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Abstract
Understanding the shape of a distribution of data is of interest to people in a great variety of
fields, as it may affect the types of algorithms used for that data. We study one such problem
in the framework of distribution property testing, characterizing the number of samples
required to to distinguish whether a distribution has a certain property or is far from having
that property. In particular, given samples from a distribution, we seek to characterize the
tail of the distribution, that is, understand how many elements appear infrequently. We
develop an algorithm based on a careful bucketing scheme that distinguishes light-tailed
distributions from non-light-tailed ones with respect to a definition based on the hazard rate,
under natural smoothness and ordering assumptions. We bound the number of samples
required for this test to succeed with high probability in terms of the parameters of the
problem, showing that it is polynomial in these parameters. Further, we prove a hardness
result that implies that this problem cannot be solved without any assumptions.

1. Introduction

Testing properties of a data distribution is a fundamental problem with applications in
many scientific endeavors. The goal of distribution testing is to efficiently discern whether
observed data confirm a hypothesized model or not. Such problems have been studied
in asymptotic statistics for over a century (Pearson (1900); Neyman et al. (1933)), where
the aim is to provide tests with vanishing error as the number of samples goes to infinity
(i.e., asymptotically). In the past two decades, the field of property testing of distributions
has sought to characterize what error can be achieved with finitely many samples (i.e.,
non-asymptotic setting) (Batu et al. (2000, 2013)). The objective of the problem here is to
distinguish whether a distribution has some property (null hypothesis) or is far from having
that property (alternative hypothesis) with high constant probability using as few samples as
possible. Finite-sample guarantees have been given for testing a wide range of distribution
properties including uniformity, monotonicity, low-error representation by a k-histogram
function, support size estimation, and many others Batu et al. (2004); Diakonikolas et al.
(2019); Canonne (2016, 2020); Alon et al. (2007); Acharya and Daskalakis (2015); Chan et al.
(2014); Valiant (2011); Rubinfeld and Vasilyan; Aliakbarpour et al. (2019).

∗ Work predominantly done while author was a student at Massachusetts Institute of Technology
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Much of the work in distribution property testing makes no assumptions on the distri-
butions being tested and focuses on distributions over discrete domains. However, strong
lower bounds have been given for many of these problems, involving dependence on the size
of the support of the distribution. Thus, for continuous domains, some assumptions on the
distributions are required for the problem to be tractable (e.g., Adamaszek et al. (2010)).
We focus on this latter case.

We are interested in the shape of the “tail” of a distribution, that is, the behavior of
the distribution as it moves away from the mean. In some distributions, the frequencies of
elements far from the mean drop very quickly (“light-tailed”), while in others, the frequencies
of large elements drop more slowly (“heavy-tailed”). Harchol-Balter (1999) has shown that
the performances of policies for scheduling computing jobs vary dramatically depending on
whether the distribution of the job workloads are heavy-tailed or light-tailed. The shape
of the distribution has influenced the design and analysis of learning algorithms – e.g., the
classification algorithm of Wang et al. (2017), the generalization bound of Feldman (2020),
and the frequency estimation result of Hsu et al. (2018) (where the latter two are for specific
subclasses of heavy-tailed distributions). In this work, we seek to characterize the tail of the
distribution, specifically to decide whether it is substantially “heavy.”

“Heavy-Tailed” distributions It is non-trivial to give a single unifying definition of heavy-
tailed distributions, since the definition needs to accommodate a wide range of behaviors,
including distributions whose tails fall off at irregular rates. We discuss the plethora of
definitions found in the literature in Appendix A. Though not equivalent, these definitions
are united by the fact that the point of reference is the exponential distribution, meaning
that a distribution whose tail decays more slowly than the exponential is considered “heavy-
tailed.” 1 In this work, we adapt Klugman et al.’s definition of heavy-tailed that is based
on the property that the hazard rate of a heavy-tailed distribution is decreasing Klugman
et al. (2004); the characterization is of similar structure to other definitions, admits a clean
description, and reflects the idea that heavy tails decay more slowly than exponential tails.

Our Setting We consider distributions over continuous and unbounded domains in the
non-parametric setting, that is, not assuming that distributions belong to any specific class.
We access such distributions via independent and identically-distributed samples.

