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Abstract
Algorithm- and data-dependent generalization bounds are required to explain the generalization
behavior of modern machine learning algorithms. In this context, there exists information theoretic
generalization bounds that involve (various forms of) mutual information, as well as bounds based
on hypothesis set stability. We propose a conceptually related, but technically distinct complex-
ity measure to control generalization error, which is the empirical Rademacher complexity of an
algorithm- and data-dependent hypothesis class. Combining standard properties of Rademacher
complexity with the convenient structure of this class, we are able to (i) obtain novel bounds based
on the finite fractal dimension, which (a) extend previous fractal dimension-type bounds from con-
tinuous to finite hypothesis classes, and (b) avoid a mutual information term that was required in
prior work; (ii) we greatly simplify the proof of a recent dimension-independent generalization
bound for stochastic gradient descent; and (iii) we easily recover results for VC classes and com-
pression schemes, similar to approaches based on conditional mutual information.
Keywords: Generalization error, Rademacher complexity, Fractal geometry.

1. Introduction

The generalization error of a learning algorithm is the gap between its average loss (empirical risk)
on a training sample and its expected loss (risk) on a fresh data point from the same probability
distribution. If the algorithm selects its parameter estimates θ̂ from a set Θ, then the classical ap-
proach to control generalization error is to derive deviation bounds that hold uniformly over all
θ ∈ Θ (Shalev-Shwartz and Ben-David, 2014). However, Zhang et al. (2021) empirically illus-
trate that in modern machine learning settings such as neural networks, such an approach yields
overly pessimistic, and sometimes vacuous error bounds of limited practical value. Hence it has
been made clear that generalization bounds that would reflect the practical observations should take
into account the effects of the data sample Sn and also the choice of the learning algorithm (e.g.,
stochastic gradient descent).

Russo and Zou (2016); Xu and Raginsky (2017) initiated a fertile line of research by developing
algorithm-dependent generalization bounds with information-theoretic tools. Let R(θ̂) and R̂(θ̂)
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denote the risk and empirical risk of an algorithm. They show that the generalization error is at
most

E
[
R(θ̂)− R̂(θ̂, Sn)

]
.

√
I(θ̂;Sn)

n
, (1)

where I(θ;Sn) denotes the mutual information (MI) between the data sample Sn and the output
of the algorithm θ̂. This shows that a weak statistical dependence between the data sample and the
algorithm output implies better generalization. Recently, by using tools from rate-distortion theory,
the bound (1) was linked to compression, implying that if the algorithm output is compressible in
some sense, it implies good generalization (Sefidgaran et al., 2022), in line with the results of (Arora
et al., 2018; Suzuki et al., 2020a,b; Barsbey et al., 2021).

Looking at the problem from a different angle, Simsekli et al. (2020) take into account the
topological structure of the outputs of the learning algorithm by using tools from fractal geometry
(Falconer, 2004). More precisely, let ΘSn ⊂ Θ denote the full trajectory of a continuous time
version of stochastic gradient descent on the sample Sn. Then they prove generalization bounds
based on a fractal dimension of ΘSn , which were later extended and improved by Birdal et al.
(2021); Camuto et al. (2021); Hodgkinson et al. (2022); Dupuis et al. (2023). Their bounds are of
the following general form1: with probability at least 1− δ,

sup
θ∈ΘSn

∣∣∣R(θ)− R̂(θ, Sn)
∣∣∣ .√dim ΘSn + I∞(ΘSn ;Sn) + log(1/δ)

n
, (2)

where I∞ denotes the total MI, which is larger than the regular MI, and dim denotes some notion
of fractal dimension (e.g., the Minkowski, Hausdorff, or persistent homology dimension). In ad-
dition to the statistical dependence between the data sample and the random hypothesis set ΘSn

as measured by I∞, these bounds imply that the worst-case error can be controlled by the fractal
dimension of ΘSn . This fractal dimension is linked to the statistical or topological properties of
the learning algorithm; in particular, if the algorithm is a stochastic optimizer such as stochastic
gradient descent.

While these bounds help to shed light on modern learning problems from different viewpoints,
the MI terms that they contain can be troublesome for several reasons. First, MI can be infinite,
which renders the bounds vacuous (Bassily et al., 2017, Section 5). Secondly, while the fractal
dimension in (2) can be linked to concrete and computable properties of the learning algorithm, the
MI term typically cannot be given a topological interpretation, which means the bounds as a whole
also do not have a fully topological interpretation.

In order to address the first shortcoming, Steinke and Zakynthinou (2020) introduced the condi-
tional mutual information (CMI) which in contrast to MI is always finite. They show that the CMI
implies generalization under much weaker assumptions than MI: for instance, it can be controlled if
the learning algorithm is a compression scheme (Littlestone and Warmuth, 2003) or under distribu-
tional stability assumptions such as differential privacy (Bassily et al., 2016; Dwork et al., 2015). As
an alternative, Sefidgaran et al. (2022) introduced the notion of lossy compressible learners, which
also circumvents the cases where MI can be infinite. Despite these improvements, it remains unclear

1. Hodgkinson et al. (2022) also proved an in-expectation version of (2) which involved the weaker I(ΘSn ;Sn) instead
of I∞(ΘSn ;Sn).
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how to relate MI-based bounds to topological concepts.2 Furthermore, Haghifam et al. (2022) re-
cently showed that it is impossible to obtain minimax rates for gradient descent by using the current
information-theoretic frameworks, and argued that new frameworks need to be developed.

