
Proceedings of Machine Learning Research vol 195:1–44, 2023 36th Annual Conference on Learning Theory

Zeroth-order Optimization with Weak Dimension Dependency

Pengyun Yue YUEPY@PKU.EDU.CN
Long Yang YANGLONG001@PKU.EDU.CN
National Key Lab of General AI, School of Intelligence Science and Technology, Peking University

Cong Fang� FANGCONG@PKU.EDU.CN
National Key Lab of General AI, School of Intelligence Science and Technology, Peking University
Institute for Artificial Intelligence, Peking University

Zhouchen Lin� ZLIN@PKU.EDU.CN

National Key Lab of General AI, School of Intelligence Science and Technology, Peking University
Institute for Artificial Intelligence, Peking University
Peng Cheng Laboratory

Editors: Gergely Neu and Lorenzo Rosasco

Abstract
Zeroth-order optimization is a fundamental research topic that has been a focus of various learning
tasks, such as black-box adversarial attacks, bandits, and reinforcement learning. However, in
theory, most complexity results assert a linear dependency on the dimension of optimization variable,
which implies paralyzations of zeroth-order algorithms for high-dimensional problems and cannot
explain their effectiveness in practice. In this paper, we present a novel zeroth-order optimization
theory characterized by complexities that exhibit weak dependencies on dimensionality. The key
contribution lies in the introduction of a new factor, denoted as EDα = supx∈Rd

∑d
i=1 σ

α
i (∇2f(x))

(α > 0, σi(·) is the i-th singular value in non-increasing order), which effectively functions as a mea-
sure of dimensionality. The algorithms we propose demonstrate significantly reduced complexities
when measured in terms of the factor EDα. Specifically, we first study a well-known zeroth-order
algorithm from Nesterov and Spokoiny (2017) on quadratic objectives and show a complexity of
O
(

ED1

σd
log(1/ϵ)

)
for the strongly convex setting. For linear regression, such a complexity is

dimension-free and outperforms the traditional result by a factor of d under common conditions.
Furthermore, we introduce novel algorithms that leverages the Heavy-ball mechanism to enhance the
optimization process. By incorporating this acceleration scheme, our proposed algorithm exhibits a
complexity of O

(
ED1/2√

σd
· log L

µ · log(1/ϵ)
)

. For linear regression, under some mild conditions, it

is faster than state-of-the-art algorithms by
√
d. We further expand the scope of the method to en-

compass generic smooth optimization problems, while incorporating an additional Hessian-smooth
condition. By considering this extended framework, our approach becomes applicable to a broader
range of optimization scenarios. The resultant algorithms demonstrate remarkable complexities,
with dimension-independent dominant terms that surpass existing algorithms by an order in d under
appropriate conditions. Our analysis lays the foundation for investigating zeroth-order optimization
methods for smooth functions within high-dimensional settings.
Keywords: zeroth-order optimization, effective dimension, convergence rate
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Figure 1: (a) The eigenvalues of the Gram matrix of data on MNIST (see Deng (2012)), which
are also the eigenvalues of Hessian on the least square model (b) The eigenvalues of a
three-layer neural network on MNIST. (b) is taken directly from Sagun et al. (2016).

1. Introduction

Consider the unconstrained optimization program:

min
x∈Rd

f(x). (1)

We study solving (1) using zeroth-order oracles which only return the function value f(x̂) given
point x̂ and improve such oracle complexities in searching suitable approximated solutions.

Zeroth-order optimization is a fundamental research topic serving as a prototype module for
numerous tasks, including black-box optimization (Grill et al., 2015), adversarial attacks (Ye et al.,
2019), bandits (Bubeck et al., 2017), as well as reinforcement learning (RL) (Salimans et al., 2017).
From the theoretical aspect, one notable common feature among wide studies (see works in Section
2.1) is that the complexities of zeroth-order algorithms have a linear dimension dependency. For
instance, consider a standard program where the objective is assumed to be µ-strongly convex
and have L-Lipschitz continuous gradients. The well-known algorithm proposed by Nesterov and
Spokoiny (2017) called RGρ achieves a complexity of O

(
dL
µ log

(
1
ϵ

))
to find an ϵ-approximated

solution x̃ such that f(x̃)−min f ≤ ϵ. The main idea ofRGρ is solving a smoothed surrogate of f ,
whose stochastic gradients can be efficiently computed via zeroth-order oracles of f , using stochastic
gradient descent. Compared with the Gradient Descent algorithm,RGρ is d-times slower. This result
is reasonable and seems unimprovable in the worst case because a gradient oracle offers information
that can be quantified as a d-dimensional vector in contrast to 1 of such from a function value oracle.

In practice, the dimension d can be very large in modern real-world applications. For instance, a
high-resolution adversarial image has thousands of pixels. Worse still, the state numbers in contextual
bandits or RL always encounter combinatorial explosions. The existing theoretical results indicate
potential limitations of zeroth-order algorithms in high-dimensional problems, which seemingly
contradict the observed success of these algorithms in practical applications over the past years.
For example, hundreds steps of RGρ suffices to find an adversarial image (Ye et al., 2019). By
estimating the objective function using (deep) neural networks, a series of RL algorithms have
achieved surprising performances for decision-making (Mania et al., 2018; Choromanski et al., 2018;
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Salimans et al., 2017). These phenomena appear mysterious from a theoretical optimization view
and require new analysis to understand the underlying reasons.

To bridge the gap between theory and practice, this paper develops a zeroth-order optimization
theory which exhibits complexities with weak dimension dependencies. The underlying intuition
behind our theory revolves around the introduction of an effective dimension for zeroth-order
optimization. This idea has been widely considered in the era of machine learning and statistics
(see related works in Section 2.2.1), where one usually studies the required number of data for a
learning task. We follow a similar philosophy and show that much fewer zeroth-order oracles and
iteration complexities are inherently needed when certain effective dimension is small, because only
a small amount of components contribute to most of the difficulties in zeroth-order optimization.
To formalize our intuition, we introduce the concept of the effective dimension in zeroth-order
optimization by EDα = supx∈Rd

∑d
i=1 σ

α
i (∇2f(x)) (α > 0), where σi(·) is the i-th singular

value in non-increasing order. If the objective has L-Lipschitz continuous gradients, one can assert
EDα ≤ dLα. We show that under various suitable conditions, the dependence of complexities on
the factor dLα can be enhanced to EDα. We shall note that in practice one often has EDα ≪ dLα

because the singular values of Hessian matrices often decrease very fast. See Fig. 1 as two examples
which plot eigenvalues of Hessian matrices for a convex and a non-convex function, respectively.
To obtain a quantitative comparison between EDα and dLα, we also study some realizable cases on
linear regression in Section 4.

Now we briefly introduce our complexity results under different settings. In Section 5, we first
consider a basic setting where the objective is a convex quadratic function. We study the standard
RGρ algorithm and show complexities of Õ

(
ED1
σd

)
and Õ

(
ED1
ϵ

)
for strongly convex and weakly

convex settings, respectively, where Õ hides polylogarithmic terms. For linear regression where
the ℓ2 norm of the data is normalized to a constant level, these complexities are dimension-free and
outperform the traditional results by the factor d. In Section 6, we consider acceleration. We propose
a new Heavy-ball based algorithm, called HB-ZGD that achieves a complexity of Õ

(
ED1/2√

σd

)
for

strongly convex functions. For linear regression where the data is normalized, our algorithm is
faster than the state-of-the-art algorithm (Nesterov and Spokoiny, 2017) by

√
d. The novelty in our

complexity analysis stems from the utilization of a special Mahalanobis norm, denoted as ∥ · ∥[∇2f ]2 .
This unique approach allows us to demonstrate that the function value descends more rapidly, on
average. In Section 7, we extend the HB-ZGD method to encompass generic convex and non-convex
optimization problems under an additional H-Hessian-smooth condition. The idea is to combine
HB-ZGD with cubic-regularization tricks (Nesterov and Polyak, 2006; Monteiro and Svaiter, 2013).
For generic convex optimization, we obtains a complexity of Õ

(
ED1/2ϵ

−1/2 + dϵ−2/7
)

against the
best-known complexity of O

(
dϵ−1/2

)
from Nesterov and Spokoiny (2017). For general non-convex

optimization, we consider finding a second-order stationary point and establish a complexity of
Õ
(
ET1/2ϵ

−7/4 + dϵ−3/2
)

against the best-known complexity of Õ
(
dϵ−7/4

)
from Jin et al. (2017).

The significance of our work is two-folded. 1) By introducing an effective dimension for zeroth-
order optimization, we provide a more realistic analysis for zeroth-order algorithms. Our upper
bound complexities suggests that the zeroth-order optimization are usually not very hard, providing
explanations for their practical successes. 2) Based on our framework, one is able to design more
efficient zeroth-order algorithms under a variety of settings. We summarize the main contributions of
this work in the following.
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(a) We propose to use EDα as the effective dimension to characterize the complexities in zeroth-
order optimization. This optimization model is more close to practice.

(b) For quadratic objectives, we provide an improved analysis forRGρ (Nesterov and Spokoiny,
2017) and design an accelerated algorithm. We establish new dimension-independent com-
plexities.

(c) For generic convex and non-convex optimization, we propose provable faster algorithms with
weak dimension dependency using the cubic regularization tricks.

2. Related Works

2.1. Zeroth-order Optimization

In zeroth-order optimization, the algorithms only access the objective function value to find a
designed solution. We review three main lines of research to design zeroth-order algorithms.

The first research line is to estimate the gradient using zeroth-order oracles and then design
algorithms using the techniques from first-order optimization, which is more related to our paper.
One typical algorithm is the RGρ in Nesterov and Spokoiny (2017). For objective functions that
are µ-strongly convex and have L-Lipschitz continuous gradient, RGρ achieves a complexity of

O
(
dL
µ log(1/ϵ)

)
and can be accelerated using the momentum technique to achieve a complexity

of O
(
d
√

L
µ log(1/ϵ)

)
. In the generic non-convex case, Nesterov and Spokoiny (2017) establish a

complexity ofO
(
dL
ϵ2

)
to find an approximated first-order stationary point. There are many works that

propose variants ofRGρ, such as proximal (Gasnikov et al., 2016) and stochastic (Ghadimi and Lan,
2013) versions. All complexities obtained by existing works have a linear dimension dependency.
And we will improve the results using the proposed effective dimension.

Another popular line of research is to consider a function approximation to the objective function
(see e.g. Moulines and Bach (2011)). Specifically, the way is to estimate the objective with a
white-box model and balance the exploration and exploitation. The method is closely related to
Bayesian optimization (see e.g. Srinivas et al. (2009)). The complexities of these algorithms are
established often in a “statistical” style: they depend on the Hypothesis capacity of the model and
approximation error. From our view, our proposed algorithms can be recognized as using simple
linear or quadratic functions to locally approximate the objective function. Essentially, we combine
analytical methods in optimization and statistics. Specifically, the complexities are described using
some geometric characterizations that are commonly used and practical to model the objective in
optimization, such as the gradient Lipchistz constant, with a certain effective dimension, a common
concept in statistical learning. In special, we show one can often save the oracles to inaccurately
estimate the gradient (locally linear approximation). It is interesting to extend our framework to
study the general function approximation and we leave such important analysis as future work.

Last but not at least, one more research line is to design algorithms for more specific tasks.
Typical examples are online bandits (see e.g. Bubeck et al. (2017)), and model-free RL (see e.g.
Mania et al. (2018)).There are additional challenges to deal with these problems including the
varying environments and randomization from policies. Many works achieve to design more efficient
algorithms in terms of low regret bounds. This paper only studies vanilla zeroth-order optimization.
We also leave to apply our framework on these specific learning tasks as non-trivial future works.
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2.2. Related Techniques

2.2.1. EFFECTIVE DIMENSION

The idea of an effective dimension has long been considered in the eras of machine learning and
statistics. For example, in manifold learning (see e.g. Cayton (2005)), one often assumes the
data is embedded in a low dimensional space. In nonparametric estimation (see e.g. Wainwright
(2019, Chapter 13)), one often considers the additive structure of the target function, where only a
small number of dimensions combine. More related, in linear regression, Zhang (2005) introduces
effective dimensions on the data Gram matrices to characterize the difficulties for ridge regression
and obtain complexities independent of d. In high-dimensional regression, one often assumes a
s-sparse response between the output and input signals, under which much fewer observations
(s log(d) in comparison d) are needed to determine the relations (see e.g. Zhang and Zhang (2012)).
There are also effective dimension analysis on RL (see e.g. Jin et al. (2021)), whereas, our paper
focuses on generic zeroth-order optimization. Freund et al. (2022) study Langevin sampling and
show the convergence rate can be dimensional free. From our view, they in effect use ED2. Our
work generalizes theirs to the optimization field and considers much broader settings.

