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Abstract
Langevin diffusions are rapidly convergent under appropriate functional inequality assumptions.
Hence, it is natural to expect that with additional smoothness conditions to handle the discretization
errors, their discretizations like the Langevin Monte Carlo (LMC) converge in a similar fashion.
This research program was initiated by Vempala and Wibisono (2019), who established results
under log-Sobolev inequalities. Chewi et al. (2022a) extended the results to handle the case of
Poincaré inequalities. In this paper, we go beyond Poincaré inequalities, and push this research
program to its limit. We do so by establishing upper and lower bounds for Langevin diffusions
and LMC under weak Poincaré inequalities that are satisfied by a large class of densities including
polynomially-decaying heavy-tailed densities (i.e., Cauchy-type). Our results explicitly quantify
the effect of the initializer on the performance of the LMC algorithm. In particular, we show that as
the tail goes from sub-Gaussian, to sub-exponential, and finally to Cauchy-like, the dependency on
the initial error goes from being logarithmic, to polynomial, and then finally to being exponential.
This three-step phase transition is in particular unavoidable as demonstrated by our lower bounds,
clearly defining the boundaries of LMC.
Keywords: Langevin Monte Carlo, Langevin diffusion, Complexity of Sampling, Rényi diver-
gence, Weak Poincaré Inequalities, Lower bounds, Heavy-tailed sampling.

1. Introduction

Consider the problem of sampling from a target probability density π ∝ exp(−V ) on Rd using the
canonical algorithm, Langevin Monte Carlo (LMC). The LMC iterations are given by

xk+1 = xk − h∇V (xk) +
√
2hξk, (LMC)
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where h > 0 is the step size, and (ξk)k∈N is an i.i.d. sequence of standard Gaussian random vectors.
This algorithm is based on discretizing the following stochastic differential equation (SDE), often
referred to as the (overdamped) Langevin diffusion,

dXt = −∇V (Xt)dt+
√
2 dBt, (LD)

where (Bt)t∈R+ is the d-dimensional standard Brownian motion. When π is (strongly) log-concave
and smooth, non-asymptotic convergence of LMC has been extensively studied (Dalalyan and Tsy-
bakov, 2012; Dalalyan, 2017b,a; Durmus and Moulines, 2019; Durmus et al., 2019).

The Langevin diffusion (LD), however, converges under relatively milder functional inequality
assumptions which are less restrictive compared to global curvature conditions like log-concavity.
Indeed, while log-concavity restricts π to be uni-modal, functional inequality based conditions allow
for some degree of multi-modality in π (Chen et al., 2021). Furthermore, functional inequalities
characterize a wide range of target densities by capturing the tail behavior of the potential. For
example, a target potential with tail growth V (x) ≈ ∥x∥α at infinity, would satisfy a logarithmic
Sobolev inequality (LSI) when α = 2, and satisfies a Poincaré inequality (PI) when α = 1. Thus,
an LSI induces a faster tail growth and is consequently a stronger condition than a PI.

Motivated by this, the following research program was initiated by Vempala and Wibisono
(2019): Can one provide convergence guarantees for (LMC) when the target density satisfies a
functional inequality and a smoothness condition? The authors answered the question in the af-
firmative, showing that the following two conditions on the target π ∝ e−V suffice to establish a
sharp non-asymptotic guarantee for LMC: (i) π satisfies an LSI and (ii) ∇V is Lipschitz continu-
ous. Chewi et al. (2022a) extended this framework significantly; among other contributions, they
also proved that LSI can be replaced with a Latała-Oleszkiewicz inequality (LOI), which can cover
a range of tail behavior, i.e. α ∈ [1, 2], interpolating between the edge cases PI (α = 1) and LSI
(α = 2). These works provide a thorough characterization of the convergence of LMC for at least
linearly growing potentials, and to our knowledge, providing the state of the art guarantees under
minimal set of conditions for this algorithm. However, it is rather unclear how much further this
program can be extended. For example, what is the threshold for the tail behavior α beyond which
LMC fails, if at all it fails to sample from such heavy-tailed targets?

In this paper, we aim to complete the program initiated by Vempala and Wibisono (2019), and
push the convergence analysis of LMC to its limits. We study the behavior of LMC for potentials
that satisfy a family of weak-Poincaré inequalities (WPI), which are one of the mildest conditions
required to prove the ergodicity of the Langevin diffusion (Röckner and Wang, 2001; Bakry et al.,
2014). A particularly interesting aspect of WPI is that virtually any target density satisfies such
an inequality. Thus, by proving a convergence guarantee for LMC under a WPI with explicit rate
estimates, we establish its convergence universally for any sufficiently smooth target. Interestingly,
for targets with sublinear tails, i.e. V (x) ≈ ∥x∥α for α ∈ (0, 1), our rate is polynomial in the
initial error, and smoothly extrapolates the rate derived by Chewi et al. (2022a) which was origi-
nally covering the regime α ∈ [1, 2]. In the case α approaches 0, however, the tail is logarithmic
V (x) ≈ ln(∥x∥), e.g. for Cauchy-type distributions, and our rate estimates exhibit an exponential
dependence on the initial error; thus, when there is no warm-start available, LMC would require
exponentially many iterations in the initial error for such targets with extreme heavy tails. We also
provide a lower bound for LMC under a general tail-growth condition, proving that for Cauchy-
type distributions, there is an initialization such that this exponential dependence is unavoidable.
Our main contributions can be summarized as follows.
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• For a target π ∝ e−V satisfying a WPI with a Hölder continuous ∇V , we establish non-
asymptotic convergence guarantees for LMC and the Langevin diffusion in Rényi divergence.
Since any distribution with a locally bounded potential V satisfies a WPI (Röckner and Wang,
2001), our results provide a convergence guarantee for LMC for any sufficiently smooth target.

• We prove WPIs with explicit dimension dependence for two model examples of heavy-tailed
distributions that do not satisfy a Poincaré inequality, hence cannot be covered by the results of
Chewi et al. (2022a). First, we consider sub-linearly decaying potentials of the form V (x) =
(1+∥x∥2)α/2 and establish a rate, which coincides with the estimates of Chewi et al. (2022a), but
also holds for α ∈ (0, 1), namely beyond a Poincaré inequality. Notably, this rate is polynomial
in the initial error for all α > 0. We also consider the case of extreme heavy tails, i.e. Cauchy-
type potentials with ν > 0 degrees of freedom of the form V (x) = d+ν

2 ln(1 + ∥x∥2), which
does not have moments of order ≥ ν defined. For this class of distributions, we prove that, even
though LMC converges in Rényi divergence of any order, the dependence on the initial error
may be exponential, which may limit its performance severely.

• Finally, we establish lower bounds for the complexity of LMC as well as the Langevin diffusion
in Rényi divergence, under various tail growths in the range α ∈ [0, 2]. Our lower bounds
indicate that, as the tail growth becomes heavier, LMC and the diffusion both exhibit a slow
start behavior by having a worse dependence on the initial divergence. In the particular case of
Cauchy-type targets, the exponential dependence on the initial error for LMC and the diffusion
is unavoidable, unless there is a good initialization available.

More related work. There have been innumerable works in the recent past focusing on (strongly)
log-concave sampling with LMC, which makes it hard to summarize them here. We refer the in-
terested reader to Chewi (2023) for a detailed exposition. Beyond the log-concave setting, the as-
sumption of dissipativity, which controls the growth order of the potential, is used in a large number
of prior works to obtain convergence rates for LMC (Durmus and Moulines, 2017; Raginsky et al.,
2017; Erdogdu et al., 2018; Erdogdu and Hosseinzadeh, 2021; Mou et al., 2022; Erdogdu et al.,
2022). Additionally, a recent result by Balasubramanian et al. (2022) characterized the performance
of (averaged) LMC for target densities that are only Hölder continuous (without any further func-
tional inequality or curvature-based assumptions); however, their guarantees were provided in the
relatively weaker Fisher information.

We also remark that in the (strongly) log-concave or light-tailed settings, several non-asymptotic
results exist on variants of LMC, including higher order integrators (Shen and Lee, 2019; Li et al.,
2019; He et al., 2020), the underdamped Langevin Monte Carlo (Cheng et al., 2018; Eberle et al.,
2019; Cao et al., 2019; Dalalyan and Riou-Durand, 2020), and the Metropolis-adjusted Langevin
Algorithm (Dwivedi et al., 2018; Lee et al., 2020; Chewi et al., 2021; Wu et al., 2022).

Research on the analysis of heavy-tailed sampling is relatively scarce, especially results that
are non-asymptotic in nature. Chandrasekaran et al. (2009) studied the iteration complexity of the
Metropolis random walk algorithm for sampling from s-concave distributions. Jarner and Roberts
(2007) established polynomial ergodicity results for several sampling algorithms including LMC.
Kamatani (2018) developed modifications of the standard Metropolis random walk that are suit-
able for handling heavy-tailed targets and established asymptotic convergence results. Recently,
Andrieu et al. (2022) analyzed Metropolis random walk algorithms under WPI and established rate
of convergence results in variance-like metrics. Johnson and Geyer (2012) introduced a variable
transformation method for Metropolis random walk algorithms, transforming heavy-tailed densities
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into light-tailed ones using invertible transformations to benefit from existing light-tailed sampling
algorithms. He et al. (2022) looked into ULA on a class of transformed densities and provided non-
asymptotic results, mainly focusing on isotropic densities. The transformation approach has been
extended in recent works such as Yang et al. (2022), and has also been used to prove asymptotic
exponential ergodicity for various sampling algorithms in the heavy-tailed settings (Deligiannidis
et al., 2019; Durmus et al., 2020; Bierkens et al., 2019).

While the literature on upper bounds on the complexity of sampling algorithms has seen sig-
nificant progress, the literature on lower bounds is quite limited. Algorithm-independent query
complexity of sampling from strongly log-concave distributions in one dimension was obtained
by Chewi et al. (2022c). Li et al. (2022) established lower bounds for LMC for sampling from
strongly log-concave distributions. Chatterji et al. (2022) established lower bounds for sampling
from strongly log-concave distributions in the stochastic setting, when the gradients are observed
with noise. Ge et al. (2020) established lower bounds for the related problem of estimating the nor-
malizing constants of a log-concave density. Lee et al. (2021) and Wu et al. (2022) established lower
bounds for the class of metropolized algorithms (including metropolized Langevin and Hamiltonian
Monte Carlo methods) for sampling from strongly log-concave distributions. Finally, lower bounds
in Fisher information for non-log-concave sampling were obtained in Chewi et al. (2022b).

Notation. Throughout the paper, we will use π ∝ exp(−V ) to denote the target probability measure
with unnormalized potential V , and ρt and µk to denote the law of the Langevin diffusion at time t,
and the law of the LMC at iteration k. (Pt)t∈R+ will denote the Markov semigroup of the Langevin
diffusion. Probability measures we work with in this paper admit densities with respect to the
Lebesgue measure, and we will use the same notation for their densities. We will use Θ̃Ψ and ÕΨ to
hide polylog factors and constants depending only on the set of variables Ψ. Γ(z) :=

∫∞
0 tz−1e−tdt

for z > 0 denotes the Gamma function, and ωd is the volume of the unit d-ball.