In order to make the problem tractable, two kinds of technical assumptions are essential:
smoothness and monotonicity. The first type of assumption, smoothness, is typical in learning
theory and non-parametric statistics. Smoothness limits the behavior of the characteristic
function of a distribution, protecting against adversarial behavior on small regions of a
continuous domain not seen by a finite set of samples: without such assumptions, for any
finite number of samples, one could construct two distributions that look the “same" when we
draw a finite set of samples but differ on tiny intervals of the domain that are not detected
by those samples. The second kind of assumption we require arises from the fact that
distribution having a tail implicitly relies on the distribution decaying. Namely, we assume
that the distributions we consider are monotone decreasing (or more broadly, unimodal).
These conditions are discussed in detail in Section 2.

1. Distributions with regularly varying tails represent a subset of distributions whose tails decay more slowly
than exponential.
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Our Contributions In this work, we begin by giving a parametrized definition of heavy-
tailed distributions, based on an extension of the hazard rate definition from Klugman et al.
(2004). 2 In our definition, a distribution is light-tailed if it has non-decreasing hazard rate
throughout the domain. On the other hand, a heavy-tailed distribution must show a behavior
“far” from light-tailed distributions at least in some interval of the domain:

Definition 1 (informal statement) A distribution is called (α, ρ)-Heavy-tailed if the haz-
ard rate decreases by at least rate α on a contiguous portion of the domain that contains at
least ρ of the probability mass. If the hazard rate is non-decreasing, the distribution is called
light-tailed.

For the formal definition, see Definition 3. This parametrization allows for a fine-grained
characterization of tail shape and might allow for more nuanced algorithm design. Further,
we give a hardness result that shows that we cannot solve the problem in this domain
without structural assumptions (Section F), justifying the need for a mild condition on the
contiguousness of heavy-tailed regions.

With this definition in mind, we seek to design an efficient algorithm that, given finitely
many samples from a distribution, determines whether they come from a light-tailed or
(α, ρ)-Heavy-tailed distribution. The main result of our work is a theorem stating the number
of samples (up to constant factors) that suffice to perform this task, presented here informally:

Theorem 2 (informal statement) We can distinguish between light-tailed distributions
and (α, ρ)-heavy-tailed ones with a number of samples that depends polynomially on smoothness
parameters, α, and ρ.

Finally, we run experiments on synthetic and real-world data to show the feasibility of
our algorithm in practice. We also show that our algorithm outperforms a naive one in its
ability to detect a subtly heavy-tailed distribution. Synthetic data experiments can be found
in Section 6 and the rest in Appendix G and Appendix H.

Our Approach Our algorithm is based on a simple but fundamental observation about the
rate of dropoff as it relates to the weight of a distribution’s tail: in the tail of a heavy-tailed
distribution, we would expect that the distance in the support required to accumulate a
fixed amount of weight would not change too much since it drops more slowly, whereas in a
light tailed distribution, this quantity is much more drastic. Based on this, we introduce
a proxy quantity in Section 3.2 (which we will call S) that measures how long it takes the
distribution to accumulate some amount of weight relative to how long it took previously,
acting as a proxy for calculating the derivative of the hazard rate.

The main challenge here is that we cannot compute S from the samples directly since it
is a function of the density function of the distribution. Therefore, we present a test statistic,
called Ŝ, to approximate S from samples. The algorithm makes use of a bucketing scheme
that partitions the domain of the distribution into buckets (intervals) that contain equal
probability mass. The algorithm then uses the lengths of these intervals to calculate Ŝ and
compares it to a threshold that separates light-tailed distributions from heavy-tailed ones.

2. The hazard rate of a distribution at a given point in the support is the value of the PDF divided by the
amount of mass left in the tail from that point.
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We determine the sample complexity for the algorithm in the defined setting by showing
that if we draw “enough” samples, Ŝ is an accurate estimate of S (Theorem 9) and lies on
the correct side of the threshold for any underlying distribution. In calculating Ŝ, we incur
two main sources of error: first, we approximate derivatives involved in computation of S by
the discrete derivative/difference quotient; second, our algorithm uses order statistics from
the samples to define the buckets, which introduces error in the estimation of the lengths of
the buckets. Our assumption about smoothness allows us to analyze the former, and for the
latter, we evaluate the concentration of order statistics.

It is worth noting that precise estimation of bucket endpoints from samples is challenging,
since a small amount of probability mass could lie in a very large interval. Indeed, this is
the most technically-interesting portion of the analysis and includes results on finite-sample
concentration of order statistics, which, to the best of our knowledge, are novel. We discuss
the details of the sample complexity and success probability of this result and argue the
correctness of the algorithm in Section 3, Section 4, and Section E. To our knowledge, this
is the first algorithm with finite sample guarantees to test the shape of the tail weight of a
distribution with unbounded support.