2.2.2. CUBIC REGULARIZATION ALGORITHMS

Our work follows the cubic regularization tricks to work on generic optimization frameworks.
Cubic regularization algorithms can be viewed as ingenious pre-conditioned Newton methods,
whose updates often involve a minimization problem with the objective composed of a quadratic
function with a simple third-order regularization term that can be solved using matrix inversion and
a binary search. It is shown by Nesterov (2007) that the cubic regularization algorithm achieves
non-asymptotic O

(
ϵ−1/3

)
complexity for convex optimization when the objective has uniformly

continuous Hessian matrices, which outperforms the first-order algorithm with the complexity of
O
(
ϵ−1/2

)
, whereas, the convergence of vanilla Newton method can be ensured only when the initial

is close to a minimizer. Monteiro and Svaiter (2013) further studies accelerations. The best-known
complexity O

(
ϵ−2/7

)
is obtained by tensor methods from Gasnikov et al. (2019) in the convex case,

which is proved to be optimal in the worst case (Arjevani et al., 2019). In the non-convex world,
Nesterov and Polyak (2006) show a complexity of O(ϵ−3/2) to find a second-order stationary point
when treating the problem-dependent parameters as constants.

3. Preliminary

3.1. Notations

We use the convention O (·), Ω (·), and Θ(·), to denote lower, upper, both lower and upper bounds
with a universal constant. Õ(·) ignores the polylogarithmic terms. We use Id to denote the identity
matrix in d-dimensional Euclidean space, and omit the subscript when d is clear from the context. We
use ∥ ·∥ to denote the operator norm of a matrix. Moreover, we use ∥x∥ to denote the Euclidean norm
of a vector and ∥x∥A to denote the Mahalanobis (semi)norm where A is a positive semi-definite
matrix, i.e. ∥x∥A =

√
x⊤Ax. We use ∇f(x) and ∇2f(x) to denote the first- and second-order

derivative of f . Moreover, let x∗ be a minimizer of f if it exists and f∗ be the minimum value.
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3.2. Assumptions and Definitions

We present some basic definitions and assumptions that are commonly used to characterize the
geometry of the objective in optimization.

Assumption 1 (Convexity) We say f is convex if

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩+ µ

2
∥x− y∥2, ∀x,y,

where µ ≥ 0. Moreover, if µ > 0, f is said to be µ-strongly convex.

Assumption 2 (L-gradient smoothness) We say f is L-gradient smooth (or have L-Lipschitz con-
tinuous gradients), if

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥, ∀x,y.

Assumption 3 (H-Hessian smoothness) We say f is H-Hessian smooth (or have H-Lipschitz
continuous Hessian matrices), if

∥∇2f(x)−∇2f(y)∥ ≤ H∥x− y∥, ∀x,y.

For an optimization algorithm starting at x0, we introduce the following two commonly-used
quantities to describe the distance between the initial to an optimal solution.

Definition 1 (∆-bounded function value) Let ∆=f(x0)− f∗.

Definition 2 (D-bounded distance to the optimal solution) Assume the minimizer of f exists. Let
X∗ be the set of all minimizers. Define D = infx∗∈X∗ sup{∥x− x∗∥ : f(x) ≤ f(x0)}.

For convex problems, we consider finding an ϵ-approximated solution defined below:

Definition 3 (ϵ-optimal solution) x is an ϵ-optimal solution of f if f(x)− f∗ ≤ ϵ.

For non-convex problems, we study finding an (ϵ,O(
√
ϵ))-approximated second-order stationary

point with definition below:

Definition 4 ((ϵ, δ)-SSP) x is said to be an (ϵ, δ)-approximated second-order stationary point (SSP)
of f if it admits

∥∇f(x)∥ ≤ ϵ, ∇2f(x) ⪰ −δI.

It is known that a second-order stationary point is an optimal solution when the objective function
satisfies the so-called strict-saddle condition Ge et al. (2015). In our complexity analysis, we will
often consider the case where L, H , ∆, and D are in constant level, and focus on dependencies on µ,
d, and ϵ.
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4. Effective Dimension

Without any specification, we always assume the objective function f is second-order derivative. We
introduce the effective dimension of zeroth-order optimization by

EDα = sup
x∈Rd

d∑
i=1

σα
i (∇2f(x))

where α > 0 and σi(·) is the i-th singular value in non-increasing order. Note that we simply obtain
EDα by taking the supremum over Rd, which is a global quantity to characterize the objective
function. It is possible to consider a local effective dimension EDα and then one can choose adaptive
step sizes based on the local effective dimension. When the objective is convex, the singular values
are the same as eigenvalues. For non-convex case, it is also possible to relax the singular values to
positive eigenvalues. However, we omit its analysis in this paper.

For different algorithms, we may pick different α. ForRGρ, we pick α = 1. When considering
acceleration, α is picked as 1

2 . Freund et al. (2022) studies Langevin algorithm and essentially pick
α = 2. When the objective has L-Lipschitz continuous gradients, EDα ≤ dLα for all α > 0. And
the gap of EDα to dLα depends on how fast the singular values for the Hessian matrices decrease.
We have a simple lemma by supposing a descending order of singular values.

Proposition 5 Assume for any x and α > 0, there exists constant C > 0 and β > 0 such that
σi(∇2f(x)) ≤ C

iβ
for i ∈ [d], then we have

EDα ≤


2αβ−1Cα

αβ−1 , αβ > 1, dimensional free,

Cα log(2d+ 1), αβ = 1, logarithmic growth on d,
Cα

1−αβ (d+ 1)1−αβ, αβ < 1, improve by a Θ
(
dαβ
)

factor.

(2)

In the following, we show realizable cases where EDα is provably smaller than dL, which
generalizes the work from Freund et al. (2022). Consider the objective admits the form as:

f(x) =
1

N

N∑
i=1

qi(β
⊤
i x), (3)

with assumptions below.

Assumption 4 The function qi ∈ C2 has a bounded second derivative, i.e. q′′i ≤ L0 for all i ∈ [n].

Assumption 5 For all i ∈ [N ], then norm of βi is bounded by R, i.e. ∥βi∥2 ≤ R.

For linear regression, βi is associated with the data and can achieve Assumption 5 by normalization,
and σi is associated with the loss function and holds Assumption 4 for ℓ2 with L0 = 1. Then we
have the following lemma.

Proposition 6 For the objective in (3) that satisfies Assumptions 4 and 5, we have

EDα ≤

{
(L0R)α, α ≥ 1, dimensional free,
(L0R)αd1−α, α < 1 improve by a Θ(dα) factor.

(4)
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For two-layer neural networks, we have the following proposition:

Proposition 7 Define f(W,w) = w⊤σ(W⊤x), where σ is the activation function. When ∥x∥1 ≤
r1, ∥w∥ ≤ r2 and σ′′(x) ≤ α, we have tr

(
∇2f(W,w)

)
≤ αr1r2.

The requirements in Proposition 7 can be met in most settings. For deep neural networks, a
similar argument can be obtained.

Finally, we note that for lots of parameterized models, the effective dimension can be small at
least when the parameter is near its optimal solution. This is due to the fact that under weak regular
conditions, the fisher information I(θ) = −E

[
∂2

∂θ2
log f(X; θ) | θ

]
= E

[(
∂
∂θ log f(X; θ)

)2 | θ].
So if ∂

∂θ log f(X; θ) is bounded, the effective dimension is also bounded.

5. Improved Analysis on Quadratic Minimization

In this section, we first provide an improved analysis for zeroth-order optimization on quadratic
functions. Specifically, we assume that f(x) is a L-smooth and convex quadratic function, which is
in form as

f(x) =
1

2
x⊤Ax+ b⊤x. (5)

We study the quadratic function because it is already very representative since (1) in theory, it is
known that most worst-case functions (lower-bound instances) in the convex optimization are exactly
quadratic (see e.g. Nesterov (2003, Chapter 2)); (2) in practice, quadratic functions include lots of
applications in machine learning, such as least-square regression (Björck, 1996). Our result can be
extended to work on objective functions with varying Hessian matrices. Here the Hessian matrices
are needed to have a uniformly upper bound. For the sake of simplicity, we ignore such analysis.

We focus on the standardRGρ algorithm proposed by Nesterov and Spokoiny (2017). The idea
of the algorithm in Nesterov and Spokoiny (2017) is to solve a smoothed surrogate of f defined
as f̂ = Eξf(x + ρξ), where ρ > 0 is picked to be small enough and ξ ∼ N(0, I). It is shown by
Nesterov and Spokoiny (2017) that the stochastic gradient of f̂ can be obtained by

∇̂ρf(x) =
f(x+ ρξ)− f(x)

ρ
ξ, (6)

where ξ ∼ N(0, I). Therefore, one can perform stochastic gradient method to solve f̂ .
We directly relate ∇̂ρf(x) with f(x). In fact, by the first-order Taylor expansion on f , the limit

of ∇̂ρf defined by ∇̃f(x) with ρ tending to zero admits

∇̃f(x) △
= lim

ρ→0
∇̂ρf(x) = ⟨∇f(x), ξ⟩ · ξ. (7)

Therefore when ρ is sufficiently small, (6) returns the inner product of∇f(x) and a given direction
ξ. Moreover, by the randomness of ξ, we know that ∇̃f(x) is an unbiased estimator of ∇f(x) with
the sum of variance on each component bounded by Θ

(
d∥∇f(x)∥2

)
. Specifically,

Lemma 8
Eξ∇̃f(x) = ∇f(x) (8)

and
Eξ∥∇̃f(x)∥2 = Θ(d∥∇f(x)∥2). (9)
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Algorithm 1RGρ (Nesterov and Spokoiny, 2017)
Input: x0

while stopping criterion is not met do
generate ∇̂ρf(xk) by two queries to the function value and a Gaussian random vector in (6);
xk+1 ← xk − hk∇̂ρf(xk);
k ← k + 1;

end

A similar result of Lemma 8 is also shown by Nesterov and Spokoiny (2017). Lemma 8 suggests
that in order to offset the effect of variance, one needs Ω(d) estimates to obtain a unbiased estimation
of∇f(x) with small variance under ℓ2-norm. To improve the analysis onRGρ, we first generalize
the bound of ℓ2-norm variance to the case for arbitrary Mahalanobis (semi)norm.

Lemma 9 For symmetric matrix M,

Eξ∥∇̃f(x)∥2M ≤ 3tr(M)∥∇f(x)∥2. (10)

Lemma 9 brings a new insight by bridging the connections betweenRGρ (Nesterov and Spokoiny,
2017) and the effective dimension. It suggests studyingRGρ under a specific Mahalanobis (semi)norm
to obtain an improved analysis. For the quadratic objective function in (5), we can pick M as A.

Now we are ready to state the improved analysis forRGρ (Nesterov and Spokoiny, 2017). RGρ
is also shown in Algorithm 1. For the convenience of later analysis in Section 7, we consider a
more general zeroth-order oracle. That is, we consider a zeroth-order oracle with δ-adversarial noise.
Specifically, when given the input point x̃, such oracle returns a noisy function value f̃(x̃) that admits∣∣∣f̃(x̃)− f(x̃)

∣∣∣ ≤ δ, ∀x ∈ Rd. (11)

Here the noise can be adversarial. We call such oracle as δ-approximated zeroth-order oracle. When
δ = 0, δ-approximated zeroth-order oracle reduces to the standard zeroth-order oracle. We first
consider the strongly convex setting. RGρ is shown in Algorithm 1, where we allow δ-approximated
zeroth-order oracle to access function value. The convergence result is shown in Theorem 10.