2. Weak Poincaré Inequalities and Rényi Convergence of the Diffusion

We consider a class of functional inequalities introduced by Röckner and Wang (2001), motivated
by the work of Liggett (1991)1. Throughout this work, we avoid concerns regarding the domain of
the generator for the diffusion (LD) by assuming that the set of infinitely differentiable functions,
C∞(Rd), forms a core for the domain. For example, this is given when V is infinitely differentiable
itself (see, e.g., Bakry et al. (2014, Proposition 3.2.1)).

Definition 1 (Weak Poincaré Inequality) A probability measure π on Rd satisfies a weak Poincaré
inequality (WPI) if there exists non-increasing βWPI : (0,∞) → R+ and Φ : L2(π) → [0,∞] with
Φ(cf + a) = c2Φ(f) for every c, a ∈ R and f ∈ L2(π), such that for every f ∈ C∞(Rd),

Varπ(f) ≤ βWPI(r) Eπ

[
∥∇f∥2

]
+ rΦ(f), ∀r > 0. (WPI)

We remark that virtually any target measure of interest in sampling satisfies such an inequality.
More specifically, Röckner and Wang (2001) showed that π ∝ e−V satisfies a WPI with Φ(·) =
Osc(·)2 := (sup f − inf f)2 and for some βWPI as soon as V is locally bounded. In the special

1. We refer the interested reader to Aida (1998) and Mathieu (1998) for other attempts to propose weaker versions of
Poincaré inequalities, and to Röckner and Wang (2001) for their relationship with Definition 1.
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cases where Φ = 0 or the function βWPI is uniformly bounded, the above inequality reduces to the
classical Poincaré inequality which reads, for a constant βPI and for every f ∈ C∞(Rd),

Varπ(f) ≤ βPI Eπ

[
∥∇f∥2

]
. (PI)

The tail properties of the distribution π are captured by the function βWPI, which will essentially
determine the convergence rate of LMC. We will present our convergence guarantees under the
generic condition (WPI), and for several model examples, we will derive explicit estimates of βWPI

to make our results more explicit.
Functional inequalities of the form (WPI) naturally extend Poincaré inequalities (PI) to arbitrary

distributions, removing any tail growth requirements. In particular, as PI is equivalent to an expo-
nential L2 convergence rate for the Markov semigroup, a WPI is equivalent to a subexponential L2

convergence rate (Röckner and Wang, 2001; Bakry et al., 2014). Similarly, one can also replace
the variance term in (WPI) with entropy, in which case the functional inequality is of the form of a
weak log-Sobolev inequality (WLSI). As shown by Cattiaux et al. (2007), a WLSI is equivalent to
a WPI; thus, we find it sufficient to present our results in terms of the WPI.

Following recent works (see, e.g., Ganesh and Talwar (2020); Erdogdu et al. (2022); Chewi et al.
(2022a)), we use Rényi divergence as a measure of distance between two probability distributions.
Rényi divergence of order q is defined by

Rq(ρ ∥ π) :=
1

q − 1
ln

∥∥∥∥dρdπ
∥∥∥∥q
Lq(π)

for 1 < q <∞, (1)

when ρ is absolutely continuous with respect to π, and +∞ otherwise. By Jensen’s inequality,
Rq(ρ ∥ π) is non-decreasing in q. If we consider the limits, (i) as q ↓ 1 it reduces to KL divergence,
i.e. limq↓1Rq(ρ∥π) = KL(ρ∥π) and (ii) as q → ∞ it reduces to the L∞-norm, i.e. limq→∞Rq(ρ∥
π) = ln ∥dρ/dπ∥L∞(π). It is also related to the χ2 divergence via χ2(ρ ∥ π)+ 1 = exp(R2(ρ ∥ π)).

Providing convergence guarantees in Rényi divergence is of particular interest since it upper
bounds many commonly used distance measures. Specifically, by Pinsker’s inequality and the
monotonicity of Rényi divergence, we have

2DTV(ρ, π)
2 ≤ KL(ρ ∥ π) ≤ Rq(ρ ∥ π) for q > 1.

Notice that comparing the quadratic Wasserstein distance W2
2(ρ, π) with Rq(ρ ∥ π) is more subtle.

Under a PI with constant βPI, or more broadly under finite fourth moments, one can write

ln
(
1 + 1

2βPI
W2

2(ρ, π)
)
≤ R2(ρ ∥ π) and ln

(
1 +

W4
2(ρ, π)

4Eπ

[
∥x∥4

]) ≤ R2(ρ ∥ π),

respectively. The first inequality is due to Liu (2020) and the second one can be derived from the
weighted total variation control on W2 (Villani, 2003, Proposition 7.10) along with the Cauchy-
Schwartz inequality. Hence, even under a WPI, a bound in Rényi divergence can be translated to a
bound in W2 (when Eπ

[
∥x∥4

]
< ∞), possibly at the expense of introducing additional dimension

dependency into the bounds. It is worth highlighting that a distribution satisfying (WPI) does not
need to have any particular moment defined, in which case W2 may be undefined, but its Rényi
divergence of some order may still be well-defined.
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2.1. Rényi Convergence of the Langevin Diffusion

Classically, convergence of the Langevin diffusion under (WPI) is considered only in variance, or
equivalently, the χ2 divergence (see e.g. Wang (2006, Chapter 4) and Bakry et al. (2014, Chapter
7.5)). The following result characterizes its convergence in Rényi divergence which is stronger in
the case of q > 2.

Theorem 2 Suppose π satisfies (WPI) for some βWPI and Φ(·) = Osc(·)2. For any 2 ≤ q < q′ ≤
∞ such that Rq′(ρ0 ∥ π) <∞, define δ0 := exp(qRq′(ρ0 ∥ π)). Then, for any r > 0,

Rq(ρt ∥ π) ≤

Rq(ρ0 ∥ π)− 2−4rδ0
β(r)q t if Rq(ρ0 ∥ π), Rq(ρt ∥ π) ≥ 1

e
− 2t
β(r)q (Rq(ρ0 ∥ π)− 2rδ0) + 2rδ0 if Rq(ρ0 ∥ π) < 1,

where

β(r) :=

βWPI(r) if q′ = ∞

βWPI

(
(r/5)

q′

q′−q
)
ln
(
(5/r)

q′

q′−q ∨ 1
)

if q′ <∞.
(2)

Therefore, we have Rq(ρT ∥ π) ≤ ε whenever

T ≥ qβ
( 1

4δ0

)
Rq(ρ0 ∥ π) +

q

2
β
( ε

4δ0

)
ln
(1
ε

)
. (3)

We emphasize that while the classical convergence results under (WPI) (Wang, 2006; Bakry et al.,
2014) require R∞(ρ0 ∥ π) < ∞ at initialization, our convergence guarantees hold as soon as the
initial error satisfies Rq′(ρ0 ∥ π) < ∞ for some q′ > q. Moreover, in the case where π satisfies a
PI, i.e. when βWPI is constant, we can remove the requirement of Rq′(ρ0 ∥ π) < ∞, and the above
theorem recovers Vempala and Wibisono (2019, Theorem 3) by defining β(0) := limr→0 βWPI(r).

The proof of Theorem 2 is presented in Appendix A.1, and it relies on a proof technique also
used in Vempala and Wibisono (2019); Chewi et al. (2022a). However, because of the Φ(·) =
Osc(·)2 term in (WPI), we additionally need to control oscillations of dρt

dπ uniformly over the pro-
cess. Via contraction properties for the semigroup, we can reduce such control to dρ0

dπ ∈ L∞(π)
(or equivalently R∞(ρ0 ∥ π) < ∞). To further relax this assumption, one needs to obtain a WPI
with a weaker Φ. Specifically, given an initial control of the type dρ0

dπ ∈ Lq′(π) for some q′ < ∞,
it suffices to obtain a WPI with Φ(·) = ∥·∥2Lu(π) (for mean-zero functions), where u = 2q′

q . The
following proposition, which is a consequence of a general Lp decay result due to Cattiaux et al.
(2012) and might be of independent interest, is crucial in the proof of Theorem 2. Specifically, it
converts a WPI with Φ(·) = Osc(·)2 into a different WPI with Φ(·) = ∥·∥2Lu(π); thus, allows for a
less restrictive initialization. We defer the proof of this proposition to Appendix A.2.

Proposition 3 Suppose π satisfies (WPI) with Φ(·) = Osc(f)2 and some βWPI(r). Then, for every
u > 2, π also satisfies (WPI) with weighting β′ and regularization function Φ′ such that

β′WPI(r) = βWPI

(
(r/5)

u
u−2

)
ln
(
(5/r)

u
u−2 ∨ 1

)
and Φ′(·) =

∥∥f − Eπ

[
f
]∥∥2

Lu(π)
. (4)

Additionally, provided that π does not satisfy a PI, π cannot satisfy a WPI with Φ = Φ′ for u = 2.

The last statement of the above proposition clarifies why we need to choose q′ > q. In order to
establish guarantees with q′ = q, one would be required to obtain a WPI with Φ(·) = ∥·∥2L2(π),
which is equivalent to a PI.
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3. Langevin Monte Carlo for Heavy-Tailed Targets

In this section, we present our main convergence guarantees for LMC when the target satisfies (WPI)
and ∇V is s-Hölder continuous for some s ∈ (0, 1], that is,

∥∇V (x)−∇V (y)∥ ≤ L ∥x− y∥s ∀x, y ∈ Rd. (s-Hölder)

The case s = 1 corresponds to the ubiquitous Lipschitz continuity where the potential is smooth,
and the regime where s < 1 is often termed as weak smoothness. Since our main focus is potentials
that do not satisfy (PI), any order Hölder continuity is feasible.

Below, we state our main convergence result for a generic (WPI) with an unspecified βWPI. We
will explicitly derive its implications for specific targets in the subsequent sections.

Theorem 4 Suppose π ∝ e−V satisfies (WPI) for some βWPI and Φ(·) = Osc(·)2, and ∇V is
(s-Hölder) continuous, with ∇V (0) = 0 for simplicity. For any q ∈ [2,∞), q′ ∈ (2q − 1,∞] such
that Rq′(µ0 ∥π) <∞, define δ0 := exp((2q−1)Rq′(µ0 ∥π)), m := 1

2 inf{R : π(∥x∥ ≥ R) ≤ 1
2},

and

T := (2q − 1)

{
β

(
1

4δ0

)
R2q−1(µ0 ∥ π) + β

(
ε

8δ0

)
ln

(
2

ε

)}
,

for ε ≤ q−1, where β is as in (2). Let π̂ denote a modified version of π (explicitly defined in (10))
and assume, for simplicity, that ε−1,m,L, T,R2(µ0 ∥ π̂) ≥ 1. Then, for a sufficiently small step
size h, denoting by µN , the law of the N -th iterate of LMC initialized at ρ0, after

N=Θs

(
T 1+1/sdq1/sL2/s

ε1/s
max

{
1,

ε1/(2s)ms

L1/s−1T 1/(2s)d
,
ε1/(2s)R2(µ0 ∥ π̂)s/2

L1/s−1T (1−s2)/(2s)d
ln

(
qTLR2(µ0 ∥ π̂)

ε

)s/2})

iterations of LMC, we obtain Rq(µN ∥ π) ≤ ε.

