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Abstract
We study the sample complexity of reducing reinforcement learning to a sequence of empirical
risk minimization problems over the policy space. Such reductions-based algorithms exhibit local
convergence in the function space, as opposed to the parameter space for policy gradient algorithms,
and thus are unaffected by the possibly non-linear or discontinuous parameterization of the policy
class. We propose a variance-reduced variant of Conservative Policy Iteration that improves the
sample complexity of producing a ε-functional local optimum from O(ε−4) to O(ε−3). Under
state-coverage and policy-completeness assumptions, the algorithm enjoys ε-global optimality after
sampling O(ε−2) times, improving upon the previously established O(ε−3) sample requirement.
Keywords: variance reduction, reinforcement learning, non-convex optimization

1. Introduction

Reinforcement learning agents interact with the environment by adaptively executing actions with
the goal of maximizing a cumulative long-term reward. A persistent challenge for such agents
is operating in situations that involve large or continuous state spaces. Such large-scale Markov
Decision Processes (MDPs) are accompanied by both the statistical challenge of generalization
across states and the computational challenge of working with a large decision set, since often the
policy class used in conjunction is too large to enumerate efficiently.

One approach to deal with these issues is to reduce reinforcement learning (RL) to a sequence
of better-understood and easier learning problems like supervised learning (SL) or empirical risk
minimization (ERM). Indeed, such an approach is well-studied (e.g. Kakade and Langford (2002);
Kakade (2003); Langford and Zadrozny (2003); see Agarwal et al. (2021) for a modern treatment),
and has since inspired widely-used practical variants (Schulman et al., 2015, 2017; Vieillard et al.,
2020). A typical algorithm of this kind incrementally updates the policy in small steps, using the
solutions obtained from a SL/ERM oracle, to arrive at a policy that is a local minimum in the space
of policies as opposed to a local minimum in the space of policy parameters. This functional local
optimality is a stronger notion of local optimality which holds independently of how the policy class
itself may be parameterized, and is hence distinct from local convergence in parameter space. See
below for a more detailed comparison of these notions. Existing structural results (e.g. Theorem
14.4 in Agarwal et al. (2021)) then translate such functional local optimality to global optimality
guarantees under various appropriate state-coverage assumptions.

In this paper we study and improve the sample complexity of such reductions-based algorithms.
Specifically, consider the Conservative Policy Iteration (CPI) (Kakade and Langford, 2002) algorithm
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which reduces RL to weighted multi-class classification problems over the policy space. For any
policy class Π, the CPI algorithm guarantees upon sampling O

(
log |Π|
ε4

)
1 transitions outputs a policy

π̄ which satisfies ε-local optimality in the function space. The notion of functional local optimality
over a policy space Π can be defined by considering the gradient of the value function ∇V π with
respect to the policy π 2. A policy π̄ is an ϵ-functional local optimum if maxπ′∈Π⟨∇V π̄, π′− π̄⟩ ≤ ε.

Our main result (formalized as Theorem 2) is an algorithm that retains the above-stated functional
local optimality guarantee while drawing Õ

(
log |Π|
ε3

)
transitions. This reduction in sample complexity

happens due to careful reuse of samples across successive calls to an ERM oracle, much like
Experience Replay (Schaul et al., 2015). A crucial feature here is that this reuse of samples does
not employ trajectory-wise (or marginal) importance weights whose size may be uncontrollable, but
instead uses a momentum-like weighting scheme inspired by variance-reduction methods (Cutkosky
and Orabona, 2019) for non-convex optimization.

Contrasting local optimality in parameter and function spaces. Typically, policy gradient
methods guarantee convergence to local optima in the parameter space. We contrast these notions
below.

1. Local optimality in function space is a stronger notion. Consider the policy class Π = {π(θ) :
θ ∈ Θ} where π(θ) : Θ× RS×A is a differentiable function and a possibly non-convex loss
function V : F → R. Via the application of a chain rule we see that∇θV (π(θ)) = ∇V π ∂π(θ)

∂θ .
It is now easy to verify that for any θ

max
π′∈Π
⟨∇V π(θ), π′ − π⟩ ≤ ε =⇒ ∥∇θV (π(θ))∥ ≤ O(ε)

for smoothly parameterized policy classes. Yet as the following example demonstrates the
reverse implications does not hold true.

Example 1 Consider a singleton dataset (x, y) = (1, 1), loss function l(y, ŷ) = −(ŷ−y)2/2,
and function class F = {fθ(x) = θ2x : θ ∈ [−10, 10]}. θ = 0 is a local optima in the
parameter space, i.e. ∇θl(y, fθ(x)) = −2(θ2x− 1)θx = 0, yet fθ = 0 is not a local optima
in the function space. In particular,∇f l(y, f0(x)) = 1 and∇l(y, f0(x))× (f1(x)−f0(x)) =
1 ̸= 0.

2. For any composite optimization problem minθ V (π(θ)), local optimality in function space
decouples the non-convexity induced by the policy parameterization π(θ) from the intrinsic
non-convexity of the evaluation function V . Consequently, function-space algorithms (Mason
et al., 1999) are unaffected when the policy class is non-linearly (like neural nets) or discon-
tinuously (like decision trees) parameterized. Meanwhile, parameter-space algorithms like
SGD have to contend with the local optima introduced by non-linear parameterizations of the
function class even for convex loss functions.

3. In the context of RL, unlike parameter-space local convergence, functional local optimality
guarantees readily translate to global guarantees under appropriate state-coverage assumptions.
See below.

1. We handle infinite policy classes via the notion of covering numbers defined further in the paper.
2. As defined later in the paper we consider policies to be in the space RS×A and thus the gradient lives in that space too
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Without variance
reduction

With variance
reduction

Remarks

Local optimality in
parameter space

(Policy Gradient)

1

ε4

(Ghadimi and Lan,
2013)

1

ε3

(Xu et al., 2019;
Shen et al., 2019)

Assuming a smoothly parame-
terized policy class and possibly
a variance bound on trajectory-
wise importance weights.

Local optimality in
function space

log |Π|
ε4

(CPI; Kakade and
Langford (2002))

log |Π|
ε3

(Theorem 2)

Holds regardless of the parame-
terization of the policy class Π;
without any state-coverage com-
pleteness assumption.

Global optimality
given a restart
distribution ν

log |Π|
ε4

(CPI; Kakade and
Langford (2002))

log |Π|
ε3

(Corollary 5)

Assuming D∞ =
∥∥∥dπ

∗

ν

∥∥∥
∞

<

∞; upto a policy-completeness
residual term (Definition 3).

Global optimality
given an

exploratory policy
class

log |Π|
ε3

(CPI; Kakade and
Langford (2002),

Brukhim et al.
(2022))

log |Π|
ε2

(Theorem 8)

C∞ = maxCH(π)∈Π

∥∥∥dπ
∗

dπ

∥∥∥
∞
<

∞; upto a policy-completeness
residual term (Definition 6).

Table 1: The sample complexity of various optimality objectives, suppressing poly(|A|, 1/(1−γ)).
Furthermore in the paper we dont assume that the policy class is finite but rather prove
our results with |Πε| which is the ε-covering number of Π. For exploratory policy classes,
the stated sample complexity results from an improved iteration complexity of the CPI
algorithm (Kakade and Langford, 2002) as observed in Brukhim et al. (2022), by directly
appealing to the gradient domination characteristics of the value function.
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Functional Local Optimality to Global Optimality Using standard local-to-global results in RL
literature (e.g. Lemma 4 & Lemma 7 in this work, or Theorem 14.4 in Agarwal et al. (2021)), we
translate our functional local optimality result to a Õ

(
log |Π|
ε3

)
sample complexity for global optimal-

ity (upto a policy-completeness term) when the learner has access to an exploratory distribution µ
with sufficient state coverage. This is formalized in Theorem 5 and the coverage assumptions are
formalized in Definition 3.

Furthermore, when the policy class under consideration has sufficient state coverage by itself,
we show that it is possible to skip this local-to-global approach, and directly guarantee an improved
sample complexity of Õ

(
log |Π|
ε2

)
for global convergence, which is tight even for the the subcase of

binary classification. This is formalized as Theorem 8 and the policy class coverage is formalized as
Definition 6.

2. Related work

Reduction from reinforcement learning to supervised learning has been studied extensively, beginning
with Kakade and Langford (2002); Kakade (2003); Langford and Zadrozny (2003); Bagnell et al.
(2004). The local functional descent view of Conservative Policy Iteration (CPI) (Kakade and
Langford, 2002) is presented in detail in Kakade (2003); Scherrer and Geist (2014). In particular, CPI
runs for 1/ε2 rounds and requires an ε-accurate supervised learning oracle in each round, thereby
needing O(1/ε4) samples in total.

In recent years, the technique of variance reduction (Schmidt et al., 2017; Defazio et al., 2014;
Johnson and Zhang, 2013) has led to faster rates for convex optimization in the finite-sum setting.
The idea behind these methods is to use a (mini-)batch of gradients at a point to help reduce the
variance of the stochastic estimator at subsequent points. These techniques have since been combined
with ideas such as acceleration (Shalev-Shwartz and Zhang, 2014; Lin et al., 2015; Allen-Zhu, 2017),
and they have even led to improvements for non-convex problems (Allen-Zhu and Hazan, 2016;
Reddi et al., 2016a) in terms of reaching ε-approximate stationary points, i.e., points with gradient
norm bounded by ε. For the stochastic non-convex setting, variance reduced approaches have, in
a series of works (Xu et al., 2018; Allen-Zhu and Li, 2018; Nguyen et al., 2017; Fang et al., 2018;
Cutkosky and Orabona, 2019), led to improvements over the classical rate of O(1/ε4) (Ghadimi and
Lan, 2013), ultimately reaching a rate of O(1/ε3), which is tight under a mean-squared smoothness
property of the noisy gradient (Arjevani et al., 2019). Furthermore, such applications have proven
useful in the context of constrained non-convex optimization, whereby similar improvements have
been shown in (Reddi et al., 2016b; Zhang et al., 2020).