Theorem 10 Suppose f is a µ-strongly convex quadratic function and has L-Lipschitz continuous
gradient. The Hessian matrix of f is A. Let hk = 1

12tr(A) . Using an δ-approximated zeroth-order
oracle, {xk}k∈N generated byRGρ satisfies

Ef(xk+1)− f∗ − 24tr(A)

µ

(
C1ρ

2 + C2
δ2

ρ2

)
≤
(
1− µ

24tr(A)

)(
Ef(xk)− f∗ − 24tr(A)

µ

(
C1ρ

2 + C2
δ2

ρ2

))
,

(12)

where
C1 =

5

16
tr(A)d+

5

384
tr(A), C2 =

d

3tr(A)
+

1

72tr(A)
, (13)

and the expectation is taken for all the randomness in the algorithm.

9
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Theorem 10 shows that RGρ converges linearly in expectation when the hyper-parameter ρ and
δ are picked small enough. Moreover, in order to find an ϵ-suboptimal point of f , RGρ needs

O
(
ED1
µ log 1

ϵ

)
zeroth-order oracles and iteration complexities. Here, we compare the result with

the original one in Nesterov and Spokoiny (2017), who establish a complexity of O
(
dL
µ log 1

ϵ

)
in

expectation. Our analysis is sharper than theirs up to constants since ED1 ≤ dL. The rationale
behind our analysis is mentioned before: in most real cases (see Fig. 1), the singular values of Hessian
matrices decrease very fast. So we often have ED1 ≪ dL. To obtain a quantitative comparison
between r1 and dL, we consider linear models in (3) and have the following corollary.

Corollary 11 For the objective in (3) that satisfies Assumptions 4 and 5 and is µ-strongly convex,
RGρ finds an ϵ-suboptimal solution in Õ

(
L0R
µ

)
in expectation.

From Corollary 11, treating R and L0 as constants, we establish a complexity of Õ(µ−1) in compari-
son to Õ(dµ−1) in Nesterov and Spokoiny (2017). Note here L can be Θ(1). Therefore we improve
the complexity by the factor of d.

Now we consider the weakly convex setting. The result is shown in Theorem 12.

Theorem 12 Suppose f is a L-smooth quadratic function whose Hessian matrix is A. Using a
δ-approximated zeroth-order oracle, {xk}k∈N generated byRGρ satisfies

(k + 1)(Ef(xk+1)− f∗)

≤ kE(f(xk)− f∗) + (k + 1)

(
C1ρ

2 + C2
δ2

ρ2

)
+

12tr(A)

k + 1
E∥xk − x∗∥2,

(14)

where the expectation is taken for all the randomness in the algorithm.

Theorem 12 establishes a complexity of O
(
ED1
ϵ

)
in expectation to find an ϵ-suboptimal point of

f . Again, we compare our analysis with that in Nesterov and Spokoiny (2017) which achieve a
complexity of O

(
dL
ϵ

)
in the same setting. Again our result is sharper than theirs up to constants.

For linear models, when R and L0 are treated as constants, the following corollary indicates that our
analysis improves the complexity by a d factor.

Corollary 13 For the objective in (3) that satisfies Assumptions 4 and 5,RGρ finds an ϵ-suboptimal
solution in O

(
L0R
ϵ

)
oracle calls in expectation.

6. Acceleration on Quadratic Minimization

It is well-known that first-order algorithms can be accelerated using the so-called momentum in
convex optimization. For example, the earlier work from Polyak (1964) shows that the Heavy-ball
algorithm can achieve a faster convergence asymptotically for strongly convex functions when
Hessian matrices exist. Nesterov (2003) proposes several acceleration schemes and first obtains the
accelerated rate in the weakly convex setting by introducing the famous estimate sequence method.
For quadratic objective functions, techniques, such as Chebyshev’s acceleration and conjugate
gradient (see e.g. Young (2014)) are also applicable to reach the faster rate.

10
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Algorithm 2 ZHB: Zeroth-order Heavy-Ball algorithm.
Input: x0, L-smooth and µ-strongly quadratic function f
β ←

√
hµ, h← 1

144002ED1/2(f)
2 ;

while stopping criterion is not met do
yn ← xn + (1− β)vn;
generate ∇̂ρf(yn) by two queries to the function value and a Gaussian random vector in (6);
xn+1 ← yn − h∇̂ρf(yn);
vn+1 ← xn+1 − xn;

end

Because RGρ can be regarded as a stochastic gradient algorithm where the variance of the
stochasticity can be controlled, it is possible to perform acceleration using the technique in first-
order optimization. Indeed, Nesterov and Spokoiny (2017) propose an acceleration algorithm using
Nesterov’s scheme in Nesterov (1983). We find such a framework is not directly applicable to obtain
a dimensional-independent complexity. We instead consider a Heavy-ball based acceleration with the
algorithm shown in Algorithm 2. One can find that Algorithm 2 simply replaces the exact gradient in
the Heavy-ball algorithm by a random approximation using (6) and adaptively choose a different step
size. We still study the quadratic objective in (5) and first focus on strongly convex case. Theorem
14 below summarizes our convergence result.

Theorem 14 Suppose f is a L-smooth µ-strongly convex quadratic function whose Hessian matrix
is A. Using an δ-approximated zeroth-order oracle, if δ and ρ is small enough such that

6n

(
16δ

ρ
+ 12ρtr(A)

)
< 80

(
1− µ1/2

57600ED1/2

)n−1

· µ · (f(x0)− f∗), (15)

{xn}n∈N generated by ZHB satisfies

Ef(yn)− f∗ ≤ 400

(
1− µ1/2

57600ED 1
2

)n

· L
µ
· (f(x0)− f∗), (16)

where the expectation is taken for all the randomness in the algorithm.

The proof idea of Theorem 14 is to treat each update as a vector multiplying a fixed matrix with error
terms caused by the variance of estimation for∇f(x) and use the eigenvalues of the fixed matrix to
give a convergence rate. A similar idea also appears from Jin et al. (2017) in generic non-convex
optimization, whereas, our novel perspective is to use a special Mahalanobis norm ∥ · ∥[∇2f ]2 .

Theorem 14 shows Algorithm 14 converges linearly with a complexity of Õ
(
ED1/2√

µ

)
in ex-

pectation which improves the complexity of Õ
(
d
√

L
µ

)
in Nesterov and Spokoiny (2017). For

linear models, our analysis achieves a complexity of Õ
(

L
1/2
0 R1/2d1/2√

µ

)
, improving the result of

Nesterov and Spokoiny (2017) by at least
√
d when R and L0 are treated as constants and ignores

polylogarithmic factors. Moreover, a fully dimension-free complexity can be obtained when the

11
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eigenvalues of A decrease very fast. In particular, this requires
∑d

k=1 λ
1/2
k (A) ≤ C, which occurs,

for example, when the eigenvalues decrease in 1
kα with α > 2 from Proposition 5.

We note that using our technique, an improved analysis of the accelerated algorithm in Nesterov

and Spokoiny (2017) can only obtain a complexity of Õ
(√

dED1
µ

)
, which still has a dimension

dependency and is more costly than Õ
(
ED1/2√

µ

)
by a factor of

√
dED1

ED1/2
. When the eigenvalues of A

decrease in 1
kα with α > 2 , Algorithm 2 is provably faster by

√
d.

To extend the acceleration on the weakly convex case. We use the standard reduction technique
(see e.g. Lin et al. (2015)) by optimizing a surrogate function:

g(x) = f(x) +
ϵ

2D2
∥x∥2, (17)

where ϵ is a tolerant error and D is defined in Definition 2. We have the following corollary.

Corollary 15 For convex function f , ZHB with regularization technique needs a complexity of
Õ
(
ED1/2 · ϵ−1/2 + d

)
to find an ϵ-suboptimal point in expectation.

7. Accelerated Algorithms for Generic High-order Smooth Functions

In this section, we consider optimizing generic functions using zeroth-order oracles. To extend
the analysis for quadratic minimization to a more general case, we restrict the objective to have
H-continuous Hessian matrices. The main idea to design faster algorithms is to combine Algorithm
2 with the cubic regularization tricks (Monteiro and Svaiter, 2013; Nesterov and Polyak, 2006). We
should mention that this paper concentrates on obtaining improved complexities. It is not hard to
simplify the designed algorithms using techniques such as Jin et al. (2017) and Fang et al. (2019).
However, since the proofs are much more involved, we leave them as future works.

7.1. Convex Case

We first present an algorithm with an improved convergence rate for convex functions. The central
idea is to adopt the large-step A-NPE method in Monteiro and Svaiter (2013) but considers an inexact
solution for sub-problems and a binary search for hyper-parameters. The description of the detailed
algorithm is shown in Appendix A.1.

It is shown by Monteiro and Svaiter (2013) that the iteration complexity of the original Large-
step A-NPE can be upper bounded by O

(
H2/7D6/7ϵ−2/7

)
for convex Hessian-smooth objective

functions, where each update is associated with a complex cubic regularized optimization sub-
problem. By inexactly solving these subproblems with binary search and Algorithm 2, we establish a
complexity upper bound for zeroth-order algorithms. Specifically,

Theorem 16 Assume the objective function f is convex and has L-continuous gradient and H-
continuous Hessian matrices. Algorithm 4 needs

Õ
(
D · ED1/2

ϵ1/2
+ d ·D6/7H2/7ϵ−2/7

)
(18)

zeroth-order oracle calls to find an ϵ-approximated solution with high probability.

From Theorem 16, if we treat L and H as constants, Algorithm 4 obtains a complexity of
Õ
(
ED1/2ϵ

−1/2 + dϵ−2/7
)
, which is lower than the best-known complexity of O

(
dϵ−1/2

)
in Nes-

terov and Spokoiny (2017) since ED1/2 ≤ dL1/2 and usually ED1/2 ≪ dL1/2 in practice.

12
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7.2. Non-convex Case

We consider optimizing a second-order smooth function in the general non-convex setting. For
non-convex programming, it is known that finding an approximated global minimizer for a smooth
objective suffers the curse of dimensionality. We consider searching an (ϵ,O(

√
ϵ))-approximated

second-order stationary point (see Definition 4). Such a relaxed solution can be obtained in polyno-
mial complexities and is already a tolerant solution for many machine learning problems such as for
matrix decomposition problems (Ge et al., 2015).

We consider inexactly solving the cubic regularization algorithm in Nesterov and Polyak (2006)
by zeroth-order oracles. The whole algorithm is shown in Appendix A.2. We then provide a
complexity analysis. Recall that the standard cubic regularization algorithm Nesterov and Polyak
(2006) finds a second-order approximated solution in O

(
H1/2∆ϵ−3/2

)
for a generic H-Hessian

smooth function. By including the complexities to solve the subproblems, we obtain an upper bound
of zeroth-order complexity for Algorithm 8 in the Theorem 17 below.

Theorem 17 Assume the objective function f is convex and has L-continuous gradients and H-
continuous Hessian matrices. Algorithm 4 finds an (ϵ,

√
Hϵ)-SSP of f in

Õ
(
ED1/2H

1/4∆ϵ−7/4 + dH1/2∆ϵ−3/2
)

(19)

zeroth-order oracle calls with high probability.

From Theorem 17, by treating L and H as constants, Algorithm 4 obtains a complexity of
Õ
(
ED1/2ϵ

−7/4 + dϵ−3/2
)
, whereas, the best-known complexity of Õ

(
dϵ−7/4

)
from Jin et al. (2017)

in the same setting. Again Algorithm 8 is provably faster.

8. Conclusion

This paper proposes zeroth-order optimization theory with weak dimension dependency. We propose
a new factor EDα to characterize the complexities. Our analysis provides a new way to study
zeroth-order optimization for high-dimensional problems.
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Appendix A. Algorithms

To start with showing algorithms for generic high-order smooth function, we first define fx to be its
second-order Taylor expansion (SOE) of f at x as follows:

fx(y) = f(x) + ⟨∇f(x),y − x⟩+ 1

2
⟨∇2f(x)(y − x),y − x⟩. (20)

We first design a simple algorithm shown in Algorithm 3 which uses Θ(1) zeroth-order oracles to
compute a δ-approximated fx(y) shown below.