We make a few remarks. First, it is possible to find an initialization µ0, e.g. isotropic Gaussian,
such that Rq(µ0 ∥ π), Rq(µ0 ∥ π̂) ≤ Õ(d), with details provided in Lemma 31. In such a scenario,
up to log factors, the last term in the maximum will never dominate. Additionally, the middle term
will never dominate for sufficiently small ε, and in fact, in our model examples, it will not dominate
even for ε = 1 due to proper control on m. Then our convergence rate reads

N = Θ̃s

(
q1+2/sL2/sd

{
dβ( 1

4δ0
) + β( ε

8δ0
)
}1+1/s

ε1/s

)
.

In the case where π satisfies (PI), we set β(r) = βPI for any r > 0, and the above rate reduces to
the rate implied by Chewi et al. (2022a, Theorem 7).

The proof of Theorem 4 is given in Appendix A.3, and it is based on Theorem 2 and the Girsanov
argument used in Chewi et al. (2022a). Two key distinctions are (i) our analysis is tailored for
heavy-tailed targets, hence does not require any moment order to be defined, and also requires a
finer control of different error terms to mitigate suboptimal rates, and (ii) it exploits the continuous
time convergence under WPI, rather than stronger functional inequalities such as PI.
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3.1. Examples

In this section, we focus on various heavy-tailed targets that do not satisfy (PI). In particular, we
consider sampling from Cauchy-type measures in Section 3.1.2, which may not even have a defined
expectation or any order moment for that matter; yet, we are able to provide convergence guarantees
for LMC in Rényi divergence of any finite order.

3.1.1. POTENTIALS WITH SUB-LINEAR TAILS

Consider the measure πα ∝ exp(−Vα) where Vα(x) = (1 + ∥x∥2)α/2 with α ∈ (0, 1). This
potential satisfies (s-Hölder) with s = 1 and L = 1. We analyze this potential as a substitute for
∥x∥α since the latter does not have continuous gradients, while the former still behaves similar to
∥x∥α for large ∥x∥. In the following Proposition, we present the βWPI estimate for this potential.

Proposition 5 The measure πα(x) ∝ exp(−Vα) with α ∈ (0, 1) satisfies (WPI) with

βWPI(r) = inf
γ∈(0,2α]

Cα

(
d

2(2−2α+γ)
γ + ln

(
r−1
) 2−2α+γ

α

)
and Φ(·) = Osc(·)2, (5)

where Cα is a constant depending only on α.

It is worth noting that this estimate is polynomial in dimension, improving the implicit and po-
tentially exponential dependency implied by Cattiaux et al. (2010, Proposition 5.6) at the expense
of introducing an additional factor of ln(1/r)2 into the estimate. Specifically, they show that any
potential of the form V (x) = ψ(x)α for some convex non-negative ψ and α ∈ (0, 1) satisfies a
WPI with βWPI(r) = CWPI(1 + ln(r−1)2(1/α−1)) where CWPI = CWPI(d, α) is implicit in dimen-
sion, and in general it is not known how to achieve a dependency better than exponential via such
techniques. Invoking Theorems 2 and 4 with the estimate for βWPI given by Proposition 5, we can
establish the following convergence guarantees for LMC and the Langevin diffusion.

Corollary 6 Consider the setting of Theorem 4 with the target measure πα ∝ exp(−Vα). Denoting
the distribution of the Langevin diffusion at time T with ρT , we have Rq(ρT ∥ πα) ≤ ε whenever

T ≥ Cα,q inf
γ∈(0,2α]

{(
d
2
γ (2−2α+γ)

+R∞(ρ0 ∥ π)
2−2α+γ

α

)
(Rq(ρ0 ∥ π) + ln(1/ε)) + ln(1/ε)

2−α+γ
α

}
.

Further, denoting the distribution of LMC after N iterations with µN , we have Rq(µN ∥ πα) ≤ ε if

N = Θ̃α,q

(
(d4/α +R∞(µ0 ∥ πα)4/α)R2q−1(µ0 ∥ πα)2d

ε
max

{
1,

√
εR2(µ0 ∥ π̂α)

d

})
.

In particular, with ρ0 = µ0 = N (0, Id), and γ = 2α, and using the bound on the initial Rényi
divergence provided by Corollary 24 and Lemma 32, we obtain

T ≳ Cα,q

(
d2/α+1 + d2/α ln(1/ε) + ln(1/ε)2/α+1

)
, and N = Θ̃α,q

(
d4/α+3

ε

)
,

where ≳ hides polylog factors in d.
As a final remark, if instead of the βWPI estimate of Proposition 5, we use the estimate from

Cattiaux et al. (2010) together with Theorem 4, we can obtain a rate for LMC which reads N =

8
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Θ̃α,q

(
C2
WPI

d4/α−1

ε

)
. In particular, this can be seen as a smooth extrapolation of the rate given by

Chewi et al. (2022a) for the case of α ∈ [1, 2]. By showing that an LOI holds with some constant
CLOI, they obtain rates identical to ours once CWPI is replaced by CLOI, and the two rates match
at α = 1 as CLOI and CWPI will be equivalent up to an absolute constant in this case. However,
when α < 1, CWPI of Cattiaux et al. (2010) has an implicit and potentially exponential dependence
on dimension. Although our estimate in Proposition 5 improves this to polynomial, due to the
additional log factor introduced into the bound, the rate will no longer smoothly extrapolate the rate
of Chewi et al. (2022a) to the regime α < 1.

3.1.2. POTENTIALS WITH LOGARITHMIC TAILS: CAUCHY-TYPE MEASURES

In this section, we consider Cauchy-type measures of the form πν ∝ exp(−Vν) where Vν(x) =
d+ν
2 ln(1+ ∥x∥2) with ν > 0, which is Hölder continuous with s = 1 and L ≤ d+ ν. In particular,
πν belongs to the family of d-dimensional Student-t distributions with ν degrees of freedom; see
e.g. Jarner and Roberts (2007); Kamatani (2018); He et al. (2022); Yang et al. (2022) for sampling
from such distributions. Cauchy-type measures only have finite moments of order less than ν.

The following result presents a sharp estimate of βWPI for πν .

Proposition 7 The measure πν ∝ exp(−Vν) for ν > 0 satisfies (WPI) with

βWPI(r) =
2

ν
+ 2

(
d

ν
+ 1

)
r−2/ν and Φ(·) = Osc(·)2. (6)

Similar to the previous case, the above estimate improves the potentially exponential dimension
dependence in Cattiaux et al. (2010, Proposition 5.4) to linear, while keeping r dependency the
same. Employing the above estimate in Theorems 2 and 4, we obtain the following rate for LMC
and the Langevin diffusion.

Corollary 8 Consider the setting of Theorem 4 with the target measure πν ∝ exp(−Vν). Denoting
the distribution of the Langevin diffusion at time T with ρT , we have Rq(ρT ∥ πν) ≤ ε whenever

T ≥ Cνqd exp

(
2qR∞(ρ0 ∥ π)

ν

)(
Rq(ρ0 ∥ π) + (1/ε)2/ν ln(1/ε)

)
.

Furthermore, let ν ≤ cd for some absolute constant c, and denote the distribution of LMC after N
iterations with µN . Then, we have Rq(µN ∥ πν) ≤ ε whenever

N=Θ̃ν,q

d5e4(2q−1)
ν R∞(µ0∥π)

ε

(
R2

2q−1(µ0∥ π)+
(1
ε

)4/ν)
max

{
1,

√
εR2(µ0∥ π̂)R∞(µ0∥ π)

d

}.
We highlight that the dependence on the initial error is exponential in contrast to the polynomial
dependence in the previous case. In other words, with a naive initialization, in the worst case,
this dependency will negatively impact the complexity of sampling from Cauchy-type measures.
However, if one initializes with an isotropic Gaussian with an appropriately scaled variance, using
the estimates on the initial Rényi divergence in Corollary 23 and Lemma 32, we can obtain

T ≥ Cν,qd
2q/ν+1

(
ln d+ (1/ε)2/ν ln(1/ε)

)
and N = Θ̃ν,q

(
d

4(2q−1)
ν

+5/ε4/ν+1
)
.

Finally, we remark that such an initialization may not be available in general; thus, the exponential
dependence might be unavoidable.
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4. Lower Bounds for LMC via Variance Decay

As demonstrated in the examples, the convergence guarantees given in Section 3 have worse de-
pendence on the initial divergence when the tails of the target are heavier, with a sharp transition
at (Cauchy-type) logarithmic tails, in which case the dependence on the initial error becomes ex-
ponential. In this section, we show that this is not due to a limitation in the analysis, but is in fact
a property of LMC in heavy-tailed settings. We present a method for developing lower bounds for
the convergence rate of LMC, with the goal of observing a similar dependence on the initial diver-
gence and in particular, establishing that the exponential dependency for Cauchy-type measures is
unavoidable in the worst case. First, we introduce the notation of complexity that we lower bound.

Definition 9 Let D and D′ denote two divergences.

• The iteration complexity of LMC, denoted by C LMC
D,D′(π, h,∆0, ε), is the smallest k ∈ N such for

any µ0 satisfying D′(µ0 ∥ π) ≤ ∆0, LMC with step-size h satisfies D(µk ∥ π) ≤ ε.
• Similarly, the time complexity of the Langevin diffusion, C LD

D,D′(π,∆0, ε), is the smallest T ∈ R+

such that for any ρ0 satisfying D′(ρ0∥π) ≤ ∆0, the diffusion satisfies D(ρT ∥π) ≤ ε.

For example, D and D′ could be the KL divergence, the order-q Rényi divergence or the p-
Wasserstein distance. By having this notion of complexity uniformly over all initial distributions
whose initial error does not exceed ∆0, we mirror the types of bounds given in Section 3 and in the
literature on LMC more broadly (see e.g. Chewi et al. (2022b, Definition 5)). Indeed, in Section 3.1,
we provided upper bounds for this quantity with D = Rq and D′ = Rq′ .

Our methodology for developing lower bounds is based on the observation that in order for
LMC to be close to the target in some divergence, its moments should match those of the target.
We study the second moments of LMC and the Langevin diffusion and find that, by tracking their
evolution through differential inequalities, we can relate their convergence to the convergence of
processes that are more tractable. To relate this to the Rényi divergence, we rely on the strategy of
variational representations; the most famous of these, the Donsker-Varadhan theorem, has the KL
divergence represented as a supremum over a functional. We use a similar representation for the
q-Rényi divergence with q > 1, which is due to Birrell et al. (2021), with a particular choice of test
function to obtain

Rq(ρ∥π) ≥ ln
(
ρ(∥ · ∥2)

q
q−1
/
π(∥ · ∥

2q
q−1 )

)
whenever π(∥ · ∥2q/(q−1)) <∞.

