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Abstract
Linear dynamical systems that obey stochastic differential equations are canonical models. While
optimal control of known systems has a rich literature, the problem is technically hard under model
uncertainty and there are hardly any such result. We initiate study of this problem and aim to learn
(and simultaneously deploy) optimal actions for minimizing a quadratic cost function. Indeed, this
work is the first that comprehensively addresses the crucial challenge of balancing exploration ver-
sus exploitation in continuous-time systems. We present online policies that learn optimal actions
fast by carefully randomizing the parameter estimates, and establish their performance guarantees:
a regret bound that grows with square-root of time multiplied by the number of parameters. Imple-
mentation of the policy for a flight-control task demonstrates its efficacy. Further, we prove sharp
stability results for inexact system dynamics and tightly specify the infinitesimal regret caused by
sub-optimal actions. To obtain the results, we conduct a novel eigenvalue-sensitivity analysis for
matrix perturbation, establish upper-bounds for comparative ratios of stochastic integrals, and intro-
duce the new method of policy differentiation. Our analysis sheds light on fundamental challenges
in continuous-time reinforcement learning and suggests a useful cornerstone for similar problems.
Keywords: Ito Processes; Online Policies; Regret Bounds; Stability Analysis; Exploration vs Ex-
ploitation; Randomized Estimates.

1. Introduction

State-space models are widely-used for decision-making in dynamic environments. A popular such
model is the one that represents the continuous-time dynamics of the environment by linear stochas-
tic differential equations. In this setting, the multidimensional state of the system is driven by the
control action and the Brownian noise, according to an Ito stochastic differential equation. The
range of application areas is extensive, including chemistry, biology, finance, insurance, and engi-
neering (Gillespie, 2007; Schmidli, 2007; Pham, 2009; Lawrence et al., 2010).

In many applications, uncertainties about the true dynamics necessitate reinforcement learn-
ing policies that adaptively learn optimal actions. Unlike the continuous-time setting, reinforce-
ment learning policies are extensively studied in discrete-time systems. The literature is rich and
includes efficient algorithms that use optimism in the face of uncertainty, posterior sampling, or
bootstrap (Abbasi-Yadkori and Szepesvári, 2011; Abeille and Lazaric, 2018; Ouyang et al., 2019;
Faradonbeh et al., 2019a, 2020c; Dean et al., 2020; Faradonbeh et al., 2020a,b), and regret bounds
are shown in the presence of domain knowledge and partial observations (Cassel et al., 2020; Zie-
mann and Sandberg, 2020a,b; Asghari et al., 2020; Lale et al., 2020b).
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On the other hand, the existing literature for continuous-time systems is still immature, mainly
due to technical difficulties that will be discussed shortly. Early papers focus on estimation after
an infinitely long interaction with the environment (Mandl et al., 1988; Mandl, 1989; Duncan and
Pasik-Duncan, 1990; Duncan et al., 1992, 1999). Recently, sub-optimal policies with linear regret
bounds are proposed and consistency is shown for systems with full-rank input matrices (Caines
and Levanony, 2019). Ensuing papers study offline algorithms for computing the control actions
according to a batch of data, using methods such as dynamic programming and entropy regulariza-
tion (Doya, 2000; Rizvi and Lin, 2018; Wang et al., 2020; Basei et al., 2021).

However, online reinforcement learning policies that can learn optimal actions from a single
state trajectory without imposing undue costs, are currently unavailable. The existing results are
merely asymptotic, require restrictive assumptions, and provide linear regret bounds (Duncan et al.,
1999; Caines and Levanony, 2019). The only exception is a recent paper that appeared after the
first version of this work (Shirani Faradonbeh et al., 2022). A fundamental challenge of online poli-
cies is that they need to simultaneously minimize the cost and estimate the unknown parameters.
These two goals contradict and constitute the exploration-exploitation dilemma; accurate estima-
tion is necessary for optimal decision-making, while sub-optimal actions are required for obtaining
accurate estimates. This crux remains unsolved in continuous-time systems as conventional frame-
works are incapable of relating exploring actions to estimation accuracy and optimal policies. In
fact, the discrete-time analysis fails in Ito processes that the evolution is infinitesimal, and the signal
is highly dominated by noise.

The main contributions of this paper can be summarized as follows. In Algorithm 1, we propose
an efficient online reinforcement learning policy based on randomized estimates of the unknown
system matrices. Then, we establish the rates for the error in learning the dynamics matrices, and
for the regret that the algorithm incurs. Algorithm 1 is easy to implement, yet it learns the optimal
actions fast so that its regret at time T is O

(
T 1/2 log T

)
(Theorem 4). So, the per-unit-time sub-

optimality caused by uncertain system parameters decays with time as Õ
(
t−1/2

)
under Algorithm 1,

which is the first efficiency result for online policies. Furthermore, we study stability of linear
systems for inaccurate system matrices and establish the stabilizability margin (Theorem 2). Finally,
a sharp regret expression is provided that fully captures sub-optimalities due to inaccuracies in
approximating the optimal actions (Theorem 3). The results provide both the average-case and
worst-case analyses, the presented bounds are tight, and the technical assumptions are minimal.

To study online reinforcement learning policies, one needs to address the following technical
challenges. First, sensitivity analysis of (complex) eigenvalues of matrices with perturbed entries
is needed. Further, anti-concentration results on singular values of partially-random matrices are
required. Finally, we need to accurately characterize the time-varying sub-optimalities in cost func-
tion in terms of model uncertainties. Thus, we develop multiple novel techniques for (i) matrix-
perturbation analysis, (ii) spectral properties of random matrices, (iii) comparative ratios of stochas-
tic integrals, and also (iv) introduce policy differentiation to precisely capture the infinitesimal cost
of sub-optimal actions. Note that (iii) and (iv) above do not appear in discrete-time settings. The
former two are different in differential and difference equations, such that the existing literature fails
to properly address them in continuous-time systems. We also use various tools from Ito calculus
and stochastic analysis, including Hamilton-Jacobi-Bellman partial differential equations, Ito Isom-
etry, as well as (dominated and martingale) convergence theorems for continuous-time stochastic
processes (Yong and Zhou, 1999; Oksendal, 2013; Baldi, 2017).
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This paper is organized as follows. In Section 2, we discuss the problem and preliminary ma-
terial. Then, in Section 3, we study system stability when the control action is designed based on
dynamics matrices other than the true ones and establish stabilizability guarantees. Next, we ex-
amine effects of sub-optimal actions and the regret they cause, in Section 4. Section 5 contains the
randomized-estimates policy of Algorithm 1, as well as its theoretical analysis showing efficiency.
Experimental results are presented in Section 6, and the paper is concluded in Section 7. Because
of space limitations, all proofs are delegated to the appendices, as outlined on page 17.

The following notation will be used in this work. The smallest (largest) eigenvalue ofA, in mag-
nitude, is λmin (A) (λmax (A)). For v ∈ Cd, its norm is defined as ||v||2 =

∑d
i=1 |vi|

2. Moreover,
we write |||A||| for the operator norm of matrices; |||A||| = sup||v||=1 ||Av||, and A† for Moore-Penrose
generalized inverse. The sigma-field generated by the stochastic process {Ys}0≤s≤t is denoted by
σ (Y0:t). A multivariate normal distribution with mean µ and covariance matrix Σ is shown by
N (µ,Σ). For λ ∈ C, we use < (λ) ,= (λ) to denote the real and imaginary parts of λ, respectively.
The symbol ∨ (resp., ∧) is used to show the maximum (resp., minimum). Finally,O (·) refers to the
order of magnitude.

2. Problem Statement

We study reinforcement learning policies for a multidimensional Ito stochastic differential equation
with unknown drift matrices. That is, the state vector at time t is Xt ∈ RdX , which follows

dXt = (A?Xt +B?Ut) dt+ CdWt, (1)

the vector Ut ∈ RdU is the control action at time t, and the disturbance {Wt}t≥0 is a standard
Brownian motion in a dW dimensional space. Technically, by fixing the probability space (Ω,F,P)
which is completed by adding the null-sets of P, let all stochastic objects belong to this probability
space, and let E [·] be the expectation with respect to P (unless otherwise explicitly stated). The
Brownian motion {Wt}t≥0 starts from the origin, and has continuous sample paths as well as in-
dependent normally distributed increments. That is, W0 = 0, for all 0 ≤ t1 ≤ t2 ≤ t3 ≤ t4, the
vectorsWt2−Wt1 andWt4−Wt3 are statistically independent, and for all non-negative reals s < t,
it holds that Wt −Ws ∼ N (0, (t− s) IdW ). Furthermore, C ∈ RdX×dW reflects the effect of Wt

on the state evolution.
We aim to design computationally tractable and provably efficient reinforcement learning poli-

cies for the system in (1). The transition matrix A?, the input matrix B?, and the noise-coefficient
matrix C, all are unknown. The goal is to minimize the expected average cost

Jπ = lim sup
T→∞

1

T
E

 T∫
0

ct (π)dt

 ,
where ct (π) = X>t QXt + U>t RUt is the cost of policy π at t, its value being determined by the
positive definite matrices Q,R of proper dimensions, as explained below.

The policy π is non-anticipative closed-loop: At every time t, π determines Ut according to
the information available at the time. More precisely, π maps the state observations (i.e., Xs for
s ∈ [0, t]) and the previously taken actions (i.e., Us for s in the semi-open interval [0, t[) to the
current control action Ut. This mapping can be stochastic or deterministic. Importantly, π faces the
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fundamental exploration-exploitation dilemma for minimizing the expected average cost, because
the dynamics matrices A?, B? are unknown and need to be learned based on the state and action
observations. The details of this dilemma is discussed in Section 5. We assume that Q,R are
known to the policy, the rationale being that the decision-makers are aware of the objective they aim
to achieve, while their uncertainty about the environment impedes them from deciding optimally.

The benchmark for assessing reinforcement learning policies is the optimal policy π? that de-
signs Ut having access to A?, B?. To define π?, let ΦA?,B? (·) : RdX×dX → RdX×dX be

ΦA?,B? (M) = A>?M +MA? −MB?R
−1B>? M +Q.

This function is vital for finding π?. To see the intuition, first note that an action Ut directly
influences the current cost ct (π), and indirectly affects the future cost values according to (1).
So, to capture future consequences of decisions, ΦA?,B? (·) is employed (Yong and Zhou, 1999).
To proceed toward identifying π?, let the positive semidefinite matrix M = K (A?, B?) solve
ΦA?,B? (M) = 0. To investigate existence and uniqueness of K (A?, B?), we need the followings.

Definition 1 (Notations λ (·) , E (·)) Let λ (D) be the largest real-part of the eigenvalues of an
arbitrary square matrix D: λ (D) = max {< (λ) : det (D − λI) = 0}. Further, for arbitrary
matrices A ∈ RdX×dX , B ∈ RdX×dU , define E (A,B) = |||A −A?||| + |||B −B?|||. So, E (A,B)
measures the deviation of A,B from the true dynamics matrices A?, B?.

Note that unlike λmax (·) that considers only magnitudes of the eigenvalues, λ (·) reflects the signs
of the eigenvalues as well, and so can be either positive, zero, or negative. However, they are related
according to λmax

(
eD
)

= eλ(D).
We assume that the true dynamics matrices A?, B? are stabilizable, in the following sense:

Assumption 1 (Stabilizability) There exists some L ∈ RdU×dX , such that λ (A? +B?L) < 0.

Assumption 1 expresses that by applying Ut = LXt, the system can operate without any explosion.
To see that, solve the differential equation (1) under the feedback policy Ut = LXt to obtain

Xt = e(A?+B?L)tX0 +

t∫
0

e(A?+B?L)(t−s)CdWs. (2)

So, because of λ (A? +B?L) < 0, Xt does not grow unbounded with t. Importantly, existence of
a stabilizing matrix L is necessary for the problem to be well-defined. Otherwise, state explosion
renders the average cost infinite for all decision-making policies (Chen et al., 1995; Yong and Zhou,
1999). Now, recall that ΦA?,B? (K (A?, B?)) = 0, let L (A?, B?) = −R−1B>? K (A?, B?), and
define the linear feedback policy

π? : Ut = L (A?, B?)Xt, ∀t ≥ 0. (3)

We show that Assumption 1 suffices for unique existence of K (A?, B?) and for optimality of π?.

Theorem 1 (Optimal policy) Under Assumption 1, the matrixK (A?, B?) uniquely exists, and the
policy π? in (3) gives

Jπ? = inf
π
Jπ = tr

(
K (A?, B?)CC

>
)
, and λ (A? +B?L (A?, B?)) < 0.
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To compute K (A?, B?), it suffices to solve the differential equation Ṁt = ΦA?,B? (Mt) starting

from a positive semidefiniteM0, or equivalently calculate the integralMt = M0+
t∫
0

ΦA?,B? (Ms)ds.

In the proof of Theorem 1, we show that lim
t→∞

Mt = K (A?, B?).