Algorithm 3 ASOE(f, L,H,x,y, δ): Compute δ-approximated fx(y)

Input: an L-gradient Lipschitz continuous and H-Hessisan Lipschitz continuous function f , a
zeroth-order oracle of f

Denote r = ∥y − x∥;
Query f(x), f

(
x+ δ

Lr2
(y − x)

)
, f
(
x+ δ

2Hr3
(y − x)

)
,f
(
x− δ

2Hr3
(y − x)

)
;

Approximate fx(y) by

f̃x,δ(y) = f(x) +
Lr2

δ

(
f

(
x+

δ

Lr2
(y − x)

)
− f(x)

)
(21)

+
2H2r6

δ2

(
f

(
x+

δ

2Hr3
(y − x)

)
+ f

(
x− δ2

2Hr3
(y − x)

)
− 2f(x)

)
;

return f̃x,δ(y)

Lemma 18 For function f that has L-continuous gradient and H-continuous Hessian matrices,
given any δ > 0, Algorithm 3 outputs a δ-approximated fx(y) denoted by f̃x,δ(y) such that∣∣∣f̃x,δ(y)− fx(y)

∣∣∣ ≤ δ.

A.1. Algorithms for Convex Optimization

The proposed algorithm is shown in Algorithm 4, where each iterate consists of inexact solving the
sub-problem by Algorithm 6 and an approximated computation of the gradient using zero-order
oracles by Algorithm 5. Here, Algorithm 6 solves the subproblem by a binary search with each step
solving a quadratic minimization problem using our accelerated algorithm presented in Algorithm 2.

A.2. Algorithms for Non-convex Optimization

An illustration of the algorithm is shown in Algorithm 7. To solve the subproblem, we use a binary
search to determine rk ≈ ∥xk+1 − xk∥. With a given rk, the subproblem can be transferred to a
quadratic minimization problem and is solvable by Algorithm 2. The whole algorithm is shown in
Algorithm 8, where the updates use Algorithm 9.
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Algorithm 4 Inexact Large-step A-NPE with Zeroth-order Oracle

Input: σl < σu < σ < 1, σl = σu
2 , A0 = 0, ϵA < D

N3/2 , ϵB < (σ−σu)2

2λk+1(Lλk+1+1+(σ−σu)2)

(
L+ 1

λk+1

) ·(
f(x̃k)−miny

{
fx̃k

(y) + 1
2λk+1

∥y − x̃k∥2
})

, k = 0, λ0 =
σl(1−σ2)1/2

16DH ;

while k < N do
(yk+1, ak+1, λk+1)← ZHPEBinarySearch(x̃k, H, σl, σu, Ak, λk, ϵB);
vk+1 ← ApproximateGradient

(
f,yk+1,

ϵA
ak+1

)
;

Ak+1 ← Ak + ak+1;
xk+1 ← xk − ak+1vk+1;
k ← k + 1;

end

Algorithm 5 ApproximateGradient(f,x, ϵA): Approximating∇f(x) with precision ϵA for f with
L-Lipschitz gradient

ρ← 2ϵA
dL ;

for i ∈ [d] do
vi ← f(x+ρei)−f(x)

ρ , where ei is a vector whose ith coordinate is 1 and other coordinates are 0;
end
return v

Algorithm 6 ZHPEBinarySearch(x̃k, H, σl, σu, Ak, λk, ϵB): Binary search to find λk

λk+1 ← λk;
while True do

ak+1 ←
λk+1+

√
λ2
k+1+4λk+1Ak

2 ;
x̃k ← Ak

Ak+ak+1
yk +

ak+1

Ak+ak+1
xk;

Solve (22) with Algorithm 2 using Algorithm 3 as an oracle, and find an ϵB-approximated
solution yk+1:

min
y∈Rd

fx̃k
(y) +

1

2λk+1
∥y − x̃k∥2. (22)

Require: 2σl
H ≤ λk+1∥yk+1 − x̃k∥ ≤ 2σu

H ;
if λk+1∥yk+1 − x̃k∥ ≤ 2σl

H then
λk+1 ← 2λk+1;

else if λk+1∥yk+1 − x̃k∥ ≥ 2σu
H then

λk+1 ← 1
2λk+1;

else
return (yk+1, ak+1, λk+1);

end
end
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Algorithm 7 Illustration: Inexact Cubic Regularization Algorithm
while stopping criterion is not met do

Approximately solve the following optimization problem using Binary Search and Algorithm 2:

xk+1 ← argmin
y

f(xk) + ⟨∇f(xk),y − xk⟩+
1

2
⟨∇2f(xk)(y − xk),y − xk⟩+

H

6
∥y − xk∥3.

k ← k + 1;
end

Algorithm 8 Inexact Cubic Regularization Algorithm with Zeroth-order Oracle
Input: Desired accuracy ϵ;
while rk ≥

√
ϵ
H do

(xk+1, rk+1)← ZCubicBinarySearch(xk, H, rk);
k ← k + 1;

end

Appendix B. Proofs of Lemmas about Estimating Gradients

In this section, we present the proof of Lemma 8 and Lemma 9, and other technical lemmas about
the properties of ∇̂ρf̃δ.

Lemma 8
Eξ∇̃f(x) = ∇f(x) (24)

and
Eξ∥∇̃f(x)∥2 = Θ(d∥∇f(x)∥2). (25)

Proof For the expectation, we have

Eξ∇̃f(x) = Eξ⟨∇̃f(x), ξ⟩ · ξ = Eξξξ
⊤∇f(x)

= I∇f(x) = ∇f(x).
(26)

For the sum of second-order moment, for an arbitrary symmetric matrix M, we have

Eξ∥∇̃f(x)∥2M = Eξ∥⟨∇f(x), ξ⟩ · ξ∥2M
= Eξ∇f(x)⊤ξξ⊤Mξξ⊤∇f(x)

= ∇f(x)⊤Eξ

[
ξξ⊤Mξξ⊤

]
∇f(x).

(27)

Let M = U⊤DU be the eigenvalue decomposition of M where D = diag{b1, · · · , bd} is a diagonal
matrix, and ζ = Uξ be a random variable. We have ζ ∼ N(0, I) because U is a orthogonal matrix,
and

Eξ

[
ξξ⊤Mξξ⊤

]
a
= Eζ

[
U⊤ζζ⊤Dζζ⊤U

]
= U⊤Eζ

[
d∑

i=1

biζ
2
i · ζζ⊤

]
U

b
= U⊤

(
d∑

i=1

bi · I+ 2D

)
U

c
= tr(M) · I+ 2M,

(28)
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Algorithm 9 ZCubicBinarySearch(xk, H, r, ϵC , ϵD): Binary search to find rk
rk+1 ← r;
rl ← 0, ru ←∞;
while True do

Solve (23) with Algorithm 2 using Algorithm 3 as an oracle, and find an ϵC-approximated
solution yk+1:

min
y∈Rd

fxk
(y) +

rk+1H

2
∥y − xk∥2. (23)

if ∥yk+1 − xk∥ ≤ rk+1 then
ru ← rk+1;
rk+1 ← rk+1

2 ;
else if ∥yk+1 − xk∥ > rk+1 then

rl ← rk+1;
rk+1 ← 2rk+1;

end
if (rl > 0 and ru <∞) or ru < ϵD then

break;
end

end
while ru − rl ≥ ϵD do

rk+1 ← ru+rl
2 ;

Solve (23) with Algorithm 2 using Algorithm 3 as an oracle, and find an ϵC-approximated
solution yk+1;
if ∥yk+1 − xk∥ ≤ rk+1 then

ru ← rk+1;
else if ∥yk+1 − xk∥ > rk+1 then

rl ← rk+1;
end

end
rk+1 ← ru;
Solve (23) with Algorithm 2 using Algorithm 3 as an oracle, and find an ϵC-approximated solution
yk+1;
return (yk+1, rk+1);

where in a
=, we introduce ζ = Uξ, then ζ also follows from standard Gaussian distribution by

the rotational invariance, in b
=, we use the second and fourth order moment of standard Gaussian

variables: Eζ2i = 1, Eζ4i = 3, and in c
=, we use tr(M) = tr(U⊤DU) = tr(DUU⊤) = tr(D).

When M = I, we have

Eξ∥∇̃f(x)∥2 = (d+ 2)∥∇f(x)∥2 = Θ(d∥∇f(x)∥2). (29)

Lemma 9 For symmetric matrix M,

Eξ∥∇̃f(x)∥2M ≤ 3tr(M)∥∇f(x)∥2. (30)
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Proof By (28), (27), and the fact that tr(M) · I ⪰ LI ⪰M we have (30).

Lemma 19 Let f̃δ be a δ-approximated estimate of f . If ∇̂ρf̃δ(x) and ∇̃f(x) are generated by the
same Gaussian random variable,

Ek+1∥∇̂ρf̃δ(x)− ∇̃f(x)∥2B ≤
8δ2

ρ2
tr(B) +

15ρ2

2
tr(A)2tr(B), (31)

where B is an arbitrary positive semi-definite symmetric matrix.

Proof By the definition of ∇̂ in (6), ∇̃ in (7), and f̃δ, we have

∇̂ρf̃δ(x)− ∇̃f(x) (32)

=

(
f̃δ(x+ ρξ)− f̃δ(x)

ρ
− ⟨∇f(x), ξ⟩

)
· ξ

=

([
f̃δ(x+ ρξ)− f̃δ(x)

ρ
− f(x+ ρξ)− f(x)

ρ

]
+

[
f(x+ ρξ)− f(x)

ρ
− ⟨∇f(x), ξ⟩

])
· ξ.

By (32), we have

Ek+1

∥∥∥∇̂ρf̃δ(x)− ∇̃f(x)
∥∥∥2
B

≤ 2Ek+1

(
f̃δ(x+ ρξ)− f̃δ(x)

ρ
− f(x+ ρξ)− f(x)

ρ

)2

· ∥ξ∥2B

+ 2Ek+1

(
f(x+ ρξ)− f(x)

ρ
− ⟨∇f(x), ξ⟩

)2

· ∥ξ∥2B

≤ 8δ2

ρ2
Ek+1∥ξ∥2B +

1

2
Ek+1ρ

2∥ξ∥4A∥ξ∥2B

≤ 8δ2

ρ2
tr(B) +

15ρ2

2
tr(A)2tr(B).

(33)

Appendix C. Proofs of Theorems 10 and 12

Theorem 10 Suppose f is a µ-strongly convex quadratic function and has L-Lipschitz continuous
gradient. The Hessian matrix of f is A. Let hk = 1

12tr(A) . Using an δ-approximated zeroth-order
oracle, {xk}k∈N generated byRGρ satisfies

Ef(xk+1)− f∗ − 24tr(A)

µ

(
C1ρ

2 + C2
δ2

ρ2

)
≤
(
1− µ

24tr(A)

)(
Ef(xk)− f∗ − 24tr(A)

µ

(
C1ρ

2 + C2
δ2

ρ2

))
,

(34)
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where
C1 =

5

16
tr(A)d+

5

384
tr(A), C2 =

d

3tr(A)
+

1

72tr(A)
, (35)

and the expectation is taken for all the randomness in the algorithm.

Proof Because f is quadratic, we have

f(xk+1) = f(xk) + ⟨∇f(xk),xk+1 − xk⟩+
h2k
2
∥∇̂ρf̃δ(xk)∥2A. (36)

Taking expectation with respect to the randomization of ∇̂ρf̃δ(xk) on both sides of (36), we get

Ek+1f(xk+1)

≤f(xk)− hk⟨∇f(xk),Ek+1∇̂ρf̃δ(xk)⟩+
h2k
2
Ek+1∥∇̂ρf̃δ(xk)∥2A

≤f(xk)− hk⟨∇f(xk),Ek+1∇̃f(xk)⟩ − hk

〈
∇f(xk),Ek+1

[
∇̂ρf̃δ(xk)− ∇̃f(xk)

]〉
+ h2kEk+1∥∇̃f(xk)∥2A + h2kEk+1∥∇̂ρf̃δ(xk)− ∇̃f(xk)∥2A. (37)

Using Lemma 8 and Lemma 9 in (37), we have

Ek+1f(xk+1)

≤f(xk)− hk∥∇f(xk)∥2 + h2k · 3tr(A)Ek+1∥∇f(xk)∥2

− hk

〈
∇f(xk),Ek+1

[
∇̂ρf̃δ(xk)− ∇̃f(xk)

]〉
+ h2kEk+1∥∇̂ρf̃δ(xk)− ∇̃f(xk)∥2A

≤f(xk)− hk∥∇f(xk)∥2 + h2k · 3tr(A)Ek+1∥∇f(xk)∥2

+
hk
2
∥∇f(xk)∥2 +

hk
2
Ek+1∥∇̂ρf̃δ(xk)− ∇̃f(xk)∥2

+ h2kEk+1∥∇̂ρf̃δ(xk)− ∇̃f(xk)∥2A.