Contributions In this study, we propose an alternative mathematical framework for analyzing
algorithm- and data-dependent hypotheses. We make the following contributions:

• We prove a generalization bound with respect to an algorithm-dependent Rademacher complexity
(ARC), Lemma 2 in Section 3. Interestingly, our construction is conceptually related to the con-
ditioning in CMI. It is also technically similar to a special case of the Rademacher complexity for
data-dependent hypothesis sets introduced by Foster et al. (2019). This special case arises when
their hypothesis sets are instantiated as singletons that contain the output of a learning algorithm
on the sample. For this case, our result is a refinement of their Theorem 1.3 Both of these relations
are discussed in more detail below Definition 1 in Section 3.

• Our main contribution is to demonstrate the flexibility of the ARC. In Section 4, we derive several
new generalization results and re-obtain known results. More precisely,

– In Section 4.1 we link ARC to fractal dimensions using the tools developed by Alonso
(2015). This allows us to extend previous fractal dimension-type bounds from continuous
to finite hypothesis classes without introducing any mutual information term as in (2).

– For stochastic gradient descent on strongly convex and smooth losses, we use ARC to obtain
a greatly simplified proof of a dimension-independent generalization bound by Park et al.
(2022) (Section 4.2).

– For learning algorithms that are compression schemes or produce output in a VC class, we
show that we can obtain the same generalization properties as those obtained for CMI by
Steinke and Zakynthinou (2020) (Sections 4.3 and 4.4).4

We believe that the proposed framework provides a promising alternative to information-theoretic
approaches and opens up future directions, which we discuss in Section 5. Some of the proofs are
delegated to the appendix.

2. Preliminaries

Setting Given a sample Sn = (Z1, . . . , Zn) ∈ Zn of independent, identically distributed (i.i.d.)
observations with common distribution D, and a loss function ` : Θ×Z → R, let

R(θ) = E
Z∼D

[`(θ, Z)] and R̂(θ, Sn) =
1

n

n∑
i=1

`(θ, Zi)

denote the risk and the empirical risk, respectively. We assume throughout that Θ is a subset of
a complete separable metric space (X , d), and that ` is measurable. A common instantiation in

2. We note that Sefidgaran et al. (2022, Corollary 7) link MI to fractal geometry through rate-distortion theory (Kawabata
and Dembo, 1994). But their result involves the marginal distribution of θ̂, which has limited practical interest.

3. We note that our setting is not the main focus of Foster et al. (2019), who mostly consider stability properties for
data-dependent hypothesis classes.

4. Steinke and Zakynthinou (2020) can also obtain guarantees for differentially private algorithms. While we have not
investigated whether such results can also be obtained via ARC, we suspect that information-theoretic tools might be
more natural to analyze differentially private algorithms.
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supervised learning is that Z = (X,Y ) ∈ X × Y and θ indexes a class of hypotheses H = {hθ :
X → Y | θ ∈ Θ}. Then the loss is typically defined as a composite loss function via `(θ, z) :=
˜̀(hθ(x), y) for some choice of ˜̀ : Y×Y . A learning algorithmA is a measurable function that maps
a sample Sn to an estimate θ̂ = A(Sn) ∈ Θ. We assume thatA is a deterministic algorithm for now;
at the start of Section 3.1 we discuss how our results can be extended to randomized algorithms.

Rademacher complexity A standard approach to control the generalization error relies on the
(empirical) Rademacher complexity of the whole class Θ of possible outputs of the algorithm:

Rad(Θ, Sn) =
1

n
E
σ

[
max
θ∈Θ

n∑
i=1

σi`(θ, Zi)

]
, (3)

where the expectation is over Rademacher random variables σ = (σ1, . . . , σn) ∈ {−1,+1}n,
which are i.i.d. with Pr(σi = −1) = Pr(σi = +1) = 1/2. It is well known that the Rademacher
complexity can be upper bounded in terms of a covering number.

Covering numbers For any C ⊂ X , we will denote its ε-covering number by Cov(C, d, ε) and
the corresponding ε-cover by SCover(C, d, ε). The box-covering number refers to the special case
that X = Rk and d is the distance induced by the `∞-norm.

3. Generalization via Algorithm-dependent Rademacher Complexity

In this section, we refine the standard Rademacher bounds on the generalization error by measuring
the Rademacher complexity not on Θ but on a smaller set Θ̂n that depends on the algorithm and the
data, which is defined as follows: consider two independent samples Sn− = (Z−1

1 , . . . , Z−1
n ) and

Sn+ = (Z+1
1 , . . . , Z+1

n ), and, for any σ ∈ {−1,+1}n, let Snσ = (Zσ11 , . . . , Zσnn ) denote a combined
sample where σi determines whether to take Zσii from sample Sn− or from sample Sn+. Then

Θ̂n :=
{
A(Snσ ) : σ ∈ {−1,+1}n

}
⊂ Θ,

which depends on Sn− and Sn+ and contains all possible outputs of the algorithm A that can be
obtained by combining them with different choices of σ.

Definition 1 We define the Algorithm-dependent Rademacher Complexity (ARC) as the Rademacher
complexity Rad(Θ̂n, Sn+) of the algorithm- and data-dependent set Θ̂n.

In our analysis, Sn− acts as a ghost sample, which is independent of Sn+. This allows us to shrink
the effective size of the function class from all possible functions indexed by the parameters Θ
to a finite class of functions indexed by Θ̂n that can be realized by the algorithm by exchanging
data points between Sn− and Sn+ according to Rademacher variables σ. The ARC can therefore
be seen as measuring the complexity of the algorithm when only σ is unknown, conditional on
the supersample (Sn−, S

n
+). This is conceptually similar to the conditional mutual information of

Steinke and Zakynthinou (2020), except that we use Rademacher complexity where they use mutual
information and therefore we get into a technically fully distinct analysis. There is also a strong
connection to the Rademacher complexity for data-dependent hypothesis sets introduced by Foster
et al. (2019). When their Theorem 1 is specialized to an algorithm-dependent result for our setting,
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it gives a bound in terms of the larger class Θ̄n = {A(S) : S ⊂ (Sn−, S
n
+) such that |S| = n}.5

Since Θ̂n ⊂ Θ̄n, our result is strictly better, but it is not evident that the improvement is very large.
For instance, our analysis of SGD in Section 4.2 will still go through even with the larger set Θ̄n at
the cost of an additional log n factor in the bound. See Remark 9.