Therefore, a strategy for obtaining lower bounds in the case where E∥x0∥2 is large follows: (i)
relate the decay of the Rényi divergence to the decay of E∥xk∥2, (ii) lower bound the number of
iterations required for E∥xk∥2 to decay by the number of iterations for a more tractable process (e.g.
gradient descent) to converge. To strengthen the lower bounds obtained, we use a similar approach
to develop an upper bound on the step size necessary to obtain a given accuracy. Details for the
methodology can be found in Appendix B.

4.1. Heavy-Tailed Potentials and Slow Starts

In order to obtain lower bounds, we will make an assumption of the type

∥∇V (x)∥ ≲ ∥x∥α−1 ,

10
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with α ∈ [0, 2], for sufficiently large ∥x∥, which will capture potentials that grow no faster than the
order of ∥x∥α when α > 0, and ln(∥x∥) when α = 0. Under such a condition, we show that as
α → 0, the dependence on initial error deteriorates. In particular, the dependence is logarithmic
with α = 2, becomes polynomial with α ∈ (0, 2), and finally turns exponential with α = 0, as
outlined below.

Theorem 10 (Three-step Phase Transition) Let q ∈ (1,∞), q′ ∈ [1,∞] and the moment condi-
tion π(∥ · ∥2q/(q−1)) <∞ hold. Suppose that

∥∇V (x)∥ ≤ b ∥x∥
(1 + ∥x∥2)1−α/2

, (7)

with α ∈ [0, 2] and b > 0, and let ν := b− d. Then for all sufficiently large ∆0 (see (18), (19), and
(20) for respective cases), the time complexity of the Langevin diffusion, and the iteration complexity
of LMC, for obtaining an accuracy of 1 in q-Rényi divergence, is lower bounded as follows

α = 2 : C LMC
Rq ,KL(π, h,∆0, 1) ≳

ln(∆0)

h
, C LD

Rq ,KL(π,∆0, 1) ≳ ln(∆0),

α ∈ (0, 2) : C LMC
Rq ,Rq′

(π, h,∆0, 1) ≳
d1−α/2∆

(2−α)2

2α
0

h
, C LD

Rq ,Rq′
(π,∆0, 1) ≳ d1−α/2∆

(2−α)2

2α
0 ,

α = 0 : C LMC
Rq ,Rq′

(π, h,∆0, 1) ≳
d

νh
exp(∆0/ν), C LD

Rq ,Rq′
(π,∆0, 1) ≳

d

ν
exp(∆0/ν),

where ≳ hides a constant depending only on b and α. The lower bounds hold for all h > 0, except
when α = 2 where they hold for h < b−1.

In Theorem 10, the case of α = 2 corresponds to tails no lighter than Gaussian and indeed, the lower
bounds that we obtain reproduce the dependence of ∆0 known in the Gaussian setting (Vempala
and Wibisono (2019)). The case of α ∈ (0, 2) corresponds to potentials with tail growth similar to
∥x∥α and the case of α = 0 corresponds to Cauchy-type logarithmic tails. Indeed, the generalized
Cauchy potentials Vν and the sub-linear potentials Vα from Section 3.1 satisfy (7) with b = d+ν and
b = α respectively. For these examples, our lower bounds recover the polynomial and exponential
dependence on the initial error given in the upper bounds of Section 3. More generally, we point out
that (7) is satisfied for any smooth ∇V with ∇V (0) = 0 and ∥∇V (x)∥ ≲ ∥x∥α−1 for large ∥x∥.
Similar to the upper bounds, the implicit assumption ∇V (0) = 0 is made only for the simplicity of
presentation. In fact, to achieve the most generality, even this assumption can be relaxed to a bound
of the type ⟨∇V (x), x⟩ ≲ ∥x∥α for large ∥x∥ while recovering similar results. One can interpret
such a condition as reversed dissipativity. While dissipativity is used in the literature to ensure a
lower bound on tail growth for obtaining upper bounds on moments (see e.g. Raginsky et al. (2017);
Erdogdu et al. (2018, 2022); Farghly and Rebeschini (2021)), the reversed condition imposes an
upper bound on the tail growth that leads to obtaining lower bounds on the moments.

The above result highlights one reason why LMC can be seen to perform worse in heavy-tailed
settings. As the tail becomes heavier, LMC exhibits a slow start behavior by having a worse depen-
dence on the initial divergence. Showing that this is a property of the Langevin diffusion and not due
to discretization motivates using alternative diffusions for sampling from heavy-tailed targets (see,
for example, Li et al. (2019); Şimşekli et al. (2020); He et al. (2022); Zhang and Zhang (2022)).
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To complete our exposition, we note that while the results of Theorem 10 are stated for any fixed
choice of step size, in practice we have to ensure step size is small enough for the discretization to
not harm the convergence of LMC. This usually leads to additional dependence on dimension or
final accuracy. In a special case where the target potential is radially symmetric, the following
proposition provides a general tool for determining suitable ranges of step size for LMC, hence
completing the complexity lower bound in conjunction with Theorem 10.

Proposition 11 (Step-size upper bound) Suppose the potential is radially symmetric with V (x) =
f(∥x∥2) and g : R+ → R+ given by g(r) = (1 − 2hf ′(r))2r is convex and non-decreasing. Let

ε > 0, q > 1. Suppose that E
[
∥x0∥2

]
> σ2ε where σ2ε = e

q−1
q

ε
π
(
∥ · ∥

2q
q−1
) q−1

q . Then it must hold
that,

inf
k∈N

Rq(ρk∥π) < ε =⇒ h ≤ 1

f ′(σ2ε)

(
1− d

2f ′(σ2ε)σ
2
ε

)
.

We conclude our discussion by considering an example that demonstrates an application of the
main tools developed in this paper. Specifically, we consider the setting of Section 3.1.2 and recall
the Cauchy-type target, πν . The following corollary, which gives a sharp characterization of the
convergence behavior, is a direct consequence of the lower bound from Theorem 10 and the upper
bound from Corollary 8.

Corollary 12 Let q ≥ 2 and suppose that ν > 2q
q−1 . Then for any ∆0 ≥ Cq(1 + ν ln(d + ν)), we

have the following bound for the Langevin diffusion,

d

4ν
exp

(
∆0

ν

)
≤ C LD

Rq ,R∞(π,∆0, 1) ≤
d

ν
exp

(
Cq∆0

ν

)
.

Further, LMC with an appropriate step size h > 0 satisfies

d

4hν
exp

(
∆0

ν

)
≤ C LMC

Rq ,R∞(π, h,∆0, 1) ≤
d

hν
exp

(
Cq∆0

ν

)
.

The above result states that the exponential dependence on the initial error for LMC and the dif-
fusion is unavoidable, unless there is a good initialization available. Notice that, by Proposition 11,
to obtain Rq(µN ∥ π) ≤ ε, step size needs to be sufficiently small. Incorporating this into the above
bound, we obtain the following lower bound for the iteration complexity of LMC when d ≥ ν − p:

C LMC
Rq ,Rq′

(π, h,∆0, ε) ≥
(d+ ν)2

48eν
min

{
ε−1,

ν − p

p
,
(ν − p)d

(2 + p)ν

}
exp

(
∆0

ν

)
,

where p = 2q
q−1 . Note that the step-size bound leads to additional dependence on d and ε. However,

the dependence on ε only reveals itself when ν and d are relatively large.

5. Conclusion

We provided convergence guarantees for LMC and Langevin diffusion, for target distributions π ∝
e−V satisfying a WPI. This corresponds to potentials with tails that behave like V (x) ∼ ∥x∥α for
α ∈ (0, 1], and also covers Cauchy-type densities in the case α ↓ 0. Our results push the program
initiated by Vempala and Wibisono (2019) to its limits; by providing explicit WPI constants for
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specific examples, we obtained guarantees demonstrating that targets with heavier tails lead to a
worse dependence on the initial error. Particularly, the dependence on initial error is a polynomial
of order (2−α)2

2α for α > 0, with a phase transition at α = 0, i.e. Cauchy-type logarithmic tails,
for which the dependence becomes exponential. Additionally, we established lower bounds under
generic tail growth conditions that asserted such dependence on the initial error is unavoidable
unless suitable warm start initializations are available.

Our quantitative results (via upper and lower bounds) highlight the precise limitations of LMC
for heavy-tailed sampling and provide further motivations to develop a complete complexity theory
of heavy-tailed sampling by discretizing other diffusions like specific Itô diffusions or stable-driven
diffusions, an area of research which is still in its infancy.

One limitation of our upper bounds is the fact that the step size needs to be chosen in advance
according to the number of iterations, and with a fixed step size, the upper bounds diverge as N →
∞. However, as pointed out by Chewi et al. (2022a), this is a general limitation of any analysis that
does not assume the log-Sobolev inequality. We leave the stability of fixed step size LMC in the
number of iterations under heavy-tailed targets as an open direction for future research.
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Appendix A. Proofs of Sections 2 and 3

A.1. Proof of Theorem 2

Following Vempala and Wibisono (2019), define the following quantities

Fq(ρ ∥ π) := Eπ

(ρ
π

)q
, Gq(ρ ∥ π) := Eπ

[ (ρ
π

)q ∥∥∥∇ log
ρ

π

∥∥∥2 ] = 4

q2
Eπ

[ ∥∥∥∥∇(ρπ)q/2
∥∥∥∥2 ].

Then (Vempala and Wibisono, 2019, Lemma 6) shows that along the Langevin diffusion

∂Rq(ρt ∥ π)
∂t

= −qGq(ρt ∥ π)
Fq(ρt ∥ π)

. (8)

Furthermore, we have the following estimates on the quantities appearing in our functional inequal-
ities.

Lemma 13 (Vempala and Wibisono (2019)) Let f =
(ρt
π

)q/2. Then, for q ≥ 2,

Eπ

[
∥∇f∥2

]
=
q2

4
Gq(ρt ∥ π),

Varπ(f) ≥ Fq(ρt ∥ π)(1− e−Rq(ρt∥π)).

Proof The equality follows by definition. For the inequality,

Varπ(f) = Fq(ρt ∥ π)− Fq/2(ρt ∥ π)2

= e(q−1)Rq(ρt∥π) − e(q−2)Rq/2(ρt∥π)

≥ e(q−1)Rq(ρt∥π) − e(q−2)Rq(ρt∥π)

= Fq(ρt ∥ π)
(
1− e−Rq(ρt∥π)

)
,

where we used the fact that q 7→ Rq(ρt ∥ π) is non-decreasing.

