
Proceedings of Machine Learning Research vol 195:1–21, 2023 36th Annual Conference on Learning Theory

On the Lower Bound of Minimizing Polyak-Łojasiewicz Functions

Pengyun Yue YUEPY@PKU.EDU.CN
National Key Lab of General AI, School of Intelligence Science and Technology, Peking University

Cong Fang� FANGCONG@PKU.EDU.CN
National Key Lab of General AI, School of Intelligence Science and Technology, Peking University
Institute for Artificial Intelligence, Peking University

Zhouchen Lin� ZLIN@PKU.EDU.CN

National Key Lab of General AI, School of Intelligence Science and Technology, Peking University
Institute for Artificial Intelligence, Peking University
Peng Cheng Laboratory

Editors: Gergely Neu and Lorenzo Rosasco

Abstract
Polyak-Łojasiewicz (PL) (Polyak, 1963) condition is a weaker condition than the strong convexity
but suffices to ensure a global convergence for the Gradient Descent algorithm. In this paper,
we study the lower bound of algorithms using first-order oracles to find an approximate optimal
solution. We show that any first-order algorithm requires at least Ω

(
L
µ log 1

ε

)
gradient costs to

find an ε-approximate optimal solution for a general L-smooth function that has an µ-PL constant.
This result demonstrates the optimality of the Gradient Descent algorithm to minimize smooth PL
functions in the sense that there exists a “hard” PL function such that no first-order algorithm can
be faster than Gradient Descent when ignoring a numerical constant. In contrast, it is well-known
that the momentum technique, e.g. Nesterov (2003, chap. 2), can provably accelerate Gradient
Descent to O

(√
L
µ̂ log 1

ε

)
gradient costs for functions that are L-smooth and µ̂-strongly convex.

Therefore, our result distinguishes the hardness of minimizing a smooth PL function and a smooth
strongly convex function as the complexity of the former cannot be improved by any polynomial
order in general.
Keywords: Polyak-Łojasiewicz condition, first-order optimization, complexity

1. Introduction

We consider the problem
min
x∈Rd

f(x), (1)

where the function f is L-smooth and satisfies the Polyak-Łojasiewicz condition. A function f is
said to satisfy the Polyak-Łojasiewicz condition if (2) holds for some µ > 0:

∥∇f(x)∥2 ≥ 2µ

(
f(x)− inf

y∈Rd
f(y)

)
, ∀x ∈ Rd. (2)

We refer to (2) as the µ-PL condition and simply denote infy∈Rd f(y) by f∗. The PL condi-
tion may be originally introduced by Polyak (Polyak, 1963) and Łojasiewicz (Lojasiewicz, 1963)

© 2023 P. Yue, C. Fang & Z. Lin.

YUE FANG LIN

independently. The PL condition is strictly weaker than strong convexity as one can show that any
µ̂-strongly convex function which by definition satisfies:

f(x) ≥ f(y) + ⟨∇f(y),x− y⟩+ µ̂

2
∥x− y∥2

is also µ̂-PL by minimizing both sides with respect to x (Karimi et al., 2016). However, the PL
condition does not even imply convexity. From a geometric view, the PL condition suggests that the
sum of the squares of the gradient dominates the optimal function value gap, which implies that any
local stationary point is a global minimizer. Because it is relatively easy to obtain an approximate
local stationary point by first-order algorithms, the PL condition serves as an ideal and weaker
alternative to strong convexity.

In machine learning, the PL condition has received wide attention recently. Lots of models
are found to satisfy this condition under different regimes. Examples include, but are not limited
to, matrix decomposition and linear neural networks under a specific initialization (Hardt and Ma,
2016; Li et al., 2018), nonlinear neural networks in the so-called neural tangent kernel regime (Liu
et al., 2022), reinforcement learning with linear quadratic regulator (Fazel et al., 2018). Compared
with strong convexity, the PL condition is much easier to hold since the reference point in the latter
only is a minimum point such that x∗ = argminy f(y), instead of any y in the domain.

Turning to the theoretic side, it is known (Karimi et al., 2016) that the standard Gradient Descent
algorithm admits a linear converge to minimize a L-smooth and µ-PL function. To be specific, in
order to find an ε-approximate optimal solution x̂ such that f(x̂)− f∗ ≤ ε, Gradient Decent needs
O(Lµ log 1

ε) gradient computations. However, it is still not clear whether there exist algorithms that
can achieve a provably faster convergence rate. In the optimization community, it is perhaps well-
known that the momentum technique, e.g. Nesterov (2003, chap. 2), can provably accelerate Gra-
dient Descent from O(Lµ̂ log 1

ε) to O
(√

L
µ̂ log 1

ε

)
for functions that are L-smooth and µ̂-strongly

convex. Even though some works (J Reddi et al., 2016; Lei et al., 2017) have considered accelera-
tions under different settings, probably faster convergence of first-order algorithms for PL functions
is still not obtained up to now.

In this paper, we study the first-order complexities to minimize a generic smooth PL function
and ask the question:

“Is the Gradient Decent algorithm (nearly) optimal or can we design a much faster algorithm?”
We answer the question in the language of min-max lower bound complexity for minimizing the

L-smooth and µ-PL function class. We analyze the worst complexity of minimizing any function
that belongs to the class using first-order algorithms. Excitingly, we construct a hard instance func-
tion showing that any first-order algorithm requires at least Ω

(
L
µ log 1

ε

)
gradient costs to find an

ε-approximate optimal solution. This answers the aforementioned question in an explicit way: the
Gradient Descent algorithm is already optimal in the sense that no first-order algorithm can achieve
a provably faster convergence rate in general ignoring a numerical constant. For the first time,
we distinguish the hardness of minimizing a PL function and a strongly convex function in terms
of first-order complexities, as the momentum technique for smooth and strongly convex functions
provably accelerates Gradient Descent by a certain polynomial order.

It is worth mentioning that the optimization problem under our consideration is high-dimensional
and the goal is to obtain the complexity bounds that do not have an explicit dependency on the di-
mension.

2

ON THE LOWER BOUND OF MINIMIZING POLYAK-ŁOJASIEWICZ FUNCTIONS

Our technique to establish the lower bound follows from the previous lower bounds in convex
(Nesterov, 2003) and non-convex optimization (Carmon et al., 2021). The main idea is to construct a
so-called “zero-chain” function ensuring that any first-order algorithm per-iteratively can only solve
one coordinate of the optimization variable. Then for a “zero-chain” function that has a sufficiently
high dimension, some number of entries will never reach their optimal values after the execution of
any first-order algorithm in certain iterations. To obtain the desired Ω

(
L
µ log 1

ε

)
lower bound, we

propose a “zero-chain” function similar to Carmon et al. (2020), which is composed of the worst
convex function designed by Nesterov (2003) and a separable function in the form as

∑T
i=1 vyi(xi)

to destroy the convexity. Different from their separable function, the one that we introduce has a
large Lipshictz constant. This property helps us to estimate the PL constant in a convenient way.
This new idea gives new insights into the constructions and analyses of instance functions, which
might be potentially generalized to establish the lower bounds for other non-convex problems.