The following key technical result proved in Appendix A, shows that the ARC can control
the generalization error in the same way as the classical Rademacher complexity does for fixed
hypothesis classes. To state it, we let ess supX = inf{a : Pr(X > a) = 0} denote the essential
supremum of any random variable X .

Lemma 2 (Key technical lemma) The expected generalization error of any (deterministic) algo-
rithm A : Zn → Θ with output θ̂ = A(Sn) is bounded by

E
Sn

[
R(θ̂)− R̂(θ̂, Sn)

]
≤ 2 E

Sn−,S
n
+

[
Rad(Θ̂n, Sn+)

]
. (4)

Moreover, if there exist a b and a function h : Θ → R such that the loss `(θ, z) takes values in the
bounded interval [h(θ), h(θ) + b] for all θ ∈ Θ and z ∈ Z , then, for any δ ∈ (0, 1],

R(θ̂)− R̂(θ̂, Sn) ≤ 4 ess sup
S−,S+

{Rad(Θ̂n, Sn+)}+ b

√
8 log(2/δ)

n
(5)

with probability at least 1− δ.

The proofs of both results mimic standard Rademacher complexity bounds on the generalization
error, except that we do not start with the standard upper boundR(θ̂)−R̂(θ̂, Sn) ≤ supθ∈Θ{R(θ)−
R̂(θ, Sn)}, but we instead replace θ̂ by the maximum over θ ∈ Θ̂n after symmetrization by the ghost
sample Sn−. This allows Θ̂n to depend on the algorithm A as well as Sn and Sn−. For notational
symmetry, we then denote the original sample Sn by Sn+ in the right-hand side of both results.
Although the main idea behind both proofs is the same, it is not the case that (5) follows directly
from (4), because θ̂ may be highly unstable, so we cannot apply McDiarmid’s inequality to relate
R(θ̂) − R̂(θ̂, Sn) to its expectation. We therefore prove both results separately: the in-expectation
proof is a variation on the standard in-expectation argument, which can be found in e.g. Lemma A.5
of Bartlett et al. (2005). The in-probability derivation is patterned after the proof of Theorem 4.3 in
the textbook by Anthony and Bartlett (2002).

3.1. Consequences

Randomized algorithms Although Lemma 2 is stated only for deterministic algorithms, it can
also be applied to algorithms that randomize. This is possible by viewing an algorithm as a function
of two argumentsA(Sn, ξ), where Sn is the sample and ξ is an independent random variable (e.g. a
number of random bits) that provides the randomness. By applying Lemma 2 conditional on ξ, we
obtain a generalization bound that holds for any value of ξ and hence also almost surely when ξ is
drawn at random. This is the approach we take to analyze stochastic gradient descent in Section 4.2.

5. In the notation of Foster et al. (2019), our setting corresponds to the case where HS = {A(S)}, m = n and
U = (S, T ). Then their H̄U,m = HS,T , which, in our notation equals the class of hypotheses indexed by Θ̄n.
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Exploiting standard properties of Rademacher complexity We may use all the well-known
properties of standard Rademacher complexity to upper bound the ARC. In particular, throughout
the paper we will repeatedly rely on the following upper bound in terms of the covering number of
Θ̂n, which holds for bounded, Lipschitz continuous losses:

Proposition 3 Suppose that `(θ, z) is L-Lipschitz continuous in θ for any z and takes values in
[a, a+ b]. Then

Rad(Θ̂n, Sn) ≤ Lε+ b

√
log Cov(Θ̂n, d, ε)

n
for all ε > 0. (6)

Proof For any ε > 0, Lipschitzness of the loss implies that

Rad(Θ̂n, Sn) ≤ εL+ Rad(SCover(Θ̂n, d, ε), Sn) ≤ εL+ b

√
2 ln Cov(Θ̂n, d, ε)

n
,

where the second inequality follows from Massart’s lemma (Shalev-Shwartz and Ben-David, 2014).

4. Applications: controlling algorithm-dependent Rademacher complexity

In this section, we derive new results and recover known results by controlling the ARC defined in
the previous section. First, in Section 4.1, we provide a new bound with respect to fractal dimen-
sions. This result allows for control of the generalization error based on the topological properties of
Θ̂n or its limiting set Θ̂ as n increases. Second, in Section 4.2, we consider the projected stochastic
gradient descent algorithm and recover the results of Park et al. (2022) in a simple way by bound-
ing the ARC. Third, in Sections 4.3 and 4.4, similar to Steinke and Zakynthinou (2020), we show
that generalization guarantees under a compressibility condition and for VC-classes can be easily
obtained via ARC as well.

4.1. Finite fractal dimensions

In this section, we provide a bound on the generalization error with respect to a finite Minkowski
dimension, in the vein of recent results connecting error to fractal geometry (cf. (Simsekli et al.,
2020; Birdal et al., 2021; Hodgkinson et al., 2022; Dupuis et al., 2023)). The finite Minkowski
dimension was introduced in (Alonso, 2015) as an extension of the classical Minkowski dimension to
finite sets. A comprehensive summary of the formal definitions for the finite Minkowski dimension
and the relevant existing results is provided in Appendix B. For brevity, here we consider a simplified
definition of the finite Minkowski dimension. Under some small additional assumptions which
exclude notorious edge cases, these simplified definitions coincide with the original definitions in
(Alonso, 2015).