By Lemma 19, we have

Ek+1f(xk+1) ≤ f(xk)−
hk
2
∥∇f(xk)∥2 + 3h2ktr(A)Ek+1∥∇f(xk)∥2

+
hk
2
·
(
8δ2

ρ2
d+

15ρ2

2
tr(A)2d

)
+ h2k ·

(
8δ2

ρ2
tr(A) +

15ρ2

2
tr(A)3

)
.

(38)

By the definition of hk, we have

Ek+1f(xk+1) ≤ f(xk)−
1

48tr(A)
∥∇f(xk)∥2

+
1

24

(
8σ2d

ρ2tr(A)
+

15ρ2tr(A)d

2

)
+

1

576

(
8δ2

ρ2tr(A)
+

15ρ2tr(A)

2

)
= f(xk)−

1

48tr(A)
∥∇f(xk)∥2

+ ρ2
(

5

16
tr(A)d+

5

384
tr(A)

)
+

σ2

ρ2

(
d

3tr(A)
+

1

72tr(A)

)
.

(39)

22



ZEROTH-ORDER OPTIMIZATION WITH WEAK DIMENSION DEPENDENCY

By (39), we have

Ek+1f(xk+1) ≤ f(xk)−
1

48tr(A)
∥∇f(xk)∥2

+ C1ρ
2 + C2

δ2

ρ2
,

(40)

where C1 and C2 are constants depending only on tr(A) and d, defined in (35). By the strong
convexity of f , we have

f(xk) ≤ f∗ + ⟨∇f(xk),xk − x∗⟩ − µ

2
∥xk − x∗∥2. (41)

By Cauchy-Schwartz inequality, we have

⟨∇f(xk),xk − x∗⟩ ≤ 1

2µ
∥∇f(xk)∥2 +

µ

2
∥xk − x∗∥2. (42)

Therefore,

f(xk) ≤ f∗ +
1

2µ
∥∇f(xk)∥2. (43)

Plugging (40) into (43), we have

Ek+1f(xk+1) ≤ f(xk)−
µ

24tr(A)
(f(xk)− f∗)

+ C1ρ
2 + C2

δ2

ρ2
.

(44)

Taking full expectation to (44), we have

Ef(xk+1)− f∗ ≤
(
1− µ

24tr(A)

)
(Ef(xk)− f∗) + C1ρ

2 + C2
δ2

ρ2
. (45)

By (45), we have

Ef(xk+1)− f∗ − 24tr(A)

µ

(
C1ρ

2 + C2
δ2

ρ2

)
≤
(
1− µ

24tr(A)

)(
Ef(xk)− f∗ − 24tr(A)

µ

(
C1ρ

2 + C2
δ2

ρ2

))
.

(46)

Theorem 12 Suppose f is a L-smooth quadratic function whose Hessian matrix is A. Using a
δ-approximated zeroth-order oracle, {xk}k∈N generated byRGρ satisfies

(k + 1)(Ef(xk+1)− f∗)

≤ kE(f(xk)− f∗) + (k + 1)

(
C1ρ

2 + C2
δ2

ρ2

)
+

12tr(A)

k + 1
E∥xk − x∗∥2,

(47)

where the expectation is taken for all the randomness in the algorithm.

23



YUE YANG FANG LIN

Proof By (39), we have

Ek+1f(xk+1) ≤ f(xk)−
1

48tr(A)
∥∇f(xk)∥2

+ C1ρ
2 + C2

δ2

ρ2
,

(48)

where C1 and C2 are constants depending only on ∥A∥∗ and d, defined in (35). By the convexity of
f , we have

f(xk) ≤ f∗ + ⟨∇f(xk),xk − x∗⟩. (49)

By Cauchy-Schwartz inequality, we have

⟨∇f(xk),xk − x∗⟩ ≤ 1

48tr(A)(k + 1)
∥∇f(xk)∥2 + 12tr(A)(k + 1)∥xk − x∗∥2. (50)

Using (49) and (50), we have

f(xk) ≤ f∗ +
k + 1

48tr(A)
∥∇f(xk)∥2 +

12tr(A)

k + 1
∥xk − x∗∥2

(48)
≤ f∗ + (k + 1)

(
f(xk)− Ek+1f(xk+1) + C1ρ

2 + C2
δ2

ρ2

)
+

12tr(A)

k + 1
∥xk − x∗∥2.

(51)

Therefore, we have

(k + 1)(Ek+1f(xk+1)− f∗)

≤ k(f(xk)− f∗) + (k + 1)

(
C1ρ

2 + C2
δ2

ρ2

)
+

12tr(A)

k + 1
∥xk − x∗∥2.

(52)

Appendix D. Proof of Theorem 14

Theorem 14 Suppose f is a L-smooth µ-strongly convex quadratic function whose Hessian matrix
is A. Using an δ-approximated zeroth-order oracle, if δ and ρ is small enough such that

6n

(
16δ

ρ
+ 12ρtr(A)

)
< 80

(
1− µ1/2

57600ED1/2

)n−1

· µ · (f(x0)− f∗), (53)

{xn}n∈N generated by ZHB satisfies

Ef(yn)− f∗ ≤ 400

(
1− µ1/2

57600ED 1
2

)n

· L
µ
· (f(x0)− f∗), (54)

where the expectation is taken for all the randomness in the algorithm.
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Proof Let zk+1 =

[
xk+1

xk

]
. The iterations of ZHB can be written as

zk+1 =

[
(2− β)(I− hA) −(1− β)(I− hA)

I 0

]
zk + hϵ1k + hϵ2k

△
= Bzk + hϵ1k + hϵ2k, (55)

where ϵ1k =

[
(I− ξξ⊤)Ayk

0

]
, and ϵ2k =

[
∇̃f(xk)− ∇̂ρf̃δ(xk)

0

]
. ϵ1k represents the error of

estimating∇f(xk) with ∇̃(xk), and ϵ2k represents the error of estimating ZHB with ∇̂ρf̃δ(xk).
By induction on k, we have

zn = Bnz0 + h

n−1∑
k=0

Bn−k−1ϵ1k + h

n−1∑
k=0

Bn−k−1ϵ2k. (56)

Without loss of generality, we assume that x∗ = 0. We estimate the distance to the optimal
solution by the A2 norm of xk. To compute ∥xk∥A2 , we decompose xk into eigen-directions of A,
and B can be decomposed into 2× 2 matrices. For an eigen-direction with eigenvalue λ, the update
of AGD can be written as follows:[

xk+1

xk

]
=

[
(2− β)(1− hλ) −(1− β)(1− hλ)

1 0

] [
xk
xk−1

]
+ h

[
ϵ
0

]
△
= Bλ

[
xk
xk−1

]
+ h

[
ϵ
0

]
.

(57)

Let µ1 and µ2 be the eigenvalues of Bλ. By the Lemma 19 of Jin et al. (2017), we can write the
eigen-decomposition of Bλ as

Bλ =
1

µ1 − µ2

[
µ1 µ2

1 1

] [
µ1 0
0 µ2

] [
1 −µ2

−1 µ1

]
. (58)

Let C =

[
A2 0
0 A2

]
. By (56), We have

E∥zn∥2C ≤ 3∥Bnz0∥2C + 3E

∥∥∥∥∥
n−1∑
k=0

Bn−k−1ϵ1k

∥∥∥∥∥
2

C

+ 3E

∥∥∥∥∥
n−1∑
k=0

Bn−k−1ϵ2k

∥∥∥∥∥
2

C

(59)

First we tackle the ϵ1k terms.

E

∥∥∥∥∥
n−1∑
k=0

Bn−k−1ϵ1k

∥∥∥∥∥
2

C

=

n−1∑
k=0

Ek

∥∥∥Bn−k−1ϵ1k

∥∥∥2
C

=
n−1∑
k=0

Ei

[
y⊤
k A

⊤(I− ξkξ
⊤
k ) 0

]
B(n−k−1)TCBn−k−1

[
(I− ξkξ

⊤
k )Ayk

0

]
Lemma 9
≤ 3

n∑
k=1

tr
(
B(n−k−1)TCBn−k−1

)
· ∥yk∥2A2 .

(60)
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In order to estimate tr
(
B(n−k−1)TCBn−k−1

)
, we consider blocks of B with respect to eigen-

directions of A. The contribution of an eigen-direction with eigenvalue λ in the trace is

tr

(
B

(n−k−1)⊤
λ ·

[
λ2 0
0 λ2

]
B(n−k−1)

)
= λ2

(∥∥∥[1 0
]
Bn−k−1

λ

∥∥∥2 + ∥∥∥[0 1
]
Bn−k−1

λ

∥∥∥2) (61)

By Lemma 19 of Jin et al. (2017), the last line in (61) equals to

λ2
∥∥∥[∑n−k−1

i=0 µi
λ,1µ

n−k−1−i
λ,2 −µλ,1µλ,2

∑n−k−2
i=0 µi

λ,1µ
n−k−2−i
λ,2

]∥∥∥2
+ λ2

∥∥∥[∑n−k−2
i=0 µi

λ,1µ
n−k−2−i
λ,2 −µλ,1µλ,2

∑n−k−3
i=0 µi

λ,1µ
n−k−3−i
λ,2

]∥∥∥2 . (62)

Define aλ = |µλ,1| =
√
(1− β)(1− hλ). By the choice of β, we have aλ ≤ 1−

√
hµ
2 . We have the

following equation:

λ2
∥∥∥[∑n−k

i=0 µi
λ,1µ

n−k−i
λ,2 −µλ,1µλ,2

∑n−k−1
i=0 µi

λ,1µ
n−k−1−i
λ,2

]∥∥∥2 ≤ 4λ2(n− k)2an−k
λ . (63)

From the definition of yi and Cauchy-Schwartz inequality, we have

∥yi∥2A2 ≤ 8∥xi∥2A2 + 2∥xi−1∥2A2 ≤ 8∥zi∥2C + 2∥zi−1∥2C. (64)

Therefore,

E

∥∥∥∥∥
n−1∑
k=0

Bk−iϵ1i

∥∥∥∥∥
2

C

≤ 3
n−1∑
k=0

d∑
i=1

8λ2
i (n− k)2an−k

λi
· ∥yk∥2A2

= 24

d∑
i=1

n−1∑
k=0

λ2
i (n− k)2an−k

λi
· ∥yk∥2A2

(65)

Then we calculate ∥Bnz0∥2C. As x−1 = x0, the contribution of an eigen-directions of A to the
norm is

λ2x2λ

∥∥∥∥Bn
λ

[
1
1

]∥∥∥∥2 , (66)
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where λ is the eigenvalue, and xλ is the coefficient of the eigen-decomposition of x0. By Lemma 19
of Jin et al. (2017), we have

Bn
λ

[
1
1

]
=

[ ∑n
i=0 µ

i
λ,1µ

n−i
λ,2 − µλ,1µλ,2

∑n−1
i=0 µi

λ,1µ
n−1−i
λ,2∑n−1

i=0 µi
λ,1µ

n−1−i
λ,2 − µλ,1µλ,2

∑n−2
i=0 µi

λ,1µ
n−2−i
λ,2

]

=
1

2

[
µn
λ,1 + µn

λ,2 + (2− µλ,1 − µλ,2)
∑n

i=0 µ
i
λ,1µ

n−i
λ,2

µn−1
λ,1 + µn−1

λ,2 + (2− µλ,1 − µλ,2)
∑n−1

i=0 µi
λ,1µ

n−1−i
λ,2

]

=
1

2

µ
n
λ,1 + µn

λ,2 + (2− µλ,1 − µλ,2)
µn+1
λ,1 −µn+1

λ,2

µλ,1−µλ,2

µn−1
λ,1 + µn−1

λ,2 + (2− µλ,1 − µλ,2)
µn
λ,1−µn

λ,2

µλ,1−µλ,2


(67)

The 2−µλ,1−µλ,2

µλ,1−µλ,2
term in (67) can be bounded as follows:

2− µλ,1 − µλ,2

µλ,1 − µλ,2
=

2− (2− β)(1− hλ)√
(1− hλ)(hλ(2− β)2 − β2)

≤ β + hλ√
1
4 · hλ

≤ 2 +
√
hλ

≤ 3.