Notation

We use bold letters, such as x, to denote vectors in the Euclidean space Rd, and bold capital letters,
such as A, to denote matrices. Id denotes the identity matrix of size d × d. We omit the subscript
and simply denote I as the identity matrix when the dimension is clear from context. For x ∈ Rd,
we use xi to denote its ith coordinate. We use supp(x) to denote the subscripts of non-zero entries
of x, i.e. supp(x) = {i : xi ̸= 0}. We use span

{
x(1), · · · ,x(n)

}
to denote the linear subspace

spanned by x(1), · · · ,x(n), i.e.
{
y : y =

∑n
i=1 aix

(i), ai ∈ R
}

. We call a function f L-smooth if
∇f is L-Lipschitz continuous, i.e. ∥∇f(x) − ∇f(y)∥ ≤ L∥x − y∥. We denote f∗ = infx f(x).
We let x∗ be any minimizer of f , i.e., x∗ = argmin f . We always assume the existence of x∗. We
say that x is an ε-approximate optimal point of f when f(x)− f∗ ≤ ε.

2. Related Work

Lower Bounds There has been a line of research concerning the lower bounds of algorithms on
certain function classes. To the best of our knowledge, (Nemirovskij and Yudin, 1983) defines the
oracle model to measure the complexity of algorithms, and most existing research on lower bounds
follow this formulation of complexity. For convex functions and first-order oracles, the lower bound
is studied in Nesterov (2003), where well-known optimal lower bound Ω(ε−

1
2) and Ω(κ log 1

ε)

are obtained. For convex functions and nth-order oracles, lower bounds Ω
(
ε−

2
3n+1

)
have been

proposed in Arjevani et al. (2019b). When the function is non-convex, it is generally NP-hard to
find its global minima, or to test whether a point is a local minimum or a saddle point (Murty and
Kabadi, 1985). Instead of finding ε-approximate optimal points, an alternative measure is finding
ε-stationary points where ∥∇f(x)∥ ≤ ε. Sometimes, additional constraints on the Hessian matrices
of second-order stationary points are needed. Results of this kind include Carmon et al. (2020,
2021); Fang et al. (2018); Zhou and Gu (2019); Arjevani et al. (2019a, 2020). Though a PL function
may be non-convex, it is tractable to find an ε-approximate optimal point, as local minima of a PL
function must be global minima. In this paper, we give the lower complexity bound for finding
ε-approximate optimal points.
PL Condition The PL condition was introduced by Polyak (Polyak, 1963) and Łojasiewicz (Lo-
jasiewicz, 1963) independently. Besides the PL condition, there are other relaxations of the strong
convexity, including error bounds (Luo and Tseng, 1993), essential strong convexity (Liu et al.,

3

YUE FANG LIN

2014), weak strong convexity (Necoara et al., 2019), restricted secant inequality (Zhang and Yin,
2013), and quadratic growth (Anitescu, 2000). Karimi et al. (2016) discussed the relationships
between these conditions. All these relaxations implies the PL condition except for the quadratic
growth, which implies that the PL condition is quite general. Danilova et al. (2020) studied the
convergence rate of Heavy-ball method on PL functions. Wang et al. (2022) proved an accelerated
convergence rate for Heavy-ball algorithm when the non-convexity is “averaged-out”. There are
many other papers that study designing practical algorithms to optimize a PL objective function
under different scenarios, for example, Bassily et al. (2018); Nouiehed et al. (2019); Hardt and Ma
(2016); Fazel et al. (2018); J Reddi et al. (2016); Lei et al. (2017).

3. Preliminaries

3.1. Upper bound on PL functions

Although the PL condition is a weaker condition than strong convexity, it guarantees linear conver-
gence for Gradient Descent. The result can be found in Polyak (1963) and Karimi et al. (2016). We
present it here for completeness.

Theorem 1 If f is L-smooth and satisfies µ-PL condition, then the Gradient Descent algorithm
with a constant step-size 1

L :

x(k+1) = x(k) − 1

L
∇f(x(k)), (3)

has a linear convergence rate. We have:

f(x(k))− f∗ ≤
(
1− µ

L

)k
(f(x(0))− f∗). (4)

Theorem 1 shows that the Gradient Descent algorithm finds the ε-approximate optimal point
of f in O

(
L
µ log 1

ε

)
gradient computations. This gives an upper complexity bound for first-order

algorithms. However, it remains open to us whether there are faster algorithms for smooth PL
functions. We will establish a lower complexity bound on first-order algorithms, which nearly
matches the upper bound.

3.2. Definitions of algorithm classes and function classes

An algorithm is a mapping from real-valued functions to sequences. For algorithm A and f : Rd →
R, we define A[f] = {x(i)}i∈N to be the sequence of algorithm A acting on f , where x(i) ∈ Rd.

Note here, the algorithm under our consideration works on function defined on any Euclidean
space. We call it the dimension-free property of the algorithm.

The definition of algorithms abstracts away from the the optimization process of a function. We
consider algorithms which only make use of the first-order information of the iteration sequence.
We call them first-order algorithms. If an algorithm is a first-order algorithm, then

x(i) = A(i)
(
x(0),∇f(x(0)), · · · ,x(i−1),∇f(x(i−1))

)
, (5)

4

ON THE LOWER BOUND OF MINIMIZING POLYAK-ŁOJASIEWICZ FUNCTIONS

where A(i) is a function depending on A. Perhaps the simplest example of first-order algorithms is
Gradient Descent.

We are interested in finding an ε-approximate point of a function f . Given a function f : Rd →
R and an algorithm A, the complexity of A on f is the number of queries to the first-order oracle
needed to find an ε-approximate point. We denote Tε(A, f) to be the gradient complexity of A on
f , then

Tε(A, f) = min
t

{
t : f(x(t))− f∗ ≤ ε

}
. (6)

In practice, we do not have the full information of the function f . We only know that f is
in a particular function class F , such as L-smooth functions. Given an algorithm A. We denote
Tε(A,F) to be the complexity of A on F , and define Tε(A,F) as follows:

Tε(A,F) = sup
f∈F

Tε(A, f). (7)

Thus, Tε(A,F) is the worst-case complexity of functions f ∈ F .
For searching an ε-approximate optimal point of a function in F , we need to find an algorithm

which have a low complexity on F . Denote an algorithm class by A. The lower bound of an
algorithm class on F describes the efficiency of algorithm class A on function class F , which is
defined to be

Tε(A,F) = inf
A∈A

Tε(A,F) = inf
A∈A

sup
f∈F

Tε(A, f). (8)

3.3. Zero-respecting Algorithm

Among all the algorithms, a special algorithm class is called zero-respecting algorithms. If A is
a zero-respecting algorithm and A[f] =

{
x(t)
}
t∈N, then the following condition holds for all f :

Rd → R:

supp{x(n) − x(0)} ∈
n−1⋃
i=1

supp{∇f(x(i))}. (9)

Note that if x(n) − x(0) lies in the linear subspace spanned by ∇f(x(0)), · · · ,∇f(x(n−1)), then A
is a zero-respecting algotithm. We denote the collection of first-order zero-respecting algorithms
with x(0) = 0 by Azr. It is shown by Nemirovskij and Yudin (1983) that a lower complexity bound
on first-order zero-respecting algorithms are also a lower complexity bound on all the first-order
algorithm when the function class satisfies the orthogonal invariance property.