Next, we focus on learning A?, B? and the additional cost compared to the cost of π? that we
are charged for, because of uncertainties about A?, B?. To that end, we formulate sub-optimalities
in the performance of decision-making policies and the penalty due to lack of knowledge about the
optimal actions Ut = L (A?, B?)Xt. For a general policy π, the regret of π at time T is denoted by
Rπ (T ) and is defined as the cumulative increase in cost by time T . That is, the difference between
the instantaneous costs of π and π? in (3) is integrated over the time interval [0, T ]:

Rπ (T ) =

T∫
0

[ct (π)− ct (π?)]dt. (4)

Note that under π, the state trajectory is generated by (1) for Ut = π
(
{Us}0≤s<t , {Xs}0≤s≤t

)
, at

all times t ≥ 0. So, ct (π)− ct (π?) includes the differences between the control actions as well as
the state trajectories of π,π?. Clearly, the random state evolution in (1) renders Rπ (T ) random.
So, regret analyses for reinforcement learning policies include worst-case analyses that establish
upper-bounds for Rπ (T ), as well as average-case analyses that provide bounds for E [Rπ (T )].
Further, for unknown A?, B?, we hope that the increasing observations of state and action over time
will be effectively leveraged so that eventually, the policy makes near-optimal decisions. So, as t
grows, we desire ct (π) − ct (π?) to shrink and so Rπ (T ) to scale sub-linearly with T . In the
sequel, we study Rπ (T ), E [Rπ (T )] and their dependence on T and the problem parameters.

Another quantity of interest is the accuracy of estimating the unknown dynamics. So, letting
At, Bt be estimates of A?, B? based on the state-action observations by time t; i.e., {Xs, Us}0≤s≤t,
we study the decay rate of the estimation error E (At, Bt), as defined in Definition 1. Note that
similar to regret, E (At, Bt) is stochastic.

3. Stability Analysis for Perturbed Dynamics Matrices

In this section, we study the effects of uncertainties about the dynamical model on system stability.
We specify the minimal information one needs to possess in order to ensure stabilization, and show
that a coarse-grained approximation of the truth is sufficient for this purpose. Results of this section
will be used later in the design of randomized-estimates policy in Section 5. Importantly, the follow-
ing stability analysis is general, captures effects of all involved quantities, and provides tight results
in the sense that the conditions of Theorem 2 are required for guaranteeing stabilization. In addition,
the results presented here are of independent interests, because stability is required for letting the
system operate for a reasonable time period, regardless of optimality of the control actions.

To proceed, note that if hypothetically the optimal linear feedback in (3) is applied to the system
in (1), then stability is guaranteed. More precisely, applying L (A?, B?), the resulting closed-loop
transition matrix D? = A? + B?L (A?, B?) has all its eigenvalues on the open left half-plane of
the complex plane, as stated in Theorem 1. The issue is that the true dynamics matrices A?, B? are
unknown and need to be learned. However, if some matrices A,B meet the conditions we shortly
discuss, one can stabilize the system by applying the linear feedback Ut = L (A,B)Xt.
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To proceed, let D = A + BL (A,B) be the closed-loop transition matrix of a system with
dynamics matrices A,B, under the feedback Ut = L (A,B)Xt. Then, let ρ > 0 and ζ <∞ satisfy

λ (D) ≤ −ρ, |||K (A,B)||| ≤ ζ. (5)

The quantities in (5) are required for studying stability of the matrix A? +B?L (A,B), as follows.
Remember that we have a closed-loop stability result in Theorem 1: λ (D) < 0. So, the first in-
equality in (5) quantifies the extent to which L (A,B) is able to stabilize the system of parameters
A,B. Intuitively, λ (D) is the best (i.e., most negative) upper-bound one can hope for the eigen-
values of A? + B?L (A,B), since the optimal feedback L (A,B) is purposefully designed for the
certainly known matrices A,B. Later on, we show that ρ enjoys a positive uniform lower-bound
as long as A,B live in some neighborhoods of A?, B?. The second inequality in (5) is somewhat
guaranteed by the first one, as we will show in the proof of Theorem 1 (in (22)) that

K (A,B) =

∞∫
0

eD
>t
(
Q+ L (A,B)>RL (A,B)

)
eDtdt. (6)

Therefore, λ (D) ≤ −ρ < 0 implies that for some ζ < ∞, we have |||K (A,B)||| ≤ ζ. So, ζ is
merely used for simplifying the expressions.

Towards stability analysis, we need further information of D = A+BL (A,B) that the Jordan
form of this matrix provides. Suppose that eigenvalues of D are λ1, · · · , λk, and let the Jordan
decomposition be D = P−1ΛP ; i.e., Λ = diag (Λ1, · · · ,Λk) is a block-diagonal matrix and all
diagonal entries of Λi are λi, the immediate off-diagonal entries above the diagonal of Λi are 1, and
all other entries of Λi are 0 (as shown in (24)). Now, we introduce a very important quantity for
determining the stability margin. For the above-mentioned blocks Λi, i = 1, · · · , k, let µi denote
the dimension of the square matrix Λi, and refer to the largest value among µ1, · · · ,µk by µD .

Definition 2 (Largest block-size µD) Letting P and Λi ∈ Cµi×µi be as in the Jordan decompo-
sition D = P−1ΛP explained above, define µD = max

1≤i≤k
µi.

The quantity µD is the largest size of the blocks Λ1, · · · ,Λk in the Jordan form and crucially
determines the order of stability margin, as established in the following theorem.

Theorem 2 (Stability margin) Let P,µD and ρ, ζ be as in Definition 2 and (5), respectively.
Then, following Definition 1, for δ > 0, we have λ (A? +B?L (A,B)) < −δ, as long as

E (A,B) <

(
1 ∧ 1

|||L (A,B)|||

)
(ρ− δ) ∧ (ρ− δ)µD

µ
1/2
D |||P ||||||P−1|||

. (7)

Note that the definition of L (A,B) before (3) shows that |||L (A,B)|||−1 in (7) can be replaced
with λmin (R) ζ−1|||B|||−1. Theorem 2 states that if E (A,B) is sufficiently small to satisfy (7), then
A? +B?L (A,B) is stable and all of its eigenvalues in the complex plane lie on the left-hand-side
of the vertical line < = −δ. In addition, (7) reflects effects of different factors, as follows. First, the
stability margin on the right-hand-side of (7) decreases as |||L (A,B)||| increases. To see the intuition,
note that the difference between the closed-loop matrices is A? − A + (B? −B)L (A,B), which
shows the multiplicative effect of L (A,B). Further, Definition 2 indicates that µ1/2

D |||P |||
∣∣∣∣∣∣P−1∣∣∣∣∣∣
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quantifies non-diagonality ofD, is at least 1, and becomes 1 for diagonalD (where P is the identity
matrix andµD = 1). Therefore, more non-diagonal closed-loop matricesD lead to smaller stability
margins and make stabilization harder to be learned.

By (5), the dependence on ρ corroborates the intuition that systems whose optimal closed-loop
matrices has eigenvalues of larger real-parts (i.e., smaller ρ), are harder to stabilize. Moreover, the
expression (ρ− δ) ∧ (ρ− δ)µD indicates that µD is very important and determines the rates of
bounding the eigenvalues of A? +B?L (A,B). The rates for ρ− δ < 1 and ρ− δ > 1 are different,
because of a similar phenomena in the sensitivity of eigenvalues of matrices to perturbations in their
entries. This result is of independent interest as it is a generalization of Bauer-Fike Theorem (Bauer
and Fike, 1960) to asymmetric matrices. Indeed, we establish in the proof of Theorem 2 that larger
blocks in Jordan forms can lead to drastically higher eigenvalue-sensitivities against entries.

To close this section, we provide uniform lower and upper bounds for ρ > 0 and ζ < ∞,
respectively. For that purpose, similar to Definition 2, define the largest block size µ? = µD?
based on the Jordan decomposition D? = A? + B?L (A?, B?) = P−1? Λ?P?. Then, we show in
the proof of Theorem 2 that E (A,B) ≤ ε0 is sufficient for stabilization, and it holds that ρ ≥
λmin (Q) 4−1|||K (A?, B?)|||−1, and ζ ≤ 2|||K (A?, B?)|||, as long as

(1 ∨ |||L (A?, B?)|||) ε0 =

(
−λ (D?)

)
∧
(
−λ (D?)

)µ?
µ
1/2
?

∣∣∣∣∣∣P−1?

∣∣∣∣∣∣|||P?||| ∧

4

∞∫
0

∣∣∣∣∣∣eD?t∣∣∣∣∣∣2dt
−1 . (8)

4. Tight Regret Expressions and Policy Differentiation

In this section, we investigate sub-optimalities and provide a sharp expression for the regret that non-
optimal control actions cause. Such an investigation is vital since reinforcement learning policies
need to learn the unknown dynamics A?, B? and so they require to take non-optimal actions.

To proceed, let Ut be the control action of the policy π at time t. In the following theorem, we
quantify Rπ (T ) in terms of deviations Ut−L (A?, B?)Xt, and introduceαT that fully assesses the
regret of π. In fact, αT unifies average-case and worst-case analyses by capturing both E [Rπ (T )]
and Rπ (T ). Further, Theorem 3 provides scalings with different problem parameters and shows
that Rπ (T )− E [Rπ (T )] scales linearly with the dimension of the Brownian motion.

Theorem 3 (Regret analysis) Suppose that Lt is a bounded piecewise-continuous function of t,
and π is the policy Ut = LtXt. Then, we have E [Rπ (T )] = E [αT ], and

Rπ (T ) = αT +O
(
ωRα

1/2
T logαT

)
,

where ωR = |||C||||||K(A?,B?)|||3/2dW
λmin(Q)1/2λmin(R)1/2

, D? = A? +B?L (A?, B?), Et = eD
>
? tK (A?, B?) e

D?t, and

αT =

T∫
0

∣∣∣∣∣∣R1/2 (Lt − L (A?, B?))Xt

∣∣∣∣∣∣2dt− 2

T∫
0

(
X>t ET−tB? (Lt − L (A?, B?))Xt

)
dt.

To establish Theorem 3, we utilize the theory of continuous-time martingales and (in Lemma 2) de-
velop novel results on comparative ratios of stochastic integrals. More importantly, we construct the
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new framework of policy differentiation for finding sharp regret bounds. Broadly speaking, policy
differentiation precisely evaluates the regret in terms of infinitesimal sub-optimalities and integrates
these infinitesimal deviations to obtain αT , in which the integrand

∣∣∣∣R1/2 (Lt − L (A?, B?))Xt

∣∣∣∣2
plays a role similar to the derivative of the regret. This framework can be used for analogous regret
analyses in other continuous-time reinforcement learning problems.

The boundedness and piecewise continuity conditions in Theorem 3 are somewhat natural be-
cause the optimal policy in (3) is a time-invariant feedback, and so one gains nothing by violating
these conditions. Furthermore, since by Theorem 1 we have λ (D?) < 0, the matrix Et exponen-
tially decays as t grows. Thus, the second integral in the definition of αT is dominated by the
first one. Moreover, note that the above-mentioned matrix appears in αT in the form of ET−t, i.e.,
with a time inversion. This reflects the fact that sub-optimal control feedbacks Ut = LtXt have
descending effects on the regret Rπ (T ) as we move from T backward in time that t descends.

Putting the discussions in the above two paragraphs all together, we conclude as follows. The-
orem 3 shows that the sub-optimality π incurs at time t, scales as the square of the deviation
Lt − L (A?, B?). On top of that, the constant ωR reflects effects of different parameters and indi-
cates, for example, that Rπ (T )−αT scales linearly with dW .

The results of Theorem 3 are insightful along different directions. First, the exact equality
E [Rπ (T )] = E [αT ] can be used for establishing minimax lower-bounds for regret by finding the
fastest rates Lt − L (A?, B?) can shrink. Further, since α1/2

T logαT = O (αT ), both the average-
case criteria E [Rπ (T )] as well as the worst-case regret Rπ (T ) are captured by αT . In other
words, Theorem 3 indicates that the fluctuations of Rπ (T ) around its expectation E [Rπ (T )] are
in magnitude smaller than the expected value. Thus, studying αT is sufficient and necessary for
regret analysis and there is a tight and reciprocal relationship between Rπ (T ) ,αT , for all policies.

Moreover, as time goes by, a reinforcement learning policy becomes progressively more ca-
pable of narrowing down the sub-optimality gap by estimating the unknown dynamics A?, B?.
Indeed, as soon as having sufficiently long trajectories to learn A?, B? accurate enough to sat-
isfy

∣∣∣∣R1/2 (Lt − L (A?, B?))Xt

∣∣∣∣ < 1, the regret grows much slower since αT integrates the
squares of these deviations. For example, if the estimation accuracy satisfies the ideal square-root
rate E (At, Bt) = O

(
t−1/2

)
, then the regret is a logarithmic function of time; αT = O (log T ).

However, due to the trade-off between the exploration and exploitation that will be elaborated
shortly, this is not the case and to obtain the above error rate, Ut needs to persistently deviate
from L (A?, B?)Xt, which causes a linearly growing regret (see Proposition 1 in the appendices).

Theorem 3 provides both a general result for analyzing reinforcement learning policies, as well
as a useful insight on how to design them to minimize the regret. We utilize this insight to design
Algorithm 1 and to establish Theorem 4 in the next section. Indeed, we randomize the parameter
estimates so that Ut appropriately deviates from π?, leading to E (At, Bt) = Õ

(
t−1/4

)
. So, we

obtain the efficient regret bound Rπ (T ) = O (αT ) = Õ
(
T 1/2

)
.

