A.9), note that g(1)α (α) = 0 and

∀β ≥ α
∂

∂β
g(1)α (β) =

1

ln 2

(
β − α

β (1− β)
+

β − α

β
+

(β − α)2

2β2

)
≥ 0. (A.10)

Rearranging and left-most expression in (A.9), we obtain the quadratic inequality

0 ≥ β2 − 2β (α+DKL(α ∥ β)) + α2. (A.11)

We solve (A.11) for β.

β ≤ (α+DKL(α ∥ β)) +
√
(α+DKL(α ∥ β))2 − α2 (A.12)

= α+DKL(α ∥ β) +

√
2αDKL(α ∥ β) +DKL(α ∥ β)2 ≤

√
2αDKL(α ∥ β) + 2DKL(α ∥ β)

(A.13)

This yields the desired upper bound on |β − α| when β ≥ α.
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For β ≤ α, we will show

g(2)α (β) := DKL(α ∥ β)− (α− β)2

2α (1− α)
≥ 0. (A.14)

To show (A.14), we similarly note that g(2)α (α) = 0 and

∀β ≤ α
∂

∂β
g(2)α (β) =

1

ln 2

(
(α− β)

(
1

α (1− α)
− 1

β (1− β)

))
≤ 0. (A.15)

Now solving A.14 for β yields

β ≥ α−
√
2α(1− α)DKL(α ∥ β) ≥ α−

√
2αDKL(α ∥ β) (A.16)

≥ α−
√

2αDKL(α ∥ β)− 2DKL(α ∥ β). (A.17)

We now have the lower bound β − α, which upper bounds |β − α| when β ≤ α. We combine this
with the case where β ≥ α to obtain the desired upper bound on |β − α| in all cases.

Interpolating training sets with repeated elements. In Lemma A.6, we show that removing k+

repeated examples with yi = 1,and k− repeated examples with yi = 0 only reduces the program
length guaranteed by Theorem 3.1. Hence, even if the sample has repeated samples, the guarantee
from Theorem 3.1 still holds.

Lemma A.6 For any K−, k+ ≥ 0 and m > k+ + k−

(
m− (k+ + k−)

)
H

(
m− k+

m− (k+ + k−)

)
≤ mH

(
k

m

)
.

Proof It is enough to prove the below for any two positive integers a ≤ b.

b ·H
(a
b

)
≤ (b+ 1) ·H

(
a

b+ 1

)
(A.18)

b ·H
(a
b

)
≤ (b+ 1) ·H

(
a+ 1

b+ 1

)
(A.19)

For Inequality A.18, we take the derivative of the function f1(a, b) := b · H(a/b) with respect to
b and show that it is always nonnegative. Indeed, the derivative of f1(a, b) with respect to b is
log (b/(b− a)) > 0. For Inequality A.19, we use H(x) = H(1− x) and Inequality A.18 to write

b ·H
(a
b

)
= b ·H

(
b− a

b

)
≤ (b+ 1) ·H

(
b− a

b+ 1

)
= (b+ 1) ·H

(
a+ 1

b+ 1

)
.

This completes the proof of Lemma A.6.
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Appendix B. Contrasting to the Inconsistency Result of Grünwald and Langford
[GL07]

Grünwald and Langford [GL07] study, among other learning rules inspired by probabilistic model-
ing, the learning rule MDL2 defined as

MDL2(S) := argmin
h∈H

− log p(h) + log

(
m

m · LS(h)

)
, (B.1)

where p is a discrete “prior” over a countable hypothesis class H such that
∑

h∈H p(h) = 1
(as presented by Grünwald and Langford), or

∑
h∈H p(h) ≤ 1 more generally. This can be in-

terpreted as applying the Minimum Description Length model selection criteria (using a stan-
dard two-part code) to a conditional probability model Y |X given by parameters (h, α) where
Pr [Y = h(X)|X] = 1 − α. Instead of a prior p(·), we can (almost) equivalently think of some
prefix-unambiguous description language d : H → {0, 1}∗, with p(h) := 2−|d(h)| where Kraft’s
inequality ensures

∑
h∈H p(h) ≤ 1. In our paper we are specifically concerned with descriptions in

some Turing complete programming language, but description-length (or equivalently, prior-based)
learning rules can be studied with respect to any descriptions (e.g. using decision trees, formulas,
linear predictors, or arbitrary artificial descriptions/prior).