Following the analysis of SGD for nonconvex objectives (Ghadimi and Lan, 2013), it follows that
REINFORCE (Sutton et al., 1999) converges to a local minimum in parameter space after O(1/ε4)
samples. A recent thread (Shen et al., 2019; Xu et al., 2019; Zhang et al., 2021; Papini et al., 2018)
of research applies variance-reduction techniques to improve upon this to O(1/ε3).

3. Problem setting

We setup a few notations of common use, and then proceed to delineate the interaction model.
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3.1. Basic definitions

A differentiable function f : K → R is defined to be L-smooth, over a domain K with respect to a
norm ∥ · ∥ and an inner product ⟨·, ·⟩, if for every x, y ∈ K the inequality stated below holds. We note
that the norm ∥ · ∥ need not necessarily be the canonical norm associated with the inner product ⟨·, ·⟩.

|f(y)− f(x)− ⟨∇f(x), y − x⟩| ≤ L

2
∥x− y∥2

For any N ∈ N, let ∆N be the unit simplex in N dimensions, i.e. ∆N = {x :∈ RN
+ : ∥x∥1 = 1}.

For matrices in RM×N , define the dual-norm3 pair ∥ · ∥1,∞ and ∥ · ∥∞,1 as follows. Note that the
latter norm ∥ · ∥1,∞ is not a vector-induced matrix norm.

∥A∥∞,1 = max
1≤i≤M

N∑
j=1

|Ai,j |, ∥A∥1,∞ =
M∑
i=1

max
1≤j≤N

|Ai,j |.

Let B∞,1,B1,∞ ⊂ RS×A (S,A correspond to the size of the state space and action space defined
in the next section) denote the unit norm balls for the two norms over S×Amatrices. For any element
π ∈ B∞,1, and any s ∈ S, we will use the notation π(s) ∈ R|A| to denote the row corresponding
to the state s. In subsequent sections we consider the decision set to be K = ∆S

A ⊂ B∞,1, which is
the cartesian product of S unit simplices ∆A, to represent the space of stochastic policies over state
space S and action set A. Note that for any π ∈ ∆S

A, ∥π∥∞,1 = maxs∈S
∑

a∈A π(a|s) = 1.
For any ε ≥ 0 and policy class Π, the ε-covering number |Πε| is the minimum size of a set Πε

such that for every π ∈ Π, there exists a π′ ∈ Πε such that ∥π−π′∥∞,1 ≤ ε. Such covering numbers
are typically scale logarithmically as function of ϵ and henceforth we assume the same. We define
CH(Π) to be the convex hull of Π.

3.2. Interaction model

A Markov Decision Process (MDP) is a decision making framework specified by state space S with
|S| ≜ S, action space A with |A| ≤ A, a reward function r : S × A → [0, 1], a transition kernel
P : S × A → ∆A, discount factor γ ∈ [0, 1), and an initial state distribution ρ ∈ ∆S . Define an
effective horizon of Hγ = 1

1−γ . A stochastic policy π ∈ ∆S
A prescribes a choice of actions at each

state s as a ∼ π(·|s). The execution of such a policy on the MDP induces a distribution over the
space of trajectories, where each trajectory τ = (s0, a0, . . . ) is a random variable sampled as

s0 ∼ ρ, ai ∼ π(·|si), si+1 = P (·|si, ai)

Thus, averaging with respect to this distribution, it is possible to ascribe a value to every state-action
pair as

Qπ(s, a) ≜ Eτ

[ ∞∑
t=0

γtr(st, at)

∣∣∣∣π, s0 = s, a0 = a

]
and V π(s) ≜ Ea∼π(·|s) [Q

π(s, a)|π, s] .

Further we will also consider a setting wherein the start state of the MDP, s0 could be sampled from
an arbitrary distribution µ. Under this setting we define the following quantities,

V π
µ ≜ Es∼µ [V

π(s)|π] and dπµ(s, a) = (1− γ)
∞∑
t=0

γtEs0∼µE [1st=s∧at=a|π, s0] .

3. See Lemma 20 for a proof of the duality
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V π
µ and dπµ above captures the expected return and the (discounted) state distribution associated with

a policy π when the initial state is sampled from a distribution µ. To ease the presentation, through
the paper for quantities that depend on start state distributions, if the start state distribution is not
explicitly specified, it is assumed to be the canonical start state disctirbution ρ. Thus, V π = V π

ρ and
dπ = dπρ . Given a single argument s, we shall use the unary function dπµ(s) to denote the state-space
marginal of dπµ(s, a), i.e. dπµ(s) =

∑
a∈A d

π
µ(s, a). Given a single state s ∈ S, dπs represents the

(discounted) state distribution achieved when starting from a fixed state s.
In subsequent sections, we consider two distinct ways in which a learner might interact with the

MDP. In the µ-reset model, the learner has access to an exploratory restart distribution µ ∼ ∆S , and
can draw a trajectory of finite length from the MDP starting with an initial state s0 ∼ µ sampled
from µ. Nevertheless, the objective for the learner still remains to maximize V π = V π

ρ .
The other alternative considered is the episodic model where the learner can draw trajectories

from the MDP with respect to the canonical start state distribution ρ.

3.3. Computational model

Since this work considers a reduction-based approach to RL, we assume that the learner is aided by
the following computational oracles. Note that the tolerance parameter in the following definition
scales naturally with the maximum possible loss.

Definition 1 (ERM Oracle) Let L = {x→ l⊤x : l ∈ RA} be the class of linear loss function over
the decision set ∆A. Given a dataset D = {(si, li)}Ni=1 where each example is in S × L, and a
tolerance εERM > 0, the Empirical Risk Minimization (ERM) oracle ERM outputs a policy π ∈ Π
such that

N∑
i=1

l⊤i π(si) ≥ max
π∗∈Π

N∑
i=1

l⊤i π
∗(si)− εERM ·

N∑
i=1

∥li∥∞.

Previous approaches based on reducing RL to better understood subroutines sometimes also make use
of a supervised learning oracle where in the dataset is replaced by a distribution over examples. Note
that it is always possible to construct an ERM oracle (for any tolerance εERM) using a supervised
learning oracle, by resampling with replacement.

Through the main paper we use Õ() to contain polynomial factors in problem constants in
particular including (1 − γ)−1, A. In the appendix we restate our main results including all such
dependency.

4. Main results

Our main result is a variance-reduced algorithm (Algorithm 1) which we formally describe and
explain in the next section. In this section we present the guarantees we prove. We begin by stating
our main result in the µ-reset model for any start state distribution µ. Note that the episodic model is a
natural sub-case whence the start state distribution is set to be ρ, the canonical start state distribution.

Theorem 2 (Local optimality in function space) There exists an algorithm such that given any
start state distribution µ input to the algorithm and any given ε, δ, the algorithm produces a policy π̄
which satisfies the following with probability 1− δ,

max
π′∈Π
⟨∇V π̄

µ , π
′ − π̄⟩ ≤ ε

6
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Furthermore the algorithm samples at most Õ(log(|Πε|)/ε3) episodes of expected length O
(

1
1−γ

)
from the MDP starting from the start state distribution µ.

The above theorem improves the sample complexity of such functional local convergence from the
best known Õ(ε−4) for the CPI algorithm to Õ(ϵ−3). As highlighted in Table 1, such improvements
only exist for local optimality in parameter space which can be a significantly weaker guarantee.

Global Optimality Results Next, we demonstrate how such functional local optimality may be
translated to a statement on global convergence with certain state-coverage and policy-completeness
assumptions which we define next. These local-to-global translation lemmas (Lemma 4; proven in the
appendix for completeness) were first noted in Kakade and Langford (2002), along with Scherrer and
Geist (2014) who formally introduced the policy completeness notion. Our contribution (Corollary 5)
here is an improvement in the dependence of the sample complexity on ε as a consequence of an
improved local functional optimality result (Theorem 2).

Definition 3 Let π∗ be an optimal policy for the MDP in consideration. Given µ, a start-state
distribution the learner can draw from, define the distribution mismatch coefficient Dµ

∞ as stated
below. Further, given a policy class Π, define ϵΠ,µ as a quantitative measure of policy completeness.

Dµ
∞ ≜

∥∥∥∥dπ∗

µ

∥∥∥∥
∞
, ϵΠ,µ = max

π∈CH(Π)
min
π∗∈Π

Es∼dπµ

[
max
a∈A

Qπ(s, a)−Qπ(s, ·)⊤π∗(s)
]
.

The distribution mismatch coefficient measures how exploratory the restart distribution µ is, and
the associated policy completeness notion is a policy analogue of inherent bellman error (Munos
and Szepesvári, 2008). The latter measures the degree to which a policy in Π can best approximate
the bellman optimality operator in an average sense with respect to the state distribution. Under the
above definitions, we show the following lemma, which relates the global optimality gap of a policy
to the local optimality measure of the policy.

Lemma 4 For any state distribution µ and any policy π ∈ CH(Π), the following holds

V ∗ − V π ≤ Dµ
∞

1− γ

(
max
π′∈Π
⟨∇V π

µ , π
′ − π⟩+ 1

1− γ
ϵΠ,µ

)
.

In particular the above lemma shows that if one has access to a start state distribution with state
coverage (i.e. Dµ

∞ is small) local optimality implies global optimality upto the policy completeness
measure. We now provide sample complexity bounds for achieving global optimality via the
following corollary of Theorem 2 which translates the functional local optimality guarantee stated in
the latter to the associated global optimality guarantee under appropriate policy coverage assumptions
when the learner has access to an exploratory restart distribution µ, with the aid of Lemma 4.

Corollary 5 (Global optimality) There exists an algorithm such that given any start state distribu-
tion µ input to the algorithm and any given ε, δ, the algorithm produces a policy π̄ which satisfies
the following with probability 1− δ,

V ∗ − V π̄ ≤ ε+
Dµ

∞ϵΠ,ν

(1− γ)2
.