Proof of Theorem 2. Suppose π satisfies (WPI) with βWPI and Φ′ and assume that Φ′((ρt
π

)q/2) ≤
δ0 for all t ∈ R+. Choosing f =

(ρt
π

)q/2, it follows from (WPI) and Lemma 13 that

q2Gq(ρt ∥ π)
4Fq(ρt ∥ π)

≥ 1− e−Rq(ρt∥π)

βWPI(r)
− rΦ(f)

βWPI(r)Fq(ρt ∥ π)

≥ 1− e−Rq(ρt∥π)

βWPI(r)
− rδ0
βWPI(r)

.

Hence,
∂Rq(ρt ∥ π)

∂t
≤ −4(1− e−Rq(ρt∥π)) + 4rδ0

qβWPI(r)
.

Thus with Rq(ρt ∥ π) ≥ 1 we have

∂Rq(ρt ∥ π)
∂t

≤ −2 + 4rδ0
qβWPI(r)

,
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and for Rq(ρt ∥ π) < 1 we have

∂Rq(ρt ∥ π)
∂t

≤ −2Rq(ρt ∥ π) + 4rδ0
qβWPI(r)

.

Integration and Grönwall’s lemma yield

Rq(ρt ∥ π) ≤

Rq(ρ0 ∥ π)− 2−4rδ0
βWPI(r)q

t, if Rq(ρ0 ∥ π), Rq(ρt ∥ π) ≥ 1

e
− 2t
βWPI(r)q (Rq(ρ0 ∥ π)− 2rδ0) + 2rδ0, if Rq(ρ0 ∥ π) < 1.

Suppose that q′ = ∞. In this case, we can choose the original WPI with Φ(·) = Osc(·)2. Then,
we need to show Osc

((ρt
π

)q/2)2 ≤
∥∥ρ0

π

∥∥q
L∞(π)

. Notice that Pt
ρ0
π = ρt

π (which one can verify by
the tower property of the conditional expectation and the symmetry of the Markov process). Then
we have,

Osc

((
Pt
ρ0
π

)q/2)2

≤
∥∥∥Pt

ρ0
π

∥∥∥q
L∞(π)

≤
∥∥∥ρ0
π

∥∥∥q
L∞(π)

,

where the second inequality follows from the contraction property of the semigroup. Thus, we can
set δ0 =

∥∥ρ0
π

∥∥q
L∞(π)

= exp(qR∞(ρ0 ∥ π)), which completes the proof for the case of q′ = ∞.

Now, suppose q < q′ < ∞. Using u = 2q′

q in Proporostion 3, π satisfies a WPI with weighting

β and Φ′(·) =
∥∥· − Eπ

[
·
]∥∥2

L2q′/q(π)
, where β is given in the statement of Theorem 2. Additionally,

by Lemma 34, we have

Φ′
((ρt

π

)q/2)
≤
∥∥∥∥(ρtπ )q/2

∥∥∥∥2
L2q′/q(π)

=
∥∥∥Pt

ρ0
π

∥∥∥q
Lq′ (π)

≤
∥∥∥ρ0
π

∥∥∥q
Lq′ (π)

≤ exp(qRq′(ρ0 ∥ π)).

Thus in this case, we can choose δ0 = exp(qRq′(ρ0 ∥ π)), which finishes the proof.

A.2. Proof of Proposition 3

By Theorem 2.3 of Röckner and Wang (2001), in order to show that (WPI) holds with Φ′ as in (4),
it suffices to show that for every mean-zero f ∈ C∞(Rd),

∥Ptf∥2L2(π) ≤ ξ(t) ∥f∥2Lu(π) (9)

such that ξ : R+ → R+ is decreasing and limt→∞ ξ(t) = 0. Then, we obtain the (WPI) with

β′WPI(r) = 2r inf
s

1

s
ξ−1(s exp(1− s/r)).

To establish (9), a similar argument to that of Cattiaux et al. (2012, Lemma 5.1) shows that given
such a function f , there exists a constant K > 0 such that,

∥Ptf∥2L2(π) ≤ 41+2/u ∥f∥Lu(π)

(∥∥∥Pt(f̃ − π(f̃))
∥∥∥2
L2(π)

)1−2/u

,
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where f̃ = K−1(f ∧K ∨ (−K)). Since f ∈ C∞(Rd), f̃ must be infinitely differentiable almost
everywhere and thus, in the domain of the generator. Therefore, we may apply Theorem 2.1 of
Röckner and Wang (2001) to deduce that∥∥∥Pt(f̃ − π(f̃))

∥∥∥2
L2(π)

≤ λ(t)(Φ(f̃) + Varπ(f̃)) ≤ 5λ(t),

where
λ(t) = inf{r > 0 :

1

2
βWPI(r) log(1/r) ≤ t}.

Hence, (9) holds with ξ(t) = 5λ(t)1−2/u. By definition, λ and hence ξ are decreasing, and
limt→∞ ξ(t) = 0. From this, we observe that

β′WPI(r) ≤ 2ξ−1(r) = 2λ−1
(
(r/5)

u
u−2

)
= βWPI

(
(r/5)

u
u−2

)
log
(
(5/r)

u
u−2 ∨ 1

)
.

Finally, suppose π does not satisfy a Poincaré inequality, but satisfies (4) for some β′WPI with u = 2.
Then, for any r > 0 we have

(1− r)Var(f) ≤ βWPI(r)E
[
∥∇f∥2

]
.

Thus, π satisfies a Poincaré inequality (with a constant at most 2βWPI(1/2)), which is a contradic-
tion.

A.3. Proof of Theorem 4

First, we present the following lemma which enables us to control the discretization error R2q(µN ∥
ρT ). This proposition can be retrieved by a careful evaluation of the terms in the proof of Proposition
25 of Chewi et al. (2022a). We avoid the simplifications made by Chewi et al. (2022a) since that
can affect our rate due to m = O(d1/α) for πα defined in Section 3 with α ∈ (0, 1), and also T can
be exponential in d for specific examples.

Proposition 14 ((Chewi et al., 2022a, Proposition 25)) Suppose ∇V is s-Hölder continuous with
constant L and ∇V (0) = 0. Let m := 1

2 inf{R : π(∥x∥ ≥ R) ≤ 1
2}. Define

π̂(x) ∝ exp

(
−V (x)− 1

6144T
max{∥x∥ − 2m, 0}2

)
. (10)

Assume for simplicity ε−1,m,L, T,R2(ρ0 ∥ π̂) ≥ 1, Then, for q ≤ ε−1, if the step size satisfies

h ≤ Os

(
ε1/s

dq1/sL2/sT 1/s
min

{
1,
L1/s−1T 1/(2s)d

ε1/(2s)ms
,

L1/s−1T (1−s2)/(2s)d

ε1/(2s)R2(ρ0 ∥ π̂)s/2 ln(N)s/2

})
,

we have for T = Nh
Rq(µN ∥ ρT ) ≤ ε.

Remark 15 If the first moment of π is finite, we have m ≤ Eπ

[
∥x∥
]

by Markov’s inequality. In
fact, the original result in Chewi et al. (2022a) is presented using m = Eπ

[
∥x∥
]
. However, the

result is still valid with the choice of m in Proposition 14, which is useful for targets with infinite
first moment.
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With this proposition in hand, we are ready to state the proof of Theorem 4.
Proof of Theorem 4 By Theorem 2 we have R2q−1(ρT ∥ π) ≤ ε

2 . Furthermore, by choosing the
step-size as in Proposition 14, we haveR2q(µN ∥ρT ) ≤ ε

2 . By the weak triangle inequality of Rényi
divergence, we have Rq(µN ∥ π) ≤ ε for

N =
T

h
= Θs

(
dq1/sL2/sT 1+1/s

ε1/s
max

{
1,

ε1/(2s)ms

L1/s−1T 1/(2s)d
,
ε1/(2s)R2(ρ0 ∥ π̂)s/2 ln(N)s/2

L1/s−1T (1−s2)/(2s)d

})
.

A further simplification of this result yields the statement of the Theorem.

A.4. Computing Weak Poincaré Constants

In this section, we will provide WPI estimates for our model examples πν(x) ∝ (1+∥x∥2)
d+ν
2 and

πα(x) ∝ exp(−(1 + ∥x∥2)α/2).
We will use the following chain of implications to establish WPIs with suitable dimension de-

pendencies:

Weighted Poincaré ⇒ Converse Poincaré ⇒ Weak Poincaré

In particular, to obtain a WPI from a converse Poinacré inequality, we can use the following result
due to Cattiaux et al. (2010).

Lemma 16 (Theorem 5.1 of Cattiaux et al. (2010)) Assume π satisfies a converse Poincaré in-
equality, i.e.

inf
c

∫
|f(x)− c|2w(x)dπ(x) ≤ C

∫
∥∇f(x)∥2 dπ(x),

for some non-negative weight function w, such that
∫
wdπ < ∞. Define G(r) := inf{u : π(w ≤

u) > r}. Then, π satisfies a WPI with Φ(·) = Osc(·)2 and βWPI(r) =
C

G(r) .

Hence, our main effort is to establish a converse Poincaré inequality for our model examples. In
fact, for generalized Cauchy measures, we can immediately use a result of Bobkov and Ledoux
(2009).

Lemma 17 (Corollary 3.2 of Bobkov and Ledoux (2009)) Let πν(x) ∝ (1+∥x∥2)−(d+ν)/2 with
p > 0. Then, for any f ∈ C∞(Rd), we have the following converse (weighted) Poincaré inequality

inf
c

∫
|f(x)− c|2w(x)dπν(x) ≤ Cd,ν

∫
∥∇f(x)∥2 dπν(x), (11)

for w(x) = 1
1+∥x∥2 , with

Cd,ν :=

{
1

d+ν if ν ≥ d+ 2
2
ν otherwise

.

Thus, along with a concentration bound, we can invoke Lemma 16 to estimate βWPI for generalized
Cauchy measures.
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Proof of Proposition 7 In order to invoke Lemma 16, we need to estimate π(w ≤ u) for the weight
function given by Lemma 17 w(x) = (1 + ∥x∥2)−1. By Lemma 30, we have

π(w ≤ u) = π
(
∥x∥ ≥

√
u−1 − 1

)
≤ (d+ ν)ν/2(u−1 − 1)−ν/2.

Choosing u−1 = 1 + (d+ ν)r−2/ν , we obtain by invoking Lemma 16

βWPI(r) =
2

ν
+ 2

(
d

ν
+ 1

)
r−2/ν .

Estimating βWPI for πα is more involved as we do not readily have a suitable converse Poincaré
inequality. We will work towards this by first deriving a weighted Poincaré inequality using the
perturbation argument.

Lemma 18 Let πα(x) ∝ exp

(
−
(
1 + ∥x∥2

)α/2)
with α ∈ (0, 1). Then for any f ∈ C∞(Rd),

we have the following weighted Poincaré inequality

Varπα(f) ≤ eCd,α

∫
w(x)2 ∥∇f(x)∥2 dπα(x). (12)

for w(x) = ∥x∥1−α with Cd,α satisfying (13).