5. Randomized-Estimates Policy

In this section, we discuss a fast and tractable algorithm with an efficient performance for cost
minimization subject to uncertainties about the dynamics matrices A?, B?. First, we explain the
fundamental exploration-exploitation dilemma. Then, we investigate a procedure for estimating the
unknown dynamics using the data of state-action trajectory. Based on that, an online reinforcement
learning policy that employs randomizations of the parameter estimates for balancing exploration
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versus exploitation is presented in Algorithm 1. Next, a regret bound is established in Theorem 4
indicating that Algorithm 1 efficiently minimizes the cost function so that the regret scales as the
square-root of the time. We also specify the rates of identifying the dynamics matrices.

According to Theorem 3, the policy needs to ensure that Ut ≈ L (A?, B?)Xt in order to incur
a small regret. Furthermore, since A?, B? are unknown, the policy needs to estimate them based
on the data {Xs, Us}0≤s≤t. However, if Us ≈ L (A?, B?)Xs, then the Us coordinates of the data
point Xs, Us become (almost) uninformative as they are (approximately) linear transformations of
the Xs coordinates. This defeats the purpose and renders accurate estimation of A?, B? infeasible.
Note that accurate approximations of A?, B? are needed for taking near-optimal control actions.
This, known as the exploration-exploitation dilemma, is the main obstacle in online reinforcement
learning and shows that a low-regret policy needs to carefully diversify the actions {Us}0≤s≤t by
deviating from {L (A?, B?)Xs}0≤s≤t.

5.1. Design of the algorithm and intuitions

Now, we discuss the learning procedure in Algorithm 1, based on extensions of the least-squares es-
timates. Suppose that instead of the full data Xs, Us for real values of s ≥ 0, one has access to sam-
ples at a discrete set of time points; Xkε, Ukε for k = 0, 1, · · · . Then, (1) for a small ε gives the ap-
proximate data generation mechanismX(k+1)ε−Xkε = (A?Xkε +B?Ukε) ε+C

(
W(k+1)ε −Wkε

)
.

So, an approach is to estimate A?, B? by minimizing
∑

k

∣∣∣∣X(k+1)ε −Xkε − (AXkε +BUkε) ε
∣∣∣∣2

over A,B. Letting Ys =
[
X>s , U

>
s

]>and ε → 0, we get the continuous-time estimate based on the
full trajectory {Xs, Us}0≤s≤t. The result is shown in (9) below and will be used by Algorithm 1.

To ensure that the system evolves stably, Algorithm 1 projects the estimates on the following
stabilization oracle S0 in lights of Theorem 2. In the sequel, we explain how one can learn S0 fast.

Definition 3 For a fixed δ0 > 0, let S0 be a set containing matricesA,B that satisfy (7) for δ = δ0.

Intuitively, the system is stabilized by having access to S0, despite uncertainties about the true dy-
namics matrices A?, B?. Note that the condition in (7) is verifiable since ρ, ζ depend on the known
parameter estimates A,B. Availability of a stabilization set is a common assumption in the litera-
ture of online reinforcement learning policies for linear systems (Mandl et al., 1988; Mandl, 1989;
Caines, 1992; Abeille and Lazaric, 2018; Ouyang et al., 2019; Faradonbeh et al., 2020a; Ziemann
and Sandberg, 2020a,b). For example, if an initial stabilizing feedback L0 is available, we can
devote a period to only explore by applying sub-optimal control actions, and use the resulting ob-
servations to learn S0. Such procedures, that ignore the main objective of regret minimization for
a short time period, are shown to be fast and effective in the sense that the probability of failing to
learn to stabilize, decays exponentially with time (Shirani Faradonbeh et al., 2022). In systems that
are in operation prior to running Algorithm 1 or in open-loop-stable systems, this condition auto-
matically holds (in the latter case, L0 = 0 is an initial stabilizer). Similarly, in systems with a reset
option that can immediately steer the system-state to small values, S0 can be learned fast (Duncan
et al., 1999; Caines and Levanony, 2019; Basei et al., 2021).

In absence of initial stabilizer and state-reset options, learning S0 will be more challenging. In
Section 3 we saw that an ε0 neighborhood of A?, B? is sufficient for bounding ρ, ζ, for ε0 in (8).
That is, coarse-grained approximations of A?, B? suffice for stabilization. So, S0 can be learned
from short state trajectories derived by applying randomized control actions (Caines and Levanony,
2019; Faradonbeh et al., 2018, 2019b; Lale et al., 2020a; Chen and Hazan, 2021; Gramlich and
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Ebenbauer, 2022). Importantly, fast and reliable learning-based stabilization can be ensured via
Bayesian methods (Faradonbeh and Faradonbeh, 2022). These methods retain a Gaussian posterior
about the unknown true dynamics A?, B?, and design stabilizing feedbacks as if samples from the
posterior coincide with the truth. Importantly, even if failed at their first attempts, these Bayesian
methods can be utilized again with no need to repeat the state observation and learning procedure.
Technically, if a failure is detected (e.g., if the state magnitude ||Xt|| keeps growing), one can can
resample from the posterior until successful stabilization (Faradonbeh and Faradonbeh, 2022). Note
that effectiveness of the above methods does not depend on availability of any prior distribution,
although an informative prior can help to improve learning from shorter state trajectories.

Finally, we will show (in Theorem 4) that the algorithm learns A?, B? with the rate t−1/4. So,
the projection on S0 will be automatically performed after the time t0 = Õ

(
ε−40

)
.

The algorithm proceeds as follows. For some fixed γ > 1, the exponentially growing sequence
{γn}∞n=0 contains the time instants at which the algorithm updates the parameter estimates. In fact,
Algorithm 1 applies control actions Ut = L (An, Bn)Xt during the time period γn ≤ t < γn+1,
where An, Bn are estimates of A?, B? , based on the trajectory up to time γn.

Further, to ensure that the policy commits sufficiently to explore the environment, a random
matrix Θn is added to the parameter estimates at time t = γn. Then, Algorithm 1 projects the
resulting dX × (dX + dU ) matrix onto S0. Formally, let ΠS0 (·) denote projection on S0; i.e., it
gives the closest matrix in S0 according to the distance induced by the Frobenius norm. Then,
define

[An, Bn] = ΠS0


 γn∫

0

YsdX
>
s

>  γn∫
0

YsY
>
s ds

† + Θn

 , (9)

where Ys =
[
X>s , U

>
s

]> and the dX×(dX + dU ) matrices {Θn}∞n=0 are independent of everything
else and of each others. Further, the random matrix Θn that is used at time t = γn has independent
Gaussian entries of mean zero and standard deviation σn = σ0 (γ−nn)

1/4
= σ0

(
t−1 logγ t

)1/4,
for some fixed σ0. This decay rate of σn is delicately adjusted for two purposes. On one hand,
Θn is sufficiently large for randomizing the parameter estimates to ensure that effective exploration
occurs and the current data is diverse enough so that we obtain accurate estimates in the future.
On the other hand, Θn is sufficiently small to let the current estimates remain accurate and prevent
significant deviations. Otherwise, large values of Θn deteriorate the current efficient exploitation.
More precisely, this value of σn is selected by minimizing its role in the regret that consists of
summations of some terms of the form γn

(
σ2n + σ−2n n

)
.

Algorithm 1 : Randomized-Estimates Policy
Select γ > 1 and A0, B0 ∈ S0 arbitrarily
For 0 ≤ t < 1 = γ0, apply Ut = L (A0, B0)Xt

for n = 0, 1, 2, · · · do
Obtain parameter estimates An, Bn by (9)
while γn ≤ t < γn+1 do

Take control action Ut = L (An, Bn)Xt

end
end

10
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5.2. Analysis of the algorithm and performance guarantees

The memory that Algorithm 1 occupies is remarkably small since it can update the parameter es-
timates by only storing the values of the two integrals in (9) in an online fashion. Furthermore,
calculations can be done quite fast, making update of the parameter estimates at time γn imme-
diately effective. Note that the computational complexity of numerically obtaining a sufficiently
accurate L (An, Bn) is at worst O

(
(dX + dU )3 n

)
, for the matrix operations in the definition of

π? in (3), and for the fact that the (integration or differentiation) procedures described after Theo-
rem 1 converge exponentially fast, while the next theorem indicates that an accuracy of O

(
γ−n/4

)
is sufficient (and necessary).

The rationale for freezing the parameter estimates for exponentially growing time intervals γn ≤
t < γn+1 is that Algorithm 1 can defer the learning step until collecting enough observations Ys so
that a new update of parameter estimates is effectively more accurate than the previous one.

The following result provides performance guarantees for the randomized-estimates policy.

Theorem 4 (Analysis of Algorithm 1) Let the policy π and the estimates An, Bn be those in Al-
gorithm 1. Assume that n satisfies γn ≤ T < γn+1. Then, using Definition 1 and (4), we have

E (An, Bn)2 = O
(
ωET

−1/2 log T
)
, Rπ (T ) = O

(
ωπT

1/2 log T
)
,

where

ωE = (dX + dU )

(
dX

log γ
+

dW |||C|||2

λmin (CC>)

)
, ωπ =

(γ − 1)|||C|||2|||K (A?, B?)|||6|||R|||
λmin (Q)

2
λmin (R)

4 ωE .

Theorem 4 indicates efficiency of Algorithm 1: At time T , the sub-optimality gap is as small
as O

(
ωπT

−1/2 log T
)
. It also provides ωπ,ωE that reflect the dependence of estimation error and

regret on different parameters in the problem. So, the regret scales linearly with the number of
unknown parameters in A?, B?, while the estimation error dwindles linearly with the dimension.

To establish Theorem 4, we study the learning step in (9) and determine the rates Algorithm 1
estimates A?, B?. For that purpose, we prove concentration bounds for the empirical covariance

matrices of the state vectors and also show anti-concentration of the Gram matrix
t∫
0

YsY
>
s ds of

the signal Ys =
[
X>s , U

>
s

]>, as t grows. Then, we establish bounds on the comparative ratios of
stochastic integrals and use that for controlling the estimation error. Furthermore, we show that
the optimal feedback matrices have a Lipschitz property with respect to the dynamics matrices and
leverage that for finding the deviation rates from the optimal feedback. Finally, we utilize policy
differentiation and Theorem 3 for getting the regret bounds in Theorem 4.

Note that for obtaining descending estimation errors and sub-linear regret bounds we need
λmin

(
CC>

)
> 0. This is a standard requirement in estimation and control of stochastic linear

systems and expresses that all coordinates of the state vectors are randomized by the Brownian
motion {Wt}t≥0 in a relatively short time (Levanony and Caines, 2001; Subrahmanyam and Rao,
2019; Caines and Levanony, 2019). So, all state variables have significant roles in the dynamics.
From a modeling point of view, λmin

(
CC>

)
> 0 indicates that the stochastic differential equation

in (1) is irreducible in the sense that a smaller subset of state variables is insufficient for capturing
the stochastic dynamical behavior of the environment.
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To close this section, observe that the estimation error of Algorithm 1 shrinks as T−1/4. So,
it does not decay with the ideal square-root rate because the main priority of Algorithm 1 is to
minimize its regret by exploring minimally. However, if the randomization matrices Θn are per-
sistent and their standard deviations do not diminish as n grows, then we obtain the square-root
consistency. This is formalized in Proposition 1 in Appendix E. Of course, the compromise is that
Rπ (T ) grows linearly with T if Θn does not dwindle as n grows.

6. Numerical Illustrations of Estimation Error and Regret
Now, we provide numerical analyses for showcasing the performance of Algorithm 1 for estimating
the unknown dynamics matrices and learning the optimal policy. For this purpose, we assume
that the true continuous-time system matrices are lateral-directional state-space matrices of X-29A
airplane at 4000 ft altitude (Bosworth, 1992). The system is of dimension dX = 4, is controlled by
two dimensional commands; dU = 2, and the transition and input matrices in (1) are

A? =


−0.1850 0.1475 −0.9825 0.1120
−0.3467 −1.710 0.9029 −0.5843× 10−6

1.174 −0.0825 −0.1826 −0.4428× 10−7

0.0 1.0 0.1429 0.0

 , B? =


−0.4470× 10−3 0.4020× 10−3

0.3715 0.0549
0.0265 −0.0135

0.0 0.0

 .
Note that the dimensions of the control action and the state vector, as well as open-loop instability

of A? and the small entries of B?, render control of the above-mentioned airplane challenging.
Further, we let the coefficient matrix of the Brownian disturbance Wt be C = 0.2× I4, and employ
Algorithm 1 to learn to control a quadratic cost with the weight matrices Q = 10 × IdX , R =
IdU . The online reinforcement learning policy of Algorithm 1 is run for 500 seconds, while the
parameter estimates are updated at times t = γn, for integer values of n and γ = 1.2. To find an
initial stabilizing feedback, we run a Bayesian learning algorithm for 25 seconds (Faradonbeh and
Faradonbeh, 2022).

The normalized rates of the estimation error are plotted in Figure 1, versus the continuous time
T . To illustrate the rates in Theorem 4, the figure contains multiple trajectories of T 1/2E (An, Bn)2,
while n, T satisfy γn ≤ T < γn+1. The normalized estimation errors in the left panel are (almost)
bounded as time grows, corroborating Theorem 4. The right panel depicts normalized regret versus
time: the horizontal axis is T and the vertical one represents T−1/2Rπ (T ), where π is the online
reinforcement learning policy in Algorithm 1. Again, it is clear that the statement of Theorem 4
holds, as the normalized regret remains bounded as time grows.