Furthermore the algorithm samples at most Õ
(
(Dµ

∞)3 log |Πε|
ε3

)
episodes of expected length O

(
1

1−γ

)
from the MDP starting from the start state distribution µ.
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Improved rates with an exploratory policy class Next, we provide improved rates of convergence
to global optimality under the assumption that the underlying policy class by itself has sufficient
overlap with the state distribution of an optimal policy. Under this assumption we no longer require
access to a state-distribution with sufficient coverage, so we state the results in the more restricted
episodic setting, where every sample episode begins at a state sampled from the MDP’s canonical
start state distribution ρ. For brevity we define ϵΠ = ϵΠ,ρ to be the policy completeness with respect
to the canonical start state distribution ρ. Formally, the policy class’ overlap condition is captured by
the following definition.

Definition 6 Consider a policy class Π. Let π∗ be an optimal policy for the MDP in consideration.
Define the distribution mismatch coefficient as C∞ = maxπ∈CH(Π)

∥∥∥dπ
∗

dπ

∥∥∥
∞
.

In such cases, the value function is approximately gradient dominated as the following lemma shows
and it is possible to forego the procedure of arriving at a local optimality guarantee before making
claims on the global suboptimality.

Lemma 7 For any π ∈ CH(Π), the following holds

V ∗ − V π ≤ C∞

(
max
π′∈Π
⟨∇V π, π′ − π⟩+ 1

1− γ
ϵΠ

)
.

A more direct analysis yields the following result which improves the sample complexity to be
scaling as Õ(ε−2).

Theorem 8 (Faster global optimality) There exists an algorithm such that given any ε, δ, the
algorithm produces a policy π̄ which satisfies the following with probability 1− δ,

V ∗ − V π̄ ≤ ε+ C∞ϵΠ
1− γ

.

Furthermore the algorithm samples at most Õ(C2
∞ log(|Πε|)/ε2) episodes of expected length

O
(

1
1−γ

)
sampled from the MDP starting at the canonical start state distribution ρ.

5. Algorithms

5.1. Variance-reduced Conservative Policy Iteration

In this section we present our main algorithm Variance-reduced Conservative Policy Iteration. The
algorithm is formally described as Algorithm 1. The algorithm takes as input a start state distribution
µ for the MDP and assumes access to an ERM oracle (Definition 1) over the policy class Π. The
algorithm is parameterized by parameters η, λ, γ, T, εERM, wherein notably εERM is the accuracy
target for the ERM oracle calls and the algorithm samples a total of 3T episodes from the MDP
starting from the start state distribution µ. The algorithm makes use of two important subroutines the
Q-sampler (Algorithm 2) and H-sampler (Algorithm 3) to compute unbiased estimates of linear forms
in the functional policy gradient and quadratic forms in the functional policy Hessian respectively.
These sub-routines are formally stated in the appendix (Algorithms 2 and 3) and we state their
properties in this section. We now proceed to explain the construction of Algorithm 1.

8
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Conservative Policy Iteration The core structure of our proposed algorithm follows the idea
proposed by the Conservative Policy Iteration(CPI) algorithm (Kakade and Langford, 2002) which
maintains a policy πt. At every step a new candidate policy π′t is obtained via the following

π′t = argmin⟨∇V πt , π⟩. (5.1)

Note that ∇V πt is the functional policy gradient. The following lemma from Sutton et al. (1999)
provides a concrete estimator for the functional policy gradient.

Lemma 9 [Sutton et al. (1999)] For any policy pair π, π′ and start-state distribution µ, we have

⟨∇V π
µ , π

′⟩ = 1

1− γ
Es∼dπµ

[
Qπ(s, ·)⊤π′(s)

]
.

Using the above, it can be observed that the minimization problem (5.1) can be cast as a
supervised learning problem over the policy space. CPI obtains the next policy via a convex
combination πt+1 = ηπt + (1− η)π′t+1. This step can be interpreted as a step of the Frank-Wolfe
algorithm (Frank and Wolfe, 1956) in the policy space. Via standard convergence analyses (see
eg. Hazan et al. (2016)) one can expect to require a number of iterations scaling with ε−2. To
solve the per-step optimization problem, the sample complexity scales with ε−2, leading to a total
sample complexity scaling with ε−4. In order to improve sample complexity, we instead employ a
variance-reduced estimator of the gradient∇V πt .

Variance Reduction The variance-reduced estimator of the functional policy gradient we use is
an adaptation of the momentum based low-variance estimator STORM proposed by Cutkosky and
Orabona (2019). For a stochastic function F (x) = E[f(x, ξ)|x], Cutkosky and Orabona (2019)
propose the following estimator

vt ≜ (1− λ)vt−1 + λ∇f(xt, ξt) + (1− λ)(∇f(xt, ξt)−∇f(xt−1, ξt)) (5.2)

The proposed estimator runs a running average of the previous stochastic gradient estimates (akin
to momentum) with a key addition of a term accounting for gradient differences viz. ∇f(xt, ξt)−
∇f(xt−1, ξt). It is critical that the random variable ξt is the same on both gradient estimates in the
above expression. It is therefore tricly to estimate the gradient difference term for RL applications
as the distribution of the stochastic gradient depends on the current policy (trajectories are sampled
from the current policy), an issue highlighted in the previous works (Xu et al., 2019; Shen et al.,
2019). We avoid the issue by noting that this term can also be estimated via the following expression
involving the Hessian of f ,

∇f(xt, ξt)−∇f(xt−1, ξt) ∼ ∇2f((1− b)xt + bxt−1, ξt)(xt − xt−1), (5.3)

where b is uniformly sampled from [0, 1]. We employ this Hessian-based approach for our problem.
We note that this correction term (either computed via gradient difference or a Hessian-vector
product) is necessary in a sense for reducing the complexity of stochastic optimization in general
(Arjevani et al., 2019, 2020). The Hessian based estimator requires building estimates for the
functional Hessian-vector products (in the policy space) for which we provide a sub-routine H-
Sampler (Algorithm 3). We now proceed to describe the construction of our algorithm.

9
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Input: Initial state distribution µ, ERM oracle ERM, parameters η, λ, γ, T, εERM.
Choose an initial policy π0 = π1 ∈ Π arbitrarily.
Create an empty dataset D0 supported over state-linear-loss pairs {(si, l̂i) : si ∈ S, l̂i ∈ RA}.
for t = 1 to T do

(st, Q̂t) ∈ S × RA ← Q-sampler (Algorithm 2) with inputs πt, µ, εQ.
Sample b ∼ Unif([0, 1]), and define a policy π̄t = (1− b)πt + bπt−1.
(s′t, s

′′
t , Ĥt) ∈ S × S × RA×A ← H-sampler (Algorithm 3) with inputs π̄t, µ, εH .

Create a new dataset Dt by first multiplying each existing loss vector in Dt−1 by (1− λ):

Dt = {(si, (1− λ)li) : (si, li) ∈ Dt−1},

and then appending the following three tuples to the said new dataset Dt.(
st, l̂t,1 =

λ

1− γ
Q̂t

)
,

(
s′t, l̂t,2 =

γ(1− λ)
(1− γ)2

Ĥt

(
πt(s

′′
t )− πt−1(s

′′
t )
))

,(
s′′t , l̂t,3 =

γ(1− λ)
(1− γ)2

Ĥt

(
πt(s

′
t)− πt−1(s

′
t)
))

.

Call the ERM oracle with tolerance εERM on the dataset Dt to obtain π′t = ERM(Dt).
Update πt+1 = (1− η)πt + ηπ′t.
Empirically compute local improvement of π′t in comparison to πt with respect to Dt as

Ât =
∑

(s,l̂)∈Dt

l̂⊤
(
π′t(s)− πt(s)

)
.

end
Option 1: return π̄ = πt′ where t′ = argminT/2≤t≤T Ât.
Option 2: return π̄ = πT .

Algorithm 1: Variance-reduced Conservative Policy Iteration

Construction of the algorithm Our overall algorithm is based on building an estimator of ∇V πt

akin to the vt estimator from 5.2. With such an estimator we wish to solve the minimization problem

π′t = argmin
π∈Π

⟨vt, π⟩. (5.4)

We approach the above problem via reduction to ERM problem over the policy class and solve it via
mapping the estimators to datasets of (s, l) pairs over which we solve the ERM problem. Concretely
at every step of Algorithm 1 we call the Q-sampler which we show to have the following guarantee

Lemma 10 Q-sampler (Algorithm 2) when run with a policy π and start-state distribution µ

produces a random tuple (s, Q̂) ∈ S × RA with the distribution s ∼ dπµ, and E
[
Q̂
∣∣∣s, π] = Qπ(s, ·).

This in particular implies that for any π′,

⟨∇V π
µ , π

′⟩ = 1

1− γ
E
(s,Q̂)∼A

[
Q̂⊤π′(s)

]
.

Furthermore,
∥∥∥Q̂∥∥∥

1
≤ |A|

1−γ , and the expected length of sampled episode is at most 3
1−γ .

10
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Input: Policy π, and start-state distribution µ, tolerance εQ.
Sample the initial state s0 ∼ µ.
for t = 0, . . .∞ do

With probability 1− γ, record the current state as st and exit the loop.
Else, draw an action at ∼ π(st) and transition to the next state st+1 ∼ P (·|st, at).

end
Draw the tth action at ∼ Unif(A) uniformly, and observe the next state st+1 ∼ P (·|st, at).
for t′ = t+ 1, . . . ,∞ do

With probability 1− γ, record R =
r(st′ ,at′ )

1−γ , and construct the vector in RA as

Q̂(a) = Ia=atAR

and return the tuple (st, Q̂) ending the algorithm’s execution.
Else, draw an action at′ ∼ π(st′) to transition to the next state st′+1 ∼ P (·|st′ , at′).

end
Algorithm 2: Q-sampler

Therefore we include st and a scaled version of Q̂t in our dataset. To see why the scaling is
λ

(1−γ) , note that the 1
(1−γ) from the scaling in the gradient expression above and the scaling of λ

comes from the usage in the estimator (5.2). Similarly to estimate the Hessian term akin to (5.3) in
the estimator, we mix πt−1, πt to obtain π̄t and we call the H-Sampler subroutine. For the H-Sampler
subroutine we show the following guarantee

Lemma 11 H-sampler (Algorithm 3) when run with a policy π and start-state distribution µ
produces a random tuple (s, s′, Ĥ) ∈ S × S × RA×A such that for any policy pair π′, π′′,

⟨π′′,∇V π
µ π

′⟩ = γ

(1− γ)2
E
(s,s′,Ĥ)∼A

[
π′′(s)⊤Ĥπ′(s′) + π′(s)⊤Ĥπ′′(s′)

]
.