Proof Let π̃α(x) ∝ exp (−∥x∥α). According to (Cattiaux et al., 2010, Proposition 4.7), π̃α satisfies
a weighted Poincaré inequality with weight w(x)2 = ∥x∥2(1−α) and parameter Cd,α satisfies

d

α3
≤ Cd,α ≤ 12

d

α3
+
d+ α

α4
(13)

Meanwhile, dπα
dπ̃α

= exp (k(x)) with k(x) = −
(
1 + ∥x∥2

)α/2
+ ∥x∥α + constant. Notice that

Osc(k) = 1. Then, (12) follows from the perturbation property of the weighted Poincaré inequality.

In the next step, by an argument similar to (Bobkov and Ledoux, 2009, Proposition 3.3), we
transform the weighted Poincaré inequality for πα to a converse Poincaré inequality.

Lemma 19 Let πα(x) ∝ exp

(
−
(
1 + ∥x∥2

)α/2)
with α ∈ (0, 1). Let γ ∈ (0, 2α]. Then for any

g ∈ C∞(Rd), we have the following converse weighted Poincaré inequality

inf
c

∫
|f(x)− c|2(

a+ b ∥x∥2
)1−α+γ/2

dπα(x) ≤
[
1− (1− α+ γ/2) b

1
2a−

1
2
(α−γ/2)

]−2
∫

∥∇f(x)∥2 dπα(x)

(14)

with a =
γ(eCd,α)

2
γ

2(1−α)+γ , b = 2(1−α)
2(1−α)+γ , and Cd,α satisfies (13)
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Proof First we apply Young’s inequality to bound the weights in Lemma 18.

eCd,α ∥x∥2(1−α) =

[
(eCd,α)

2
2(1−α)+γ ∥x∥

4(1−α)
2(1−α)+γ

]1−α+γ/2

≤

(eCd,α)
2
γ

2(1−α)+γ
γ

+
∥x∥2

2(1−α)+γ
2(1−α)

1−α+γ/2

=:
(
a+ b ∥x∥2

)1−α+γ/2

Therefore, Lemma 18 yields

Varπα(g) ≤
∫

∥∇g(x)∥2
(
a+ b ∥x∥2

)1−α+γ/2
dπα(x) (15)

The rest of the proof proceeds similarly to that of (Bobkov and Ledoux, 2009, Proposition 3.3).

Consider g(x) = (f(x) − c)
(
a+ b ∥x∥2

)− 1−α+γ/2
2 , where c is chosen such that g has mean 0.

Then we have

∇g(x) = ∇f(x)
(
a+ b ∥x∥2

)− 1−α+γ/2
2 − b (1− α+ γ/2)

(
a+ b ∥x∥2

)− 1−α+γ/2
2

−1
(f(x)− c)x.

By the elementary inequality ∥u+ v∥2 ≤ r
r−1 ∥u∥

2 + r ∥v∥2 for any r > 1, we have

∥∇g(x)∥2 ≤ r

r − 1
∥∇f(x)∥2

(
a+ b ∥x∥2

)−(1−α+γ/2)

+ rb2 (1− α+ γ/2)2
∥x∥2

a+ b ∥x∥2
1(

a+ b ∥x∥2
)α−γ/2

(
a+ b ∥x∥2

)−2(1−α+γ/2)
(f(x)− c)2

≤ r

r − 1
∥∇f(x)∥2

(
a+ b ∥x∥2

)−(1−α+γ/2)

+ rb2 (1− α+ γ/2)2 b−1a−α+γ/2
(
a+ b ∥x∥2

)−2(1−α+γ/2)
(f(x)− c)2

Applying (15) to g, we obtain∫
(f(x)− c)2

(
a+ b ∥x∥2

)−(1−α+γ/2)
dπα(x) ≤

r

r − 1

∫
∥∇f(x)∥2 dπα(x)

+ rba−α+γ/2 (1− α+ γ/2)2
∫

(f(x)− c)2
(
a+ b ∥x∥2

)−(1−α+γ/2)
dπα(x)

Since γ ∈ (0, 2α], b ∈ (0, 1), a > 1 and 1− α+ γ/2 ∈ (1− α, 1), we have∫
f(x)2

(
a+ b ∥x∥2

)−(1−α+γ/2)
dπα(x) ≤

r

r − 1

1

1− rba−α+γ/2 (1− α+ γ/2)2

∫
∥∇f(x)∥2 dπα(x)

Last, (14) follows by choosing the optimal r∗ = b−
1
2a

1
2
(α−γ/2)(1− α+ γ/2)−1 > 1.
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With this converse Poincaré inequality, we are ready to invoke Lemma 16 and obtain a WPI for
πα.
Proof of Proposition 5 Let a and b be defined according to the statement of Lemma 19. In order to

invoke Lemma 16, we need to estimate πα(w ≤ u) for the weightw(x) =
(
a+ b ∥x∥2

)−(1−α+γ/2)
.

Using the tail bound of Lemma 29, ƒ

πα (w(x) ≤ u) = πα

(
∥x∥ ≥ b−

1
2

√
u
− 1

1−α+γ/2 − a

)

≤ e
1
2 2d/α exp

(
−1

2

(
1 + b−1

(
u
− 1

1−α+γ/2 − a
))α/2)

.

Choosing u such that the above is at most r, we obtain

G(r) := inf {u : πα (w(x) ≤ u) > r}

≥

{
a+ b

[(
1 +

2d

α
ln 2 + 2 ln

(
r−1
)) 2

α

− 1

]}−(1−α+γ/2)

≥

{
a+ b

(
1 +

2d

α
ln 2 + 2 ln

(
r−1
)) 2

α

}−(1−α+γ/2)

.

Therefore, by Lemma 16 the weak Poincaré constant satisfies

αWPI(r) ≤
[
1− (1− α+ γ/2) b

1
2a−

1
2
(α−γ/2)

]−2
{
a+ b

(
1 +

2d

α
ln 2 + 2 ln

(
r−1
)) 2

α

}1−α+γ/2

≤
(
1− a−

1
2
(α−γ/2)

)−2

a1−α+γ/2 +

(
1 +

2d

α
ln 2 + 2 ln(r−1)

) 2(1−α)+γ
α


Recall a = γ

2(1−α)+γ (eCd,α)
2
γ < (eCd,α)

2
γ , γ ∈ (0, 2α], and notice that infγ a > 1. Therefore,

αWPI(r) ≤
3
2−3α+γ

α ∨ 1(
1− a−

1
2 (α−γ/2)

)2

(
(eCd,α)

2(2−2α+γ)
γ + 1 +

(
2 ln 2

α

) 2−2α+γ
α

d
2−2α+γ

α + 2
2−2α+γ

α ln
(
r−1
) 2−2α+γ

α

)

≤ Cα

(
d

2(2−2α+γ)
γ + ln

(
r−1
) 2−2α+γ

α

)

Appendix B. Proofs of Section 4

Our goal in this section is to prove Theorem 10 and Proposition 11. To do so, we begin by introduc-
ing a lower bound that compares the second moment of ρ with a certain moment from π in order to
lower bound the Rényi divergence between ρ and π, thus allowing us to track the evolution of the
second moment of the process rather than the Rényi divergence itself.
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Lemma 20 Let q > 1, and ρ and π be a pair of measures with ρ(∥·∥2) <∞ and π(∥·∥
2q
q−1 ) <∞,

then the q-Rényi divergence is lower bounded by

Rq(ρ∥π) ≥ ln

(
ρ(∥ · ∥2)

q
q−1

π(∥ · ∥
2q
q−1 )

)
.

Proof From (Birrell et al., 2021, Theorem 3.1), we have the following variational representation
for the Rényi divergence,

Rq(ρ ∥ π) ≥ sup
ϕ

{
q

q − 1
ln

∫
exp((q − 1)ϕ(x))dρ(x)− ln

∫
exp(qϕ(x))dπ(x)

}
,

where the supremum runs over all measurable functions. The choice of ϕ(x) = 2
q−1 ln(∥x∥) proves

the statement of the lemma.

The following lemma uses the gradient bound condition in (7) to lower bound the decay rate of
the second moment for the Langevin diffusion and LMC.

Lemma 21 (Evolution of the Second Moment) Suppose Eq. (7) holds withα ∈ [0, 2], and E ∥X0∥2 <
∞. Then,

d

dt
E ∥Xt∥2 ≥ 2d− 2bE

[
∥Xt∥2

]α/2
.

Similarly, LMC satisfies

E ∥xk+1∥2 ≥ E ∥xk∥2 − 2bhE
[
∥xk∥2

]α/2
+ 2hd.

Proof We begin by proving the result for LMC. By the independence of ξk and xk, we have

E ∥xk+1∥2 = E ∥xk − h∇V (xk)∥2 + 2hd

≥ E ∥xk∥2 − 2hE ⟨∇V (xk), xk⟩+ 2hd

≥ E ∥xk∥2 − 2bhE
[
∥xk∥2

]α/2
+ 2hd,

where the last inequality follows from Cauchy-Schwartz and Jensen’s inequalities.
For the diffusion, it follows from Itô’s lemma that

∥Xt∥2 = −2

∫ t

0
⟨∇V (Xs), Xs⟩ ds+ 2td+ 2

√
2

∫ t

0
⟨Xs, dBs⟩. (16)

We proceed by showing the last term is a martingale and can be removed once taking expectations.
For this, it is sufficient to show that Xt is Bt-integrable or equivalently,

E
[ ∫ t

0
∥Xs∥2ds

]
<∞. (17)

25



MOUSAVI-HOSSEINI FARGHLY HE BALASUBRAMANIAN A. ERDOGDU

Indeed, from Itô’s lemma, and Tonelli’s theorem,

E ∥Xt∥2 ≤ −2E
[∫ t

0
⟨∇V (Xs), Xs⟩ ds

]
+ 2td+ 2

√
2E

[(∫ t

0
⟨Xs,dBs⟩

)2
]1/2

≤ 2(b+ d)t+ 2bE
[∫ t

0
∥Xs∥2 ds

]
+ 2

√
2E
[∫ t

0
∥Xs∥2 ds

]1/2
≤

√
2 + 2(b+ d)t+ (2b+

√
2)

∫ t

0
E ∥Xs∥2 ds.

Define f(s) := supr∈[0,s] E
[
∥Xr∥2

]
. Then, for any T ≥ t,

f(t) ≤
√
2 + 2(b+ d)T︸ ︷︷ ︸

=:C1

+(2b+
√
2)︸ ︷︷ ︸

=:C2

∫ t

0
f(s)ds.

Then, by Grönwall’s lemma, ∫ t

0
f(s)ds ≤ C1

C2
(exp(C2t)− 1) <∞,

and consequently (17) is satisfied. Thus, we can remove the last term in (16) after taking expectation,
and after taking a time derivative obtain

d

dt
E ∥Xt∥2 = −2E [⟨∇V (Xt), Xt⟩] + 2d

≥ −2bE ∥Xt∥α + 2d

≥ −2bE
[
∥Xt∥2

]α/2
+ 2d,

where once again the last inequality is implied by Cauchy-Schwartz and Jensen’s inequalities.