3.4. Zero-chain

A zero-chain f is a function that safisfies the following condition:

supp(x) ⊆ {1, 2, · · · , k} =⇒ supp(∇f(x)) ⊆ {1, 2, · · · , k + 1}, ∀x. (10)

In other words, the support of ∇f(x) lies in a restricted linear subspace depending on the support
of x.

The “worst function in the (convex) world” in Nesterov (2003) defined as

fd(x) =
1

2
(x1 − 1)2 +

d−1∑
i=1

(xi+1 − xi)
2 (11)

5

YUE FANG LIN

is a zero-chain, because if xi = 0 for i > n, then (∇fd(x))i+1 = 0 for i > n. A zero-chain is dif-
ficult to optimize for zero-respecting algorithms, because zero-respecting algorithms only discover
one coordinate by one gradient computation.

4. Main results

According to Theorem 1, we already have an upper complexity bound O
(
L
µ log 1

ε

)
by applying

Gradient Descent to all the PL functions. In this section, we establish the lower complexity bound
of first-order algorithms on PL functions. Let P(∆, µ, L) be the collection of all L-smooth and
µ-PL functions f with f(x(0)) − f∗ ≤ ∆. We establish a lower bound of Tε (Azr,P(∆, µ, L))
by constructing a function which is hard to optimize for zero-respecting algorithms, and extend the
result to first-order algorithms. We present a hard instance that can achieve the desired Ω

(
κ log 1

ε

)
lower bound below.

We first introduce several components of the hard instance. For the non-convex part, we define

vy(x) =


1
2x

2, x ≤ 31
32y,

1
2x

2 − 16
(
x− 31

32y
)2

, 31
32y < x ≤ y,

1
2x

2 − y2

32 + 16
(
x− 33

32y
)2

, y < x ≤ 33
32y,

1
2x

2 − y2

32 , x > 33
32y,

(12)

where y > 0 is a constant. By the definition of vy, we have

v′y(x) =


x, x ≤ 31

32y,

x− 32
(
x− 31

32y
)
, 31

32y < x ≤ y,

x+ 32
(
x− 33

32y
)
, y < x ≤ 33

32y,

x, x > 33
32y.

(13)

Define

by(x) =

{
y − 32|x− y|, 31

32y ≤ x ≤ 33
32y,

0, otherwise.
(14)

Then we have v′y(x) = x− by(x).
For the convex part, we define qT,t(x) as follows (for the convenience of notation, we define

x0 = 0):

qT,t(x) =
1

2

t−1∑
i=0

(7

8
xiT − xiT+1

)2

+
T−1∑
j=1

(xiT+j+1 − xiT+j)
2

 , (15)

where x ∈ RTt. qT,t is a quadratic function of x, thus can be written as

qT,t(x) =
1

2
xTBx, (16)

where B is a positive semi-definite symmetric matrix. B satisfies 0 ⪯ B ⪯ 4I, because the sum of
absolute value of non-zero entries of each row of B is smaller or equal to 4.

The quadratic part q is very similar to “the worst function in the (convex) world” in Nesterov
(2003), and the definition of vy is inspired by the hard instance in Carmon et al. (2021). Our hard

6

ON THE LOWER BOUND OF MINIMIZING POLYAK-ŁOJASIEWICZ FUNCTIONS

instance differs from previous ones mainly in the large Lipschitz constant of its gradient. We note
that the controlled degree of nonsmoothness is crucial for our estimate of PL constant.

Let y ∈ RTt be a vector satisfying yqT+b =
(
7
8

)q, where q ∈ N, b ∈ {1, 2, · · · , T}. We define
the hard instance gT,t : RTt → R as follows:

gT,t(x) = qT,t(x) +

Tt∑
i=1

vyi(xi). (17)

Now we list some properties of gT,t in Lemma 2, which we prove in Appendix B.

Lemma 2 gT,t satisfies the following.

1. gT,t(y − x) is a zero-chain.

2. x∗ = 0, g∗T,t = 0, gT,t(x) ≤ 1
2x

T (B+ I)x.

3. gT,t is 37-smooth.

4. gT,t satisfies the 1
C3T

-PL condition, where C3 is a universal constant.

Define g̃ to be the following function, which is hard for first-order algorithms:

g̃(x) =
LT−1D2

37
gT,t

(
y − T 1/2D−1x

)
, (18)

where D = c∥x(0) − x∗∥, and c is a constant. In smooth optimization, D is often treated as a
constant.

In Lemma 3 below, we show that g̃ is hard for first-order zero-respecting algorithms:

Lemma 3 Assume that ε < 0.01 and let t = 2
⌊
log 8

7

3
2ε

⌋
. A first-order zero-respecting algorithm

with x(0) = 0 needs at least 1
2Tt gradient computations to find a point x satisfying g̃(x) − g̃∗ ≤

ε(g̃(x(0))− g̃∗).

Proof By induction, we have supp(x(k)) ⊆ {1, · · · , k}. By the definition of g̃ and vy, we have

gT,t(0) =
1

2
+

t−1∑
i=0

Tv
(7
8)

i

((
7

8

)i
)

=
1

2
+ T

t−1∑
i=0

31

64

(
7

8

)2i

=
1

2
+ T · 31

15
·

(
1−

(
7

8

)2t
)

≤ 3T.

(19)

7

YUE FANG LIN

For k ≤ 1
2Tt,

gT,t(x
(k)) ≥

t∑
i= t

2

Tv
(7
8)

i

((
7

8

)i
)

= T
t∑

i= t
2

31

64

(
7

8

)2i

= T ·
(
7

8

) t
2

· 31
15

(
1−

(
7

8

)t
)

≥ 2T · 3ε
2

= 3Tε.

(20)

Therefore, for k ≤ 1
2Tt, g̃(x

(k))− g̃∗ ≥ ε(g̃(x(0))− g̃∗).

With Lemma 2 and 3, we obtain a lower bound for zero-respeting algorithms:

Theorem 4 Given L ≥ µ > 0. When κ = L
µ > C4 where C4 is a universal constant, there exists T

and t such that g̃ is L-smooth and µ-PL. Moreover, any first-order zero-respecting algorithm with
x(0) = 0 needs at least Ω

(
κ log 1

ε

)
gradient computations to find a point x satisfying g̃(x)− g̃∗ ≤

ε(g̃(x(0))− g̃∗).