Furthermore,
∑

a,a′∈A ×A |Ĥ(a, a′)| ≤ A2

1−γ and the expected episode length is at most 5
1−γ .

Further we account for the scalings arising both from the Hessian guarantee and the usage in the
estimator when including the Ĥt into our dataset. As a result we see that at all times t our dataset
construction satisfies the following lemma

Lemma 12 For all t ≥ 0, let vt ∈ RS×A be a vector defined recursively such that for any π ∈ B∞,1,
such that ⟨v0, π⟩ = 0, and

⟨vt, π⟩ ≜(1− a)⟨vt−1, π⟩+
λ

1− γ
Q̂⊤

t π(st)

+
γ(1− λ)
(1− γ)2

(
(Ĥt(πt(s

′′
t )− πt−1(s

′′
t )))

⊤π(s′t) + (Ĥt(πt(s
′
t)− πt−1(s

′
t)))

⊤π(s′′t )
)
.

We have that for all times t ≤ T , and for any policy π, the ERM loss for π on Dt can be expressed as

⟨vt, π⟩ =
∑

(s,l)∈Dt

l̂⊤π(s).

The above lemma ensures that all times t, π′t is the solution of the minimization problem described
in (5.4) for an estimator vt which by using Lemma 10 and Lemma 11 can readily be seen to be the
same as the STORM estimator 5.2 but in the functional space.

11
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5.2. H-Sampler

Input: Policy π, and start-state distribution µ, tolerance εH .
Sample the initial state s0 ∼ µ.
for t = 0, . . .∞ do

With probability 1− γ, record the current state as st and exit the loop.
Else, draw an action at ∼ π(st) and transition to the next state st+1 ∼ P (·|st, at).

end
Draw the tth action at ∼ Unif(A) uniformly, and observe the next state st+1 ∼ P (·|st, at).
for t′ = t+ 1, . . .∞ do

With probability 1− γ, record the current state as s′t′ and exit the loop.
Else, draw an action at′ ∼ π(st′) and transition to the next state st′+1 ∼ P (·|st′ , at′).

end
Draw the t′th action at′ ∼ Unif(A) uniformly, and observe the next state st′+1 ∼ P (·|st′ , at′).
for t′′ = t′ + 1, . . . ,∞ do

With probability 1− γ, record R =
r(st′′ ,at′′ )

1−γ construct the matrix in R|A|×|A| as

Ĥ(a1, a2) = Ia1=at∧a2=at′ |A|
2R

and return the tuple (st, st′ , Ĥ) ending the algorithm’s execution.
Else, draw an action at′′ ∼ π(st′′) to transition to the next state st′′+1 ∼ P (·|st′′ , at′′).

end
Algorithm 3: H-sampler

The Q-Sampler and H-Sampler, which are importance sampling based estimators, to are stated as
algorithms 2 and 3 respectively. We highlight the salient aspects of the proposed H-Sampler which
we believe to be of independent interest. To obtain the H-Sampler, similar to the case of gradient in
Lemma 9, we provide an explicit characterization of the functional policy Hessian. To define the
Hessian, we make use of the notion of a future advantage F π(s, a|π′) of a policy π′ with respect to a
baseline policy π, when starting from some state s and action a. Intuitively, it represents the value of
playing one step of a candidate policy π′ at a random step (geometrically distributed) in the future
when starting from a state-action pair (s, a), all the while executing a baseline policy π.

Definition 13 For any policy pair π, π′, define the future advantage F π(·|π′) : S × A → R of a
policy π′ with respect to a baseline policy π as

F π(s, a|π′) = Es′∼P (·|s,a)Es′′∼dπ
s′

[
Qπ(s′′, ·)⊤π′(s′′)

]
.

Note that the future advantage F π(·|π′) is linear in π′. Lemma 14 provides a characterization of the
functional Hessian of the value function as a bi-linear operator over π′, π′′. The interchangability of
the roles of π′ and π′′ ensures the symmetry of the bi-linear form.

Lemma 14 For any policy triplet π, π′, π′′ and start-state distribution µ, we have

⟨π′′,∇2V π
µ π

′⟩ = γ

(1− γ)2
(
Es∼dπµ

[
F π(s, ·|π′)⊤π′′(s) + F π(s, ·|π′′)⊤π′(s)

])
.

12
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The following lemma shows the main guarantee for our H-Sampler, which immediately implies
Lemma 11 using Lemma 14.

Lemma 15 H-sampler (Algorithm 3) when run with a policy π and start-state distribution µ
produces a random tuple (s, s′, Ĥ) ∈ S × S × RA×A such that s ∼ dπµ, and for any π′

E
[
Ĥ⊤π′(s′)

∣∣∣s, π] = F π(s, ·|π′).

6. Overview of Analysis

Due to space constraints, we defer the analysis and proofs of the theorem entirely to the appendix,
where the theorems are restated with the correct parameter instantiations. We provide a high level
summary of the analysis approach here. Overall, the core of our algorithmic approach and analysis
resembles the one-sample stochastic Frank-Wolfe algorithm proposed by Zhang et al. (2020) which
also employs the STORM estimator for variance reduction in stochastic optimization. However the
RL setting and especially performing the variance reduction in functional space brings some unique
challenges which we tackle in our analysis. In particular, the functional(policy) space is bounded
in∞-norm with gradients bounded in 1-norm. Thereby, the variance reduction properties of the
STORM algorithm which are naturally stated in ℓ2 norms need to be extended to∞, 1 norms. To this
end we provide an alternative analysis of STORM which bounds the deviation between the estimator
and the true gradient with high probability(as opposed to smaller variance) over a covering set of the
policy space. We believe this alternative analysis extending STORM to∞, 1 norms and establishing
high probability guarantees can be of independent interest. Furthermore to construct the estimator
in the functional settings for RL, we devise novel functional Hessian-vector product oracle, which
requires developing a sampling based expression for the Hessian-vector product (summarized in
Lemma 14).

7. Conclusion

We revisit the problem of reducing reinforcement learning to a sequence of ERM problems. Using
ideas from variance reduction in stochastic optimization, we improve the sample complexity of
achieving a functional local optimum in policy space from O(ε−4) to O(ε−3). As we discuss,
functional local optimum guarantees can be significantly stronger than parameter space local opti-
mum guarantees, which we demonstrate by translating our improved sample complexity results for
functional local optimum to improved bounds for global optimality under state coverage assumptions.
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Appendix A. Detailed statements of theorems

A.1. Theorem 2

Theorem 16 (Theorem 2 detailed) For a given ε, δ define εcover ≜
ε(1−γ)2

80A and define the function

C(T ) ≜
8A3/2

√
γ log(2T |Πεcover |/δ)
(1− γ)5/2

.

Then Algorithm 1 when run with any parameters η, T satisfying the following equations,

η ≤ ε(1− γ)3

40γ
ηT ≥ (1− γ)

2γA
log

(
1

20ε(1− γ)2

)
2

(1− γ)ηT
+ 5C(T ) · √η ≤ 3ε/10

(A.1)
and εERM = ε(1−γ)2

60A , then given any start state distribution µ input to the algorithm, the
algorithm produces a policy π̄ which satisfies the following with probability 1− δ,

max
π′∈Π
⟨∇V π̄

µ , π
′ − π̄⟩ ≤ ε.

Further there exists a setting of T = Õ(log(|Πε|)A3(1 − γ)−6ε−3) such that the conditions
(A.1) can be satisfied and therefore the algorithm samples at most Õ(log(|Πε|)A3(1 − γ)−6ε−3)

episodes of expected length O
(

1
1−γ

)
from the MDP starting from the start state distribution µ.

In the above theorem, Õ hides polylogarithmic factors in the relevant parameters.

A.2. Theorem 8

Theorem 17 (Theorem 8 detailed) For a given ε, δ define εcover ≜
ε(1−γ)2

80A and define the function

C(T ) ≜
8A3/2

√
γ log(2T |Πεcover |/δ)
(1− γ)5/2

.

Then Algorithm 1 when run with any parameters η, T satisfying the following equations,

ηT ≥ 2C∞ log

(
10

ε(1− γ)

)
η log

(
2TΠεcover

δ

)
≤ ε2(1− γ)5

6400A3
η ≤ ε(1− γ)3

40γC∞
(A.2)

and εERM = ε(1−γ)2

20AC∞
, then starting from the canonical start state distribution ρ, the algorithm

produces a policy π̄ which satisfies the following with probability 1− δ,

V ∗ − V π̄ ≤ ε+ C∞εΠ
1− γ

.

Further there exists a setting of T = Õ(C2
∞ log(|Πε|)A3(1− γ)−5ε−2) such that the conditions

(A.1) can be satisfied and therefore the algorithm samples at most Õ(C2
∞ log(|Πε|)A3(1−γ)−5ε−2)

episodes of expected length O
(

1
1−γ

)
from the MDP starting from the start state distribution ρ.

In the above theorem, Õ hides polylogarithmic factors in the relevant parameters.
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Appendix B. Proofs of the Main Results

B.1. Proof of Theorem 16

Proof [Proof of Theorem 16] Let us first observe that value function V π
µ is a smooth over the space

of policies. The following statement holds independently of how the policy class itself may be
parameterized.