Another key ingredient of our proof will be controlling the Rényi or KL divergence using the
variance of an isotropic Gaussian initialization, which is provided by the following lemmas.

Lemma 22 (Controlling Rényi Divergence by Initial Variance) Let π ∝ e−V ,Z :=
∫
e−V (x)dx

and suppose V satisfies (7). Then the following holds:

1. If α = 0, then for σ2 ≥ (d+ ν)−1, where we recall ν := b− d > 0,

R∞(Nσ2Id ∥ π) ≤
ν

2
lnσ2 + ln


(

Z

(2π)d/2

)(
d+ ν

e

)d+ν
2

+
1

2σ2
.

2. If α ∈ (0, 2), then for σ2 ≥ b−1,

R∞(Nσ2Id ∥ π) ≤
(bσ2)

2
2−α

α
+ ln

(
Z

(2πσ2)d/2

)
+

1

2σ2
.
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Proof We begin by upper bounding V . Using (7), we have that

V (x) ≤
∫ 1

0
∥∇V (tx)∥ ∥x∥ dt ≤

{
b
α

(
(1 + ∥x∥2)α/2 − 1

)
if α > 0,

b
2 ln(1 + ∥x∥2) if α = 0.

In the case that α = 0, it follows that

R∞(Nσ2Id ∥ π) ≤ ln

(
Z

(2πσ2)d/2

)
+ sup

x

−∥x∥2

2σ2
+
b

2
ln(1 + ∥x∥2).

For σ2 ≥ 1
a+b , the supremum occurs at ∥x∗∥2 = bσ2 − 1, and

R∞(Nσ2Id ∥ π) ≤
b− d

2
lnσ2 + ln

(
Z

(2π)d/2

)
+

1

2σ2
+
b

2
ln
b

e
.

Now suppose α > 0, then

R∞(Nσ2Id ∥ π) ≤ ln

(
Z

(2πσ2)d/2

)
+ sup

x

−∥x∥2

2σ2
+
b

α
(1 + ∥x∥2)α/2.

For σ2 ≥ b−1, the supremum is attained at ∥x∗∥2 = (bσ2)
2

2−α − 1, and

R∞(Nσ2Id ∥ π) ≤
b

2
2−α

α
σ

2α
2−α + ln

(
Z

(2πσ2)d/2

)
+

1

2σ2
.

We pause here to state the result of Lemma 22 more explicitly for the generalized Cauchy
potential Vν and the sublinear potential Vα. For the first example, we have the normalizing constant

Zν :=
πd/2Γ(ν/2)

Γ((d+ ν)/2)
≤ πd/2Γ(ν/2)

(
d+ ν

2e

)−d+ν
2 +1

,

where the second inequality holds when d ≥ 2 using Γ(z) ≥ (z/e)z−1 for z ≥ 1.

Corollary 23 Consider the measure πν ∝ exp(−Vν) with Vν(x) = d+ν
2 ln(1 + ∥x∥2). Then, for

d ≥ 2, α ∈ (0, 2], and σ2 ≥ (d+ ν)−1, we have

R∞(Nσ2Id ∥ πν) ≤
ν

2
lnσ2 + ln

(
2ν/2Γ(ν/2)

)
+ ln

(
d+ ν

2e

)
.

The second example, the sub-linear potential Vα = (1 + ∥x∥2)α/2 − 1 with α ∈ (0, 1), satisfies (7)
with α, and its normalizing constant can be estimated by

Zα :=

∫
exp((1+∥x∥2)α/2−1)dx ≤

∫
exp(∥x∥α)dx =

πd/2d/αΓ(d/α)

Γ(d/2 + 1)
≤ πd/2

(
d

α

)d/α−d/2

,

where we refer to (23) for a proof of the identity, and the second inequality follows from Lemma
33.
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Corollary 24 Consider the measure πα ∝ exp(−Vα) with Vα = (1 + ∥x∥2)α/2, α ∈ (0, 1), and
d ≥ 2. Then for σ2 ≥ 1/α,

R∞(Nσ2Id ∥ πα) ≤ (ασ2)
α

2−α +

(
d

α
− d

2

)
ln(d/α)− d

2
ln(2σ2) +

1

2σ2
.

When working with tail growth of order α = 2, a large initial variance can lead to infinity Rényi
divergence of any order q > 1. Hence, we will instead use the KL divergence as our initial metric
in this setting.

Lemma 25 (Controlling KL Divergence by Initial Variance) Let Z :=
∫
e−V (x)dx and suppose

that V satisfies (7) with α = 2, then

KL(Nσ2Id ∥ π) ≤
(bσ2 − 1)d

2
+ ln

(
Z

(2πσ2)d/2

)
.

Proof First, we upper bound V with

V (x) ≤
∫ 1

0
∥∇V (tx)∥ ∥x∥ dt ≤ b

2
∥x∥2 .

Thus we have

KL(Nσ2Id ∥ π) = ENσ2Id

[
ln

(
Z

(2πσ2)d/2
exp

(
−∥x∥2

2σ2
+ V (x)

))]

≤ ln

(
Z

(2πσ2)d/2

)
+

(bσ2 − 1)d

2
.

We are now ready to present the proof of Theorem 10.
Proof of Theorem 10 Notice that to lower bound the time or iteration complexity, it suffices to
lower bound the time or iteration complexity for one specific initialization with initial divergence
less than ∆0. Our general strategy will be to use Gaussian initializations with large initial variances,
such that Lemma 22 ensures the initial divergence is less than ∆0, while the time estimate from
Lemma 21 provides the lower bound. Throughout this proof, Z :=

∫
e−V denotes the normalizing

constant.

1. The case α = 0: Suppose that ∆0 satisfies

∆0 ≥

1 + 2 ln

Z((d+ ν)/e)
d+ν
2

(2π)d/2

 ∨ ν ln

2eπ(∥·∥
2q
q−1 )

q−1
q

d

 ∨ ν. (18)

Choose ρ0 = N (0, σ2Id) with σ2 = exp
(
∆0
ν

)
. By Lemma 22 we have

R∞(ρ0 ∥ π) ≤
∆0

2
+ ln


(

Z

(2π)d/2

)(
d+ ν

e

)d+ν
2

+
1

2σ2
≤ ∆0.
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Note that that due to Lemma 20, in order to have Rq(ρT ∥ π) ≤ 1, T needs to be sufficiently
large such that

E
[
∥XT ∥2

]
≤ e

q−1
q π(∥·∥

2q
q−1 )

q−1
q .

From Lemma 21 we obtain

T ≥
E
[
∥X0∥2

]
− E

[
∥XT ∥2

]
2ν

,

and

N ≥
E
[
∥X0∥2

]
− E

[
∥Xk∥2

]
2hν

.

Consequently, T needs to satisfy

T ≥
d exp

(
∆0
ν

)
− eπ(∥·∥

2q
q−1 )

q−1
q

2ν
≥
d exp

(
∆0
ν

)
4ν

,

and N needs to satisfy

N ≥
d exp

(
∆0
ν

)
4hν

.

2. The case 0 < α < 2: Suppose that ∆0 satisfies

∆0 ≥

b
α

2−α

α

(
1 ∨ (eZ2)1/d

2π

) α
2−α

 ∨

2
2

2−α ebπ(∥·∥
2q
q−1 )

q−1
q

α2/α−1d


α

2−α

∨ 1

α
. (19)

This time, we choose ρ0 = N (0, σ2Id) with σ2 = (α∆0)
2−α
α

b . Then, (19) ensures σ2 ≥ 1 and
by Lemma 22,

R∞(ρ0 ∥ π) ≤ ∆0 + ln

(
Z

(2πσ2)d/2

)
+

1

2σ2
≤ ∆0.

From Lemma 21

T ≥
E
[
∥X0∥2

]1−α/2
− E

[
∥XT ∥2

]1−α/2

b(2− α)
,

hence we can write

T ≥

(
α2/α−1

b

)1−α/2
d1−α/2∆

(2−α)2

2α
0 − (eπ(∥·∥

2q
q−1 )

q−1
q )1−α/2

b(2− α)

≥

(
α2/α−1

b

)1−α/2
d1−α/2∆

(2−α)2

2α
0

2(2− α)b
.
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For the discrete-time case, from Lemma 21 we obtain

E
[
∥xk+1∥2

]
≥ E

[
∥xk∥2

]
− 2hbE

[
∥xk∥2

]α/2
.

Let rk := E
[
∥xk∥2

]
. Suppose rk ≥ rk+1, rearranging the inequality above, we obtain

2hb ≥ r
1−α/2
k − rk+1r

−α/2
k ≥ r

1−α/2
k − r

1−α/2
k+1 .

On the other hand, when rk < rk+1,

2hb > 0 > r
1−α/2
k − r

1−α/2
k+1 .

Thus the bound holds in either case, and by iterating it we have

N ≥
E
[
∥X0∥2

]1−α/2
− E

[
∥XT ∥2

]1−α/2

hb(2− α)
≥

(
α2/α−1

ã

)1−α/2
d1−α/2∆

(2−α)2

2α
0

2(2− α)hb
,

where the second inequality follows analogously to the continuous-time case.

3. The case α = 2: Suppose that ∆0 satisfies

∆0 ≥
bZ2/de2a/d−1

4π
∨ b
(
eπ(∥·∥

2q
q−1 )

) (1+c)(q−1)
q

. (20)

for any absolute constant c > 0. Choose ρ0 = N (0, σ2Id) with σ2 = 2∆0
bd . Then, by Lemma

25 we have

KL(ρ0 ∥ π) ≤ ∆0 −
d

2
+ ln

(
Z

(2πσ2)d/2

)
≤ ∆0.

Moreover, from Lemma 21, we have

T ≥
ln
(
E
[
∥X0∥2

])
− ln

(
E
[
∥XT ∥2

])
2b

≥
c ln

(
∆0
b

)
2(1 + c)b

.

Similarly for LMC, when h < b−1, we have

N ≥
ln
(
E
[
∥x0∥2

])
− ln

(
E
[
∥xN∥2

])
2hb

≥
c ln

(
∆0
b

)
2(1 + c)b

,

which completes the proof of the theorem.

In order to prove Proposition 11, we need a sharper control on the decay of the second moment
of LMC that does not ignore terms of order O(h2). In the following lemma, we achieve this control
in the radially symmetric setting.
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Lemma 26 (A Sharper Evolution Inequality for LMC) Suppose E
[
∥x0∥2

]
< ∞, the potential

is radially symmetric with V (x) = f(∥x∥2) and the function g : R+ → R+ given by g(r) =
(1− 2hf ′(r))2r is convex, then for each k ≥ 0,

E ∥xk+1∥2 ≥ g(E
[
∥xk∥2

]
) + 2hd.