7. Concluding Remarks

We studied online reinforcement learning policies for unknown continuous-time stochastic linear
systems and presented algorithms that learn to minimize quadratic costs. Three important problems
are fully investigated, followed by the intuitions and implications of the presented analyses.

First, we studied stabilization of stochastic linear systems based on inexact dynamics matrices
and proved Theorem 2 that specifies the coarse-grained accuracy for guaranteeing stability. Then,
proposing the novel approach of policy differentiation, we established a reciprocal result in Theo-
rem 3 for the regret that policies cause by taking sub-optimal actions. More importantly, we pre-
sented the online reinforcement learning Algorithm 1 and established its performance guarantees.
Indeed, Theorem 4 expresses that the estimation error rate of Algorithm 1 is dT−1/4 log1/2 T and it
enjoys the efficient regret bound O

(
d2T 1/2 log T

)
, where T is the time and d is the dimension.
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Figure 1: Left: Normalized estimation error T 1/2E (An, Bn)2 is plotted vs T , such that γn ≤ T <
γn+1, for some integer n. Multiple replicates of the normalized estimation error are
reported in the graph, which clearly remain bounded as time grows. Therefore, the graph
depicts Theorem 4 about the rates Algorithm 1 learns the dynamics matrices.
Right: The graph presents curves of the normalized regret T−1/2Rπ (T ) versus time T ,
while π is the policy in Algorithm 1. Multiple replicates of the system are simulated, all
corroborating Theorem 4 that the normalized regret remains (almost) bounded.

As an initiating paper on design and analysis of online reinforcement learning policies for
continuous-time stochastic systems, this study introduces interesting directions for future work.
That includes establishing regret lower-bounds, investigating high-dimensional systems with struc-
tured dynamics such as low-rank or sparse matrices, and designing efficient policies under imper-
fect state-observations. Another interesting avenue for future studies that the authors expect the
presented techniques apply to, is that of learning to control systems with non-linear dynamics or
arbitrary cost functions.
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Appendix A. Proof of Theorem 1 (Optimal policy)

Fixing ε > 0, suppose that the control inputs Ut are frozen in intervals of length ε and can change
only at times kε, for k = 0, 1, · · · . That is, for all times t satisfying kε ≤ t < (k + 1)ε, the
action vector is fixed; Ut = Ukε. Next, we proceed towards finding a decision-making policy for
minimizing the expected average cost. Note that due to the above-mentioned freezing during ε-
length intervals, the resulting decision-making policies can be sub-optimal, and indeed provide an
upper bound for the optimal cost value. However, we will address this possible sub-optimality at the
end of the proof, and with a slight abuse of notation, we still use π? to denote the above-mentioned
policy.

Next, fix an arbitrary time horizon T , and denote the minimum cost-to-go at time t by

Vt (Xt) = inf E

 T∫
t

cs (π?)ds

∣∣∣∣∣Ft
 ,

where the infimum is taken over non-anticipating policies that freeze the control action in ε-length
intervals, as elaborated above, and the information at time t is Ft = σ (X0:t, U0:t); the sigma-field
generated by the state and action vectors up to the time. Now, finding an optimal policy is equivalent
to applying dynamic programming principle and writing Bellman optimality equations (Kumar and
Varaiya, 2015; Chen et al., 1995). So, we have

Vkε (Xkε) = min
Ukε

E

 (k+1)ε∫
kε

cXt,Ukε (π?)dt+ V(k+1)ε

(
X(k+1)ε

) ∣∣∣∣∣Fkε
 , (10)

subject to the dynamics equation in (1).
For the sake of simplicity, suppose that T/ε is an integer. Solving (10) for k = T/ε− 1, we get

the optimal control action U?kε = 0. Accordingly, this gives

V(k+1)ε

(
X(k+1)ε

)
= X>(k+1)εQX(k+1)εε,

for k = T/ε− 2, which, after substituting in (10), becomes

Vkε (Xkε) = min
Ukε

(k+1)ε∫
kε

E
[
X>t QXt

∣∣∣Fkε]dt+ U>kεRUkεε+ E

[
X>(k+1)εQX(k+1)ε

∣∣∣∣∣Fkε
]
ε, (11)

where we applied Fubini’s Theorem to derive

E

 (k+1)ε∫
kε

cXt,Ukε (π?)dt

∣∣∣∣∣Fkε
 =

(k+1)ε∫
kε

E
[
X>t QXt

∣∣∣Fkε]dt+ U>kεRUkεε. (12)

However, solving the dynamics (1) for kε ≤ t ≤ (k + 1)ε, we obtain

Xt = eA?(t−kε)Xkε +

t∫
kε

eA?(t−s)CdWs +

t∫
kε

eA?(t−s)dsB?Ukε,
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which together with Ito’s Lemma, dWsdW
>
s = IdW ds (Oksendal, 2013), yields to

E
[
X>t QXt

∣∣∣Fkε] =

t∫
kε

tr
(
eA
>
? (t−s)QeA?(t−s)CC>

)
ds

+

eA?(t−kε)Xkε +

t∫
kε

eA?(t−s)dsB?Ukε

>Q
eA?(t−kε)Xkε +

t∫
kε

eA?(t−s)dsB?Ukε

 .

Plugging these results in the dynamic programming equation in (11), the expression in front of
the minimum becomes the following quadratic function of Ukε:

X>kεQ̃Xkε + 2X>kεG̃Ukε + U>kεR̃Ukε

+
(
ÃXkε + B̃Ukε

)>
Pk+1

(
ÃXkε + B̃Ukε

)
+ tr

(
P̃k+1CC

>
)
,

where Pk+1 = Qε, and

Ã = eA?ε,

B̃ =

ε∫
0

eA?sdsB?,

Q̃ =

ε∫
0

eA
>
? tQeA?tdt,

G̃ =

ε∫
0

eA
>
? tQ

 t∫
0

eA?(t−s)ds

B?dt,

R̃ = Rε+

ε∫
0

B>?

 t∫
0

eA
>
? (t−s)QeA?(t−s)ds

B?dt,

P̃k+1 = Pk+1

ε∫
0

eA
>
? seA?sds+

ε∫
0

 t∫
0

eA
>
? sQeA?sds

dt.

Note that in the last equation above, we used Ito Isometry (Baldi, 2017) to find P̃k+1. Now, per-
forming the minimization the optimal control action is

U?kε = −
(
B̃>Pk+1B̃ + R̃

)−1 (
B̃>Pk+1Ã+ G̃>

)
Xkε,

and (11) leads to

Vkε (Xkε) = X>kεPkXkε + tr

CC>
Pk+1

ε∫
0

eA
>
? seA?sds+

ε∫
0

 t∫
0

eA
>
? sQeA?sds

dt

 , (13)
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where Pk is calculated according to the discrete time Riccati equation

Pk = Q̃+ Ã>Pk+1Ã−
(
G̃+ Ã>Pk+1B̃

)(
B̃>Pk+1B̃ + R̃

)−1 (
B̃>Pk+1Ã+ G̃>

)
. (14)

It is shown that if there is some matrix L such that λmax

(
Ã+ B̃L

)
< 1, then as k → −∞,

the matrix Pk in the above discrete time Riccati equation converges to a uniquely existing matrix P
that solves the algebraic Riccati equation

P = Q̃+ Ã>PÃ−
(
G̃+ Ã>PB̃

)(
B̃>PB̃ + R̃

)−1 (
B̃>PÃ+ G̃>

)
, (15)

regardless of the terminal matrix for the largest value k+1, which here corresponds toPT/ε (Chan
et al., 1984; De Souza et al., 1986; Faradonbeh et al., 2018).

Next, we show that if ε is sufficiently small, then the matrix L mentioned above exists. To that
end, write

Ã = eA?ε =

∞∑
n=0

An? ε
n

n!
= IdX + εM(ε)A?,

B̃ =
∞∑
n=0

ε∫
0

An?s
n

n!
dsB? =

∞∑
n=0

An? ε
n+1

(n+ 1)!
B? = εM(ε)B?,

where

M(ε) =
∞∑
n=1

An−1? εn−1

n!
= IdX + ε

∞∑
n=2

An−1? εn−2

n!
.

Then, letting L be as in Assumption 1, if ε is small enough, it holds that

λ (M(ε) (A? +B?L)) < 0. (16)

That is because the eigenvalues of the matrix M(ε) (A? +B?L) are continuous functions of ε, and
for ε = 0 we have λ (M(0) (A? +B?L)) = λ ((A? +B?L)) < 0, according to Assumption 1.
Hence, Ã+ B̃L = IdX +M(ε) (A? +B?L) ε implies that eigenvalues of Ã+ B̃L are exactly one
plus the eigenvalues of M(ε) (A? +B?L) ε. So, it holds that

λmax

(
Ã+ B̃L

)2
≤ 1 + 2ελ (M(ε) (A? +B?L)) + λmax (M(ε) (A? +B?L))2 ε2. (17)

Now, putting (16) and (17) together, if ε is small enough, then λmax

(
Ã+ B̃L

)
< 1. Hence-

forth, suppose that ε is sufficiently small so that the latter inequality holds true.
As long as ε > 0 is small enough as described above, letting the time horizon T tend to infinity,

the ε-length frozen optimal policy for minimizing the expected average cost is

U?kε = −
(
B̃>PB̃ + R̃

)−1 (
B̃>PÃ+ G̃>

)
Xkε, (18)
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where P is the unique solution of (15). On the other hand, for a fixed time horizon T , as ε shrinks
the discrete-time Riccati equation in (14) becomes a continuous-time Riccati equation as follows.
First, we have

lim
ε→0

Ã− IdX
ε

= A?,

lim
ε→0

B̃

ε
= B?,

lim
ε→0

Q̃

ε
= Q,

lim
ε→0

G̃

ε
= 0,

lim
ε→0

R̃

ε
= R.

Using these limits, letting ε→ 0 in (14) leads to

lim
ε→0

Pk − Pk+1

ε
= lim

ε→0

Q̃

ε
+ lim
ε→0

Ã>Pk+1Ã− Pk+1

ε

− lim
ε→0

(
G̃+ Ã>Pk+1B̃

ε

)(
B̃>Pk+1B̃ + R̃

ε

)−1(
B̃>Pk+1Ã+ G̃>

ε

)
= Q+A>? Pk+1 + Pk+1A? − Pk+1B?R

−1B>? Pk+1.

That is, the backward differential equation

−dPt
dt

= ΦA?,B? (P ) , (19)

with the terminal condition PT = 0. Thus, as ε→ 0, the optimal policy becomes

U?t = −R−1B>? PtXt,

where Pt is the solution of (19). Similarly, letting ε → 0 in (15), we get the optimal policy U?t =
L (A?, B?)Xt for minimizing the infinite horizon expected average cost, where

L (A?, B?) = −R−1B>? K (A?, B?) ,

and K (A?, B?) solves ΦA?,B? (P ) = 0. Equivalently, letting Pt,T be the solution of (19) when the
time horizon is T , it holds that lim

T→∞
P0,T = K (A?, B?), whereK (A?, B?) solves ΦA?,B? (P ) = 0.

Note that all these relationships rely on the convergence of discrete time Riccati equation (14) to the
algebraic Riccati equation (15), as T →∞.

Next, subtracting V(k+1)ε (Xkε) from both sides of (10), dividing by ε, and letting ε → 0, Ito
Isomery implies that

−∂Vt (Xt)

∂t
dt = min

Ut
cXt,Ut (π?) dt+ E

[
dX>t

∂Vt (Xt)

∂Xt
+

1

2
dX>t

∂2Vt (Xt)

∂Xt∂X>t
dXt

∣∣∣∣∣Ft
]
,
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where we used the limits of the matrices Q̃, G̃, R̃ as ε→ 0 to find the expression on the right-hand-
side of the above equality. Note that the above partial derivatives exist according to (13) together
with Dominated Convergence Theorem. Hence, substituting for dXt from the dynamics (1), and
leveraging Ito’s Lemma, we obtain the Hamilton-Jacobi-Bellman (Yong and Zhou, 1999) equation

−∂Vt (Xt)

∂t
= min

Ut
cXt,Ut (π?) +

∂Vt (Xt)
>

∂Xt
(A?Xt +B?Ut) +

1

2
tr

(
∂2Vt (Xt)

∂Xt∂X>t
CC>

)
. (20)

Further, letting ε→ 0, the expression in (13) gives

Vt (Xt) = X>t PtXt +

T∫
t

tr
(
CC>Ps

)
ds, (21)

where Pt solve (19). This can be equivalently obtained using the fact that a quadratic function of
the form Vt (Xt) = X>t FtXt + ϕt solves the partial differential equation (20), as long as

−dϕt
dt
−X>t

dFt
dt

Xt = min
Ut

X>t QXt + U>t RUt

+ 2X>t Ft (A?Xt +B?Ut) + tr
(
FtCC

>
)
,

which after solving for Ut gives the optimal policy U?t = −R−1B>? FtXt, as well as

−dϕt
dt
−X>t

dFt
dt

Xt = X>t QXt + 2X>t Ft (A?Xt)

− X>t FtB?R
−1B>? FtXt + tr

(
FtCC

>
)
.