Lemma 18 For any start-state distribution µ, V π
µ is γ

(1−γ)3
-smooth in the ∥ · ∥∞,1 norm, i.e. for

any two policies π, π′, we have that

|V π′
µ − V π

µ − ⟨∇V π
µ , π

′ − π⟩| ≤ γ

(1− γ)3
∥π′ − π′′∥2∞,1

Further for any two policies π, π′ and any starting distribution µ we have that

⟨∇V π′
µ −∇V π′′

µ , π⟩ ≤ 2γ

(1− γ)3
∥π′ − π′′∥∞,1

We invoke smoothness of V π
µ , as Lemma 18 certifies, to observe that since successive iterates are

close in the ∥ · ∥∞,1 norm, we have

V πt+1
µ = V

πt+η(π′
t−πt)

µ

≥ V πt
µ + η⟨∇V πt

µ , π′t − πt⟩ −
γη2

(1− γ)3
∥π′t − πt∥2∞,1. (B.1)

Next, we wish to use the fact to fact that π′t was chosen by a ERM oracle, and therefore
approximately maximizes the inner product with the gradient of the value function. To do this,
we first relate the ERM objective (as in Algorithm 1) to the said gradient. This result supplants
Lemma 12.

Theorem 19 For all t ≥ 0, define a sequence of vectors vt ∈ RS×A recursively as follows. Let v0
be any vector such that for all π ∈ B∞,1, we have that ⟨v0, π⟩ = 0. Further for any π ∈ B∞,1, t > 0,
let vt be an vector satisfying,

⟨vt, π⟩ ≜(1− λ)⟨vt−1, π⟩+
λ

1− γ
Q̂⊤

t π(st)

+
γ(1− λ)
(1− γ)2

(
(Ĥt(πt(s

′′
t )− πt−1(s

′′
t )))

⊤π(s′t) + (Ĥt(πt(s
′
t)− πt−1(s

′
t)))

⊤π(s′′t )
)
.

Here st, s′t, s
′′
t are the sequence of states produced by the algorithm. We have that for all t ≥ 0 the

dataset Dt maintained by Algorithm 1 satisfies the property that for any policy π, the ERM loss for π
on Dt can be expressed as ∑

(s,l)∈Dt

l⊤π(s) = ⟨vt, π⟩.

Further for any η < (1−γ)
4Aγ setting λ = 4ηAγ

(1−γ) , we have that for any ε, δ, with probability at least
1− δ, for all policies π ∈ CH(Π) and time t ≤ T the following holds

|⟨vt −∇V πt
µ , π⟩| ≤ 1

(1− γ)2
(1− λ)t +

8A3/2
√
γ log(2T |Πε|/δ)

(1− γ)5/2
· √η + 4Aε

(1− γ)2
.

Furthermore it holds with probability 1, that for all t, ∥vt∥1,∞ ≤ 2A
(1−γ)2

.
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For the rest of the proof define εcover ≜
ε(1−γ)2

80A and define the functionC(T ) ≜ 8A3/2
√

γ log(2T |Πεcover |/δ)
(1−γ)5/2

.
Invoking Theorem 19 using εcover and using the conditions on T in the statement of Theorem 16, it
can now be checked that for any δ and for any t ∈ [T/2, T ] we have that

|⟨vt −∇V πt
µ , π⟩| ≤ ε

10
+ C(T ) · √η. (B.2)

Now the εERM-tolerant Empirical Risk Minimization Oracle, by its definition, guarantees for
any t

max
π∗∈Π
⟨∇V πt

µ , π∗ − π′t⟩ ≤ max
π∗∈Π
⟨vt, π∗ − π′t⟩+ 2max

π∈Π
|⟨vt −∇V πt

µ , π⟩|

= max
π∗∈Π

3t∑
i=0

l̂⊤i (π
∗(si)− π′t(si)) + 2max

π∈Π
|⟨vt −∇V πt

µ , π⟩|

≤ ∥vt∥1,∞εERM + 2max
π∈Π
|⟨vt −∇V πt

µ , π⟩|

Using (B.2), with probability 1− δ, for all t ∈ [T/2, T ], the inequality concerning successive
iterates may thus be written as

max
π∗∈Π
⟨∇V πt

µ , π∗ − πt⟩ =max
π∗∈Π
⟨∇V πt

µ , π∗ − π′t⟩+ ⟨∇V πt
µ , π′t − πt⟩

≤∥vt∥1,∞εERM + 2max
π∈Π
|⟨vt −∇V πt

µ , π⟩|+ ⟨∇V πt
µ , π′t − πt⟩

≤∥vt∥1,∞εERM +
ε

10
+ C(T ) · √η +

V
πt+1
µ − V πt

µ

η
+

4γη

(1− γ)3

≤∥vt∥1,∞εERM +
ε

5
+ C(T ) · √η +

V
πt+1
µ − V πt

µ

η
.

where the second last inequality uses (B.1) and . that for any policy π, ∥π∥∞,1 = 1, and therefore,
∥π′t − πt∥∞,1 ≤ 2. The last inequality follows from the condition on η in the theorem. Further since
value functions are always bounded by 1

1−γ , we average the inequality over iterations via telescoping
to observe that with probability 1− δ,

2

T

T∑
t=T/2

max
π∗∈Π
⟨∇V πt

µ , π∗t − πt⟩ ≤
2A

(1− γ)2
εERM +

ε

5
+ C(T ) · √η + 2

(1− γ)ηT
. (B.3)

Now, finally, we move from an average to a guarantee on a specific iterate. From, we have that for
any t ∈ [T/2, T ], ∣∣∣∣Ât − max

π∗∈Π
⟨∇V πt

µ , π∗ − πt⟩
∣∣∣∣

=

∣∣∣∣⟨vt, π′t − πt⟩ − max
π∗∈Π
⟨∇V πt

µ , π∗ − πt⟩
∣∣∣∣

=

∣∣∣∣max
π∗∈Π
⟨vt, π∗ − πt⟩ − max

π∗∈Π
⟨∇V πt

µ , π∗ − πt⟩
∣∣∣∣+ εERM

≤2max
π∈Π
|⟨vt −∇V πt

µ , π⟩|+ ∥vt∥1,∞εERM
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Let t̄ = argmint∈[T/2,T ] Ât and t′ = argmint∈[T/2,T ]maxπ∗⟨∇V πt
µ , π∗ − πt⟩. Then it follows

by definition of t′ and t̄ and the above inequality that

max
π∗∈Π
⟨∇V πt̄

µ , π∗ − πt̄⟩

≤Ât̄ +
2A

(1− γ)2
εERM + 2 max

t∈[T/2,T ]
max
π∈Π
|⟨vt −∇V πt

µ , π⟩|

≤Ât′ +
2A

(1− γ)2
εERM + 2 max

t∈[T/2,T ]
max
π∈Π
|⟨vt −∇V πt

µ , π⟩|

≤ min
t∈[T/2,T ]

max
π∗∈Π
⟨∇V πt

µ , π∗ − πt⟩+
4A

(1− γ)2
εERM + 4 max

t∈[T/2,T ]
max
π∈Π
|⟨vt −∇V πt

µ , π⟩|

≤ 2

T

T∑
t=T/2

max
π∗∈Π
⟨∇V πt

µ , π∗ − πt⟩+
4A

(1− γ)2
εERM + 4 max

t∈[T/2,T ]
max
π∈Π
|⟨vt −∇V πt

µ , π⟩|

where the second last inequality follows from the average iterate guarantee in Equation B.3. Now
combining the above, (B.3) and (B.2) we get that for any δ the following holds with probability 1− δ,

max
π∗∈Π
⟨∇V πt̄

µ , π∗ − πt̄⟩ ≤
2

(1− γ)ηT
+

6A

(1− γ)2
εERM +

6ε

10
+ 5C(T ) · √η

≤ ε

Appendix C. Faster global convergence - Proof of Theorem 17

Proof [Proof of Theorem 8] We invoke smoothness of V π, as Lemma 18 certifies, to observe that
since successive iterates are close in the ∥ · ∥∞,1 norm, we have

V πt+1 = V πt+η(π′
t−πt)

≥ V πt + η⟨∇V πt , π′t − πt⟩ −
γη2

(1− γ)3
∥π′t − πt∥2∞,1.

Using Theorem 19 and the definition of εERM-tolerant Empirical Risk Minimization Oracle, we have
that for any t,

max
π∗∈Π
⟨∇V πt , π∗ − πt⟩

=max
π∗∈Π
⟨∇V πt , π∗ − π′t⟩+ ⟨∇V πt , π′t − πt⟩

≤ 2A

(1− γ)2
εERM + 2max

π∈Π
|⟨vt −∇V πt , π⟩|+ ⟨∇V πt , π′t − πt⟩
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Continuing on, using the above inequality and Lemma 7, we have

V ∗ − V πt+1 ≤ V ∗ − V πt − η⟨∇V πt , π′t − πt⟩+
γη2

(1− γ)3
∥π′t − πt∥2∞,1

≤ V ∗ − V πt − η max
π∗∈Π
⟨∇V πt , π∗ − πt⟩+ η

(
2A

(1− γ)2
εERM + 2max

π∈Π
|⟨vt −∇V πt , π⟩|

)
+

4γη2

(1− γ)3

≤ V ∗ − V πt − ηV
∗ − V πt

C∞
+ η

(
2A

(1− γ)2
εERM + 2max

π∈Π
|⟨vt −∇V πt , π⟩|+ εΠ

1− γ

)
+

4γη2

(1− γ)3

=

(
1− η

C∞

)
V ∗ − V πt + η

(
2A

(1− γ)2
εERM + 2max

π∈Π
|⟨vt −∇V πt , π⟩|+ εΠ

1− γ

)
+

4γη2

(1− γ)3
.