Definition 4 (Diameters) Let C be a finite set in a metric space (X , d) with |C| ≥ 2, and let νC :
C → R map points in C to the distance to their nearest neighbor, that is, νC(a) = min{d(a, b) :
b ∈ C \ {a}} for a ∈ C. The covering diameter∇(C) and the diameter ∆(C) of C are then

∇(C) := max
a∈C

νC(a) , and ∆(C) := max{d(a, b) : a, b ∈ C} .

A set C is called non-focal if ∇(C) < ∆(C), and focal otherwise.
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For example, the set of vertices of a simplex comprises a focal set, while a set with no equally
distant points is non-focal. Our results will be for non-focal sets only, which rules out pathological
edge cases. Hence, throughout this section, we assume that Θ̂n is non-focal. The definition of the
finite Minkowski dimension follows a similar box-counting construction as the standard Minkowski
dimension. The main twist which yields nontrivial values for finite sets is to consider covers that
contain at least two points.

Definition 5 (finite Minkowski dimension) A family of sets U = {Ui} is a 2-cover of a finite set
C if each Ui ⊆ C, |Ui| ≥ 2, and C =

⋃
U∈U U . For any non-focal set C and parameter a ≥ ∇(C),

the covering cardinality is

Ta(C) = min{|U| : U is a 2-cover and U : ∆(U) ≤ a for all U ∈ U}.

For T∇(C)(C) we write T (C). If C is finite and non-focal with |C| > 2, then the finite Minkowski
dimension of C is

dimfM (C) =
log T (C)

log ∆(C)
∇(C)

.

Although it may not be obvious from the definition, Alonso (2015) shows that the finite Minkowski
dimension is a natural finite analog of the classical Minkowski dimension (cf. Equation (8) below
and (Falconer, 2004)), as the two definitions are consistent under appropriate limits. Most impor-
tantly, like the classical Minkowski dimension, if f is Hölder continuous such that c1‖x − y‖β ≤
|f(x)−f(y)| ≤ c2‖x−y‖β , then the finite Minkowski dimension of f(C) satisfies dimfM (f(C)) =
βdimfM (C). In this sense, the finite Minkowski dimension is well-suited to measure local cluster-
ing as in (Hodgkinson et al., 2022). Our primary fractal dimension generalization bound is shown
in Theorem 6, which arises by taking ε = ∇(Θ̂n) in (6).

Theorem 6 If ` is L-Lipschitz in θ and bounded by b, n > 2, and Θ̂n ⊂ Rk is non-focal, then for
any set F ⊇ Θ̂n,

Rad(Θ̂n, Sn+) ≤ Dn(F ) := L∇(F ) + b

√
dimfM (F )

n
log

∆(F )

∇(F )
.

There are a few variants and consequences of Theorem 6 worth mentioning.

• Trivial upper bound: for δ > 0 sufficiently small, consider the set Θ̂n
δ = Θ̂n∪ (Θ̂n+δ1), which

satisfies∇(Θ̂n
δ ) = δ. By (Alonso, 2015, Proposition 5.3), for any finite set F ,

dimfM (F ) ≤ (log(|F |)− 1)/ log
∆(F )

∇(F )

and so Dn(Θ̂n
δ ) ≤ Lδ + b

√
log(2|Θ̂n|)/n. Taking δ → 0+, this implies that

Rad(Θ̂n, Sn+) ≤ b
√

log(2|Θ̂n|)/n.
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• No outliers: if ε∗ minimizing (6) satisfies∇(Θ̂n) ≤ ε∗, then

Rad(Θ̂n, Sn+) ≤ 2b

√√√√dimfM

(
Θ̂n
)

n
log

∆(Θ̂n)

∇(Θ̂n)
. (7)

• Steiner points: in Appendix C, we show that it is possible to construct a set of points P with
|P | ≤ |Θ̂n| (which we refer to as Steiner points, following a similar concept in graph theory)
such that ∇(Θ̂n ∪ P ) ≤ ε∗ and so the “no outliers” case (7) follows for Θ̂n ∪ P . This simplifies
the bound at the cost of extending the set Θ̂n by a finite number of additional points.

A very interesting simplification compared to Theorem 6 arises in the limit as n → ∞. Let
Θ̂ =

⋃∞
n=1 Θ̂n be the collection of all output sets of the algorithm obtained for different n. Since Θ̂

is infinite, we may now consider its upper Minkowski dimension, defined by

dimM(Θ̂) = lim sup
δ→0+

log Cov(Θ̂, d, δ)

log(1/δ)
. (8)

Theorem 7 Suppose ` is L-Lipschitz continuous in θ and takes values in an interval of length b.
Then

lim sup
n→∞

Rad(Θ̂n, Sn+)√
log(n)/n

≤ b

√
dimM(Θ̂)

2
.

The proof is a straightforward consequence of (6) and the definition of the upper Minkowski dimen-
sion; see Appendix C. It would be possible to adapt the proof to go through with Θ̂ replaced by Θ̂′ =⋃∞
n=n′ Θ̂

n for some finite integer n′, which at first sight looks like it gives a stronger conclusion.
On closer inspection, however, the two results turn out to be equivalent, since Θ̂ \ Θ̂′ =

⋃n′−1
n=1 Θ̂n

is a finite set, which implies that dimM(Θ̂′) = dimM(Θ̂).
Using Fatou’s lemma, Lemma 2 and Theorem 7 together imply that the expected generalization

error of any (deterministic) algorithm A : Zn → Θ is O(
√

log(n)/n) whenever E[dimM(Θ̂)] is
finite, and satisfies

lim sup
n→∞

ESn
[
R(θ̂)− R̂(θ̂, Sn)

]
√

log(n)/n
≤ b
√

2E[dimM(Θ̂)]. (9)

Hodgkinson et al. (2022) and Dupuis et al. (2023) both also obtain O(n−1/2) bounds on the gen-
eralization error involving Minkowski dimensions of algorithm-dependent sets, but they assume
Ahlfors regularity and/or incorporate a potentially vacuous mutual information term, while ours
requires neither.