Because the equation above needs to hold for an arbitrary Xt, it splits to

−dFt
dt

= ΦA?,B? (Ft) ,
dϕt
dt

= −tr
(
FtCC

>
)
,

that is, Ft solves (19). Further, note that cost-to-go at time T is zero because time-to-go is zero,

which provides the terminal condition VT (XT ) = 0, implying that ϕt =
T∫
t

tr
(
CC>Fs

)
ds. There-

fore, the solutions Ft, ϕt of (20) lead to the same expression as in (21).
Finally, the expected average cost of the policy Ut = L (A?, B?)Xt is the limit of the expected

average cost of the policy Ut = −R−1B>? Pt,TXt, as T →∞;

lim sup
T→∞

1

T
E

 T∫
0

cs (π?)ds


= lim sup

T→∞

1

T

T∫
0

tr
(
CC>Ps,T

)
ds

= tr

(
CC> lim

T→∞
Ps,T

)
= tr

(
CC>K (A?, B?)

)
.
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Moreover, suppose that C = 0, and apply the policy Ut = L (A?, B?)Xt. Then, the state
trajectory becomes Xt = eD?tX0, where D? = A? +B?L (A?, B?). So, by (21), we have

X>0 K (A?, B?)X0

=

∞∫
0

X>t

(
Q+ L (A?, B?)

>RL (A?, B?)
)
Xtdt

= X>0

∞∫
0

eD
>
? t
(
Q+ L (A?, B?)

>RL (A?, B?)
)
eD?tdtX0,

for an arbitrary initial state X0. Thus, (6) holds:

K (A?, B?) =

∞∫
0

eD
>
? t
(
Q+ L (A?, B?)

>RL (A?, B?)
)
eD?tdt. (22)

Since Q is positive definite, the above equality implies that λ (D?) < 0, as well as

D>? K (A?, B?) +K (A?, B?)D?

+ Q+ L (A?, B?)
>RL (A?, B?) = 0. (23)

So far, we have shown that by restricting our search for an optimal decision-making policy to the
class of policies that the control action is frozen during intervals of length ε, and then letting ε decay
to vanish, we obtain optimal policies given by (19). Next, we show that these policies are optimal
in the larger class of all control policies satisfying the information criteria at every time. That is,
for all t, the control action Ut can be determined using Ft = σ (X0:t, U0:t). For this purpose, first
note that the decision-making policy Ut = R−1B>? K (A?, B?)Xt provides an upper-bound for the
optimal expected average cost. That is,

inf
π
Jπ ≤ tr

(
CC>K (A?, B?)

)
.

Now, suppose that there is another policy, denoted by π̃, that satisfies
Jπ̃ ≤ tr

(
CC>K (A?, B?)

)
. Define cost-to-go of the policy π̃ by

Ṽt (Xt) = E

 T∫
t

cs (π̃)ds

∣∣∣∣∣Ft
 ,

where T is large enough to satisfy
Ṽt (Xt) ≤ 2X>t K (A?, B?)Xt + 2T tr

(
CC>K (A?, B?)

)
, for all 0 ≤ t ≤ 1. Note that such T

exists since π̃ provides a smaller expected average cost than the policy Ut = R−1B>? K (A?, B?)Xt,
and the desired upper-bound for Ṽt (Xt) is 2Vt (Xt); two times the cost-to-go of the policy Ut =
R−1B>? K (A?, B?)Xt. Next, writing

Ṽt (Xt) = E

 t+ε∫
t

cXs,Us (π̃)ds+ Ṽt+ε (Xt+ε)

∣∣∣∣∣Ft
 ,
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subtract Ṽt+ε (Xt) from both sides, and divide by ε. Letting ε decay to zero, the upper-bound
for Ṽt (Xt) in terms of Vt (Xt) implies that according to Dominated Convergence Theorem, the
following derivatives exist and it holds that

−∂Ṽt (Xt)

∂t
= cXt,π̃(Ft) (π?)

+
∂Ṽt (Xt)

>

∂Xt
(A?Xt +B?π̃ (Ft)) +

1

2
tr

(
∂2Ṽt (Xt)

∂Xt∂X>t
CC>

)
.

Now, note that since ct (π?) as well as B?Ut are continuous functions of Ut, the above partial
differential equation for Ṽt (Xt) indicates that π̃ (Ft) is a continuous function of Xt. This, together
with the fact that Wt is an almost surely continuous function of time t, in lights of the dynamics
equation in (1), leads to continuity of state trajectory Xt; i.e., Ut = π̃ (Ft) is continuous as t varies.
Thus, decision-making policies that freeze for ε-length intervals provide accurate approximations
of Ut = π̃ (Ft) in a sense that there exists a sequence

{
U

(n)
t

}∞
n=1

such that U (n)
t freezes during

intervals of the length 1/n, and it holds that

lim sup
n→∞

lim sup
T→∞

1

T

T∫
0

E
[∣∣∣∣∣∣U (n)

t − π̃ (Ft)
∣∣∣∣∣∣]dt = 0.

Therefore, we have

Jπ̃ ≥ inf
ε>0

inf Jπ = tr
(
K (A?, B?)CC

>
)
,

where the inner infimum is taken over all policies that freeze during ε-length intervals. This shows
that the policy Ut = −R−1B>? K (A?, B?)Xt is an optimal one, which completes the proof.
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Appendix B. Proof of Theorem 2 (Stability margin)

First, we study eigenvalues of the sum of two matrices. Suppose that M,∆ are arbitrary square
matrices of the same size, and let M = P−1ΛP be the Jordan decomposition. That is, λ1, · · · , λk
are eigenvalues of M , Λ ∈ CdX×dX is a block diagonal matrix with blocks Λ1, · · · ,Λk, and

Λi =


λi 1 0 · · · 0 0
0 λi 1 0 · · · 0
...

...
...

...
...

...
0 0 · · · 0 λi 1
0 0 0 · · · 0 λi

 ∈ Cµi×µi . (24)

Further, similar to Definition 2, let µM = max
1≤i≤k

µi. We prove that λ (M −∆) is at most

λ (M) + µ
1/2
M

∣∣∣∣∣∣P∆P−1
∣∣∣∣∣∣ ∨ (µ1/2

M

∣∣∣∣∣∣P∆P−1
∣∣∣∣∣∣)1/µM . (25)

To show the above inequality, first let λ be an eigenvalue ofM−∆ that satisfies< (λ) > λ (M).
So, M − λI is an invertible matirx, and there exists at least one vector v, such that v 6= 0 and
(M −∆ − λI)P−1v = 0. Then, (M − λI)P−1v = ∆P−1v implies that

v = (Λ− λI)−1 P∆P−1v. (26)

Because Λ = diag (Λ1, · · · ,Λk), the matrix Λ − λI is block diagonal as well, and we have
(Λ− λI)−1 = diag

((
Λ1 − λIµ1

)−1
, · · · ,

(
Λk − λIµk

)−1). Further, it is straightforward to see

that
(
Λi − λIµi

)−1 is

−


(λ− λi)−1 (λ− λi)−2 · · · (λ− λi)−µi

0 (λ− λi)−1 · · · (λ− λi)−µi+1

...
...

...
...

0 · · · 0 (λ− λi)−1

 .
Therefore, we have ∣∣∣∣∣∣∣∣∣(Λi − λIµi)−1∣∣∣∣∣∣∣∣∣ ≤ µ1/2

i (|λ− λi| ∧ |λ− λi|µi)−1 .

Using this bound for the operator norms of blocks of the block-diagonal matrix (Λ− λI)−1, since
µi ≤ µM and < (λ) > λ (M), the equation in (26) implies

1 ≤
∣∣∣∣∣∣∣∣∣(Λ− λI)−1 P∆P−1

∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣(Λ− λI)−1
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣P∆P−1

∣∣∣∣∣∣
≤ µ

1/2
M

∣∣∣∣∣∣P∆P−1
∣∣∣∣∣∣ ((<(λ)− λ (M)

)
∧
(
<(λ)− λ (M)

)µM)−1 .
So, letting λ be an eigenvalue of M −∆ that satisfies <(λ) = λ (M −∆), we obtain (25).
Now, using (25), we compare A? + B?L (A,B) and D = A + BL (A,B). Since A? +

B?L (A,B)−D is
∆? = A? −A − (B? −B)R−1BK (A,B) , (27)
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using (5), and letting M = D in (25), we have

λ (A? +B?L (A,B)) ≤ −ρ+ µ
1/2
D

∣∣∣∣∣∣P−1∣∣∣∣∣∣|||P ||||||∆?||| ∨
(
µ
1/2
D

∣∣∣∣∣∣P−1∣∣∣∣∣∣|||P ||||||∆?|||
)1/µD

.

So, in order to have λ (A? +B?L (A,B)) < −δ, it suffices to show that

µ
1/2
D

∣∣∣∣∣∣P−1∣∣∣∣∣∣|||P ||||||∆?||| < ρ− δ ∧ (ρ− δ)µD . (28)

However, since |||∆?||| ≤ E (A,B)
(

1 ∨ |||B|||ζ
λmin(R)

)
, (7) provides (28), which leads to the desired

result.

B.1. Proof of sufficiency of (8) for stabilization bounds

Next, we show that E (A,B) ≤ ε0 is sufficient for stabilization and express uniform bounds for ρ, ζ
in (5). Let D? = A? + B?L (A?, B?) = P−1? Λ?P? be the Jordan decomposition as defined in the
beginning of the proof, and define the largest block size µ? = µD? , similar to Definition 2. Further,
suppose that the following is satisfied:

ε0 ≤
1

1 ∨ |||L (A?, B?)|||

(−λ (D?)
)
∧
(
−λ (D?)

)µ?
µ
1/2
?

∣∣∣∣∣∣P−1?

∣∣∣∣∣∣|||P?||| ∧

4

∞∫
0

∣∣∣∣∣∣eD?t∣∣∣∣∣∣2dt
−1 . (29)

The inequality in (29) implies that if we writeD1 = A+BL (A?, B?) = A?+B?L (A?, B?)+
∆1 = D? + ∆1, then, the matrix ∆1 = A −A? + (B −B?)L (A?, B?) satisfies

|||∆1||| <
(
−λ (D?)

)
∧
(
−λ (D?)

)µ?
µ
1/2
? |||P?|||

∣∣∣∣∣∣P−1?

∣∣∣∣∣∣ .

So, taking M = D?, the bound in (25) implies that λ (D1) < 0. Hence, we can employ Lemma 4
to study consequences of applying the linear feedback L (A?, B?) to a system of dynamics matrices
A,B, and get

K (A,B) ≤M = K (A,B) +

∞∫
0

eD
>
1 tFeD1tdt,

where
F = [L (A?, B?)− L (A,B)]>R [L (A?, B?)− L (A,B)] .

Above, we used the fact that the initial state X0 = x in Lemma 4 is arbitrary, and so, the involved
matrices are themselves equal. Further, similar to Lemma 4, it is straightforward to see that

M =

∞∫
0

eD
>
1 t
[
Q+ L (A?, B?)

>RL (A?, B?)
]
eD1tdt.

This leads to

Q+ L (A?, B?)
>RL (A?, B?) = −D>1 M −MD1

= −D>?M −MD? −∆>1 M −M∆1.
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Because λ (D?) < 0, the latter equation and (6) provide

M =

∞∫
0

eD
>
? t
[
Q+ L (A?, B?)

>RL (A?, B?) + ∆>1 M +M∆1

]
eD?tdt

=

∞∫
0

eD
>
? t
[
Q+ L (A?, B?)

>RL (A?, B?)
]
eD?tdt+

∞∫
0

eD
>
? t
[
∆>1 M +M∆1

]
eD?tdt

= K (A?, B?) +

∞∫
0

eD
>
? t
[
∆>1 M +M∆1

]
eD?tdt.

Therefore, it holds that |||M ||| ≤ |||K (A?, B?)||| + 2|||∆1||||||M |||
∞∫
0

∣∣∣∣∣∣eD?t∣∣∣∣∣∣2dt, which, according

to (29) and K (A,B) ≤M , yields to

|||K (A,B)||| ≤ |||M ||| ≤ 2|||K (A?, B?)|||. (30)

To proceed, suppose that v ∈ CdX satisfies ||v|| = 1 and Dv = λv. Now, (6) implies that

v∗K (A,B) v =

∞∫
0

v∗eD
>t
[
Q+ L (A,B)>RL (A,B)

]
eDtvdt

=

∞∫
0

∣∣∣∣∣∣∣∣[Q+ L (A,B)>RL (A,B)
] 1

2
eλtv

∣∣∣∣∣∣∣∣2dt,
where v∗ is the transposed complex conjugate of v. Thus, maximizing the left-hand-side above
while taking minimum on the right-hand-side, it holds that

|||K (A,B)||| ≥ λmin (Q)

∞∫
0

e2<(λ)tdt ≥ λmin (Q)

2< (−λ)
. (31)

Putting (30) and (31) together, we obtain λ (D) ≤ −λmin (Q) (4|||K (A?, B?)|||)−1. This and (30)
imply that E (A,B) ≤ ε0 is sufficient for (5), with ρ = λmin (Q) 4−1|||K (A?, B?)|||−1, ζ =
2|||K (A?, B?)|||. �
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Appendix C. Proof of Theorem 3 (Regret analysis)

Let M = Q + L (A?, B?)
>RL (A?, B?). Recall that π applies Ut = LtXt at time t. Now, for a

given T , suppose that ε > 0 is a fixed small real, and let N = dT/εe. Then, define the sequence of
policies {πi}Ni=0:

πi =

{
Ut = LtXt t < iε

Ut = L (A?, B?)Xt t ≥ iε
.