Unrolling the above inequality from t = T/2 to t = T and noting that for any policy π, V ∗ − V π ≤
1

1−γ we get that

V ∗ − V πT ≤
(
1− η

C∞

)T/2 1

1− γ
+ C∞

(
2A

(1− γ)2
εERM + 2 max

t∈[T/2,T ]
max
π∈Π
|⟨vt −∇V πt , π⟩|+ εΠ

1− γ

)
+

4γηC∞
(1− γ)3

≤ 3ε

10
+ C∞ · 2 max

t∈[T/2,T ]
max
π∈Π
|⟨vt −∇V πt , π⟩|+ C∞εΠ

(1− γ)

≤ 3ε

10
+ 2C∞C(T )

√
η +

C∞εΠ
(1− γ)

where the second last inequality follows from the conditions of the theorem and the last inequality
follows from (B.2) which holds with probability 1− δ for any δ. Now using the conditions in the
theorem give the requisite statement for any δ with probability at least 1− δ.

Appendix D. High Probability Bound for Gradient Estimator - Proof of Theorem 19

Proof The first part of the theorem follows immediately via the definition of vt and the definition of
the datasets Dt in Algorithm 1. We now proceed with the bound on the deviation. Remember that vt
is defined in a recursive fashion by satisfying the following for any π ∈ B∞,1,

⟨vt, π⟩ ≜(1− λ)⟨vt−1, π⟩+ λ · Q̂
⊤
t π(st)

1− γ

+ (1− λ)
(

γ

(1− γ)2
(
(Ĥt(πt(s

′′
t )− πt−1(s

′′
t )))

⊤π(s′t) + (Ĥt(πt(s
′
t)− πt−1(s

′
t)))

⊤π(s′′t )
))

.

For brevity in the proof we define the following random functions defined over all π ∈ B∞,1 and for
all t ≥ 0

ψt(π) ≜
Q̂⊤

t π(st)

1− γ

ζt(π) ≜
γ

(1− γ)2
(
(Ĥt(πt(s

′′
t )− πt−1(s

′′
t )))

⊤π(s′t) + (Ĥt(πt(s
′
t)− πt−1(s

′
t)))

⊤π(s′′t )
)

Therefore by definition we have that for all π ∈ B∞,1 and for all t,

⟨vt, π⟩ = (1− λ)⟨vt−1, π⟩+ λψt(π) + (1− λ)ζt(π).

21



VARIANCE-REDUCED CONSERVATIVE POLICY ITERATION

Before moving onto the proof we will provide some simple upper bounds on the random variables
ψt(π), ζt(π) for any π ∈ B∞,1. Using Claim 10 we get that for any t ≤ T, π ∈ B∞,1,

|ψt(π)| ≤
∥Q̂t∥1∥π(st)∥∞

1− γ
≤ A

(1− γ)2
. (D.1)

Further using Claim 11 we get that for any t ≤ T, π ∈ B∞,1,

|ζt(π)| ≤
γ

(1− γ)2

 ∑
a,a′∈A×A

|H(a, a′)|

 ∥π(s′t)∥∞ (
∥πt(s′t)− πt−1(s

′
t)∥∞ + ∥πt(s′′t )− πt−1(s

′′
t )∥∞

)
≤ 2A2γ

(1− γ)3
∥πt − πt−1∥∞ ≤

2A2γ

(1− γ)3
∥πt − πt−1∥∞,1. (D.2)

We now move on to the main proof. Let Et represent expectation fixing all the randomness upto and
including time t. Then we have using Lemma 10 that π ∈ B∞,1

Et−1[ψt(π)] = ⟨∇V πt
µ , π⟩.

Further using Lemma 11 and the inputs to the H-sampler from Algorithm 1, it follows that

Et−1[ζt(π)] = Ebt

[
⟨πt − πt−1,∇2V π̄t

µ π⟩
]
= Ebt

[
⟨∇2V π̄t

µ (πt − πt−1), π⟩
]
= ⟨∇V πt

µ −∇V πt−1
µ , π⟩.

Next consider the definitions of the following sequences for every t ≥ 0 and π ∈ B∞,1,

ϵt ≜ vt −∇V πt
µ yt(π) ≜

⟨ϵt, π⟩
(1− λ)t

.

We next show that for any π ∈ B∞,1, the sequence {yt(π)} is a martingale sequence over time t. To
see this consider the following derivation,

Et−1[yt(π)] =
Et−1[⟨ϵt, π⟩]
(1− λ)t

=
Et−1[⟨(vt −∇V πt

µ ), π⟩]
(1− λ)t

=
1

(1− λ)t
(
(1− λ)Et−1[⟨(vt−1 −∇V πt−1

µ ), π⟩] + λ
(
Et−1[ψt(π)]− ⟨∇V πt

µ , π⟩
)

+(1− λ)
(
Et−1[ζt(π)]− ⟨(∇V πt

µ −∇V πt−1
µ ), π⟩

))
=

(1− λ)⟨ϵt−1, π⟩
(1− λ)t

= yt−1(π).

We now wish to use Azuma’s inequality to show concentration for the martingale sequence. Note
that for any policies π, π′ Lemma 9 implies that ⟨∇V π

µ , π
′⟩ ≤ 1

(1−γ)2
. Using the above derivations

and Lemma 18, we can now bound the differences of the martingale sequences as follows which
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holds for any π ∈ B∞,1 and all t,

xt(π) ≜ |yt(π)− yt−1(π)| =
|⟨ϵt, π⟩ − (1− λ)⟨ϵt−1, π⟩|

(1− λ)t

=
|λ(ψt − ⟨∇V πt

µ , π⟩) + (1− λ)(ζt − ⟨(∇V πt
µ −∇V

πt−1
µ ), π⟩|

(1− λ)t

≤
λ · 2A

(1−γ)2
+ (1− λ) · 2A2γ

(1−γ)3
∥πt − πt−1∥∞,1

(1− λ)t

≤ 2A

(1− γ)2
·
λ+ η · 4Aγ

(1−γ)

(1− λ)t
.

To use Azuma’s inequality we need to control the sum of the worst-case differences. To this end
consider the following which holds with probability 1 for any π ∈ B∞,1,

t∑
τ=1

x2τ (π) ≤
t∑

τ=1

4A2

(1− γ)4
·

(
λ+ η · 4Aγ

(1−γ)

)2

(1− λ)2τ

≤
t∑

τ=1

4A2

(1− γ)4
·

(
λ+ η · 4Aγ

(1−γ)

)2

(1− λ)2τ

≤ 4A2

(1− γ)4
·

(
λ+ η · 4Aγ

(1−γ)

)2

λ(1− λ)2t
.

A direct application of Azuma’s inequality implies that for any π ∈ B∞,1 and any t, δ with probability
at least 1− δ the following holds,

|yt(π)| ≤ |y0(π)|+
4A

(1− γ)2
·

√
(
√
λ+ η√

λ
· 4Aγ
(1−γ))

2 log(2/δ)

(1− λ)t

Setting λ = 4ηAγ
(1−γ) , we get that for any π ∈ B∞,1, t, δ, with probability at least 1− δ the following

holds

|yt(π)| ≤ |y0(π)|+
8A3/2

√
γ log(2/δ)

(1− γ)5/2
·
√
η

(1− λ)t

Replacing the definition of yt(π) we get that for any π ∈ B∞,1, δ, t, with probability least 1− δ, the
following holds

|⟨ϵt, π⟩| ≤ |⟨ϵ0, π⟩|(1− λ)t +
8A3/2

√
γ log(2/δ)

(1− γ)5/2
· √η

≤ 1

(1− γ)2
(1− λ)t +

8A3/2
√
γ log(2/δ)

(1− γ)5/2
· √η.

Let ε > 0 be any number and Πε be the associated covering set of the policy class Π. Using a union
bound over all choices of π ∈ Πε and all timesteps t ≤ T we get that for any ε, δ, with probability at
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least 1− δ, we have that for any policy π ∈ Πε and any time t ≤ T ,

|⟨vt −∇V πt
µ , π⟩| ≤ 1

(1− γ)2
(1− λ)t +

8A3/2
√
γ log(2T |Πϵ|/δ)

(1− γ)5/2
· √η. (D.3)

For the rest of the argument we will generate a crude bound over ∥vt∥1,∞. To this end will bound
⟨vt, π⟩ for all π ∈ B∞,1. By Lemma 20 since ∥ · ∥∞,1 and ∥ · ∥1,∞ are duals of each other this will
imply a bound on ∥vt∥1,∞. Therefore consider any π ∈ B∞,1. Using the definitions of vt, ψt and ζt
we get that

⟨vt, π⟩ ≤ (1− λ)⟨vt−1, π⟩+ λ|ψt(π)|+ (1− λ)ζt(π)

≤ (1− λ)⟨vt−1, π⟩+ λ
A

(1− γ)2
+ η · 4A2γ

(1− γ)3

= (1− λ)⟨vt−1, π⟩+ η · 8A2γ

(1− γ)3
,

where the last equality uses the choice of λ = 4ηAγ
(1−γ) . Now we will show by induction that for all t,

⟨vt, π⟩ ≤ 2A
(1−γ)2

. The base case is immediate. For the inductive case, it follows via the following
computation using the choice of λ,

⟨vt, π⟩ ≤ (1− λ)⟨vt, π⟩+ η · 8A2γ

(1− γ)3

≤ (1− λ) · 2A

(1− γ)2
+ λ · 2A

(1− γ)2
≤ 2A

(1− γ)2
.

This implies that for all t, ∥vt∥1,∞ ≤ 2A
(1−γ)2

. It can be shown using Lemma 9 that for all t,

∥V πt
µ ∥1,∞ ≤ 1

(1−γ)2
. This implies that for all t, ∥vt −∇V πt

µ ∥1,∞ ≤ 4A
(1−γ)2

.
Now consider any π ∈ Π and any ε > 0, then by the covering property we have that there exists

a π′ ∈ Πε such that for all t,

|⟨vt −∇V πt
µ , π⟩| ≤ |⟨vt −∇V πt

µ , π′⟩|+ 4Aε

(1− γ)2
.