Furthermore, if g is non-decreasing then, E∥xk∥2 ≥ ∥yk∥2 for each k ≥ 0, where we define yk by

yk+1 = yk − η∇V (yk), ∥y0∥2 = E
[
∥x0∥2

]
.

Proof Using the independence of the Gaussian perturbations and the fact that ∇V (x) = 2f ′(∥x∥2)x,

E
[
∥xk+1∥2

]
= E ∥xk − h∇V (xk)∥2 + 2hd = Eg(∥xk∥2) + 2hd.

Using the convexity of g along with Jensen’s inequality, we conclude that

E
[
∥xk+1∥2

]
≥ g(E

[
∥xk∥2

]
) + 2hd.

If g is non-decreasing, it follows by comparison that E
[
∥xk∥2

]
≥ ∥yk∥2.

Finally, we can present the proof of Proposition 11.
Proof of Proposition 11 First, notice that by Lemma 20, infk Rq(µk ∥ π) < ε is equivalent to
infk∈N E

[
∥xk∥2

]
< σ2ε . Let zk be the process defined by the update

zk+1 = g(zk) + 2hd, z0 = E
[
∥x0∥2

]
so that, using Lemma 26, we have E

[
∥xk∥2

]
≥ zk. Thus, if it holds that infk∈N E

[
∥xk∥2

]
< σ2ε

then infk∈N zk < σ2ε must hold also. If this holds, there must be some k ∈ N such that zk+1 ≤ σ2ε
and zk ≥ σ2ε . Thus, by the fact that g is non-decreasing,

g(σ2ε) + 2hd ≤ g(zk) + 2hd = zk+1 ≤ σ2ε .

Rearranging this leads to the bound given in the statement.

Appendix C. Auxiliary Lemmas

In this section, we prove various moment and tail bounds for generalized Cauchy measures and
measures with sublinear potentials, which we use in other proofs of the paper.

Lemma 27 Consider the measure π̃α(x) ∝ exp(−λ ∥x∥α) for 0 < α ≤ d and λ > 0. Then, for
any p > 0

Eπ̃α [∥x∥p] = λ−p/α
Γ
(
d+p
α

)
Γ
(
d
α

) ≤ λ−p/α

(
d+ p

α

) p
α
. (21)

Moreover, for α ∈ (0, 1) and πα(x) ∝ exp(−(1 + λ2/α ∥x∥2)α/2),

Eπα [∥x∥p] ≤ λ−p/α
eΓ
(
d+p
α

)
Γ
(
d
α

) . (22)
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Proof First, consider the case of λ = 1. We begin by computing the normalizing factor of π̃α.
Using the polar coordinates, we have

Z :=

∫
exp(−∥x∥α)dx = dωd

∫ ∞

0
exp(−rα)rd−1dr

=
dωd

α

∫ ∞

0
exp(−u)ud/α−1du

=
dωd

α
Γ

(
d

α

)
. (23)

Via similar calculations, we obtain∫
exp(−∥x∥α) ∥x∥p dx =

dωd

α
Γ

(
d+ p

α

)
.

Applying Lemma 33 yields,

Eπ̃α [∥x∥p] =
Γ
(
d+p
α

)
Γ
(
d
α

) ≤
(
d+ p

α

) p
α
.

Finally, we observe that for πα(x) ∝ (1 + ∥x∥2)α/2,

Eπα [∥x∥p] =

∫
exp

(
−(1 + ∥x∥2)

α
2

)
∥x∥p dx∫

exp
(
−(1 + ∥x∥2)

α
2

)
dx

≤
∫
exp(−∥x∥α) ∥x∥p dx
e−1

∫
exp(−∥x∥α)dx

=
eΓ
(
d+p
α

)
Γ
(
d
α

) .

For the case of λ > 0, we use the change of variables formula to show that scaling by λ−1/α recovers
a random variable with the density given by the case with λ = 1.

Lemma 28 Consider the measure πν(x) ∝ (1 + ∥x∥2)−(d+ν)/2 for α > 0 with ν > p ≥ 0. Then,

Eπν [∥x∥
p] =

d

d+ p

Γ
(ν−p

2

)
Γ
(
ν
2

) Γ
(
d+2+p

2

)
Γ
(
d+2
2

) ≤
Γ
(ν−p

2

)
Γ
(
ν
2

) (
d+ 2 + p

2

)p/2

.

Proof Recall that the normalizing constant of this measure is given by

Zd,ν :=
Γ
(
ν
2

)
πd/2

Γ
(
ν+d
2

) =
Γ
(
ν
2

)
Γ
(
d+2
2

)
ωd

Γ
(
ν+d
2

) .

On the other hand, using the polar coordinates, one can observe

Zd,ν = dωd

∫
(1 + r2)−(ν+d)/2rd−1dr. (24)

We proceed to compute the following

Eπν [∥x∥
p] =

dωd

Zd,ν

∫
(1 + r2)−(d+ν)/2rd+p−1dr =

dωd

Zd,ν

Zd+p,ν−p

(d+ p)ωd+p
,

where the second equality follows from a change of variables in (24). The statement of the lemma
follows by an application of Lemma 33.
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Lemma 29 The measure πα ∝ exp

(
−
(
1 + ∥x∥2

)α/2)
with α ∈ (0, 1) satisfies

πα (∥x∥ ≥ R) ≤ e
1
2 2d/α exp

(
−1

2

(
1 +R2

)α/2)
. (25)

Proof Using the Markov inequality,

πα (∥x∥ ≥ R) = πα

{
exp

(
1

2

(
1 + ∥x∥2

)α/2)
≥ exp

(
1

2

(
1 +R2

)α/2)}
≤ exp

(
−1

2

(
1 +R2

)α/2)Eπα

[
exp

(
1

2

(
1 + ∥x∥2

)α/2)]
.

Using polar coordinates and change of coordinates,

Eπα

[
exp

(
1

2

(
1 + ∥x∥2

)α/2)]
=

∫
exp

(
−1

2

(
1 + ∥x∥2

)α/2)
dx

∫
exp

(
−
(
1 + ∥x∥2

)α/2)
dx

=

∫∞
0 rd−1 exp

(
−1

2

(
1 + r2

)α/2)
dr∫∞

0 rd−1 exp
(
− (1 + r2)α/2

)
dr

=
e−

1
2

∫∞
0 (u+ 1)2/α−1

[
(u+ 1)2/α − 1

](d−2)/2
exp (−u/2) du

e−1
∫∞
0 (u+ 1)2/α−1

[
(u+ 1)2/α − 1

](d−2)/2
exp (−u) du

≤ e
1
2 2d/α,

where we used the change of variables u = (1 + r2)α/2 − 1. This completes the proof.

Lemma 30 The measure πν(x) ∝ (1 + ∥x∥2)−(d+ν)/2 satsifies

πν(∥x∥ ≥ R) ≤ (ν + d)ν/2R−ν . (26)

Proof Using polar coordinates

πν(∥x∥ ≥ R) =
1

Z

∫
∥x∥≥R

(1+∥x∥2)−(d+ν)/2dx =
dωd

Z

∫ ∞

R
(1+r2)−(d+ν)/2rd−1dr ≤ dωdR

−ν

νZ
.

And Z = Γ(ν/2)πd/2

Γ((ν+d)/2) . Hence,

πν(∥x∥ ≥ R) ≤
dΓ
(
ν+d
2

)
νΓ
(
ν
2

)
Γ
(
d+2
2

)︸ ︷︷ ︸
=:Aν,d

R−ν .
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Suppose ν < 2. Then by Equation (3.1) of Laforgia and Natalini (2013), we have Γ((d+ν)/2)
Γ((d+2)/2) ≤

(d/2)ν/2−1. Moreover, when ν ≥ 2, using Lemma 33 we have Γ((d+ν)/2)
Γ((d+2)/2) ≤ ((d + ν)/2)ν/2−1.

Consequeuntly,

Aν,d =
dν/2(1/2)ν/2−1(1 ∨ (1 + ν/d)ν/2−1)

νΓ(ν/2)
≤ (d+ ν)ν/2

2ν/2Γ(ν/2 + 1)
≤ (d+ ν)ν/2,

where we used the fact that 2ν/2Γ(ν/2 + 1) ≥ Γ(1) = 1.

The following Lemma, adapted from Chewi et al. (2022a), shows the existence of isotropic
Gaussian initializations such that Rq(µ0 ∥ π), Rq(µ0 ∥ π̂) = Õ(d).

Lemma 31 Let π(x) ∝ exp(−V (x)) such that ∇V is s-Hölder continuous and ∇V (0) = 0.
Define µ̂ as in Proposition 14. Let µ0 = N (0, (2L+ 1)−1Id). Then,

R∞(µ0 ∥ π) ≤ 2 + L+ V (0)−min
x
V (x) +

d

2
ln(12m2L), (27)

R∞(µ0 ∥ π̂) ≤ 3 + L+ V (0)−min
x
V (x) +

d

2
ln(12(m+ 6144T )2L). (28)

Proof The Lemma is directly based on Lemmas 30 and 31 of Chewi et al. (2022a).

The following lemma translates a bound on R2(µ0 ∥ π) to a bound on R2(µ0 ∥ π̂) when µ0 is
some isotropic Gaussian measure. As we only calculate the former quantity for our model examples,
we use this lemma to establish similar bounds for the latter.

Lemma 32 Suppose π ∝ exp(−V (x)) and π̂ ∝ exp
(
−V̂ (x)

)
with

V̂ (x) = V (x) +
γ

2
max{∥x∥ −R, 0}2

for some γ,R > 0. Then, for any σ2 ≤ 1
γ we have

R2(Nσ2Id ∥ π̂) ≤ d ln 2 +R2(N2σ2Id ∥ π).

Proof Let Z :=
∫
exp(−V (x))dx and Ẑ :=

∫
exp(−V̂ (x))dx. Notice that V ≤ V̂ , thus Ẑ ≤ Z.

Therefore,

R2(Nσ2Id ∥ π̂) = ln

(
Ẑ

(2πσ2)d

∫
exp

(
−∥x∥2

σ2
+ V (x) +

γ

2
max{∥x∥ −R, 0}2

)
dx

)

≤ ln

(
Z

(2πσ2)d

∫
exp

(
−∥x∥2

2σ2
+ V (x)

)
dx

)
= d ln 2 +R2(N2σ2Id ∥ π).
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Lemma 33 ((Laforgia and Natalini, 2013, Theorem 3.1)) Suppose x ≥ y ≥ 1, then

yx−ye
1−x

y ≤ Γ(x)

Γ(y)
≤ xx−y. (29)

Lemma 34 Suppose Z ≥ 0 is a non-negative random variable. Then, for any p ≥ 2,

E [Zp] ≥ E [|Z − E [Z]|p] .

Proof Normalize Z such that E [Z] = 1. Using the inequality Zp − |Z − 1|p ≥ Z − 1 for every
Z ≥ 0 and p ≥ 2 and taking expectations proves the lemma.
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