4.2. Dimension-independent generalization for SGD

Stochastic gradient descent (SGD) is a randomized algorithm with iterative updates of the form
θ̂t+1 = Φit(θ̂t), where

Φi(θ) = ΠΘ(θ − η∇`(θ, Zi)),

8
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ΠΘ(θ) denotes the projection of θ onto Θ, and the algorithm depends on the choice of an initial-
ization point θ1 ∈ Θ, a step size η > 0, and indices it that are chosen uniformly at random from
{1, . . . , n}. In the sequel, assume that Θ ⊂ Rk is compact and convex, and let the final output of
the algorithm after T updates be θ̂ = θ̂T+1. For the loss `(θ, z), we assume that it is differentiable
in θ, and satisfies the following conditions for all z ∈ Z:

• α-Strong convexity: for any θ, θ′ ∈ Θ, (∇θ`(θ, z)−∇θ′`(θ′, z)) · (θ − θ′) ≥ α‖θ − θ′‖2,

• β-Smoothness: for any θ, θ′ ∈ Θ, ‖∇θ`(θ, z)−∇θ′`(θ′, z)‖ ≤ β‖θ − θ′‖.

We further assume:

• L-Weak Lipschitz continuity: For L > 0, there exists h : Θ→ R such that, for any θ, θ′ ∈ Θ
and any z ∈ Z , |`(θ, z)− h(θ)− (`(θ′, z)− h(θ′))| ≤ L‖θ − θ′‖.

Under these assumptions, Park et al. (2022) obtain generalization bounds for SGD that do not
depend explicitly on the ambient dimension k. The key step in their analysis is that Φi is a γ-
contractive operator for γ =

√
1− 2αη + αβη2; i.e., ‖Φi(θ) − Φi(θ

′)‖ ≤ γ‖θ − θ′‖ for any
parameters θ, θ′ ∈ Θ. This causes SGD to forget about previous iterates at a rate that depends
on γ. Using the same idea, we can recover their first main result, presented as (Park et al., 2022,
Theorem 2.1), with a much simpler proof based on ARC.

Theorem 8 If the loss ` takes values in an interval [a, a + b], is α-strongly convex, β-smooth and
L-weakly Lipschitz continuous, and if Θ is compact and convex with diameter at most ∆(Θ) ≤ R,
then for any initialization θ1 ∈ Θ, any η ∈ (0, 2/β), any indices i1, . . . , iT , and any δ ∈ (0, 1], the
generalization error for stochastic gradient descent is at most

R(θ̂)− R̂(θ̂, Sn) ≤ 4b

√√√√max
{⌈

ln(2Rn)
ln(1/γ)

⌉
ln 2, 0

}
n

+ b

√
8 ln(2/δ)

n
+

2L

n
(10)

with probability at least 1− δ, where γ =
√

1− 2αη + αβη2.

This recovers Theorem 2.1 of Park et al. (2022) while shaving off a log n factor. The argument
can be extended to losses that are only piecewise strongly convex and smooth to obtain an analog of
their second main result, Park et al. (2022, Theorem 2.2), but we omit the details. We further remark
that Theorem 8 does not require that T should be large enough for θ̂ to be a good approximation of
the empirical risk minimizer (ERM) θ̄ = argminθ∈Θ R̂(θ, Sn). However, if this is the case, then
strong convexity and Lipschitzness of the loss would imply a better bound on the generalization
error, because the ERM is 2L2

αn -uniformly stable and consequently satisfies R(θ̄)− R̂(θ̄, Sn) ≤ 4L2

δαn
(Shalev-Shwartz et al., 2010, Theorem 5).
Proof Since the losses are α-strongly convex and β-smooth, and η ∈ (0, β/2), the operator Φi

is γ-contractive (Park et al., 2022, Lemma A.4). This implies that for any parameters θ, θ′ ∈ Θ,
applying the last m ≤ T iterations of SGD results in points that are close together. To formalize
this, let Φm = ΦiT ◦ · · · ◦ ΦiT−m+1 . Then

‖Φm(θ)− Φm(θ′)‖ ≤ γm‖θ − θ′‖ ≤ γmR.

Given ε > 0 yet to be determined, take m = max
{

0,

⌈
ln R

ε
ln(1/γ)

⌉}
so that this bound is less than ε.

There are then two cases for m:

9
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• m ≤ T : For any σ, σ′ ∈ {−1,+1}n, let (θ̂t)t=1,...,T+1 and (θ̂′t)t=1,...,T+1 denote the iterates of
SGD on the corresponding samples Snσ and Snσ′ . If σit = σ′it for t = T −m + 1, . . . , T , i.e. the
last m iterations of SGD are the same, then we have ‖θ̂T+1 − θ̂′T+1‖ ≤ ε by the argument above.
It follows that the covering number for Θ̂n at radius ε is at most

Cov(Θ̂n, d, ε) ≤ |{(σit)t=T−m+1,...,T : σ ∈ {−1,+1}n}| = 2m.

• m > T : Then the argument above does not apply, but, since the output of SGD only depends on
the T data points that it actually visits,

Cov(Θ̂n, d, ε) ≤ |Θ̂n| ≤ |{(σit)t=1,...,T : σ ∈ {−1,+1}n}| = 2T < 2m.