Proof We let C4 = 370C3. Given κ > C4, we let

T =

⌊
κ

37C3

⌋
, (21)

and

t = 2

⌊
log 8

7

3

2ε

⌋
. (22)

We use Lemma 2 to calculate the smoothness constant and PL constant of g̃. The smoothness
constant of g̃ is:

LT−1D2

37
· TD−2 · 37 = L, (23)

and the PL constant of g̃ is:

LT−1D2

37
· TD−2 · 1

C3T
=

L

37C3T

a
=

L

37C3
· 1⌊

κ
37C3

⌋
≥ L

κ
= µ,

(24)

where a
= uses (21).

8

ON THE LOWER BOUND OF MINIMIZING POLYAK-ŁOJASIEWICZ FUNCTIONS

Finally, by Lemma 3, any first-order zero-respecting algorithm needs at least Tt
2 accesses to

gradient to find x such that g̃(x)− g̃∗ ≤ ε
(
g̃(x(0))− g̃∗

)
. By (21) and (22),

Tt

2
≥
(

κ

37C1
− 1

)
·
(
log 8

7

3

2ε

)
= Ω

(
κ log

1

ε

)
, (25)

which completes the proof.

Using the technique of Nemirovskij and Yudin (1983), for specific function classes such as
PL functions, a lower complexity bound on first-order zero-respecting algorithms is also a lower
complexity bound on all the first-order algorithms. Denoting the set of all first-order algorithms by
A(1), we have the following lemma:

Lemma 5
Tε
(
A(1),P(∆, µ, L)

)
≥ Tε (Azr,P(∆, µ, L)) . (26)

Proof The set P(∆, µ, L) satisfies orthogonal invariance property (Bassily et al., 2018). Therefore,
the results follows from Proposition 1 of Carmon et al. (2020).

Finally, we arrive at a lower bound for first-order algorithms:

Theorem 6 For any 0 < a < 1, when ε ≤ 1
16∆,

Tε
(
A(1),P(∆, µ, L)

)
≥ Ω

(
κ log

1

ε

)
. (27)

Proof The result is a direct corollary of Theorem 4 and Lemma 5.

This bound matches the convergence rate of Gradient Descent up to a constant.

5. Numerical experiments

We conduct numerical experiments on our hard instance. We consider the κ relatively large, which
can reduce the factors from the numerical constants. We first choose κ and ε, and then decide T and
t using (21) and (22). We use Gradient Descent, Nesterov’s Accelerated Gradient Descent (AGD)
and Polyak’s Heavy-ball Method to optimize the hard instance. As AGD and the Heavy-ball Method
are designed for convex functions, we need to choose appropriate parameter µ̂ in both algorithms,
because our hard instance is non-convex. For AGD, We let µ̂ = µ, the PL constant of our hard
instance. For Heavy-ball method, we adopt the parameter setting in (Danilova et al., 2020).

GD, AGD and Heavy-ball Method are all zero-respecting algorithms, so Lemma 3 and Theorem
4 applies to their convergence rates. From Figure 1, we observe that all three algorithms converge
almost linearly, but the number of greadient queries is more than the complexity lower bound. The
result is consistent with Lemma 3 and Theorem 4.

9

YUE FANG LIN

0 100 200 300 400 500 600 700
Gradient queries

10

8

6

4

2

0

log10
g(xk)
g(x0)

Lower bound
GD
AGD
Heavy-ball

(a) κ = 1.9709× 106, ε = 10−10

0 1000 2000 3000 4000 5000 6000
Gradient queries

20.0
17.5
15.0
12.5
10.0

7.5
5.0
2.5
0.0

log10
g(xk)
g(x0)

Lower bound
GD
AGD
Heavy-ball

(b) κ = 7.3119× 106, ε = 10−20

Figure 1: Convergence rate under Gradient Descent, Nesterov’s Accelerated Gradient Descent and
Polyak’s Heavy-ball Method

6. Conclusion

We construct a lower complexity bound on optimizing smooth PL functions with first-order meth-
ods. A first-order algorithm needs at least Ω

(
L
µ log 1

ε

)
gradient access to find an ε-approximate

optimal point of an L-smooth µ-PL function. Our lower bound matches the convergence rate of
Gradient Descent up to constants.

We only focus on deterministic algorithms in this paper. We conjecture that our results can be
extended to randomized algorithms, using the same technique in Nemirovskij and Yudin (1983) and
explicit construction in Woodworth and Srebro (2016) and Woodworth and Srebro (2017). We leave
its formal derivation to the future work.

Acknowledgments

C. Fang and Z. Lin were supported by National Key R&D Program of China (2022ZD0160302). Z.
Lin was also supported by the NSF China (No. 62276004), the major key project of PCL, China
(No. PCL2021A12) and Qualcomm.

References

Mihai Anitescu. Degenerate nonlinear programming with a quadratic growth condition. SIAM
Journal on Optimization, 10(4):1116–1135, 2000.

Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake Woodworth.
Lower bounds for non-convex stochastic optimization. arXiv preprint arXiv:1912.02365, 2019a.

Yossi Arjevani, Ohad Shamir, and Ron Shiff. Oracle complexity of second-order methods for
smooth convex optimization. Mathematical Programming, 178(1-2):327–360, November 2019b.
ISSN 0025-5610, 1436-4646. doi: 10.1007/s10107-018-1293-1. URL http://link.
springer.com/10.1007/s10107-018-1293-1.

10

http://link.springer.com/10.1007/s10107-018-1293-1
http://link.springer.com/10.1007/s10107-018-1293-1

ON THE LOWER BOUND OF MINIMIZING POLYAK-ŁOJASIEWICZ FUNCTIONS

Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Ayush Sekhari, and Karthik Sridha-
ran. Second-order information in non-convex stochastic optimization: Power and limitations. In
Conference on Learning Theory, pages 242–299. PMLR, 2020.

Raef Bassily, Mikhail Belkin, and Siyuan Ma. On exponential convergence of SGD in non-convex
over-parametrized learning. arXiv preprint arXiv:1811.02564, 2018.

Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding stationary
points I. Mathematical Programming, 184(1):71–120, 2020.

Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding stationary
points II: first-order methods. Mathematical Programming, 185(1):315–355, 2021.

Marina Danilova, Anastasiia Kulakova, and Boris Polyak. Non-monotone behavior of the heavy
ball method. In Difference Equations and Discrete Dynamical Systems with Applications: 24th
ICDEA, Dresden, Germany, May 21–25, 2018 24, pages 213–230. Springer, 2020.

Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. SPIDER: Near-optimal non-convex
optimization via stochastic path-integrated differential estimator. Advances in Neural Information
Processing Systems, 31, 2018.

Maryam Fazel, Rong Ge, Sham Kakade, and Mehran Mesbahi. Global convergence of policy gradi-
ent methods for the linear quadratic regulator. In International Conference on Machine Learning,
pages 1467–1476. PMLR, 2018.