(68)

Therefore,

∥∥∥∥Bn
λ

[
1
1

]∥∥∥∥2
≤ 1

4
· 4
(
|µ2n

λ,1|+ |µ2n
λ,2|+ 9|µ2n+2

λ,1 |+ 9|µ2n+2
λ,2 |+ |µ

2n−2
λ,1 |+ |µ

2n−2
λ,2 |+ 9|µ2n

λ,1|+ 9|µ2n
λ,2|
)

≤ 40

(
1−
√
hµ

2

)2n−2

,

(69)

and we have

∥Bnz0∥2C ≤ 40

(
1−
√
hµ

2

)2n−2

∥z0∥2C. (70)
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Finally we tackle the ϵ2k terms. We have

∇̂ρf̃δ(x)− ∇̃f(x)

=

(
f̃δ(x+ ρξ)− f̃δ(x)

ρ
− ⟨∇f(x), ξ⟩

)
· ξ

=

([
f̃δ(x+ ρξ)− f̃δ(x)

ρ
− f(x+ ρξ)− f(x)

ρ

]
+

[
f(x+ ρξ)− f(x)

ρ
− ⟨∇f(x), ξ⟩

])
· ξ.

=

([
f̃δ(x+ ρξ)− f̃δ(x)

ρ
− f(x+ ρξ)− f(x)

ρ

]
+

ρ

2
∥ξ∥2A

)
· ξ.

(71)
With the above equality, we have

E∥∇̂ρf̃δ(x)− ∇̃f(x)∥2Bk⊤CBk

≤ 2E

[
f̃δ(x+ ρξ)− f̃δ(x)

ρ
− f(x+ ρξ)− f(x)

ρ

]
·
∥∥∥∥[ξ0

]∥∥∥∥2
Bk⊤CBk

+ 2E
ρ

2
∥ξ∥2A ·

∥∥∥∥[ξ0
]∥∥∥∥2

Bk⊤CBk

≤ 4δ

ρ
E
∥∥∥∥[ξ0

]∥∥∥∥2
BkTCBk

+ ρE∥ξ∥2A ·
∥∥∥∥[ξ0

]∥∥∥∥2
BkTCBk

≤ 4δ

ρ
tr
(
Bk⊤CBk

)
+ 3ρtr(A) · tr(Bk⊤CBk)

≤
(
4δ

ρ
+ 3ρtr(A)

)
· 4

d∑
i=1

λ2
i (k + 1)2akλi

.

(72)

Therefore,

E

∥∥∥∥∥
n−1∑
k=0

Bn−k−1ϵ2k

∥∥∥∥∥
2

C

≤ n

n−1∑
k=0

Ek∥Bn−k−1ϵ2k∥2C

≤ n

n∑
k=1

(
4δ

ρ
+ 3ρtr(A)

)
· 4

d∑
i=1

λ2
i (n− k)2an−k

λi

= n

(
16δ

ρ
+ 12ρtr(A)

)
·

d∑
i=1

n∑
k=1

λ2
i (n− k)2an−k

λi
.

(73)

Finally, we use induction to prove that E∥zn∥2C < 200(1− b)n∥z0∥2C where b = 1−
√
hµ
4 when

16δ
ρ + 12ρtr(A) is small. Suppose that for k < n, we have E∥zk∥2C < 200(1− b)n∥z0∥2C. By (59),
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we have

E∥zn∥2C ≤ 120

(
1−
√
hµ

2

)2n−2

∥z0∥2C

+ 72h2
d∑

i=1

n−1∑
k=0

λ2
i (n− k)2an−k

λi
· ∥yk∥2A2

+ 3nh2
(
16δ

ρ
+ 12ρtr(A)

)
·

d∑
i=1

n∑
k=1

λ2
i (n− k)2an−k

λi
.

(74)

By the definition of yk and the assumption for induction, we have

E∥yk∥2A2 ≤ 2000(1− b)n−1∥z0∥2C. (75)

Using the summation result:
n∑

k=1

k2ak <
1

(1− a)3
, (76)

we have

E∥zn∥2C ≤ 120

(
1−
√
hµ

2

)2n−2

∥z0∥2C

+ 144000(1− b)n−1
d∑

i=1

h2λ2
i(

1− aλi
b

)3 ∥z0∥2C
+ 3n

(
16δ

ρ
+ 12ρtr(A)

)
·

d∑
i=1

h2λ2
i

(1− aλi
)3

≤ 120

(
1−
√
hµ

2

)2n−2

∥z0∥2C

+ 576000(1− b)n−1
d∑

i=1

√
hλi∥z0∥2C

+ 6n

(
16δ

ρ
+ 12ρtr(A)

)
·

d∑
i=1

√
hλi.

(77)

By h = 1

144002(
∑

i λ
1/2
i )2

, we have

E∥zn∥2C ≤ 160(1− b)n−1∥z0∥2C + 6n

(
16δ

ρ
+ 12ρtr(A)

)
·

d∑
i=1

√
hλi. (78)

Therefore, if 6n
(
16δ
ρ + 12ρtr(A)

)
< 40(1−b)n−1∥z0∥2C, we have E∥zn∥2C < 200(1−b)n∥z0∥2C.

Finally, we have

∥zn∥2C = xn
⊤A2xn + xn−1

⊤A2xn−1

≥ µ
(
xn

⊤Axn + xn−1
⊤Axn−1

)
= 2µ(f(xn) + f(xn−1)),

(79)
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and

∥z0∥2C = 2x0
⊤A2xn

≤ 2Lx0
⊤Ax0

= 4Lf(x0).

(80)

Therefore,

Ef(xn) ≤
1

2µ
· 200(1− b)n · (4Lf(x0))

= 400 · L
µ
·

(
1− µ

57600
∑

i λ
1/2
i

)n

· f(x0).

(81)

Appendix E. Proof of Theorem 16

In this section, we give the proof of Theorem 16.

E.1. Proof of Main Results

We first present a theorem on the number of iterations of Algorithm 4, whose proof can be found in
Monteiro and Svaiter (2013):

Theorem 20 (Theorem 4.1 in Monteiro and Svaiter (2013)) If all the parameters satisfy the re-
quirements of Algorithm 4, then for every integer 1 ≤ k ≤ n, the following statements hold:

Ak ≥
(
2

3

)7/2

·

(
σl(1− σ2)1/2

16DH

)
· k7/2, (82)

and

f(yk)− f∗ ≤ 37/2√
2

HD3

σl
√
1− σ2

1

k7/2
. (83)

Now we give the proof of Theorem 16 below.

Theorem 16 Assume the objective function f is convex and has L-continuous gradient and H-
continuous Hessian matrices. Algorithm 4 needs

Õ
(
D · ED1/2

ϵ1/2
+ d ·D6/7H2/7ϵ−2/7

)
(84)

zeroth-order oracle calls to find an ϵ-approximated solution with high probability.
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Proof Theorem 20 analyzes the outer loop of Algorithm 4, so we only need to analyze the inner
loop of Algorithm 4, namely Algorithm 6 and Algorithm 5. For Algorithm 5, the zeroth-order oracle
is called Θ(d) times. For Algorithm 6, the problem (22) is solved O

(∣∣∣log λj+1

λj

∣∣∣) times. Note that
Theorem 14 shows that solving (22) needs

O

(((
1

λtemp

)−1/2

ED1/2 + d

)
· log 1

ϵB
· logLλtemp

)
(85)

zeroth-order oracle calls in expectation. By Markov’s inequality, using same order of such oracles,
we can find an approximated solution with a constant probability. So by repeating Algorithm
2 for logarithm times and taking the minimum solution, we can obtain a high probability result
(see e.g. Ghadimi and Lan (2013)). Moreover, we have λtemp ≤ max{λj , λj+1}. In order to
find an ϵ-approximated solution, we need to find the first k such that Ak ≥ D2

ϵ . Suppose that

Ak = Θ
(
D2

ϵ

)
, and in this case k = O

(
D6/7H2/7ϵ−2/7

)
. Therefore, ignoring all logarithmic

factors, the zeroth-order oracle is called at most

k∑
j=1

(
Õ

((
1

λtemp

)−1/2

ED1/2 + d

)
+Θ(d)

)

≤
k∑

j=1

Õ

((
1

max{λj , λj+1}

)−1/2

ED1/2 + d

)

= Õ

ED1/2 ·
k∑

j=1

√
λj + kd


Lemma 28
≤ Õ

(
ED1/2 ·

√
Ak + kd

)
= Õ

(
D · ED1/2

ϵ1/2
+ d ·D6/7H2/7ϵ−2/7

)
.

(86)

E.2. Properties of Approximate Solutions

In this subsection, we present a new framework for considering errors from inexactly solving
solutions. With Lemmas 21 and 22, we show that if ϵA and ϵB are small enough, the results in
Monteiro and Svaiter (2013) still hold with a different numerical constant.

Lemma 21 If

ϵB <
(σ − σu)

2

2λk+1(Lλk+1 + 1 + (σ − σu)2)
(
L+ 1

λk+1

) ·(f(x̃k)−min
y

{
fx̃k

(y) +
1

2λk+1
∥y − x̃k∥2

})
,

yk+1 satisfies
∥λk+1∇f(yk+1) + yk+1 − x̃k∥2 ≤ σ2∥yk+1 − x̃2

k∥. (87)
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Proof [Proof of Lemma 21] Denote

g(y) = fx̃k
(y) +

1

2λk+1
∥y − x̃k∥2. (88)

By the L+ 1
λk+1

-Lipschitz contiouity of∇g, we have

g(y)− g∗ ≥ 1

2
(
L+ 1

λk+1

)∥∇g(y)∥2. (89)

Let y = yk+1 in (89). We have

∥λk+1∇fx̃k
(yk+1) + yk+1 − x̃k∥2

(88)
= λ2

k+1∥∇g(y)∥2

(89)
≤
(
2Lλ2

k+1 + 2λk+1

)
(g(yk+1)− g∗)

≤
(
2Lλ2

k+1 + 2λk+1

)
ϵB.

(90)

The optimal solution to (22) is

y∗ = x̃k −
(
∇2f(x̃k) +

1

λk+1
I

)−1

∇f(x̃k) (91)

and

g∗ = f(x̃k)−
1

2

〈(
∇2f(x̃k) +

1

λk+1
I

)−1

∇f(x̃k),∇f(x̃k)

〉

≥ f(x̃k)−
1

2

(
L+

1

λk+1

)
∥x̃k − y∗∥2

≥ f(x̃k)−
(
L+

1

λk+1

)(
∥x̃k − yk+1∥2 + ∥yk+1 − y∗∥2

)
a
≥ f(x̃k)−

(
L+

1

λk+1

)(
∥x̃k − yk+1∥2 + 2λk+1ϵB

)
,

(92)

where
a
≥ uses the λk+1-strong convexity of g. Therefore, if ϵB < (σ−σu)2

2λk+1(Lλk+1+1+(σ−σu)2)

(
L+ 1

λk+1

) ·
(f(x̃k)− g∗), we have

∥λk+1∇fx̃k
+ yk+1 − x̃k∥2

(90)
≤
(
2Lλ2

k+1 + 2λk+1

)
ϵB

≤(σ − σu)
2

L+ 1
λk+1

(f(x̃k)− g∗)

+
(
2Lλ2

k+1 + 2λk+1 − (2Lλ2
k+1 + 2λk+1 + 2(σ − σu)

2λk+1)
)
ϵB

(92)
= (σ − σu)

2∥yk+1 − x̃k∥2, (93)
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and we have

∥λk+1∇f(yk+1) + yk+1 − x̃k∥2 (94)

= ∥(λk+1∇fx̃k
(yk+1) + yk+1 − x̃k) + (λk+1∇fx̃k

(yk+1)− λk+1∇f(yk+1))∥2

≤ ∥λk+1∇fx̃k
(yk+1) + yk+1 − x̃k∥2

+ 2∥λk+1∇f(yk+1) + yk+1 − x̃k∥ · ∥λk+1∇f(x̃k)∇2f(x̃k)(yk+1 − x̃k)− λk+1∇f(yk+1)∥
+ ∥λk+1∇f(x̃k) +∇2f(x̃k)(yk+1 − x̃k)− λk+1∇f(yk+1)∥2

(93)
≤ (σ − σu)

2∥yk+1 − x̃k∥2 + 2(σ − σu)∥yk+1 − x̃k∥ ·
Hλk+1∥yk+1 − x̃k∥

2

+

(
Hλk+1∥yk+1 − x̃k∥

2

)2

≤
(
σ − σu +

H

2
· 2σu
H

)2

= σ2.