Both cases, therefore, lead to the same upper bound on the covering number. We now note that the
generalization error R(θ) − R̂(θ, Sn) does not change if we replace the loss `(θ, z) by ¯̀(θ, z) :=
`(θ, z) − h(θ), and therefore we may assume without loss of generality that the loss is Lipschitz
continuous instead of only weakly Lipschitz continuous (replacing ` by ¯̀ if necessary). It then
follows from (6) that

Rad(Θ̂n, Sn+) ≤ Lε+ b

√
m ln 2

n
= Lε+ b

√√√√√max
{⌈

ln R
ε

ln(1/γ)

⌉
ln 2, 0

}
n

.

The proof is completed by plugging in ε = 1/(2n), and combining this with Lemma 2.

Remark 9 The previous proof can be adapted to work with the larger class Θ̄n instead of Θ̂n, as
discussed in Section 3. This leads to a slightly worse bound on Cov(Θ̂n, d, ε) of

(
2n
m

)
≤ ( e2nm )m

instead of our current 2m, and as a result we would get m ln( e2nm ) in place of the current m ln 2,
which is only an O(log n) factor worse.

4.3. Generalization for compression schemes

Using conditional mutual information, Steinke and Zakynthinou (2020) show that the generaliza-
tion error for the output of a k-compression scheme can be upper bounded by a quantity of order
O(
√
k log n/n). We show this result is easily recovered using the ARC. An algorithm A is a k-

compression scheme if A(Sn) = A2(A1(Sn)), where A1 : Zn → Zk maps any sample Sn of size
n to a subsample Sk ⊂ Sn of size k ≤ n, and A2 : Zk → Θ deterministically determines the final
output based only on this subsample.

Theorem 10 Suppose A is a k-compression scheme and losses take values in [0, 1]. Then, for any
Sn− and Sn+,

Rad(Θ̂n, Sn+) ≤

√
k log 2en

k

2n
= O

(√k log n

n

)
.

10
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Proof Note that the total number of subsamples of length k from
⋃
σ∈{−1,+1}n S

n
σ is

(
2n
k

)
, the

number of subsamples of length k from Sn− ∪ Sn+. Consequently, there are at most
(

2n
k

)
possible

parameters in Θ̂n:

|Θ̂n| = |{A(Snσ ) : σ ∈ {−1,+1}n}}| ≤ |{A1(Snσ ) : σ ∈ {−1,+1}n}| ≤
(

2n

k

)
.

By Massart’s lemma (Shalev-Shwartz and Ben-David, 2014), Rad(Θ̂n, S+) ≤
√

log |Θ̂n|
2n ≤

√
log (2nk )

2n ≤√
k

2n log 2en
k , as required.

4.4. Generalization for VC classes

For binary classification, Steinke and Zakynthinou (2020) further show that, if Θ indexes a class of
finite VC dimension V , then there exists a version of the empirical risk minimizer (ERM) over that
class for which the conditional mutual information is bounded by O(V log n), leading to a bound
on the generalization error of O(

√
V log n/n). An analogous result, which works for any version

of the ERM, can trivially be obtained from the ARC, because

Rad(Θ̂n, Sn+) ≤ Rad(Θ, Sn+) = O

(√
V log n

n

)
,

where the first inequality follows from Θ̂n ⊂ Θ and the second is a standard result for Rademacher
complexity, obtained by bounding the Rademacher complexity using the growth function, which is
then controlled using Sauer’s lemma (Shalev-Shwartz and Ben-David, 2014).

5. Conclusion and Future Work

In this work, we considered algorithm-dependent Rademacher complexity as an approach to obtain
algorithm-dependent generalization bounds. Circumventing the information-theoretic route, the
proposed complexity notion on the one hand allowed us to derive and unify several known results
with little effort, such as the generalization bound for SGD; on the other hand it enabled us to link the
generalization error to topological properties of the learning algorithm using the finite Minkowski
dimension (Alonso, 2015).

We believe that our work opens up several interesting future research directions. Given the
conceptual similarities in conditioning on a supersample between ARC and CMI, it is natural to ask
how the two complexity measures compare in general. In which cases is one preferable to the other?
Another important connection would be the relation with algorithmic stability, which is known to
play a fundamental role in generalization with a uniform rate of convergence over all distributions
(Shalev-Shwartz et al., 2010).

The concept of finite fractal dimensions, introduced by Alonso (2015), turned out to be a fruitful
tool to provide bounds with respect to interpretable topological properties without a mutual informa-
tion term. We believe this is a promising direction, specifically when measuring the generalization
bound with respect to a finite hypothesis class. It would be interesting to understand whether the
definitions of a finite Minkowski dimension can be further adapted for the specific needs in gen-
eralization bounds. In particular, it would be interesting to understand if it is possible to relax the
definition of a 2-cover further while preserving the limiting behavior.
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Appendix A. Proofs from Section 3

Proof [Lemma 2] In order to lighten notation, within this proof we do not write superscripts n, so
that Sn− = S−, Θ̂n = Θ̂, etc. We further identify S with S+ and we abbreviate R̂ξ(θ) ≡ R̂(θ, Sξ)
for any ξ.