Grünwald and Langford show a specific hypothesis class H, prior p(·) and source distribution
D such that MDL2 is inconsistent, i.e.where limm→∞ L(MDL2) > infh∈H L(h). They contrast
this with SRM (which they refer to as ORB), which yields (1.1) and is thus consistent. Our The-
orem 2.3 also establishes inconsistency when L⋆ > 0. But as mentioned in the introduction these
inconsistency results are quite different, and here we examine the differences in detail.

Interpolation. The two inconsistency results refer to different learning rules, as MPL is an in-
terpolating rule for which LS(MPL(S)) = 0 almost surely. On the other hand, MDL2 balances
between the prior, or description length, and the training error, and does not generally interpolate.
Our interest here is specifically in interpolating learning.

Turing-completeness of the priors. Grünwald and Langford study MDL2 with respect to a prior
over some specific artificial hypothesis class H. The hypothesis class H they consider is extremely
restrictive and specific and has nothing to do with computable functions. Viewing their prior as cor-
responding to a description language, this description language is extremely far from being Turing
complete.

It is easy to see that the interpolating MDL learning rule

MDL0(S) := argmin
h∈H

− log p(h) s.t. LS(h) = 0 (B.2)

is not consistent for arbitrary hypothesis classes. Consider, for example the hypothesis class H =
{hi : x 7→ x[i] | i ∈ N}, and a source distribution where bits of X are i.i.d. uniform, and Y =
X[1]⊕Ber (α) for any 0 < α < 0.5. We have that L(MDL0)

m→∞→ 0.5 > infh∈H L(h) = L(h1) =
α.

But our interest here is not in arbitrary hypothesis classes, priors or description languages, but
rather in interpolation with short programs, i.e. with respect to a Turing complete description lan-
guage. Theorem 2.3 establishes inconsistency even for a Turing-complete description language, that
is for the learning rule MPL, which is an instantiation of MDL0 for a Turing-complete description
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language. Furthermore, and perhaps even more significantly, we show an upper bound on the gen-
eralization error of MPL, which rests crucially on Turing completeness (as attested by the example
above) and always improves over random guessing. We do not know whether MDL2 is consistent
for a Turing complete description language, and Grünwald and Langford [GL07] do not shed light
on this question.

Well-specification. Grünwald and Langford show inconsistency only in a misspecified setting,
i.e., when the noise with respect to the optimal predictor in their hypothesis class is not independent
of the input datapoint X . This misspecification is crucial, since with random label noise, i.e. when
Y = h⋆(X) ⊕ Ber(α) for some h⋆ ∈ H, they state MDL2 is consistent. In contrast, Theorem 2.3
establishes inconsistency of the interpolating MPL rule even with random classification noise.

On the positive side, Theorem 2.2 establishes an upper bound on the generalization error of
MPL, regardless of the noise model which always (as long as L⋆ < 0.5) improves over random
guessing. Grünwald and Langford provide an agnostic upper bound for a related learning rule
(Bayesian averaging), though not for MDL2, but in contrast to our agnostic guarantee for MPL,
their upper bound ensures better-than-random-guessing prediction only when L⋆ < 0.11.

Source of the inconsistency – bias versus variance. To further understand how the two incon-
sistency results are rather different and stem from different causes, it is instructive to consider a
form of bias-variance decomposition and study the “mean” predictor: for a learning rule A, source
distribution D and sample size m, consider the predictor obtained by taking an expectation over the
training set. Since each predictor, on each test point x, returns either 0 or 1, we will get a real-value
prediction, which is the probability, over the training set, of predicting 1 on test point x. We consider
majority vote prediction, i.e. predicting by thresholding this probability at 1/2.

A(x) = 1

{
Pr

S∼Dm
[A(S)(x) = 1] ≥ 0.5

}
(B.3)

We can then think of the “bias” of A as the error L(A) of the mean predictor.
For MPL with random label noise, i.e. when Y = h⋆(X) ⊕ Ber(L⋆) with L⋆ < 0.5 we

have that MPL(x)
m→∞→ h⋆. There is no bias, and the inconsistency stems from non dimin-

ishing “variance.” That is, Pr
S∼Dm

[
MPL(S) = MPL

]
remains bounded away from zero even as

m → ∞. On the other hand, one can verify that in the inconsistency example for MDL2 that
Grünwald and Langford provide (in a non-well-specified setting), the “variance” vanishes (that is,
Pr

S∼Dm

[
MDL2(S)(x) = MDL2(x)

]
→ 0). However, the bias does not vanish and we have that

lim inf
m→∞

L(MDL2) > 0.
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