Lemma 22 If ϵA < D
N3/2 , then we have

k∑
j=1

∥xj − x∗
j∥2 ≤ D2. (95)

for k ≤ N .

Proof [Proof of Lemma 22] By the definition of xj , x∗
j and Ak, we have

k∑
j=1

∥xj − x∗
j∥2 =

k∑
j=1

∥∥∥∥∥
j∑

i=1

ai(vi −∇f(yi))

∥∥∥∥∥
2

≤
k∑

j=1

(
j∑

i=1

ai ·
ϵA
ai

)2

=

k∑
j=1

j2ϵ2A ≤ k3ϵ2A.

(96)

Therefore, if ϵA ≤ D
N3/2 , we have (95).

In order to analyze f(xk), we define the affine maps γk as

γk(x) = f(yk) + ⟨∇f(yk),x− yk⟩. (97)

and the aggregate affine maps Γk recursively as:

Γ0 ≡ 0, Γk+1 =
Ak

Ak+1
Γk +

ak+1

Ak+1
γk+1. (98)
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We define

x∗
k = x0 −

k∑
j=1

aj∇f(yk+1), (99)

Lemma 23 (Lemma 3.2 of Monteiro and Svaiter (2013)) For every integer k ≥ 0, there hold:

1. γk+1 is affine and γk+1 ≤ f .

2. Γk is affine and AkΓk ≤ Akf .

3. x∗
k = argminxAkΓk(x) +

1
2∥x− x0∥2.

Lemma 24 (Inspired by Lemma 3.4 of Monteiro and Svaiter (2013)) For integer k ≥ 0, define

βk =

(
inf

x∈Rn
AkΓk(x) +

1

2
∥x− x0∥2

)
−Akf(yk). (100)

If ∥λv + y − x∥2 ≤ σ2∥y − x∥2, we have β0 = 0, and

βk+1 ≥ βk +
(1− σ2)Ak+1

2λk+1
∥yk+1 − x̃k∥2 −

1

2
∥xk − x∗

k∥2. (101)

Proof [Proof of Lemma 24] We have β0 = 0 since A0 = 0. For x ∈ Rn, define

x̃ =
Ak

Ak+1
yk +

ak+1

Ak+1
x. (102)

By the definition of x̃k in Algorithm 4 and the affinity of γ, we have

x̃− x̃k =
ak+1

Ak+1
(x− xk), (103)

γk+1(x̃) =
Ak

Ak+1
γk+1(yk) +

ak+1

Ak+1
γk+1(x). (104)

We have the following equality:

Ak+1Γk+1(x) +
1

2
∥x− x0∥2

(98)
= ak+1γk+1(x) +AkΓk(x) +

1

2
∥x− x0∥2

Lemma 23 and (100)
= ak+1γk+1(x) +Akf(yk) + βk +

1

2
∥x− x∗

k∥2

≥ ak+1γk+1(x) +Akf(yk) + βk +
1

4
∥x− xk∥2 −

1

2
∥xk − x∗

k∥2

Lemma 23
≥ ak+1γk+1(x) +Akγk+1(yk) + βk +

1

4
∥x− xk∥2 −

1

2
∥x2

k − x∗
k∥2

(102)
≥ Ak+1γk+1(x̃) + βk +

1

4
∥x− xk∥2 −

1

2
∥xk − x∗

k∥2

(102)
≥ Ak+1γk+1(x̃) + βk +

A2
k+1

4a2k+1

∥x̃− x̃k∥2 −
1

2
∥xk − x∗

k∥2

Lemma 26
≥ βk +Ak+1

(
γk+1(x̃) +

1

4λk+1
∥x̃− x̃k∥2

)
− 1

2
∥xk − x∗

k∥2.

(105)
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With (105), we have

βk+1 +Ak+1f(yk+1)

(100)
= inf

x

{
Ak+1Γk+1 +

1

2
∥x− x0∥2

}
(105)
≥ βk +Ak+1 inf

x̃

{
γk+1(x̃) +

1

2λk+1
∥x̃− x̃k∥2

}
− 1

2
∥xk − x∗

k∥2

(97)
≥ βk +Ak+1f(yk+1) +Ak+1 inf

x̃

{
⟨∇f(yk), x̃− yk+1⟩+

1

4λk+1
∥x̃− x̃k∥2

}
− 1

2
∥xk − x∗

k∥2

Lemma 27
≥ βk +Ak+1f(yk+1) +

(1− σ2)Ak+1

4λk+1
∥yj − x̃j−1∥2 −

1

2
∥xk − x∗

k∥2

(106)

Therefore, we have (101).

Lemma 25 Let D = ∥x0 − x∗∥. If

k∑
j=1

∥xj − x∗
j∥2 ≤ D2, (107)

then for every integer k ≥ 1,

1

4
∥xk − x∗∥2 +Ak[f(yk)− f∗] +

1− σ2

4

k∑
j=1

Aj

λj
∥yj − x̃j−1∥2 ≤ D2. (108)

As a consequence,

f(yk)− f∗ ≤ D2

Ak
, ∥xk − x∗∥ ≤ 2D, (109)

and if σ2 ≤ 1,
k∑

j=1

Ak

λj
∥yj − xj−1∥2 ≤

4D2

1− σ2
. (110)

Proof [Proof of Lemma 25] Summing (101) from k = 0 to k − 1, we have

βk ≥
1− σ2

2

k∑
j=1

Ak+1

λk+1
∥yk+1 − x̃k∥2 −

1

2

k−1∑
j=1

∥xk − x∗
k∥2. (111)

Using the definition of βk in (100), we have

Akf(yk) +
1− σ2

4

k∑
j=1

Aj

λj
∥yj − x̃j−1∥2 (112)

≤ inf
x∈Rn

(
AkΓk +

1

2
∥x− x0∥2

)
+

1

2

k−1∑
j=1

∥xj − x∗
j∥2.
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With Lemma 23, we have

inf
x∈Rn

(
AkΓk(x) +

1

2
∥x− x0∥2

)
+

1

2
∥x− x∗

k∥2 = AkΓk(x) +
1

2
∥x− x0∥2. (113)

Plugging (113) into (112), we have

Akf(yk) +
1− σ2

4

k∑
j=1

Aj

λj
∥yj − x̃j−1∥2 +

1

4
∥x− xk∥2

≤ AkΓk(x) +
1

4
∥x− xk∥2 −

1

2
∥x− x∗

k∥2 +
1

2
∥x− x0∥2 +

1

2

k−1∑
j=1

∥xj − x∗
j∥2

≤ AkΓk(x) +
1

2
∥x− x0∥2 +

1

2

k∑
j=1

∥xj − x∗
j∥2

(114)

Letting x = x∗ in (114), we have

Akf(yk) +
1− σ2

4

k∑
j=1

Aj

λj
∥yj − x̃j−1∥2 +

1

4
∥x∗ − xk∥2

≤ AkΓk(x
∗) +

1

2
∥x∗ − x0∥2 +

1

2

k∑
j=1

∥xj − x∗
j∥2

≤ Akf
∗ +

1

2
∥x∗ − x0∥2 +

1

2

k∑
j=1

∥xj − x∗
j∥2.

(115)

Therefore, using Lemma 23 and (107), we have

Ak(f(yk)− f∗) +
1− σ2

4

k∑
j=1

Aj

λj
∥yj − x̃j−1∥2 +

1

4
∥x∗ − xk∥2 ≤ D2 (116)

E.3. Useful Lemmas in Monteiro and Svaiter (2013)

In this subsection, we list some results leading to Theorem 20 in Monteiro and Svaiter (2013).

Lemma 26 (Lemma 3.1 of Monteiro and Svaiter (2013))

λk+1Ak+1 = a2k+1. (117)

Lemma 27 (Lemma 3.3 of Monteiro and Svaiter (2013)) The inequality

∥λv + y − x∥2 ≤ σ2∥y − x∥2 (118)
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is equivalent to inequality

min
z∈Rn

{
⟨v, z− y⟩+ 1

2λ
∥z− x∥2

}
≥ 1− σ2

2λ
∥y − x∥2. (119)

Lemma 28 (Lemma 3.7 of Monteiro and Svaiter (2013)) For every integer k ≥ 0,√
Ak+1 ≥

√
Ak +

1

2

√
λk+1. (120)

Lemma 29 (Lemma 4.2 of Monteiro and Svaiter (2013)) If all the parameters satisfy the require-
ments of Algorithm 4, then for every integer 1 ≤ k ≤ N ,

k∑
j=1

Aj

λ3
j

≤ H2D2

σ2
l (1− σ2)

. (121)

Lemma 30 (Lemma 4.4 of Monteiro and Svaiter (2013)) If all the parameters satisfy the require-
ments of Algorithm 4, then for 1 ≤ k ≤ N ,

Ak ≥
1

4
w

 k∑
j=1

A
1/3
j

7/3

, (122)

where

w =
σ2
l (1− σ2)

4H2D2
. (123)

Appendix F. Proof of Theorem 17

In this section, we provide the proof of Theorem 17.

F.1. Properties of Approximated Solutions

We define

x̃k+1 = argmin
y

f(xk)+⟨∇f(xk),y−xk⟩+
1

2
⟨∇2f(xk)(y−xk),y−xk⟩+

H

6
∥y−xk∥3, (124)

which is the exact solution of the cubic regularization subproblem, and

r̃k+1 = ∥x̃k+1 − xk∥. (125)

We first present some results which considers the error of inexact solutions.
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Lemma 31 If ϵC < min

 ϵ

800

(
16·(24∆/H)1/3√

ϵH
+1

) , ϵ
800 ,

1
2000

(
ϵ
H

)3/2 and

ϵD < min


√

ϵ
H

200

(
16·(24∆/H)1/3√

ϵH
+1

) ,√ ϵ
40000H

, then we have

∥x̃k − xk∥ <
√

ϵ

10000H
. (126)

Proof [Proof of Lemma 31] For any r ≥ 0, Define

gr(y) = f(xk) + ⟨∇f(xk),y − xk⟩+
1

2
⟨∇2f(xk)(y − xk),y − xk⟩+

rH

2
∥y − xk∥2. (127)

We first show that
x̃k+1 = argmin

y
gr̃k+1

(y). (128)

Indeed, according to Lemma 36, gr̃k+1
is r̃k+1H

2 -strongly convex, and according to (124), we have
∇gr̃k+1

(x̃k+1) = 0. Thus we have (128).
By the definition of rk+1 and ru, we have

r̃k+1 + 4
ϵC√
ϵH

+ ϵD ≥ rl + ϵD ≥ ru ≥ r̃k+1 − 4
ϵC

rk+1H
≥ r̃k+1 − 4

ϵC√
ϵH

, (129)

and
r̃k+1 + 4

ϵC√
ϵH
≥ rl ≥ r̃u − ϵD ≥ r̃k+1 − 4

ϵC√
ϵH
− ϵD. (130)

Therefore,

∥xk+1 − x̃k+1∥ ≤
8
(
4 ϵC√

ϵH
+ ϵD

)
∥x̃k+1 − xk∥

r̃k+1H
+

(
4

ϵC√
ϵH

+ ϵD

)

≤
16
(
4 ϵC√

ϵH
+ ϵD

)
(24∆/H)1/3

√
ϵH

+

(
4

ϵC√
ϵH

+ ϵD

) (131)

Therefore, it can be verified that if the assumptions of Lemma 31 are satisfied, then ∥x̃k−xk∥ <
√

ϵ
H .