A common part to both results in the theorem is the following:

E
σ

[
max
θ∈Θ̂

{
R̂−σ(θ)− R̂σ(θ)

}]
=

1

n
E
σ

[
max
θ∈Θ̂

n∑
i=1

σi
(
`(Z−1

i , θ)− `(Z+1
i , θ)

)]

≤ 1

n
E
σ

[
max
θ∈Θ̂

n∑
i=1

σi`(Z
−1
i , θ) + max

θ∈Θ̂

n∑
i=1

−σi`(Z+1
i , θ)

]
= Rad(Θ̂, S−) + Rad(Θ̂, S+). (11)

We now start by proving the in-expectation result:

E
S+

[
R(θ̂(S+))− R̂+(θ̂(S+))

]
= E

S−,S+

[
R̂−(θ̂(S+))− R̂+(θ̂(S+))

]
= E

S−,S+,σ

[
R̂−σ(θ̂(Sσ))− R̂σ(θ̂(Sσ))

]
≤ E

S−,S+,σ

[
max
θ∈Θ̂

{
R̂−σ(θ)− R̂σ(θ)

}]
≤ E

S−,S+

[
Rad(Θ̂, S−) + Rad(Θ̂, S+)

]
= 2 E

S−,S+

[
Rad(Θ̂, S+)

]
,

where the second inequality follows from (11). This completes the proof of (4).
We proceed to prove the in-probability result. To this end, let ε > 0 be chosen later, and define

the following two events:

E1 =
{
S+ : R(θ̂(S+))− R̂+(θ̂(S+)) ≥ ε

}
,

E2 =
{

(S−, S+) : R̂−(θ̂(S+))− R̂+(θ̂(S+)) ≥ ε

2

}
.
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Our goal will be to bound Pr(E1) and we will start by showing that

Pr(E1) ≤ 2 Pr(E2). (12)

This can be established as follows: SinceR(θ̂(S+))−R̂+(θ̂(S+)) ≥ ε andR(θ̂(S+))−R̂−(θ̂(S+)) ≤
ε
2 together imply E2, we have

Pr(E2) ≥ Pr
(
R(θ̂(S+))− R̂+(θ̂(S+)) ≥ ε and R(θ̂(S+))− R̂−(θ̂(S+)) ≤ ε

2

)
= E

S−,S+

[
1[R(θ̂(S+))− R̂+(θ̂(S+)) ≥ ε]1[R(θ̂(S+))− R̂−(θ̂(S+)) ≤ ε

2
]
]

= E
S+

[
1[R(θ̂(S+))− R̂+(θ̂(S+)) ≥ ε] Pr

S−

(
R(θ̂(S+))− R̂−(θ̂(S+)) ≤ ε

2

)]
≥ E

S+

[
1[R(θ̂(S+))− R̂+(θ̂(S+)) ≥ ε]× 1

2

]
=

1

2
Pr(E1),

where, for the last inequality to hold, we restrict attention to ε ≥ b

√
2 log(2)

n .6 The last inequality
then holds because, for any fixed θ,

Pr
S−

(
R(θ)− R̂−(θ) ≤ ε

2

)
≥ 1/2.

To see this, note that by Hoeffding’s inequality the probability of the event’s complement is at most

Pr
S−

(
R(θ)− R̂−(θ) >

ε

2

)
≤ exp

(
− nε2

2b2

)
≤ 1/2.

This completes the proof of (12).
We proceed to work on the right-hand side of (12) by rewriting the probability of E2 as follows:

Pr(E2) = E
S−,S+

[
1[R̂−(θ̂(S+))− R̂+(θ̂(S+)) ≥ ε

2
]
]

= E
S−,S+,σ

[
1[R̂−σ(θ̂(Sσ))− R̂σ(θ̂(Sσ)) ≥ ε

2
]
]

= E
S−,S+

[
Pr
σ

(
R̂−σ(θ̂(Sσ))− R̂σ(θ̂(Sσ)) ≥ ε

2

)]
.

We now restrict attention to ε that are at least

ε ≥ 2E
σ

[
max
θ∈Θ̂

(
R̂−σ(θ)− R̂σ(θ)

)]
+ b

√
8 log(2/δ)

n
almost surely, (13)

so that

Pr
σ

(
R̂−σ(θ̂(Sσ))− R̂σ(θ̂(Sσ)) ≥ ε

2

)
≤ Pr

σ

(
max
θ∈Θ̂

(
R̂−σ(θ)− R̂σ(θ)

)
≥ ε

2

)
≤ δ

2
,

6. Anthony and Bartlett (2002) relax this to ε ≥ b
√

2/n using a more involved argument based on Chebyshev’s instead
of Hoeffding’s inequality, but this provides no benefit here, because we will use a large enough value of ε anyway.
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where the last bound holds by McDiarmid’s inequality, which applies because maxθ∈Θ̂

(
R̂−σ(θ)−

R̂σ(θ)
)

has 2b
n -bounded differences. Putting everything together, we have shown that Pr(E1) ≤ δ

for any (non-random) ε that satisfies ε ≥ b
√

2 log(2)/n and (13). We will show that this is the case
for

ε = 4 ess sup
S−,S+

{Rad(Θ̂, S+)}+ b

√
8 log(2/δ)

n
,

from which the intended result (5) then follows.
The first constraint on ε is easiest, because Rademacher complexity is always non-negative:

ε ≥ b
√

8 log(2/δ)

n
≥ b
√

2 log(2)

n
.

It remains to check (13), which follows from (11) by

E
σ

[
max
θ∈Θ̂

(
R̂−σ(θ)− R̂σ(θ)

)]
≤ Rad(Θ̂, S−)+Rad(Θ̂, S+) ≤ 2 ess sup

S−,S+

{Rad(Θ̂, S+)} almost surely.

This completes the proof.

Appendix B. Definition and basic properties of finite Minkowski dimension

B.1. Complete definition of finite Minkowski dimension

In this section, we restate the complete definition of the finite Minkowski dimension for the conve-
nience of the reader. In the main part of the paper, we excluded e.g. focal or empty sets via several
additional assumptions. These assumptions are not needed when considering the more technical
original definition by Alonso (2015).