Note that as long as one concerns about times t ≤ T , it holds that π? = π0,πN = π. Clearly,

since Rπ0 (T ) = 0, we have Rπ (T ) =
N−1∑
i=0

(
Rπi+1 (T )−Rπi (T )

)
. Thus, Lemma 1 gives

Rπ (T ) =
N−1∑
i=0

(
X>iεFiεXiε + 2X>iε giε + βiε

)
, where the matrix Fiε, the vector giε, and the scalar

βiε are defined in (41), (42), and (43), respectively. Now, letting ε → 0, since Lt is piecewise
continuous, we have

Rπ (T ) =

T∫
0

(
X>t F̃tXt + 2X>t g̃t + β̃t

)
dt, (32)

where F̃t = lim
ε→0,iε→t

ε−1Fiε, g̃t = lim
ε→0,iε→t

ε−1giε, and β̃t = lim
ε→0,iε→t

ε−1βiε. Note that the above

limits exist, since Fiε, giε, βiε are continuous. To calculate F̃t, g̃t, β̃t, using Lemma 1 and the piece-
wise continuity of Lt, we obtain β̃t = 0,

F̃t = St + 2H>t

T∫
t

eD
>
? (s−t)MeD?(s−t)ds,

g̃t =

T∫
t

H>t eD>? (s−t)M

s∫
t

eD?(s−u)CdWu

ds,

where St = L>t RLt − L (A?, B?)
>RL (A?, B?), and

Ht = lim
ε→0

e(A?+B?Lt)ε − eD?ε

ε
= B? (Lt − L (A?, B?)) .

Now, by (6) and
∞∫
T

eD
>
? (s−t)MeD?(s−t)ds = ET−t, the expression for F̃t becomes

St +H>t K (A?, B?) +K (A?, B?)Ht −H>t ET−t − ET−tHt. (33)

So, after doing some algebra (see (51)), we get

St + H>t K (A?, B?) +K (A?, B?)Ht

= (Lt − L (A?, B?))
>R (Lt − L (A?, B?)) . (34)

Since Wu has independent increments and in g̃t we have u ≥ t, Fubini’s Theorem gives

E
[
X>t g̃t

]
= E

[
E
[
X>t g̃t

∣∣∣σ (W0:t)
]]

= E
[
X>t E

[
g̃t

∣∣∣σ (W0:t)
]]

= 0.
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Hence, (32), (33), (34), and Fubini’s Theorem imply that E [Rπ (T )] = E [αT ].
To proceed towards establishing the second result, apply Stochastic Fubini Theorem (Oksendal,

2013; Baldi, 2017) to get

T∫
0

X>t g̃tdt =

T∫
0

T∫
t

s∫
t

(
X>t H

>
t e

D>? (s−t)MeD?(s−u)C
)

dWudsdt

=

T∫
0

u∫
0

T∫
u

(
X>t H

>
t e

D>? (s−t)MeD?(s−u)C
)

dsdtdWu =

T∫
0

Y >u dWu,

where, using the expression for Ht, the vector Yu can be written as

Y >u =

u∫
0

T∫
u

(
X>t H

>
t e

D>? (s−t)MeD?(s−u)C
)

dsdt =

u∫
0

(
X>t (Lt − L (A?, B?))

> P>t,u

)
dt,

for P>t,u =
T∫
u
B>? e

D>? (s−t)MeD?(s−u)Cds. Now, letting VT =
T∫
0

||Yu||2du, for VT < 1, Ito

Isometry (Baldi, 2017), and for VT ≥ 1, Lemma 2, imply that

T∫
0

Y >u dWu = O
(
dWV

1/2
T log1/2 VT

)
. (35)

However, by using the triangle inequality and Fubini’s Theorem, we obtain

VT ≤
T∫
0

u∫
0

||Pt,u (Lt − L (A?, B?))Xt||2dtdu

=

T∫
0

X>t (Lt − L (A?, B?))
>

 T∫
t

P>t,uPt,udu

 (Lt − L (A?, B?))Xt

dt

≤
T∫
0

λmax

 T∫
t

R−1/2P>t,uPt,uR
−1/2du

∣∣∣∣∣∣R1/2 (Lt − L (A?, B?))Xt

∣∣∣∣∣∣2dt.
The second part of the integrand above appears in αT . So, we proceed by finding an upper-

bound for the first part. For this purpose, we use the triangle inequality and (6) to get the equation

λmax

 T∫
t

P>t,uPt,udu

 ≤
T∫
t

∣∣∣∣∣∣∣∣∣B>? eD>? (u−t)
∣∣∣∣∣∣∣∣∣2
∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
T∫
u

eD
>
? (s−u)MeD?(s−u)ds

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

|||C|||2du

≤ |||B?|||2|||K (A?, B?)|||2|||C|||2
∞∫
0

∣∣∣∣∣∣∣∣∣eD>? u∣∣∣∣∣∣∣∣∣2du.
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Therefore, by using (31), we get

VT ≤
|||B?|||2|||K (A?, B?)|||3|||C|||2

λmin (Q)λmin (R)
αT ,

since Et decays exponentially with t. So, (35) gives the desired result. �
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Appendix D. Proof of Theorem 4 (Analysis of Algorithm 1)

In order to establish Theorem 4, we study the estimation procedure in (9) and specify the accuracy at
which the algorithm is able to estimate A?, B?. To that end, Lemma 5 and Lemma 6 are utilized to

study the Gram matrix Vn =
γn∫
0

YsY
>
s ds in (9), while Lemma 2 is used for bounding the estimation

error. Then, by leveraging Lemma 3, we find the rates of deviating from the optimal policy in (3).
Finally, the resulting regret of Algorithm 1 is investigated in lights of Theorem 3.

By using (1) to substitute for dXt,

[
γn∫
0

YsdX
>
s

]>
V †n is

 γn∫
0

YsY
>
s [A?, B?]

>ds+

γn∫
0

YsdW
>
s C

>

> V †n .
In (38), we show that Vn is non-singular. So, we have γn∫

0

YsdX
>
s

> V −1n = [A?, B?] +

V −1n

γn∫
0

YsdW
>
s C

>

> . (36)

Because [A?, B?] ∈ S0, (9) and (36) lead to

E (An, Bn) ≤

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣V −1n

γn∫
0

YsdW
>
s C

>

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣+ |||Θn|||.

Since entries of Θn are N
(
0, γ−n/2n1/2

)
, we have

P
(
|||Θn||| ≥ d1/2X (dX + dU )1/2 γ−n/4n1/2

)
= O

(
e−n

1/2
)
.

This, by Borel-Cantelli Lemma, leads to

|||Θn||| = O
(
d
1/2
X (dX + dU )1/2 γ−n/4n1/2

)
.

Thus, letting d = dX + dU , according to Lemma 2, E (An, Bn) is at most

d1/2O

(
d
1/2
W |||C|||

(
logλmax (Vn)

λmin (Vn)

)1/2

+ d
1/2
X γ−n/4n1/2

)
. (37)

Now, Lemma 5 provides O (logλmax (Vn)) = n log γ . Further, we will shortly show that

lim inf
n→∞

γ−n/2λmin (Vn) ≥ λmin

(
CC>

)
. (38)

Thus, (37) and (38) yield to the upper-bound

E (An, Bn) = O

(
d1/2

(
d
1/2
X +

d
1/2
W |||C||| log1/2 γ

λmin (CC>)
1/2

)
γ−n/4n1/2

)
.
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This gives the first result in Theorem 4. To prove the other statement, let β? be as defined in
Lemma 3. So, Lemma 3 implies that

|||L (An, Bn)− L (A?, B?)|||2 = O

(
(dX + dU )β2?

(
dX +

dW |||C|||2 log γ

λmin (CC>)

)
γ−n/2n

)
.

Now, since during the time period γn−1 ≤ t < γn the feedback matrix is frozen toL (An−1, Bn−1),
according to Lemma 5, we have

γn∫
0

∣∣∣∣∣∣R1/2 (Lt − L (A?, B?))Xt

∣∣∣∣∣∣2dt = O

(
n∑
k=1

βLγ
k−1γ−(k−1)/2k

)
,

where

βL = dβ2?

(
dX +

dW |||C|||2 log γ

λmin (CC>)

)
(γ − 1) |||R||||||C|||2.

Moreover, since by Theorem 1 we have λ (D?) < 0, the matrix Et in Theorem 3 decays exponen-
tially with t. So, it holds that

T∫
0

(
X>t ET−tB? (Lt − L (A?, B?))Xt

)
dt = O

(
log2 T

)
.

Therefore, according to Theorem 3, we have the following:

Rπ (T ) = O

d(log T )/(log γ)e∑
k=1

γ(k−1)/2k

 = O
(
βL

log γ
T 1/2 log T

)
.

This, according to β? in Lemma 3, completes the proof.
To prove (38), let Dk−1 = A? +B?L (Ak−1, Bk−1). Then, by Lemma 5, we have

lim inf
k→∞

γ−kλmin

 γk∫
γk−1

XtX
>
t dt

 ≥ ηkλmin

(
CC>

)
, (39)

where ηk =
(
1− γ−1

)( 1∫
0

∣∣∣∣∣∣e−Dk−1s
∣∣∣∣∣∣2ds)−1. Hence, (39) implies that to establish (38), it suf-

fices to show that the following inequality holds for some 0 ≤ ` < n− 1:

lim inf
n→∞

λmin

(
n−1∑
k=`

γk−n/2
[

IdX
L (Ak, Bk)

] [
IdX

L (Ak, Bk)

]>)
≥ max

`≤k≤n−1

1

ηk
. (40)

For an arbitrary fixed ε > 0, consider the event that the above-mentioned smallest eigenvalue is
less than ε, and letMn(ε) be the set of matrices [Ak, Bk]

n−1
k=` for which this event occurs:

Mn(ε) =
{

[A`, B`, · · · , An−1, Bn−1] : λmin

(
P`,nP

>
`,n

)
≤ ε
}
,
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where the (dX + dU )× dX(n− `) matrix P`,n is[
γ
`
2
−n

4

[
IdX

L (A`, B`)

]
, · · · , γ

n−1
2
−n

4

[
IdX

L (An−1, Bn−1)

]]
.

Now, note that the set of all matrices

Fn =

[
γ`/2−n/4IdX · · · γ(n−1)/2−n/4IdX
γ`/2−n/4L` · · · γ(n−1)/2−n/4Ln−1

]
,

that there exists v ∈ RdX+dU satisfying ||v|| = 1 and F>n v = 0, is of dimension dX + dU − 1 +
(n − `)(dU − 1). To show that, on one hand, the set of unit dX + dU dimensional vectors is (a
sphere) of dimension dX + dU − 1. On the other hand, by writing v =

[
v>1 , v

>
2

]>, for v1 ∈ RdX
and v2 ∈ RdU , clearly, F>n v = 0 is equivalent to L>k v2 = −v1, for all k = `, · · · , n− 1. The latter
enforces every column of Lk to be in a certain hyperplane in RdU .

Thus, according to Lemma 6, the dimension ofMn(0) is at most dX+(dU−1)(n−`+1)+(n−
`)d2X . Further, if ` is sufficiently large so that γ−`+n/2ε < 1, then for every [Ak, Bk]

n−1
k=` ∈Mn(ε),

there exists some
[
Ãk, B̃k

]n−1
k=`
∈Mn(0), such that for all k = `, · · · , n− 1, it holds that∣∣∣∣∣∣∣∣∣[Ak, Bk]− [Ãk, B̃k]∣∣∣∣∣∣∣∣∣ = O

(
γ−k/2+n/4ε1/2

)
.

The random matrices {Θk}n−1k=0 are independent, and entries of Θk are independent identically dis-
tributed N

(
0, γ−k/2k1/2

)
random variables. Hence, we have

P(Mn(ε)) =
[
O
(
γ`/4`−1/4γ−`/2+n/4ε1/2

)
∧ 1
]m

,

where m = (dXdU − dU + 1) (n − `) − dX − dU + 1. To see that, note that Mn(0) is a
dX + (dU − 1)(n − ` + 1) + (n − `)d2X dimensional object in a dX(dX + dU )(n − `) dimen-
sional space. So, the exponent is at least m. Letting ` = n − 5, we have m ≥ 5. Further, as n

grows, O
(
`−1/4γ(n−`)/4ε1/2

)
< 1 holds for ε = max

`≤k≤n−1
ηk
−1. So, we have

∞∑
n=5

P(Mn(ε)) =

∞∑
n=5
O
(
n−1/4

)5
<∞, which by Borel-Cantelli Lemma implies (40). �
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Appendix E. Estimation Rates under Persistent Randomization

Proposition 1 Assume that in Algorithm 1 the variance of entries of Θn is σ2n, where

lim inf
n→∞

σn > 0.

Then, letting ωE be as in Theorem 4, Ys =
[
X>s , U

>
t

]>, and Vn =
γn∫
0

YsY
>
s ds, we have

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 γn∫

0

YsdX
>
s

> V †n − [A?, B?]

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

= O
(
ωEγ

−nn2
)
.

Proof By (36), it suffices to study ∆ = V †n
γn∫
0

YsdW
>
s C

>. In the sequel, we show that

lim inf
n→∞

nγ−nλmin (Vn) ≥ λmin

(
CC>

)
.