Moritz Hardt and Tengyu Ma. Identity matters in deep learning. arXiv preprint arXiv:1611.04231,
2016.

Sashank J Reddi, Suvrit Sra, Barnabas Poczos, and Alexander J Smola. Proximal stochastic methods
for nonsmooth nonconvex finite-sum optimization. Advances in neural information processing
systems, 29, 2016.

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
gradient methods under the polyak-łojasiewicz condition. In Joint European Conference on Ma-
chine Learning and Knowledge Discovery in Databases, pages 795–811. Springer, 2016.

Lihua Lei, Cheng Ju, Jianbo Chen, and Michael I Jordan. Non-convex finite-sum optimization via
scsg methods. Advances in Neural Information Processing Systems, 30, 2017.

Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. Algorithmic regularization in over-parameterized
matrix sensing and neural networks with quadratic activations. In Conference On Learning The-
ory, pages 2–47. PMLR, 2018.

Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Loss landscapes and optimization in over-
parameterized non-linear systems and neural networks. Applied and Computational Harmonic
Analysis, 2022.

Ji Liu, Steve Wright, Christopher Ré, Victor Bittorf, and Srikrishna Sridhar. An asynchronous par-
allel stochastic coordinate descent algorithm. In International Conference on Machine Learning,
pages 469–477. PMLR, 2014.

11

YUE FANG LIN

Stanislaw Lojasiewicz. A topological property of real analytic subsets. Coll. du CNRS, Les
équations aux dérivées partielles, 117(87-89):2, 1963.

Zhi-Quan Luo and Paul Tseng. Error bounds and convergence analysis of feasible descent methods:
a general approach. Annals of Operations Research, 46(1):157–178, 1993.

Katta G Murty and Santosh N Kabadi. Some NP-complete problems in quadratic and nonlinear
programming. Technical report, 1985.

Ion Necoara, Yu Nesterov, and Francois Glineur. Linear convergence of first order methods for
non-strongly convex optimization. Mathematical Programming, 175(1):69–107, 2019.

Arkadij Semenovič Nemirovskij and David Borisovich Yudin. Problem complexity and method
efficiency in optimization. 1983.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer
Science & Business Media, 2003.

Maher Nouiehed, Maziar Sanjabi, Tianjian Huang, Jason D Lee, and Meisam Razaviyayn. Solving
a class of non-convex min-max games using iterative first order methods. Advances in Neural
Information Processing Systems, 32, 2019.

B.T. Polyak. Gradient methods for the minimisation of functionals. USSR Computational Mathe-
matics and Mathematical Physics, 3(4):864–878, 1963.

Jun-Kun Wang, Chi-Heng Lin, Andre Wibisono, and Bin Hu. Provable acceleration of heavy ball be-
yond quadratics for a class of polyak-lojasiewicz functions when the non-convexity is averaged-
out. In International Conference on Machine Learning, pages 22839–22864. PMLR, 2022.

Blake Woodworth and Nathan Srebro. Lower bound for randomized first order convex optimization.
arXiv preprint arXiv:1709.03594, 2017.

Blake E Woodworth and Nati Srebro. Tight complexity bounds for optimizing composite objectives.
Advances in neural information processing systems, 29, 2016.

Hui Zhang and Wotao Yin. Gradient methods for convex minimization: better rates under weaker
conditions. arXiv preprint arXiv:1303.4645, 2013.

Dongruo Zhou and Quanquan Gu. Lower bounds for smooth nonconvex finite-sum optimization.
In International Conference on Machine Learning, pages 7574–7583. PMLR, 2019.

Appendix A. Proof of Theorem 1

Theorem 1 If f is L-smooth and satisfies µ-PL condition, then the Gradient Descent algorithm
with a constant step-size 1

L :

x(k+1) = x(k) − 1

L
∇f(x(k)), (28)

has a linear convergence rate. We have:

f(x(k))− f∗ ≤
(
1− µ

L

)k
(f(x(0))− f∗). (29)

12

ON THE LOWER BOUND OF MINIMIZING POLYAK-ŁOJASIEWICZ FUNCTIONS

Proof The proof is taken from Karimi et al. (2016). By the L-smoothness of f ,

f(x(k+1)) ≤ f(x(k)) +
〈
∇f(x(k)),x(k+1) − x(k)

〉
+

L

2

∥∥∥x(k+1) − x(k)
∥∥∥2 . (30)

Applying (3) and (2) in (30), we have

f(x(k+1))− f(x(k)) ≤ 1

2L
−
∥∥∥∇f(x(k))

∥∥∥2 ≤ −µ

L

(
f(x(k))− f∗

)
. (31)

Rearranging terms in (31), we have

f(x(k+1))− f∗ ≤
(
1− µ

L

)(
f(x(k))− f∗

)
. (32)

Applying (32) recursively gives the result.

Appendix B. Omitted proof in Section 4

B.1. Proof of Lemma 2

Lemma 2 gT,t satisfies the following.

1. gT,t(y − x) is a zero-chain.

2. x∗ = 0, g∗T,t = 0, gT,t(x) ≤ 1
2x

T (B+ I)x.

3. gT,t is 37-smooth.

4. gT,t satisfies the 1
C3T

-PL condition, where C3 is a universal constant.

Proof In the proof of Lemma 2, we define

b(x) =

 by1(x1)
...

byTt(xTt)

 . (33)

1. We have
∇gT,t(y − x) = −(B(y − x) + (y − x)− b(y − x)). (34)

When xi = · · · = xTt = 0, byj (yj − xj) = yj for j ≥ i. When k ≥ i + 1, (∇gT,t(x))k =
(B(y − x))k = 0. Therefore, supp (∇gT,t(y − x)) ∈ {1, 2, · · · , i + 1}, which implies that
gT,t(y − x) is a zero-chain with respect to x.

2. qT,t(x) attains its minimum at x = 0, and vy(x) attains its minimum at x = 0. Therefore,
gT,t(x) = qT,t(x) +

∑Tt
t=1 vyi(xi) attains its minimum at x = 0, and g∗T,t = 0. From the

definition of vT,c in (12), we have vy(x) ≤ 1
2x

2, which implies gT,t(x) ≤ 1
2x

T (B+ I)x.

13

YUE FANG LIN

Index k0.00

0.25

0.50

0.75

1.00
V

al
u
e

o
f
z̃ k

Points with indices in A

Points with indices in B

Points with indices in C

Mapping UBindex

Mapping Next

The interval
[
31
32
, 33
32

]

Figure 2: An example showing the intuition of our notations and how to estimate the PL constant.

3. Let

v(x) =
Tt∑
i=1

vyi(xi). (35)

For x1,x2 ∈ RTt,

∥∇v(x1)−∇v(x2)∥ = ∥x1 − bT,c(x1)− x2 + bT,c(x2)∥
≤ ∥x1 − x2∥+ ∥bT,c(x1)− bT,c(x2)∥
≤ 33∥x1 − x2∥.