Recall the definition of a 2-cover from the main part: a family of sets U is a 2-cover of a finite
set C if U = {Ui : i ∈ N} where each Ui ⊆ C, |Ui| ≥ 2, and C ⊆

⋃
U∈U U . Here we will

denote the set of all such 2-covers for C as K(C). Further, let ∆(U) = max{∆(Ui) : Ui ∈ U} and
Kδ(C) = {U ∈ K(C) : ∆(U) ≤ δ}. Now define

K1(C) = {U ∈ K(C) : ∆(U) < ∆(C)} and K1
δ (C) = K1(C) ∩Kδ(C).

Note that in the main part, we used the following result to simplify the notation and definition of the
finite Minkowski dimension.

Theorem 11 (Alonso, 2015, Theorem 2.14) Let C be finite. Then the following are equivalent:

1. C has no focal point.

2. K1(C) 6= ∅.

3. ∇(C) < ∆(C).

Next, define a covering, similar to the box covering for the definition of the Minkowski dimension.
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Definition 12 (Alonso, 2015, Definition 4.1) For U ∈ K(C), set

Bs
U (C) = |U|∆(U)s.

For δ ≥ ∇(C), set

Bs
δ(C) =

{
min

{
Bs
U : U ∈ K1

δ (C)
}
, if K1(C) 6= ∅

min {Bs
U : U ∈ K(C)} , if K1(C) = ∅

,

and
Bs(C) = max {Bs

δ(C) : δ ≥ ∇(C)} .

As in Section 4.1 in Alonso (2015) the finite Minkowski dimension is defined as follows:

Definition 13 (finite Minkowski dimension) Let s ∈ (0,∞) such that

Bs(C) = ∆(C)s. (14)

The finite Minkowski dimension of a non-empty set C is

dimfM (C) =


0 if |C| = 1

+∞ if C is focal
s satisfying (14) otherwise.

In Section 4.1 we used the following theorem to simplify the definition of the finite Minkowski
dimension.

Theorem 14 (Alonso, 2015, Theorem 4.11) Let C be non-empty and finite. If C is non-focal then

dimfM (C) =
log T (C)

log ∆(C)
∇(C)

.

Theorem 15 (Alonso, 2015, Theorem 4.12) Let η : X → X ′ be (r, β)-Hölder continuous and
C ⊆ X finite. Then βdimfM (η(C)) = dimfM (C).

We used the following result to derive the trivial upper bound in Section 4.1, Theorem 6.

Theorem 16 (Alonso, 2015, Proposition 5.3) Let C be finite. Then

dimfM (C) ≤ log (|C| − 1)

log ∆(C)
∇(C)

.

Theorem 17 (Alonso, 2015, Theorem 7.17) Let C ⊆ Rn be compact, with ∇(C) = 0 < ∆(C).
Then there exists a sequence of sets {Fk}k∈N with Fk → C and limk→∞ dimfM (Fk) = dimM (X).

Appendix C. Proofs from Section 4.1

For this section, we need some additional notation. Since these definitions are only needed for the
proofs within this section, we define them locally for better readability of the main section.
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Notation: For any set S ∈ X , we let Conv (S) denote its convex hull, formally, Conv (S) is the
unique minimal convex set such that S ⊆ Conv (S).

The proof of (7) follows immediately from Lemma 18.

Lemma 18 (Existence of Optimal Steiner Points) Suppose Θ̂n ⊂ Rk is any finite non-focal set.
Then for any 0 < ε < ∆(Θ̂n), there exists a set P with the following properties.

1. |P | < |Θ̂n|.

2. ∇(Θ̂n ∪ P ) = ε and ∆(Θ̂n ∪ P ) = ∆(Θ̂n).

3. Cov(Θ̂n, d, ε) = Cov(Θ̂n ∪ P, d, ε).

Proof Let S be the set corresponding to the covering number Cov(Θ̂n, d, ε), i.e., S contains the
centers of the ε-covers for Θ̂n and |S| = Cov(Θ̂n, d, ε). Recall B (c, r, d) = {x : d(c, x) ≤ r}
denotes a ball with center c and radius r. Now consider P ⊂ ∪a∈SB (a, ε, d), then 3 is satisfied.
It remains to show that we can choose P ⊂ ∪a∈SB (a, ε, d) such that 1 and 2 are satisfied. By
restricting the choice of P further to P ⊂ ∪a∈SB (a, ε, d) ∩ Conv

(
Θ̂n
)

we can ensure that the

diameter ∆(Θ̂n ∪ P ) = ∆(Θ̂n). Due to the assumptions on ε, the conditions |P | < |Θ̂n| and
∇(Θ̂n∪P ) ≤ ε can also be satisfied by choosing the points in P from the boundaries of the epsilon
balls, i.e., P ⊂ ∪a∈Sbd (B (a, ε, d)) ∩ Conv

(
Θ̂n
)

.

We are now ready to prove Theorem 7.

Proof [Theorem 7] Let εn = α
√

logn
n for any constant α > 0. Then, by (6),

Rad(Θ̂n, Sn+) ≤ Lεn + b

√
log Cov(Θ̂n, d, εn)

n
≤ Lεn + b

√
log Cov(Θ̂, d, εn)

n
.

Hence

lim sup
n→∞

Rad(Θ̂n, Sn+)√
log(n)/n

≤ αL+ lim sup
n→∞

b

√
log Cov(Θ̂, d, εn)

log n

= αL+ lim sup
n→∞

b

√
log Cov(Θ̂, d, εn)

− log εn

√
− log(εn)

log n

= αL+ b

√
dimM(Θ̂)

2
,

where the last equality follows by the definition of the upper Minkowski dimension (8) and because

− log(εn)

log n
=
− logα− 1

2 log log n+ 1
2 log n

log n
→ 1

2
as n→∞.

The result follows by letting α tend to 0.
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