So, putting Lemma 2 and Lemma 5 together, we obtain the desired result, since they give

|||∆|||2 = O
(

(dX + dU ) dW |||C|||2
γ−nn2 log γ

λmin (CC>)

)
.

Thus, by (39), it is enough to show that for some 0 ≤ ` < n− 1,

lim inf
n→∞

λmin

(
n−1∑
k=`

γk−nn

[
IdX

L (Ak, Bk)

] [
IdX

L (Ak, Bk)

]>)

is at least ε = max
`≤k≤n−1

ηk
−1. LetMn(ε) be the set of [Ak, Bk]

n−1
k=` that the above does not hold:

Mn(ε) =
{

[A`, B`, · · · , An−1, Bn−1] : λmin

(
P`,nP

>
`,n

)
≤ ε
}

, where P`,n is[
γ
`−n
2 n

1
2

[
IdX

L (A`, B`)

]
, · · · , γ−

1
2n

1
2

[
IdX

L (An−1, Bn−1)

]]
.

Similar to the proof of Theorem 4, for [Ak, Bk]
n−1
k=` ∈Mn(ε), there is

[
Ãk, B̃k

]n−1
k=`
∈Mn(0),

such that
∣∣∣∣∣∣∣∣∣[Ak, Bk]− [Ãk, B̃k]∣∣∣∣∣∣∣∣∣2 = O

(
γn−kn−1ε

)
. Thus, lim inf

n→∞
σn > 0, together with the

dimension ofMn(0) that we calculated in the proof of Theorem 4, leads to

P(Mn(ε)) =
[
O
(
γ(n−`)/2n−1/2ε1/2

)
∧ 1
]m

,

for m = (dXdU − dU + 1) (n− `)− dX − dU + 1. Finally, ` = n− 4 gives
∞∑
n=4

P(Mn(ε)) <∞.

Therefore, Borel-Cantelli Lemma implies the desired result.
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Appendix F. Auxiliary Lemmas

In this section, we state the auxiliary lemmas used for establishing the main results and provide their
proofs, each subsection corresponding to one lemma.

First, in Lemma 1 in Subsection F.1, we provide expressions for the difference between the re-
grets of two policies. Study of self-normalized stochastic integrals is the content of Lemma 2, while
Lemma 3 on Lipschitz continuity of the optimal feedback with respect to the dynamics matrices is
established in Subsection F.3.

Next, in Lemma 4, we consider the total cumulative cost for the case of applying a sub-optimal
time-invariant linear feedback policy to a deterministic system. Then, Lemma 5 focuses on explicit
calculation of the empirical covariance matrix of the state vectors. Finally, in Lemma 6 in Sub-
section F.6 we specify the set of dynamics matrices that possess the same optimal linear feedback
matrix.

F.1. Difference in regrets of two policies

Lemma 1 For fixed 0 ≤ t1 ≤ t2 ≤ T , define the policies π1,π2 according to

πi =

{
Ut = LXt t < ti

Ut = L (A?, B?)Xt t ≥ ti
.

Further, let D? = A? + B?L (A?, B?), D = A? + B?L, M? = Q + L (A?, B?)
>RL (A?, B?),

M = Q + LRL, ∆t = eD(t−t1) − eD?(t−t1), Zt =
t∫
t1

[
eD(t−s) − eD?(t−s)

]
CdWs, and S =

M −M? = L>RL − L (A?, B?)
>RL (A?, B?).

Then, we have Rπ2 (T )−Rπ1 (T ) = X>t1Ft1Xt1 + 2X>t1gt1 + βt1 , where Ft1 , gt1 , and βt1 are

Ft1 =

t2∫
t1

(
eD
>
? (t−t1)SeD?(t−t1) + 2∆>t MeD?(t−t1) + ∆>t M∆t

)
dt

+

T∫
t2

(
2∆>t2e

D>? (t−t2)M?e
D?(t−t1) + ∆>t2e

D>? (t−t2)M?e
D?(t−t2)∆t2

)
dt, (41)

gt1 =

t2∫
t1

S t∫
t1

eD?(t−s)CdWs + ∆>t M

t∫
t1

eD?(t−s)CdWs + eD
>
? (t−t1)MZt

dt

+

t2∫
t1

∆>t MZtdt+

T∫
t2

∆>t2e
D>? (t−t2)M?

eD?(t−t2)Zt2 +

t∫
t1

eD?(t−s)CdWs

dt

+

T∫
t2

(
eD
>
? (t−t1)M?e

D?(t−t2)Zt2

)
dt, (42)

35



FARADONBEH FARADONBEH

βt1 =

t2∫
t1


∣∣∣∣∣∣
∣∣∣∣∣∣S1/2

t∫
t1

eD?(t−s)CdWs

∣∣∣∣∣∣
∣∣∣∣∣∣
2

+ 2Z>t M

t∫
t1

eD?(t−s)CdWs + Z>t MZt

dt

+

T∫
t2

2Z>t2e
D>? (t−t2)M?

t∫
t1

eD?(t−s)CdWs + Z>t2e
D>? (t−t2)M?e

D?(t−t2)Zt2

dt. (43)

Proof Letting Xπi
t be the state of the system under the policy πi, clearly, for t ≤ t1, it holds that

Xπ1
t = Xπ2

t . So, we use Xt1 for both states at time t1. Moreover, for t1 ≤ t ≤ t2, we have

Xπ1
t = eD?(t−t1)Xt1 +

t∫
t1

eD?(t−s)CdWs,

Xπ2
t = eD(t−t1)Xt1 +

t∫
t1

eD(t−s)CdWs,

where Yt = Xπ2
t −X

π1
t . So, by denoting the instantaneous cost of policy πi at time t by ct (πi),

we get Yt = ∆tXt1 + Zt, as well as

t2∫
t1

(ct (π2)− ct (π1))dt =

t2∫
t1

[
(Xπ1

t + Yt)
>M (Xπ1

t + Yt)−Xπ1
t
>M?X

π1
t

]
dt

=

t2∫
t1

[
Xπ1
t
>SXπ1

t + 2Y >t MXπ1
t + Y >t MYt

]
dt. (44)

On the other hand, for t ≥ t2, we have

T∫
t2

(ct (π2)− ct (π1))dt =

T∫
t2

[
(Xπ1

t + Yt)
>M? (Xπ1

t + Yt)−Xπ1
t
>M?X

π1
t

]
dt

=

T∫
t2

[
2Y >t M?X

π1
t + Y >t M?Yt

]
dt. (45)

and

Xπi
t = eD?(t−t2)Xπi

t2
+

t∫
t2

eD?(t−s)CdWs,

Yt = eD?(t−t2)
[
Xπ2
t2
−Xπ1

t2

]
= eD?(t−t2) [∆t2Xt1 + Zt2 ] .

Thus, putting (44) and (45) together, we obtain the desired results.
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F.2. Upper-bounding comparative ratios of stochastic integrals

Lemma 2 Suppose that Yt ∈ Rm is a vector-valued stochastic process such that Yt isFt-measurable

for the natural filtration Ft = σ
(
{Ws}0≤s≤t

)
. Then, letting Vt =

t∫
0

YsY
>
s ds, we have

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣(I + Vt)

−1/2
t∫

0

YsdW
>
s

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

= O (mdW logλmax (Vt)) .

Proof First, fix t > 0, and for an arbitrary ε > 0, let n = bt/εc. So, for k = 0, 1, · · · , n, consider

the sequence of matrices Mk = ε−1I +
k∑
i=0

YiεY
>
iε . Then, for k = 1, · · · , n, consider the sequence

of scalars βk defined according to βk = Y >kεM
−1
k−1Ykε. Using the formula for determinants of the

products of matrices, we have

detMk = det
[
Mk−1

(
I +M−1k−1YkεY

>
kε

)]
= det (Mk−1) det

(
I +M−1k−1YkεY

>
kε

)
.

Since all eigenvalues of I +M−1k−1YkεY
>
kε are unit, except one of them which is 1 +βk, we have

(1 + βk) detMk−1 = detMk. On the other hand, matrix inversion formula gives

M−1k = M−1k−1 −
1

1 + Y >kεM
−1
k−1Ykε

M−1k−1YkεY
>
kεM

−1
k−1,

which leads to

Y >kεM
−1
k Ykε = Y >kε

(
Mk−1 + YkεY

>
kε

)−1
Ykε = βk −

β2k
1 + βk

= 1− 1

1 + βk
= 1− detMk−1

detMk
.

Further, by using the inequality 1− β ≤ − log β for β > 0, the latter equality gives

Y >kεM
−1
k Ykε ≤ log detMk − log detMk−1. (46)

Now, let Fk =
k∑
i=0

Yiε
(
W(i+1)ε −Wiε

)>. Using the facts that Ykε, Fk−1, and Mk all are Fkε-

measurable, the Brownian motion Wt has independent increments, and its covariance matrix is a
multiple of identity, properties of conditional expectations give

E
[
F>k M

−1
k Fk

]
= E

[
E
[
F>k M

−1
k Fk

∣∣∣Fkε]]
= E

[
E
[(
Fk−1 + Ykε

(
W(k+1)ε −Wkε

)>)>
M−1k

(
Fk−1 + Ykε

(
W(k+1)ε −Wkε

)>) ∣∣∣Fkε]]
= E

[
F>k−1M

−1
k Fk−1 + E

[(
W(k+1)ε −Wkε

)
Y >kεM

−1
k Ykε

(
W(k+1)ε −Wkε

)> ∣∣∣Fkε]]
= E

[
F>k−1M

−1
k Fk−1 +

(
Y >kεM

−1
k Ykε

)
εI
]
.

So, using (46) together with the fact that (as positive semidefinite matrices) the order Mk−1 ≤
Mk holds, we get the telescopic relationships

λmax

(
E
[
F>k M

−1
k Fk

])
− λmax

(
E
[
F>k−1M

−1
k−1Fk−1

])
≤ ε

(
log

det (εMk)

det (εMk−1)

)
.
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Since F>k (Mk)
−1 Fk is positive semidefinite, its trace is larger than its largest eigenvalue.

Hence, adding up for k = 0, 1, · · · , n, by interchanging trace and expectation, we obtain

E
[
λmax

(
F>n (Mn)−1 Fn

)]
≤ E

[
tr
(
F>n (Mn)−1 Fn

)]
≤ dWλmax

(
E
[
F>n (Mn)−1 Fn

])
,

which, by εM0 ≥ I , leads to

E
[
λmax

(
F>n (εMn)−1 Fn

)]
≤ mdW logλmax (εMn) .

Thus, according to Doob’s Martingale Convergence Theorem (Oksendal, 2013; Baldi, 2017),
we have ∣∣∣∣∣∣∣∣∣(εMn)−1/2 Fn

∣∣∣∣∣∣∣∣∣2 = O (mdW logλmax (εMn)) .

Finally, letting ε → 0, we obtain the desired result, because εMn, Fn are ε-approximations of the
corresponding integrals.

F.3. Lipschitz continuity of optimal feedback

Lemma 3 Using the Jordan decomposition D? = A? + B?L (A?, B?) = P−1? Λ?P?, define µ? =
µD? , similar to Definition 2, and suppose that E (A,B) ≤ κ?, for

κ? =
1

1 ∨ |||L (A?, B?)|||

(−λ (D?)
)
∧
(
−λ (D?)

)µ?
µ
1/2
?

∣∣∣∣∣∣P−1?

∣∣∣∣∣∣|||P?||| ∧

4

∞∫
0

∣∣∣∣∣∣eD?t∣∣∣∣∣∣2dt
−1 .

Then, letting

β? =
2|||K (A?, B?)|||
λmin (R)

[
1 +

4|||B?|||
λmin (Q)

|||K (A?, B?)|||
(

1 ∨ 2 (|||B?|||+ κ?) |||K (A?, B?)|||
λmin (R)

)]
,

we have
|||L (A,B)− L (A?, B?)||| ≤ β?E (A,B) .

In general, without the condition E (A,B) ≤ κ?, the constant β? is replaced with

β =
|||K (A,B)|||
λmin (R)

+
2|||B?||||||K (A0, B0)|||2

λmin (Q)λmin (R)

(
1 ∨ (|||B?|||+ E (A,B)) |||K (A0, B0)|||

λmin (R)

)
,

for some convex combination [A0, B0] = η [A,B] + (1− η) [A?, B?], and 0 ≤ η ≤ 1.

Proof Fix the matrices A,B, and consider the matrix-valued curve

ϕ = {(1− η) [A?, B?] + η [A,B]}0≤η≤1 .

For an arbitraryA0, B0 ∈ ϕ, we find the derivative of the matrixK (A0, B0) atA0, B0, assuming
that the matrices A0, B0 vary along ϕ. For this purpose, letting ∆A = A −A?, ∆B = B −B?, we
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first calculate K (A1, B1) for A1 = A0 + η∆A, B1 = B0 + η∆B , and then let η → 0. First, letting
P = K (A1, B1)−K (A0, B0), we get

K (A0, B0)B1R
−1B>1 K (A0, B0)

= ηK (A0, B0) ∆BR
−1B>1 K (A0, B0) +K (A0, B0)B0R

−1B>1 K (A0, B0)

= η2K (A0, B0) ∆BR
−1∆>BK (A0, B0) + ηK (A0, B0) ∆BR

−1B>0 K (A0, B0)

+ ηK (A0, B0)B0R
−1∆>BK (A0, B0)

+ K (A0, B0)B0R
−1B>0 K (A0, B0) .