Lemma 32 Define

f̃x(y) = f(x) + ⟨∇f(x),y − x⟩+ ⟨∇2f(x)(y − x),y − x⟩+ H

6
∥y − x∥3. (132)

Then we have

f̃xk
(xk+1)− f̃xk

(x̃k+1) ≤
Hr̃3k+1

500
. (133)
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Proof [Proof of Lemma 32]

f̃xk
(xk+1) = grk+1

(x̃k+1) +
H

6
∥xk+1 − xk∥3 −

Hrk+1

2
∥xk+1 − xk∥2

≤ grk+1
(x∗

k+1) + ϵC +
H

6
∥xk+1 − xk∥3 −

Hrk+1

2
∥xk+1 − xk∥2

≤ gr̃k+1
(x̃k+1) +

H(rk+1 − r̃k+1)

2
∥x̃k+1 − xk∥2 + ϵC

+
H

6
∥xk+1 − xk∥3 −

Hrk+1

2
∥xk+1 − xk∥2

= f̃xk
(x̃k+1) +

Hr̃3k+1

3
+

H(rk+1 − r̃k+1)r̃
2
k+1

2
+ ϵC

+
H

6
∥xk+1 − xk∥3 −

Hrk+1

2
∥xk+1 − xk∥2.

(134)

By (129) and (130) and the definition of ϵC and ϵD, we have

100

101
r̃k+1 ≤ ∥xk+1 − xk∥ <

100

99
r̃k+1, rk+1 − r̃k+1 ≤

1

99
r̃k+1. (135)

Therefore,

f̃xk
(xk+1)− f̃xk

(x̃k+1) ≤
Hr̃3k+1

500
. (136)

Theorem 33 We have

∥∇f(xk)∥ ≤ Hr̃2k +
ϵ

100
, ∇2f(xk) ⪰ −

(
Hr̃k
2

+

√
Hϵ

100

)
I (137)

Proof [Proof of Theorem 33] The results of ∇2f(x̃k) follows from Lemma 36, Lemma 38, and
Lemma 31.

By the (L+Hrk+1)-Lipschitz continuity of∇f

∥∇f(xk) +∇2f(xk)(xk+1 − xk) +Hrk+1(xk+1 − x)∥ ≤
√
2(L+Hrk+1)ϵC , (138)

and
∥∇f(xk+1)−∇f(xk)−∇2f(xk)(xk+1 − xk)∥ ≤

H

2
∥xk+1 − xk∥2. (139)

Therefore, we have

∥∇f(xk+1)∥ ≤ Hrk+1∥xk+1 − xk∥+
H

2
∥xk+1 − xk∥2 +

√
2(L+Hrk+1)ϵC

≤ 2Hr̃2k+1 +
ϵ

100
.

(140)
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Theorem 34 (Theorem 1 of Nesterov (2007)) Define ∆ = f(x0)− f∗. If

ϵC < min

 ϵ

800
(
16·(24∆/H)1/3√

ϵH
+ 1
) , ϵ

800
,

1

2000

( ϵ

H

)3/2
and ϵD < min


√

ϵ
H

200

(
16·(24∆/H)1/3√

ϵH
+1

) ,√ ϵ
40000H

,

∞∑
i=0

∥x̃i+1 − xi∥3 ≤
24∆

H
. (141)

Proof [Proof of Theorem 34] By Lemma 39 and Lemma 32, we have

f(xk)− f(xk+1) ≥ f(x̃k)− f̃xk
(xk+1)

= f(x̃k)− f̃xk
(x̃k+1) + f̃xk

(x̃k+1)− f̃xk
(xk+1)

≥
Hr̃3k+1

12
−

Hr̃3k+1

500
≥

Hr̃3k+1

24
.

(142)

Summing (142) from k = 0 to∞ yields the desired result.

F.2. Proof of Main Results

By Theorems 34 and 33, we have the following theorem:

Theorem 35 Algorithm 8 finds an (ϵ,
√
Hϵ)-stationary point in 48

√
2H1/2∆
ϵ3/2

rounds.

Theorem 17 Assume the objective function f is convex and has L-continuous gradients and H-
continuous Hessian matrices. Algorithm 4 finds an (ϵ,

√
Hϵ)-SSP of f in

Õ
(
ET1/2H

1/4∆ϵ−7/4 + dH1/2∆ϵ−3/2
)

(143)

zeroth-order oracle calls with high probability.

Proof We analyze the inner loop of Algorithm 8, namely Algorithm 9. In Algorithm 8, problem (23)
is solved

O
(∣∣∣∣log rk

rk+1

∣∣∣∣+max

{
1, log

rk+1

ϵD

})
(144)

times. By Theorem 14, solving subproblem (23) needs

O
((

(Hrtemp)
−1/2ET1/2(f) + d

)
· log 1

ϵC
· log L

Hrtemp

)
(145)

calls to the zeroth-order oracle in average. By Markov’s inequality, using same order of such oracles,
we can find an approximated solution with a constant probability. So by repeating Algorithm 2 for
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logarithm times and taking the minimum solution. So by repeating Algorithm 2 for logarithm times,
we can obtain a high probability result (see e.g. Ghadimi and Lan (2013)). The maximum calls in
solving one problem depends on the smallest possible value of rtemp. It can be verified that rtemp ≥
min

{
rk,

rk+1

2

}
in Algorithm 9. Assume without loss of generality that rk ≥

√
ϵ

2H for k < N , and
rN <

√
ϵ

2H where N = O
(
H1/2∆ϵ−3/2

)
. By the definition of rN , we have rN ≥ ϵD = Ω

(√
ϵ
H

)
.

The logarithm factors in (144) and (145) can be bounded by linear combinations of log 1
ϵ , log∆,

logL and logH . Therefore, ignoring all logarithmic factors, the zeroth-order oracle is called at most

k∑
j=1

Õ
(
(Hmin{rj , rj−1})−1/2ET1/2(f) + d

)

≤
k∑

j=1

Õ
(
(
√
Hϵ)−1/2ET1/2(f) + d

)
= Õ

(
ET1/2(f)H

1/4∆ϵ−7/4 + dH1/2∆ϵ−3/2
)
.

(146)

F.3. Useful Results in Nesterov and Polyak (2006)

In this subsection, we present some results in Nesterov and Polyak (2006), which we is used in our
analysis.

Lemma 36 (Proposition 1 of Nesterov and Polyak (2006))

∇2f(x) +
1

2
H∥x̃k+1 − xk∥I ⪰ 0. (147)

Lemma 37 (Lemma 2 of Nesterov and Polyak (2006)) For any k ≥ 0, we have

⟨∇f(xk),xk − x̃k+1⟩ ≥ 0. (148)

Lemma 38 (Lemma 3 of Nesterov and Polyak (2006)) For any k ≥ 0, we have

∥∇f(x̃k+1)∥ ≤ H∥x̃k+1 − xk∥2. (149)

Lemma 39 (Lemma 4 of Nesterov and Polyak (2006))

f(xk)− f(x̃k+1) ≥
H

12
∥x̃k+1 − xk∥3. (150)
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Appendix G. Proof of Additional Lemmas

Proposition 5 Assume for any x and α > 0, there exists constant C > 0 and β > 0 such that
σi(∇2f(x)) ≤ C

iβ
for i ∈ [d], then we have

EDα ≤


2αβ−1Cα

αβ−1 , αβ > 1, dimensional free,

Cα log(2d+ 1), αβ = 1, logarithmic growth on d,
Cα

1−αβ (d+ 1)1−αβ, αβ < 1, improve by a Θ
(
dαβ
)

factor.

(151)

Proof

EDα = sup
x∈Rd

d∑
i=1

σα
i (∇2f(x)) ≤

d∑
i=1

(
C

iβ

)α

= Cα
d∑

i=1

i−αβ ≤ Cα

∫ d+ 1
2

1
2

x−αβdx

=

{
Cα

1−αβ

((
d+ 1

2

)1−αβ −
(
1
2

)1−αβ
)
, αβ ̸= 1,

Cα log(2d+ 1), αβ = 1.

(152)

Proposition 6 For the objective in (3) that satisfies Assumptions 4 and 5, we have

EDα ≤

{
(L0R)α, α ≥ 1, dimensional free,
(L0R)αd1−α, α < 1 improve by a Θ(dα) factor.

(153)

Proof First, we compute ED1 as follows:

ED1 =
d∑

i=1

σi(∇2f)

=

∥∥∥∥∥
N∑
i=1

1

N
q′′(β⊤

i x)βiβ
⊤
i

∥∥∥∥∥
∗

≤ L0

N

∥∥∥∥∥
N∑
i=1

βiβ
⊤
i

∥∥∥∥∥
∗

≤ L0R.

(154)

For α ≥ 1, by the convexity of g(x) = xα, we have

d∑
i=1

σα
i (∇2f(x)) ≤

(
d∑

i=1

σi(∇2f(x))

)α

. (155)

For α < 1, by Hölder’s inequality, we have(
d∑

i=1

σα
i (∇2f(x))

)
≤

(
d∑

i=1

σi(∇2f(x))

)α

· d1−α. (156)

Taking supremum to both sides of (155) and (156) on x yields the result.
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Proposition 7 Define f(W,w) = w⊤σ(W⊤x), where σ is the activation function. When ∥x∥1 ≤
r1, ∥w∥ ≤ r2 and σ′′(x) ≤ α, we have tr

(
∇2f(W,w)

)
≤ αr1r2.

Proof [Proof of Proposition 7] By direct computation, we have

∂f

∂w
= σ(W⊤x),

∂f

∂W
=
(
σ′(W⊤x)⊙w

)
⊗ x,

∂2f

∂w2
= 0,

∂2f

∂W2
= Diag(σ′′(W⊤x)⊙w)⊗ x⊗ x.

(157)

Therefore,

tr
(
∇2f(W,w)

)
) = ∥x∥2 · tr

(
Diag(σ′′(W⊤x)⊙w)

)
≤ r21 · ⟨σ′′(W⊤x),x⟩
≤ αr1r2.

(158)

Lemma 18 For function f that has L-continuous gradient and M -continuous Hessian matrices,
given any δ > 0, Algorithm 3 outputs a δ-approximated fx(y) such that

∣∣∣f̃x,δ(y)− fx(y)
∣∣∣ ≤ δ.

Proof [Proof of Lemma 18] We only need to prove that |f̃x,δ(y)−fx(y)| ≤ δ. We have the following
inequality: ∣∣∣∣Lr2δ

(
f

(
x+

δ

Lr2
(y − x)

)
− f(x)

)
− ⟨∇f(x),y − x⟩

∣∣∣∣
=

Lr2

δ

∣∣∣∣f (x+
δ

Lr2
(y − x)

)
−
(
f(x)− ⟨∇f(x), δ

Lr2
(y − x)⟩

)∣∣∣∣
a
≤ Lr2

δ
· L
2

∥∥∥∥ δ

Lr2
(y − x)

∥∥∥∥2
=

Lr2

δ
· L
2

(
δ

Lr

)2

=
δ

2
,

(159)

where
a
≤ uses the L-Lipschitz continuity of∇f(x). We also have∣∣∣∣∣2H2r6

δ2

(
f

(
x+

δ

2Hr3
(y − x)

)
+ f

(
x− δ2

2Hr3
(y − x)

)
− 2f(x)

)
− ⟨∇2f(x)(y − x),y − x⟩

∣∣∣∣∣
a
=

∣∣∣∣12(⟨∇2f(x1)(y − x),y − x⟩+ ⟨∇2f(x2)(y − x),y − x⟩)− ⟨∇2f(x)(y − x),y − x⟩
∣∣∣∣ , (160)
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where a
= uses the second-order Taylor expansion of f at x. We have ∥x1 − x∥ ≤ δ

2Hr2
and

∥x2 − x∥ ≤ δ
2Hr2

. By the H-Lipschitz continuity of∇2f(x), we have∣∣∣∣12(⟨∇2f(x1)(y − x),y − x⟩+ ⟨∇2f(x2)(y − x),y − x⟩)− ⟨∇2f(x)(y − x),y − x⟩
∣∣∣∣

≤ δ

2Hr2
·Hr2 =

δ

2
. (161)

By (159), (160), and (161) we have |f̃x,δ(y)− fx(y)| ≤ δ, hence the lemma is proved.

Proof [Proof of Corollary 11] By (154) and Theorem 10, we know that Algorithm 1 needs Õ
(
L0R
µ

)
to find an ϵ-approximated solution with high probability.

Proof [Proof of Corollary 13] By (154) and Theorem 12, we know that Algorithm 1 needs Õ
(
L0R
ϵ

)
to find an ϵ-approximated solution with high probability.
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