Combining the above with (D.3) completes the proof for all π ∈ Π.
To extend the statement to all π in the convex hull of Π, note that purely as a function of π,

f(π) ≜ max{⟨vt − ∇V πt
µ , π⟩,−⟨vt − ∇V πt

µ , π⟩} is a convex function in π. Therefore one of its
maxima over a convex set must lie at the boundary of the convex set. This implies that establishing
the statement of any π ∈ Π is sufficient to establish the statement for π ∈ CH(Π).

Appendix E. Basic results

E.1. Duality of ∥ · ∥∞,1 and ∥ · ∥1,∞
Lemma 20 ∥ · ∥1,∞ and ∥ · ∥∞,1 are dual norms with respect to the matrix dot product, i.e.

∥Y ∥1,∞ = max
∥X∥∞,1=1

⟨X,Y ⟩.
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Proof [Proof of Lemma 20] Let Ai denote the ith row of a matrix A. Consider any X be such that
∥X∥∞,1 = 1. Then by Holder’s inequality we have

⟨X,Y ⟩ =
M∑
i=1

X⊤
i Yi ≤

M∑
i=1

∥Xi∥1∥Yi∥∞ ≤
M∑
i=1

∥Yi∥∞ = ∥Y ∥1,∞

Now, construct a matrix X such that Xi,j = Ij=argmaxj′ |Yi,j′ |sign(Yi,argmaxj′ |Yi,j′ |) breaking ties
arbitrarily for the cases where argmax is non-unique. Clearly, having one unit-sized entry per row,
∥X∥∞,1 = 1. Moreover, observe that the sequence of inequalities stated above is tight for such
choice of X , because X⊤

i Yi = ∥Yi∥∞ and ∥Xi∥1 = 1 hold for any i ∈ [M ] by definition of X .

E.2. Smoothness of V π
µ in ∥ · ∥∞,1 (Proof of Lemma 18)

Proof [Proof of Lemma 18] Using the performance difference lemma Kakade and Langford (2002),
we have

V π′
µ − V π

µ =
1

1− γ
Es∼dπ′

µ

[
Qπ(·|s)⊤π′(s)−Qπ(·|s)⊤π(s)

]
. (E.1)

Comparing this to the gradient characterization (Lemma 9), we have

|V π′
µ − V π

µ − ⟨∇V π
µ , π

′ − π⟩|

≤ 1

1− γ

∣∣∣Es∼dπ′
µ

[
Qπ(s, ·)⊤π′(s)−Qπ(s, ·)⊤π(s)

]
− Es∼dπµ

[
Qπ(s, ·)⊤π′(s)−Qπ(s, ·)⊤π(s)

]∣∣∣
≤ 1

1− γ
∥dπ′

µ − dπµ∥1max
s∈S

∣∣∣Qπ(s, ·)⊤π′(s)−Qπ(s, ·)⊤π(s)
∣∣∣

≤ 1

1− γ
∥dπ′

µ − dπµ∥1max
s∈S
{∥Qπ(s, ·)∥∞∥π′(s)− π(s)∥1}

≤ 1

(1− γ)2
∥dπ′

µ − dπµ∥1∥π′ − π∥∞,1

where the last inequality follows from ∥Qπ(s, ·)∥∞ ≤ 1
1−γ . Now, define for any policy π, define

P π(s′|s) =
∑

a∈A P (s
′|s, a)π(a|s) as the associated Markov transition operator. First, for any

distribution d ∈ ∆S , we have

∥(P π′ − P π)d∥1 =
∑
s′∈S

∣∣∣∣∣∣
∑

a∈A,s∈S
P (s′|s, a)(π′(a|s)− π(a|s))d(s)

∣∣∣∣∣∣
≤

∑
s′∈S,a∈A,s∈S

P (s′|s, a)|π′(a|s)− π(a|s)|d(s)

=
∑

s∈S,a∈A
|π′(a|s)− π(a|s)|d(s)

≤ max
s∈S

∑
a∈A
|π′(a|s)− π(a|s)| = ∥π′ − π∥∞,1

Generalizing this to t successive applications of the Markov operator, we have the following via
an inductive argument. Suppose for t − 1, we have that for all distributions d ∈ ∆S we have that
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∥((P π′
)t − (P π)t)d∥1 ≤ (t− 1), ∥π′ − π∥∞,1. Now consider the case for t,

∥((P π′
)t − (P π)t)d∥1 ≤ ∥((P π′

)t − (P π′
)t−1P π)d∥1 + ∥((P π′

)t−1P π − (P π)t)d∥1
= ∥(P π′

)t−1(P π′ − P π)d∥1 + ∥((P π′
)t−1 − (P π)t−1)P πd∥1

≤ ∥(P π′ − P π)d∥1 + ∥((P π′
)t−1 − (P π)t−1)P πd∥1

≤ ∥π′ − π∥∞,1 + (t− 1)∥π′ − π∥∞,1

= t∥π′ − π∥∞,1

Using the definition of dπµ, we have

∥dπ′
µ − dπµ∥1 ≤ (1− γ)

∑
t≥0

γt∥((P π′
)t − (P π)t)µ∥1

≤ (1− γ)
∑
t≥0

γtt∥π′ − π∥∞,1

=
γ

1− γ
∥π′ − π∥∞,1. (E.2)

where the last line uses the identity
∑

t≥0 γ
tt = γ

(1−γ)2
, completing the proof. For the second part of

the lemma, consider the following. Using Lemma 9, we have that,

⟨∇V π′
µ −∇V π′′

µ , π⟩ = 1

1− γ

(
Es∼dπ′

µ

[
Qπ′

(s, ·)⊤π(s)
]
− Es∼dπ′′

µ

[
Qπ′′

(s, ·)⊤π(s)
])

=
1

1− γ

(
Es∼dπ′

µ

[
(Qπ′

(s, ·)−Qπ′′
(s, ·))⊤π(s)

])
+

1

1− γ

(
Es∼dπ′

µ

[
Qπ′′

(s, ·)⊤π(s)
]
− Es∼dπ′′

µ

[
Qπ′′

(s, ·)⊤π(s)
])
.

We now bound the two terms above separately. Applying Cauchy-Schwartz repeatedly and noting
the definition of Qπ(s, a) = r(s, a) + γ

∑
s′∈S P (s

′|s, a)V π(s) we have that

Es∼dπ′
µ

[
(Qπ′

(s, a)−Qπ′′
(s, a))⊤π(s)

]
≤ max

s,a∈S×A
|(Qπ′

(s, a)−Qπ′′
(s, a))|

= γ max
s,a∈S×A

∣∣ ∑
s′∈S

P (s′|s, a)(V π′
(s)− V π′′

(s))
∣∣

≤ γmax
s∈S

∣∣V π′
(s)− V π′′

(s)
∣∣

=
γ

1− γ
max
s∈S

∣∣∣∣Es′∼dπ
′

s

[
Qπ′′

(·|s′)⊤π′(s′)−Qπ′′
(·|s′)⊤π′′(s′)

]∣∣∣∣
≤ γ

(1− γ)2
∥π′ − π′′∥∞,1.

Here the second last inequality follows from the performance difference lemma (E.1). Furthermore
for the second term we have that,

Es∼dπ′
µ

[
Qπ′′

(s, ·)⊤π(s)
]
− Es∼dπ′′

µ

[
Qπ′′

(s, ·)⊤π(s)
]
≤ 1

(1− γ)
∥dπ′

µ − dπ
′′

µ ∥1

≤ γ

(1− γ)2
∥π′ − π′′∥∞,1.
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where the inequality follows from (E.2). Putting the above statements together we easily see that

⟨∇V π′
µ −∇V π′′

µ , π⟩ ≤ 2γ

(1− γ)3
∥π′ − π′′∥∞,1.

Appendix F. Characterization of the Functional gradient and Hessian of the Value
Function (Proofs of Lemmas 9 and 14)

For the sake of this section, we introduce new notation that will help us state analytic derivatives
cleanly. For any policy π ∈ RS×A define a function of π, T π with the signature T π : RS×A →
RSA×SA such that for all ((s′, a′), (s, a)),

T π((s′, a′), (s, a)) = P (s′|s, a)π(a′|s′).

Similarly define P π(s′|s) : RS×A → RS×S such that such that for all (s′, s),

P π(s′, s) ≜
∑
a∈A

P (s′|s, a)π(a|s).

Finally define µπ : RS×A → RSA such that for all (s, a)

µπ(s, a) = µ(s)π(a|s).

For any (s̃, ã), we define the following partial derivatives for (s̃, ã)th entry of the input π as
∂Tπ

∂π(ã|s̃) ∈ RSA×SA and ∂Pπ

∂π(ã|s̃) ∈ RS×S such that

∂T π

∂π(ã|s̃)
((s′, a′), (s, a)) = P (s̃|s, a)Is′=s̃∧a′=ã,

∂P π

∂π(ã|s̃)
(s′, s) = P (s′|s̃, ã)Is=s̃.

It can be seen that for any π ∈ (∆A)
S , T π, P π are stochastic matrices. Therefore since γ < 1, we

have that I − γT π and I − γP π are invertible.
Next, consider any start state distribution µ ∈ ∆S and a reward vector r ∈ RS×A. As defined

before the steady-state distribution, dπµ : RS×A → RSA, the Q-function Qπ : RS×A → RSA and the
value function V π : RS×A → RS are also functions of a policy π and thus similar partial derivatives
for any s̃, ã can be defined here as well. In this section to make the notation more explicit we define
dπµ,S ∈ ∆S such that for all s ∈ S, dπµ,S(s) =

∑
a∈A(d

π
µ,S(s, a)). Note that in other parts of the

paper we have referred to dπµ,S(s) as just dπµ(s) but since we need to explicitly use the vector dπµ,S(s)
in this section we make this notation explicit.