The above expression, because of

K (A1, B1)B1R
−1B>1 K (A1, B1)

= K (A1, B1)B1R
−1B>1 P +K (A1, B1)B1R

−1B>1 K (A0, B0)

= PB1R
−1B>1 P +K (A0, B0)B1R

−1B>1 P

+ PB1R
−1B>1 K (A0, B0) +K (A0, B0)B1R

−1B>1 K (A0, B0) ,

implies that the followings hold true:

K (A1, B1)B1R
−1B>1 K (A1, B1)−K (A0, B0)B0R

−1B>0 K (A0, B0)

= PB1R
−1B>1 P +K (A0, B0)B1R

−1B>1 P + PB1R
−1B>1 K (A0, B0)

+ η2K (A0, B0) ∆BR
−1∆>BK (A0, B0) + ηK (A0, B0) ∆BR

−1B>0 K (A0, B0)

+ ηK (A0, B0)B0R
−1∆>BK (A0, B0) . (47)

By plugging (47) and

A>1 K (A1, B1) +K (A1, B1)A1 = A>1 K (A0, B0) +A>1 P +K (A0, B0)A1 + PA1

= A>0 K (A0, B0) + η∆>AK (A0, B0) +A>1 P +K (A0, B0)A0 + ηK (A0, B0) ∆A + PA1,

in ΦAi,Bi (K (Ai, Bi)) = 0 for i = 0, 1, we obtain

0 =
[
A>1 −K (A0, B0)B1R

−1B>1

]
P + P

[
A1 −B1R

−1B>1 K (A0, B0)
]
− PB1R

−1B>1 P

+ η∆>AK (A0, B0) + ηK (A0, B0) ∆A − η2K (A0, B0) ∆BR
−1∆>BK (A0, B0)

− ηK (A0, B0) ∆BR
−1B>0 K (A0, B0)− ηK (A0, B0)B0R

−1∆>BK (A0, B0) ,

or equivalently,
0 = Ã>P + PÃ− PB1R

−1B>1 P + Q̃, (48)

for Ã = A1 −B1R
−1B>1 K (A0, B0), and

Q̃ = η∆>AK (A0, B0) + ηK (A0, B0) ∆A − η2K (A0, B0) ∆BR
−1∆>BK (A0, B0)

= ηK (A0, B0)
[
∆A + ∆BL (A0, B0)

]
+ η
[
L (A0, B0)

>∆>B + ∆>A

]
K (A0, B0)

− η2K (A0, B0) ∆BR
−1∆>BK (A0, B0) .
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Suppose that η is sufficiently small so that λ
(
Ã
)
< 0. Note that it is possible thanks to stabi-

lizability of A0, B0, Theorem 1, and lim
η→0

Ã = A0 +B0L (A0, B0) = D0. So, since PB1R
−1B>1 P

is a positive semidefinite matrix, (48) implies that

P =

∞∫
0

eÃ
>t
(
−PB1R

−1B>1 P + Q̃
)
eÃtdt

≤
∞∫
0

eÃ
>tQ̃eÃtdt ≤

∣∣∣∣∣∣∣∣∣Q̃∣∣∣∣∣∣∣∣∣ ∞∫
0

∣∣∣∣∣∣∣∣∣eÃt∣∣∣∣∣∣∣∣∣2dt
 IdX .

This, because of lim
η→0

Q̃ = 0, leads to lim
η→0

P = 0. Thus, letting M = ∆A + ∆BL (A0, B0) and

∆K(A0,B0) = lim
η→0

η−1P , (48) gives the following for ∆K(A0,B0):

∞∫
0

eD
>
0 t
(
K (A0, B0)M +M>K (A0, B0)

)
eD0tdt. (49)

By

K (A,B)−K (A?, B?) =

1∫
0

∆(1−η)[A?,B?]+η[A,B]dη,

(31), (49), and the Cauchy-Schwarz inequality provide

|||K (A,B)−K (A?, B?)|||

≤ E (A,B) sup
[A0,B0]∈ϕ

2|||K (A0, B0)||| (1 ∨ |||L (A0, B0)|||)
∞∫
0

∣∣∣∣∣∣eD0t
∣∣∣∣∣∣2dt

≤ E (A,B)
2

λmin (Q)
sup

[A0,B0]∈ϕ
|||K (A0, B0)|||2 (1 ∨ |||L (A0, B0)|||) .

Next, note that E (A,B) ≤ κ?, together with (29) and (30), implies that

|||K (A,B)−K (A?, B?)||| ≤ E (A,B)
8|||K (A?, B?)|||2

λmin (Q)

(
1 ∨ 2 (|||B?|||+ κ?) |||K (A?, B?)|||

λmin (R)

)
.

Therefore, using (30), and putting the above inequality together with

|||L (A,B)− L (A?, B?)|||
=

∣∣∣∣∣∣R−1 [(B? −B1)K (A,B) +B? (K (A?, B?)−K (A,B))]
∣∣∣∣∣∣

≤
∣∣∣∣∣∣R−1∣∣∣∣∣∣ [|||B? −B1||||||K (A,B)|||+ |||B?||||||K (A?, B?)−K (A,B)|||] ,

we get the first desired result. To establish the second result, it suffices to let A0, B0 be the one for
which the above supremum over ϕ is achieved.
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F.4. Effects of sub-optimal linear feedback policies

Lemma 4 Consider a noiseless linear dynamical system with the stabilizable dynamics matrices
A,B. That is, dXt = (AXt +BUt) dt, starting from X0 = x. Then, if we apply the linear
feedback

π : Ut = LXt,

as long as λ (A +BL) < 0, it holds that

∞∫
0

ct (π)dt = x>K (A,B)x+

∞∫
0

∣∣∣∣∣∣R1/2 (L − L (A,B)) e(A+BL)tx
∣∣∣∣∣∣2dt.

Proof Denote D1 = A + BL (A,B) and D2 = A + BL. So, the dynamics equation dXt =
(AXt +BLXt) dt implies that Xt = eD2tx, which leads to

∞∫
0

ct (π)dt =

∞∫
0

X>t

(
Q+ L>RL

)
Xtdt

=

∞∫
0

x>eD
>
2 t
(
Q+ L>RL

)
eD2txdt = x>Px,

where

P =

∞∫
0

eD
>
2 t
(
Q+ L>RL

)
eD2tdt

=

ε∫
0

eD
>
2 t
(
Q+ L>RL

)
eD2tdt

+ eD
>
2 ε

 ∞∫
0

eD
>
2 t
(
Q+ L>RL

)
eD2tdt

 eD2ε

=

ε∫
0

eD
>
2 t
(
Q+ L>RL

)
eD2tdt+ eD

>
2 εPeD2ε,

which yields to

Q+ L>RL = lim
ε→0

1

ε

ε∫
0

eD
>
2 t
(
Q+ L>RL

)
eD2tdt

= lim
ε→0

1

ε

[
P − eD>2 εP + eD

>
2 εP − eD>2 εPeD2ε

]
= −D>2 P − PD2.
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Similar to (23), it holds that D>1 K (A,B) + K (A,B)D1 + Q + L (A,B)>RL (A,B). So, sub-
tracting the latter two equalities, we get

(D2 −D1)
>K (A,B) +K (A,B) (D2 −D1) (50)

+ D>2 (P −K (A,B)) + (P −K (A,B))D2 + S = 0,

where
S = L>RL − L (A,B)>RL (A,B) .

Becauseλ (D2) < 0, solving (50) forP−K (A,B), and using the factD2−D1 = B [L − L (A,B)],
we have

P −K (A,B) =

∞∫
0

eD
>
2 tFeD2tdt,

where
F = S + [L − L (A,B)]>B>K (A,B) +K (A,B)B [L − L (A,B)] .

Then, using B>K (A,B) = −RL (A,B), after doing some algebra we obtain

S + [L − L (A,B)]>B>K (A,B) +K (A,B)B [L − L (A,B)]

= [L − L (A,B)]>R [L − L (A,B)] . (51)

Thus, P −K (A,B) is

∞∫
0

eD
>
2 t [L − L (A,B)]>R [L − L (A,B)] eD2tdt,

which implies the desired result.

F.5. Convergence of empirical covariance matrix of the state vectors

Lemma 5 Suppose that for t ≥ γ , the linear feedback L is applied to the system (1) such that
λ (D) < 0, where D = A? +B?L. Then, we have

lim
T→∞

1

T

γ+T∫
γ

XtX
>
t dt =

∞∫
0

eDsCC>eD
>sds.

Proof First, denote

VT =
1

T

γ+T∫
γ

XtX
>
t dt.

Then, define the matrix Yt = XtX
>
t , and apply Ito’s Formula (Baldi, 2017) to find dYt:

dYt = dXtX
>
t +XtdX

>
t + dXtdX

>
t .
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Plugging in for dXt from (1), we obtain

dYt = (DXtdt+ CdWt)X
>
t

+ Xt (DXtdt+ CdWt)
> + CC>dt,

where we used the facts dtdt = 0, dWtdt = 0, and Ito Isometry dWtdW
>
t = dtIdW (Baldi, 2017).

Thus, we have

Yγ+T − Yγ =

γ+T∫
γ

dYtdt =

γ+T∫
γ

(
DXtX

>
t +XtX

>
t D

> + CC>
)

dt+ TMγ,T ,

where

Mγ,T =
1

T

γ+T∫
γ

XtdW
>
t C

> +
1

T

 γ+T∫
γ

XtdW
>
t C

>

> .
This can equivalently be written as

1

T

(
Xγ+TX

>
γ+T −XγX

>
γ

)
= DVT + VTD

> + CC> +Mγ,T .

Since λ (D) < 0, the latter equality implies that VT is

∞∫
0

eDs
(
CC> +Mγ,T +

1

T
XγX

>
γ −

1

T
Xγ+TX

>
γ+T

)
eD

>sds.

Now, according to the following statements, the above leads to the desired result, because the terms
corresponding to Mγ,T , Xγ , Xγ+T vanish as T grows.

1. Clearly, it holds that lim
T→∞

T−1/2||Xγ || = 0.

2. Since λ (D) < 0, the expression

Xγ+T = eDTXγ +

γ+T∫
γ

eD(γ+T−s)CdWs

implies that lim
T→∞

T−1/2||Xγ+T || = 0.

3. Putting λ (D) < 0 together with Doob’s Martingale Convergence Theorem (Oksendal, 2013;
Baldi, 2017), we get lim

T→∞
Mγ,T = 0.
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F.6. Manifolds of dynamical systems with equal optimal feedback matrices

Lemma 6 Consider the set of dynamics matrices A,B that share optimal feedback with A0, B0:

M0 =
{

[A,B] ∈ RdX×(dX+dU ) : L (A,B) = L (A0, B0)
}
.

Then,M0 is a manifold of dimension d2X .

Proof Suppose that for the matrix [A,B] = [A0, B0] + ε [M,N ], it holds that L (A,B) =
L (A0, B0). We find the derivative of L (A0, B0) along the direction [M,N ]. First, using the
expressions in (23) for A,B and for A0, B0, we get

(D0 + εM + εNL (A0, B0))
>K (A,B)

+ K (A,B) (D0 + εM + εNL (A0, B0))

= −Q− L (A0, B0)
>RL (A0, B0)

= D>0 K (A0, B0) +K (A0, B0)D0,

where D0 = A0 + B0L (A0, B0). Simplifying the above expressions and letting ε → 0, for the
matrix

∆ = lim
ε→0

ε−1 (K (A,B)−K (A0, B0)) ,

we have

D>0 ∆ + ∆D0 + (M +NL (A0, B0))
>K (A0, B0)

+ K (A0, B0) (M +NL (A0, B0)) = 0.

Thus, since according to Theorem 1, λ (D0) < 0, it yields to

∆ =

∞∫
0

eD
>
0 tFeD0tdt,

where

F = (M +NL (A0, B0))
>K (A0, B0)

+ K (A0, B0) (M +NL (A0, B0)) .

On the other hand, L (A,B) = −R−1B>K (A,B) gives

0 = lim
ε→0

1

ε

(
B>K (A,B)−B>0 K (A0, B0)

)
= lim

ε→0

1

ε

[(
B> − B>0

)
K (A,B)

− B>0 (K (A0, B0)−K (A,B))

]
= N>K (A0, B0) +B>0 ∆.
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So,M0 is a manifold, and its tangent space consists of matricesM,N satisfying the above equation.
To find the dimension, select a dX × dX matrix P arbitrarily, and let N be

N = −K (A0, B0)
−1
∞∫
0

eD
>
0 t
[
P>K (A0, B0) +K (A0, B0)P

]
eD0tB0dt = 0. (52)

Note that since λmin (Q) > 0, the inverse K (A0, B0)
−1 exists. Then, solve for M according to

M +NL (A0, B0) = P . Therefore, the matrices M,N satisfy in N>K (A0, B0) +B>0 ∆ = 0, and
so correspond to a member ofM0. Conversely, every matrices M,N in the tangent space ofM0

provide a dX × dX matrix P = M + NL (A0, B0) such that N>K (A0, B0) + B>0 ∆ = 0. Thus,
M0 is of dimension d2X , which is the desired result.
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