Indeed, the novelty of our finite-sample guarantee is underscored by our result showing
that without some structural assumptions, no finite sample algorithm can succeed. In
particular, in Section 5, we develop two classes of distributions, one light-tailed and one
that is heavy-tailed over a large but non-contiguous portion of the support, that cannot be
distinguished with finitely many samples. The family of heavy-tailed distributions involves
embedding hard instances into non-contiguous small parts of a light-tailed distribution,
thereby “fooling” any finite-sample algorithm into classifying distributions from this class as
light-tailed distributions.

Summary of our contributions:

• We give a novel parametrized definition for heavy-tailed distributions.
• We develop an algorithm for testing heavy-tailed distributions in the property testing setting

which uses finitely many samples. We theoretically prove the correctness of our algorithm.
• As a byproduct of our result, we develop new results on the concentration of the ordered

statistics drawn from an arbitrary distributions while using finitely many samples which
may be of independent interest.

• We show intractability of this problem without assumptions by presenting two classes
of distributions, one light-tailed and one heavy-tailed, that are indistinguishable by any
finite-sample algorithm.

• We provide experimental results which confirm the performance of our algorithm.

Related Work Testing the tail weight of a distribution has been studied in the asymptotic
theory of statistics by Bryson (1974), where the weight of the tail is characterized via a
statistic referred to as conditional mean exceedance, and a proxy for it is used to distinguish
between the families of Lomax and exponential distributions. Several works in the asymptotic
theory literature address properties of distributions with monotone hazard rate Barlow et al.
(1963) and algorithms that test whether a distribution has monotone hazard rate (a similar
condition to the one used in this work), with guaranteed asymptotic convergence Hall et al.
(2005); Gijbels and Heckman (2004). While these works operate in the asymptotic regime,
we address the finite sample setting.
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The mostly closely related work to ours comes from the theoretical computer science
community. The task of distinguishing whether a discrete distribution has monotone hazard
rate3 (MHR), which characterizes “light-tailed" distributions, or is far in L1 distance from
such a distribution, has been considered in Acharya et al. (2015); Canonne et al. (2018a).

In these methods, sample complexity is dependent on the domain size; the method of
Acharya et al. (2015) relies on a linear program to learn the weight associated with each
discrete element. Thus, these methods do not easily translate to finite sample guarantees
over continuous domains. Since the sample complexity of this algorithm scales with domain
size, it is not finite in our setting. In contrast, we give a finite sample guarantee, but the
result is incomparable due to the assumptions we make. For more details, see Appendix B.

2. Preliminaries

Notation We say that a distribution has Probability Density Function (PDF) f(x) and
Cumulative Density Function (CDF) F (x). Some families of distributions we reference
are: Lomax

Ä
f(x) = α

λ

[
1 + x

λ

]−(α+1)
ä
, exponential

(
f(x) = λe−λx

)
, and half of a Gaussian(

f(x) = 2/σ
√
2π)e−

1
2(

x
σ )

2)
, all on [0,∞). For more details regarding them, see Appendix C.

A set of n samples drawn from a distribution with PDF f is denoted x1, x2, ..., xn. The
ith order statistic, the random variable representing the ith smallest sample of this set of n
samples, is denoted X(i). If we use m buckets, then the bucket endpoints in terms of the
order statistic are X( n

m), X( 2n
m )....

Defining “Heavy-Tailed” While several definitions of “heavy-tailed” have been proposed,
we consider definitions based on the hazard rate of the distribution. The hazard rate (HR) is
defined in Su and Tang (2003) as HR(x) = f(x)

1−F (x) . The textbook of Klugman et al. (2004)
defines a distribution with hazard rate that is a decreasing function of x to be “heavy-tailed.”
We consider this definition because it succinctly captures what many other definitions address
obliquely – having a tail that decays more slowly than exponential. Thus, this definition
captures the fact that in a heavy-tailed distribution, the probability mass at a given point
relative to the tail decreases further into the distribution. This leads us to introduce the
following parameterization of how heavy-tailed a distribution is.

Definition 3 We say a distribution with PDF f(x) and CDF F (x) is (α, ρ)-Heavy-Tailed
with α > 0, 0 < ρ < 1 if the derivative of the hazard rate is negative with magnitude at least
α on some interval [x1, x2], where at least ρ of the probability mass lies in that interval. That
is, if H ′

f (x) < −α ∀x ∈ [x1, x2] s.t. F (x2)− F (x1) ≥ ρ, we call f(x) (α, ρ)-Heavy-Tailed.