Now note by Bellman equations, we have that

dπµ = (1− γ)µπ + γT πdπµ =⇒ dπµ = (1− γ)(I − γT π)−1µπ,

dπµ,S = (1− γ)µ+ γP πdπµ,S =⇒ dπµ,S = (1− γ)(I − γP π)−1µ,

Qπ = r + γ(T π)⊤Qπ =⇒ Qπ = (I − γ(T π)⊤)−1r.
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We will now use these notations repeatedly. As a warm-up, we provide a proof the policy gradient
lemma (Lemma 9) first.
Proof [Proof of Lemma 9] First observe that V π

µ = (µπ)⊤Qπ. Now for all s̃, ã we have that

∂V π
µ

∂π(ã|s̃)
=

(
∂µπ

∂π(ã|s̃)

)⊤
Qπ + (µπ)⊤

∂Qπ

∂π(ã|s̃)

= µ(s̃)Qπ(s̃, ã) + γ(µπ)⊤
[
(I − γ(T π)⊤)−1∂(T

π)⊤

∂π(ã|s̃)
(I − γ(T π)⊤)−1r

]
= µ(s̃)Qπ(s̃, ã) + γ((I − γ(T π))−1µπ)⊤

[
∂(T π)⊤

∂π(ã|s̃)
(I − γ(T π)⊤)−1r

]
= µ(s̃)Qπ(s̃, ã) +

γ

1− γ
(dπµ)

⊤∂(T
π)⊤

∂π(ã|s̃)
Qπ

= µ(s̃)Qπ(s̃, ã) +
γ

1− γ
Qπ(s̃, ã)

∑
s∈S,a∈A

P (s̃|s, a)dπµ(s, a)

= µ(s̃)Qπ(s̃, ã) +
γ

1− γ
Qπ(s̃, ã)

∑
s∈S,a∈A

P (s̃|s, a)π(a|s)dπµ(s)

=
dπµ(s̃)Q

π(s̃, ã)

1− γ
(F.1)

where we use that dπµ(s) = (1− γ)µ(s) + γ
∑

s′∈S,a′∈A P (s|s′, a′)π(a′|s′)dπµ(s′). The statement of
the lemma follows immediately now.

Proof [Proof of Lemma 14] Observe for any s, a, s̃, ã we have the following statement that follows
by product rule,

∂(dπµ(s)Q
π(s, a))

∂π(ã|s̃)
= dπµ(s)

∂Qπ(s, a)

∂π(ã|s̃)
+
∂dπµ(s)

∂π(ã|s̃)
Qπ(s, a). (F.2)

Further given any s, a we can define dπs,a ∈ RSA to be the steady state distribution starting from state
s and executing action a. In particular the following holds

dπs,a = (1− γ)es,a + γT πdπµ =⇒ dπs,a = (1− γ)(I − γT π)−1es,a,

where es,a ∈ RSA is the indicator vector of the (s, a)th coordinate. We now have the following for
any s, a, s̃, ã,

∂Qπ(s, a)

∂π(ã|s̃)
= e⊤s,a

∂Qπ

∂π(ã|s̃)

= γe⊤s,a(1− γ(T π)⊤)−1)
∂(T π)⊤

∂π(ã|s̃)
(1− γ(T π)⊤)−1)r

=
γ

1− γ
(dπs,a)

⊤∂(T
π)⊤

∂π(ã|s̃)
Qπ

=
γ

1− γ
Qπ(s̃, ã)

∑
s′∈S,a′∈A

P (s̃|s′, a′)dπs,a(s′, a′).
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The above in particular implies that for any π′ and any s, a,,〈
dπµ(s)

∂Qπ(s, a)

∂π
, π′

〉
= Es∼dπµEs′∼P (·|s,a)Es̃∼dπ

s′

[
Qπ(s̃, ·)⊤π′(s̃)

]
= F π(s, a|π′). (F.3)

Further, consider the following for any s, s̃, ã,

∂dπµ(s)

∂π(ã|s̃)
= e⊤s

∂dπµ,S
∂π(ã|s̃)

= (1− γ)γe⊤s (I − γP π)−1 ∂P π

∂π(ã|s̃)
(I − γP π)−1µ

= γe⊤s (I − γP π)−1 ∂P π

∂π(ã|s̃)
dπµ,S .

Let µ′s̃,ã ∈ ∆S such that for all s′,

µ′s̃,ã(s
′) = P (s′|s̃, ã)dπµ(s̃).

Therefore we have that,

∂dπµ(s)

∂π(ã|s̃)
= γe⊤s (I − γP π)−1µ′s̃,ã

=
γ

1− γ
e⊤s d

π
µ′
s̃,ã

=
γ

1− γ
∑
s′∈S

dπs′(s)P (s
′|s̃, ã)dπµ(s̃).

The above in particular implies that for any π′′ and any s̃, ã,〈
Qπ

∂dπµ
∂π(ã|s̃)

, π′′
〉

= Es̃∼dπµEs′∼P (·|s̃,ã)Es∼dπ
s′

[
Qπ(s, ·)⊤π′′(s)

]
= F π(s̃, ã|π′′). (F.4)

Combining (F.2), (F.3), (F.4) completes the proof.

Appendix G. Sampling subroutines

G.1. Properties of Q-sampler (Algorithm 2)

Proof [Proof of Lemma 10] Let Et be the event that the first loop terminates at the tth iteration. Then

P(st = s) =

∞∑
τ=0

P(Eτ )E [1sτ=s|π] =
∞∑
τ=0

(1− γ)γτE [1sτ=s|π,Eτ ] = dπ(s).
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Let Ft be the event that the second loop terminates at the tth iteration. Then

E [R|st, at] =
∞∑
τ=0

P(Fτ )E
[
r(st+τ , at+τ )

1− γ

∣∣∣∣π, st, at, Fτ

]

=

∞∑
τ=0

(1− γ)γτE
[
r(st+τ , at+τ )

1− γ

∣∣∣∣π, st, at, Fτ

]

= E

[ ∞∑
τ=0

γτr(st+τ , at+τ )

∣∣∣∣π, st, at, Fτ

]
= Qπ(st, at).

Now, taking the marginal over the choice of at, we have for any a ∈ A

E
[
Q̂(a)

∣∣∣st, π] = AE [R|st, at = a]P(at = a) = Qπ(st, a).

Since Et and Ft are geometric random variables with (1−γ) probability of termination, the expected
survival length of each is 1

1−γ .

G.2. Properties of H-sampler (Algorithm 2)

Proof [Proof of Lemma 15] Since the sampling procedure of s coincides with the first phase of
Algorithm 2, analogously we have that s ∼ dπµ. Similarly, by comparisons to the second phase of
Algorithm 2, we have E[R|st′ , at′ ] = Qπ(st′ , at′). Taking the marginal over the choice of at′ , we
have for any π′ that

E
[
Ĥ⊤π′(s′)|s, π

]
= F π(s, ·|π′).

Proof [Proof of Lemma 11] The first part of the claim is a synthesis of Lemma 15 and the charac-
terization of the policy Hessian in Lemma 14. The episode length is bounded as each of the three
rejection sampling phases has a survival length of 1

1−γ .
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Appendix H. Local-to-Global Lemmas (Proofs of Lemmas 4 and 7)

H.1. For an exploratory distribution

Proof [Proof of Lemma 4] Consider any π ∈ CH(Π). Due to performance difference lemma
(Agarwal et al., 2021), we have

V ∗ − V π =
1

1− γ
Es∼dπ∗

[
Qπ(s, ·)⊤π∗(s)−Qπ(s, ·)⊤π(s)

]
≤ 1

1− γ
Es∼dπ∗

[
max
a∈A

Qπ(s, a)−Qπ(s, ·)⊤π(s)
]

≤ 1

1− γ

∥∥∥∥dπ∗

dπµ

∥∥∥∥
∞
Es∼dπµ

[
max
a∈A

Qπ(s, a)−Qπ(s, ·)⊤π(s)
]

≤ 1

(1− γ)2

∥∥∥∥dπ∗

µ

∥∥∥∥
∞

(
min
π′∈Π

Es∼dπµ

[
max
a∈A

Qπ(s, a)−Qπ(s, ·)⊤π′(s)
]

+max
π′∈Π

Es∼dπµ

[
Qπ(s, ·)⊤(π′(s)− π(s))

])
≤ 1

(1− γ)2

∥∥∥∥dπ∗

µ

∥∥∥∥
∞

(
ϵΠ,µ + (1− γ)max

π′∈Π
⟨∇V π

µ , π
′ − π⟩

)
,

where the last line follows from Lemma 9 and the definition of ϵΠ,µ.

H.2. For an exploratory policy class

Proof [Proof of Lemma 7] Consider any π ∈ CH(Π). Due to performance difference lemma (E.1),
we have

V ∗ − V π =
1

1− γ
Es∼dπ

∗

[
Qπ(s, ·)⊤π∗(s)−Qπ(s, ·)⊤π(s)

]
≤ 1

1− γ
Es∼dπ∗

[
max
a∈A

Qπ(s, a)−Qπ(s, ·)⊤π(s)
]

≤ 1

1− γ

∥∥∥∥dπ∗

dπ

∥∥∥∥
∞
Es∼dπ

[
max
a∈A

Qπ(s, a)−Qπ(s, ·)⊤π(s)
]

≤ 1

1− γ

∥∥∥∥dπ∗

dπ

∥∥∥∥
∞

(
min
π′∈Π

Es∼dπ

[
max
a∈A

Qπ(s, a)−Qπ(s, ·)⊤π′(s)
]

+max
π′∈Π

Es∼dπ

[
Qπ(s, ·)⊤(π′(s)− π(s))

])
≤ 1

1− γ

∥∥∥∥dπ∗

dπ

∥∥∥∥
∞

(
ϵΠ + (1− γ)max

π′∈Π
⟨∇V π, π′ − π⟩

)
,

where the last line follows from Lemma 9 and the definition of ϵΠ.
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