(36)

The last inequality of (36) is due to the definition of bT,c, which implies that bT,c is 32-
Lipschitz. Consequently, gT,t is 37-smooth because B ⪯ 4I.

4. The PL constant of gT,t can be written as

µ = inf
x∈RTt

∥∇gT,t(x)∥2

2(gT,t(x)− g∗T,t)
≤ inf

x∈RTt

∥∇gT,t(x)∥2

5∥x∥2
.

For any x, we estimate µ by dividing the indices of x into three sets A,B,C using Lemmas
7 and 8: A contains k such that |(∇gT,t(x))k| ≥ 0.19|xk|; B contains “exponential growing
chains”; C contains “flat areas in

[
31
32 ,

33
32

]
”. Intuitively, if k ∈ A, then |(∇gT,t(x))k|2 is

large enough, and it can be used to upper bound |xk|2 and the norm of “exponential growing
chains” and “flat areas in

[
31
32 ,

33
32

]
” next to k (with Lemma 10). In the set B, Next defines

the increasing direction of “exponential growing chains”. We use |(∇gT,t(x))UBIndex(k)|2 to
upper bound |xk|2. The intuitions are shown in Figure 2.

We first introduce some notations to simplify the proofs. We introduce x̃ and z̃ in (37), (38)
and (39) to show that the “exponential growing chains” will terminate at the beginning and
end of {zk}Tt

k=1. It also simplifies the Lemmas we introduce later. For x ∈ RTt, let

x̃ =

 0
x
xTt

 ∈ RTt+2, (37)

B̃ =
[
−e(1) B+ETt,T t −e(Tt)

]
∈ RTt×(Tt+2), (38)

and
Ĩ =

[
0 ITt 0

]
∈ RTt×(Tt+2), (39)

14

ON THE LOWER BOUND OF MINIMIZING POLYAK-ŁOJASIEWICZ FUNCTIONS

where e(i) is the ith column of I, and ETt,T t is an Tt × Tt whose (Tt, T t) entry is 1 and
other entries are 0. We have Bx = B̃x̃, and x = Ĩx̃. We use x̃0, · · · , x̃Tt+1 to denote the
coordinates of x̃, i.e. x̃0 = 0, x̃i = xi for i = 1, · · · , T t, and x̃Tt+1 = xTt. Similarly, we
define ỹ by ỹ0 = 1, ỹi = yi for i = 1, · · · , T t, and ỹTt+1 = yTt. With these newly defined
notations, we can check that

(∇gT,t(x))k = (B̃x̃)k + x̃k − bỹk
(x̃k) (40)

for k = 1, 2, · · · , T t.
We define C3 =

21344400
1083 . Let µ be the PL constant of gT,t.

µ = inf
x∈RTt

∥∇gT,t(x)∥2

2(gT,t(x)− g∗T,t)

= inf
x∈RTt

∥∇gT,t(x)∥2

2gT,t(x)

(a)

≥ inf
x∈RTt

∥(B+ I)x− bT,c(x)∥2

xT (B+ I)x

(b)

≥ inf
x∈RTt

∥(B+ I)x− bT,c(x)∥2

5∥x∥2

(41)

where (a) follows from property 2 of Lemma 2, and (b) follows from B+ I ⪯ 5I. Define

µ̃(x) =
∥∇gT,t(x)∥2

5∥x∥2
=
∥(B+ I)x− bT,c(x)∥2

5∥x∥2
. (42)

We only need to give a lower bound on µ̃. We estimate the proportion
∥∇gT,t(x)∥

∥x̃k∥ =
∥(B+I)x−bT,c(x)∥

∥x∥ by computing each
∣∣∣ (∇gT,t(x))k

x̃k

∣∣∣ = ∣∣∣ ((B+I)x)k−bỹk (x̃k)

x̃k

∣∣∣. If∣∣∣ (∇gT,t(x))k
x̃k

∣∣∣ is small, we will upper bound x̃2
k by one of the nearby (∇gT,t(x))2n terms.

We define an operator Dominate : {1, · · · , T t} → {True,False} as follows:

Dominate(k) =

{
True, If

∣∣∣ (∇gT,t(x))k
x̃k

∣∣∣ > 0.19 or x̃k = 0,

False, otherwise.
(43)

Define z̃k = x̃k
ỹk

, we present four auxiliary lemmas below. We prove them in Section B.2.

Lemma 7 For k = 1, · · · , T t, if z̃k /∈ [3132 ,
33
32] and ¬Dominate(k), then z̃k−1

z̃k
≥ 4

3 or z̃k+1

z̃k
≥

4
3 .

Lemma 8 If z̃k−1 <
5
7 , z̃k ∈ [3132 ,

33
32], z̃k+1 ≤ 33

32 , then Dominate(k) = True.

Lemma 9 If z̃k−2 <
31
32 , 5

7 ≤ z̃k−1 <
31
32 , z̃k ∈ [3132 ,

33
32], then Dominate(k − 1) = True.

Lemma 10 If z̃n ∈ [3132 ,
33
32], ¬Dominate(n) and z̃n−1, z̃n+1 ≤ 33

32 , there exist k such that
k < n, Dominate(k) and z̃k > 5

7 .

15

YUE FANG LIN

Algorithm 1 Algorithm to find UBIndex(n)

Input: ¬Dominate(n)
if Next(n) is defined then

m← n;
while ¬Dominate(m) do

m← Next(m); ▷ This process is well-defined and will terminate.
end
UBIndex(n)← m;

else if Next(n) is not defined then
UBIndex(n)← argmaxk<n {z̃k : Dominate(k)}; ▷ UBIndex(n) exists and z̃UBIndex(n) >

5
7

(by Lemma 10).
end

Note that if we alter the “+” and “−” sign in Lemma 8 or 9, the conclusion still holds.

Now we define an operator Next on indices on which Dominate operator is false. Intuitively,
Next finds the direction in which z̃ grows exponentially.

By Lemma 7, if z̃k /∈ [3132 ,
33
32] and ¬Dominate(k), define Next(k) ∈ {k− 1, k+1} to be one

of the coordinate satisfying
z̃Next(k)

z̃k
≥ 4

3 .

Next, we define how the Next operator acts on the index n where z̃n ∈ [3132 ,
33
32] and

max {z̃n−1, z̃n+1} > 33
32 . Without the loss of generality (if we alter the “+” and “−”, the

following conclusion still holds), if z̃n+1 >
33
32 , we define Next(n) = n+1. If Next(n−1) =

n, z̃n ∈ [3132 ,
33
32] and ¬Dominate(n), then by Lemma 8, we have z̃n+1 ≥ 33

32 . Therefore, if
n = Next(m), then Next(n) is defined. We can apply the Next operator recursively, and will
finally reach a index n such that Dominate(n) = True. This process will terminate because
z̃0 = 0 and z̃Tt+1 = z̃Tt, ensuring that if the recursive Next operation reaches 0 or Tt, it
terminates.

For other n such that ¬Dominate(n) and z̃n ∈ [3132 ,
33
32] (z̃n−1, z̃n+1 ≤ 33

32), the operator Next
is undefined. We will use Lemma 10 to tackle this situation.

For n such that ¬Dominate(n), we define an operator UBIndex, and use a proportion of
∥gT,t(x)∥UBIndex(n) to upper bound xn. The process of finding UBIndex is provided in Algo-
rithm 1.

Define Dist(n) = |n−UBIndex(n)|, and define UB(k) to be a proportion of ∥gT,t(x)∥2UBIndex(k)
as follows:

UB(n) =



1
4 |(∇gT,t(x))n|

2,

Dominate(n),
1
4 ·

13
49 ·

(
36
49

)Dist(n)−1 |(∇gT,t(x))UBIndex(n)|2,
¬Dominate(n),Next(n) exists,

1
4T ·

15
64 ·

ỹ2
n

ỹ2
UBIndex(n)

|(∇gT,t(x))UBIndex(n)|2,

¬Dominate(n),Next(n) does not exist.

(44)

16

ON THE LOWER BOUND OF MINIMIZING POLYAK-ŁOJASIEWICZ FUNCTIONS

Let A = {n : Dominate(n)}, B = {n : ¬Dominate(n),Next(n) exists}, and C = {n :
¬Dominate(n),
Next(n) does not exist}. Now we calculate

∑Tt
i=1UB(n), and show that it is smaller than

∥gT,t(x)∥2.

Tt∑
i=1

UB(n) =
∑
n∈A

UB(n) +
∑
n∈B

UB(n) +
∑
n∈C

UB(n)

=
1

4

∑
n∈A
|(∇gT,t(x))n|2

+
∑
n∈B

13

196

(
36

49

)Dist(n)−1

|(∇gT,t(x))UBIndex|2

+
∑
n∈C

15

256T

(
ỹn

ỹUBIndex(n)

)2

|(∇gT,t(x))UBIndex|2.

(45)

By changing the order of summation, we have

∑
n∈B

13

196

(
36

49

)Dist(n)−1

|(∇gT,t(x))UBIndex|2

≤ 13

196

∑
n∈A

2 ·
∞∑
i=1

(
36

49

)i−1

|(∇gT,t(x))n|2

=
1

2

∑
n∈A
|(∇gT,t(x))n|2,

(46)

and ∑
n∈C

15

256T

(
ỹn

ỹUBIndex(n)

)2

|(∇gT,t(x))UBIndex|2

≤ 15

256T

∑
n∈A

∑
m≥n

(
ỹm

ỹn

)2

|(∇gT,t(x))n|2

=
15

256T

∑
n∈A

T
∞∑
i=0

(
7

8

)2i

|(∇gT,t(x))n|2

=
1

4

∑
n∈A
|(∇g(x))n|2.

(47)

Summing up (45), (46) and (47), we have

Tt∑
i=1

UB(n) =
1

4

∑
n∈A
|(∇gT,t(x))n|2 +

1

2

∑
n∈A
|(∇gT,t(x))n|2 +

1

4

∑
n∈A
|(∇gT,t(x))n|2

=
∑
n∈A
|(∇gT,t(x))n|2

≤ ∥∇gT,t(x)∥2.

(48)

17

YUE FANG LIN

Finally, we calculate UB(n)
x2
n

to give an universal lower bound of the PL constant. For n ∈ A,
we have

UB(n)

x2
n

=
1

4
·
|(∇gT,t(x))n|2

x2
n

(a)

≥ 361

40000
,

(49)

where (a) is due to Dominate(n) = True.

For n ∈ B, by Lemma 7 we have
∣∣∣ z̃Next(m)

z̃m

∣∣∣ ≥ 4
3 for m = n,Next(n),Next(Next(n)) · · · ,

with only one possible exception when z̃m ∈ [3132 ,
33
32], in which case there is |z̃Next(m)| ≥

|z̃m|. Therefore, |z̃UBIndex(n)| ≥
(
4
3

)Dist(n)−1 |z̃n|, so we have

UB(n)

x2
n

=
1

4
· 13
49
·
(
36

49

)Dist(n)−1

|(∇gT,t(x))UBIndex(n)|2

(a)

≥ 13

196
·
(
36

49

)Dist(n)−1 361

10000

x2
UBIndex(n)

x2
n

(b)
=

4693

1960000

(
36

49

)Dist(n)−1

·
(
z̃UBIndex(n)

z̃n

)2

·
(
ỹUBIndex(n)

ỹn

)2

(c)

≥ 4693

1960000

(
36

49

)Dist(n)−1

·
(
16

9

)Dist(n)−1

·
(
49

64

)Dist(n)

=
4693

2560000
,

(50)

where (a) is due to Dominate(UBIndex(n)) = True, (b) is due to z̃m = x̃m
ỹm

, (c) is due to

|z̃UBIndex(n)| ≥
(
4
3

)Dist(n)−1 |z̃n| and |ỹm+1|
|ỹm| ≥

7
8 .

For n ∈ C, we have

UB(n)

x2
n

=
1

4T
· 15
64
· ỹ2

n

ỹ2
UBIndex(n)

·
|(∇gT,t(x))UBIndex(n)|2

x2
n

(a)

≥ 15

256T
· ỹ2

n

ỹ2
UBIndex(n)

·
361x̃2

UBIndex(n)

40000x̃2
n

(b)

≥ 1083

2048000T

z̃2UBIndex(n)

z̃2n
(c)

≥ 1083

2048000T

(
5/7

33/32

)2

=
1083

4268880T
,

(51)

18

ON THE LOWER BOUND OF MINIMIZING POLYAK-ŁOJASIEWICZ FUNCTIONS

where (a) is due to Dominate(UBIndex(n)) = True, (b) is due to z̃m = x̃m
ỹm

, and (c) is due to
Lemma 10 and z̃n ∈ [3132 ,

33
32]. Therefore,

µ ≥ inf
x

∥∇gT,t(x)∥2

5x2

≥ inf
x

∑Tt
n=1UB(n)

5
∑Tt

n=1 x
2
n

≥ inf
x

min
n

UB(n)

5x2
n

≥ inf
x

1

5
·min

{
361

40000
,

4693

2560000
,

1083

4268880T

}
=

1083

21344400T
.

(52)

B.2. Proof of Lemma 7, 8, 9 and 10

Lemma 7 For k = 1. · · · .T t, if z̃k /∈ [3132 ,
33
32] and ¬Dominate(k), then z̃k−1

z̃k
≥ 4

3 or z̃k+1

z̃k
≥ 4

3 .

Proof If z̃k /∈ [3132 ,
33
32], then bỹk

(x̃k) = 0, and (∇gT,t(x))k = (B̃x̃)k + x̃k. By ¬Dominate(k), we

have
∣∣∣(B̃x̃)k + x̃k

∣∣∣ < 0.19 |x̃k|. We consider three cases:

1. If k = T + 1, 2T + 1, · · · , T (t− 1) + 1, (B̃x̃)k = −7
8 x̃k−1 + 2x̃k − x̃k+1, (B̃x̃)k + x̃k =

7
8 x̃k−1 + 3x̃k − x̃k+1, and 7

8 ỹk−1 = ỹk = ỹk+1. We have

3|x̃k| −
7

8
|x̃k−1| − |x̃k+1| ≤ |(B̃x̃)k + x̃k|

< 0.19|x̃k|.
(53)

Dividing both sides by ỹk, we have

3|z̃k| − |z̃k−1| − |z̃k+1| < 0.19|z̃k|. (54)

Thus, we have |z̃k−1|+ z̃k+1 >
8
3 |z̃k|, which indicates that z̃k−1

z̃k
≥ 4

3 or z̃k+1

z̃k
≥ 4

3 .

2. If k = T, 2T, · · · , T (t − 1), (B̃x̃)k + x̃k = −x̃k−1 +
177
64 x̃k − 7

8 x̃k+1, and ỹk−1 = ỹk =
8
7 ỹk+1. Thus, we have

177

64
|x̃k| − |x̃k−1| −

7

8
|x̃k+1| < 0.19|x̃k|. (55)

Dividing both sides by ỹk, we have

177

64
|z̃k| − |z̃k−1| −

49

64
|z̃k+1| < 0.19|z̃k|. (56)

Thus, we have

|z̃k−1|+
49

64
|z̃k+1| >

(
177

64
− 0.19

)
|z̃k| >

4

3
·
(
1 +

49

64

)
|z̃k|. (57)

19

YUE FANG LIN

3. For other k, (B̃x̃)k + x̃k = −x̃k−1 + 3x̃k − x̃k+1, and ỹk−1 = ỹk = ỹk+1. Therefore, we
have (by dividing ỹk to both sides of (54))

|z̃k−1|+ |z̃k+1| > 2.81|z̃k| >
8

3
|z̃k|. (58)

Lemma 8 If z̃k−1 <
5
7 , z̃k ∈ [3132 ,

33
32], z̃k+1 ≤ 33

32 , then Dominate(k) = True.

Proof For any y > 0, we have 0 ≤ by(x) ≤ y. Therefore, (∇gT,t(x))k ≥ (B̃x̃)k.

1. If k = T + 1, 2T + 1, · · · , T (t − 1) + 1, (B̃x̃)k = −7
8 x̃k−1 + 2x̃k − x̃k+1 and 7

8 ỹk−1 =
ỹk = ỹk+1.

(∇gT,t(x))k
x̃k

≥ (B̃x̃)k
x̃k

=
−7

8 x̃k−1 + 2x̃k = x̃k+1

x̃k

(a)
=
−z̃k−1 + z̃k − z̃k+1

z̃k
(b)
> −

5/7
31/32

+ 2−
33/32
31/32

> 0.19,

(59)

where (a) holds by dividing ỹk to the numerator and denominator, (b) holds by the assump-
tions on z̃k−1, z̃k, z̃k+1.

2. If k = T, 2T, · · · , T (t− 1), (B̃x̃)k = −x̃k−1 +
113
64 x̃k − 7

8 x̃k+1, and ỹk−1 = ỹk = 8
7 ỹk+1.

(∇gT,t(x))k
x̃k

≥ (B̃x̃)k
x̃k

=
−x̃k−1 +

113
64 x̃k − 7

8 x̃k+1

x̃k

(a)
=
−z̃k−1 +

113
64 z̃k −

49
64 z̃k+1

z̃k
(b)
> −

5/7
31/32

+
113

64
− 49

64
·
33/32
31/32

> 0.19,

(60)

where (a) holds by dividing ỹk to the numerator and denominator, and (b) holds by the
assumptions on z̃k−1, z̃k, and z̃k+1.

20

ON THE LOWER BOUND OF MINIMIZING POLYAK-ŁOJASIEWICZ FUNCTIONS

3. For other k, (B̃x̃)k = −x̃k−1 + 2x̃k − x̃k+1, and ỹk−1 = ỹk = ỹk+1. Therefore,

(∇gT,t(x))k
x̃k

≥ (B̃x̃)k
x̃k

=
−x̃k−1 + 2x̃k = x̃k+1

x̃k

(a)
=
−z̃k−1 + z̃k − z̃k+1

z̃k
(b)
> −

5/7
31/32

+ 2−
33/32
31/32

> 0.19,

(61)

where (a) holds by dividing ỹk to the numerator and denominator, and (b) holds by the
assumptions on z̃k−1, z̃k, and z̃k+1.

Lemma 9 If z̃k−2 <
31
32 , 5

7 ≤ z̃k−1 <
31
32 , z̃k ∈ [3132 ,

33
32], then Dominate(k − 1) = True.

Proof Like the proof of Lemma 8, we directly compute (∇gT,t(x))k−1

x̃k−1
. Because z̃k−1 < 31

32 ,
bỹk−1

(x̃k−1) = 0.
(∇gT,t(x̃))k−1

x̃k−1
=

(B̃x̃)k−1 + x̃k−1

x̃k−1

(a)
= −a z̃k−2

z̃k−1
+ b− c

z̃k
z̃k−1

,

(62)

where (a) holds by dividing ỹk to the numerator and denominator. For k−1 = T, 2T, · · · , T (t−1),
a = −1, b − 177

64 and c = 49
64 . For other k, a = c = 1 and b = 3. By the assumptions on

z̃k−2, z̃k−1 and z̃k, we have z̃k−2

z̃k−1
<

31/32
5/7 , and z̃k

z̃k−1
<

33/32
5/7 . Plugging everything into (62), we have

(∇gT,t(x̃))k−1

x̃k−1
> 0.2.

Lemma 10 If z̃n ∈ [3132 ,
33
32], ¬Dominate(n) and z̃n−1, z̃n+1 ≤ 33

32 , there exist k such that k < n,
Dominate(k) and z̃k > 5

7 .

Proof Define m = argmaxm′
{
z̃m′ /∈ [3132 ,

33
32] : m

′ < n
}

. If z̃m > 33
32 , let k be m if Dominate(m)

and UBIndex(m) if ¬Dominate(m). If z̃m ∈ [57 ,
33
32], let k be m if Dominate(m) and UBIndex(m)

if ¬Dominate(m). Finally, if z̃m < 5
7 , let k = m+ 1.

21

	Introduction
	Related Work
	Preliminaries
	Upper bound on PL functions
	Definitions of algorithm classes and function classes
	Zero-respecting Algorithm
	Zero-chain

	Main results
	Numerical experiments
	Conclusion
	Proof of Theorem 1
	Omitted proof in Section 4
	Proof of Lemma 2
	Proof of Lemma 7, 8, 9 and 10