We use this definition in Claim 10, showing that our algorithm will detect any (α, ρ)-
heavy-tailed distribution with a sample complexity dependent on both. The gap between
light-tailed distributions and an (α, ρ)-heavy-tailed distribution is related directly to α, so as
α → 0, the heavy-tailed distributions become harder to distinguish from light-tailed ones.
Meanwhile, the parameter ρ considers what percent of the mass lies in a heavy-tailed region.
A wide class of distributions of interest are (α, ρ)-heavy-tailed for some α, ρ. For example,

3. Acharya et al. (2015); Canonne et al. (2018a) use “monotone hazard rate” to refer to monotone increasing
hazard rate.
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the general class of distributions with CDF F (x) = 1− e−γxm , where 0 < m < 1 and PDF
f(x) = λmxm−1e−λxm is (m · (1−m), 1− e−1)-heavy-tailed.

Consequent to the definition of heavy-tailed found in Klugman et al. (2004), we have the
following definition for light-tailed. Exponential and half-Gaussian distributions are light
tailed according to this definition.

Definition 4 We say a distribution with PDF f(x), CDF F (x) is light-tailed if its hazard
rate f(x)

1−F (x) is non-decreasing, or equivalently, if the derivative of the hazard rate is non-
negative.

Defining “Well-Behaved” distributions As discussed earlier when describing our setting,
we consider continuous distributions on R+ = [0,∞) that are monotone decreasing, that
is, f(x1) ≥ f(x2) when x1 < x2, so that there is a clear notion of the “tail”4. Likewise, we
require boundedness and smoothness conditions to make the problem tractable but not trivial.
Indeed, in Appendix F, we show a hardness result implying that without any regularity
conditions, no finite sample algorithm can succeed at this problem. In the literature, it is
common to assume Lipschitz density function. However, bounding the derivative of the
density implies that functions that drop too quickly cannot be considered, significantly
limiting the kinds of functions we could test. Thus, instead, we assume that the inverse CDF
of distributions satisfy continuity and Lipschitz conditions. Lipschitzness assumptions are
also needed due to the finite sample regime: with infinitely many samples, we could rely on
continuity alone. We formalize and unify these constraints in the following definition, and in
this paper we consider distributions satisfying this property.

Definition 5 Let f be a distribution on the range R+ = [0,∞) with CDF F . We say f is
well-behaved if the following conditions hold:

• f is a non-increasing continuous function over R+, and f ′(x) exists for every x ∈ R+.
• For all x in the domain, f(x) is bounded by a constant β.
• For every x ∈ R+, F ′(x) exists, and it is equal to f(x).
• The first and second derivatives of F−1(x) are Lipschitz with parameters B1, B2, respectively,

on the domain until the very end (where it cannot be Lipschitz anyway5). We will call the
domain over which it is Lipschitz [0, 1− ζ] and explain what ζ must be in Section 4.

The method we present in this paper relies on accurately estimating quantiles, and this is
where the particular smoothness assumptions above are used in our work. It is not clear
whether this assumption or reliance on quantiles is necessary in general, and this is interesting
to investigate in future work.

Problem Statement We assume we have have sample access to the distribution: that
is, when we query the distribution, we are returned one iid sample from the distribution.
Consider class L, the class of light-tailed distributions and class Hα,ρ, the class of (α, ρ)-
heavy-tailed distributions. Our goal is to develop an algorithm to determine whether a

4. Note that the tester can also handle a unimodal distribution by determining where the decreasing region
is. The increasing region could be handled by reflecting it across the mode.

5. For a distribution over an unbounded domain, the CDF asymptotically approaches 1 as the domain value
reaches ∞. Thus, its inverse must change in an unbounded way as x→ 1 .
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distribution comes from L or Hα,ρ with probability 0.9 using finitely many samples, with
sample complexity dependent on ϵ, α, ρ and parameters of the distribution.

3. A Proxy for the Behavior of the Tail

In this section, we motivate and define the Equal Weight Bucketing Scheme, upon which we
build our test statistic and algorithm. We first determine the endpoints of the buckets and
derive their lengths and rates of change of lengths based on the PDF and CDF. Then, we
provide a proxy quantity based on this bucketing scheme that is equivalent to testing the
hazard rate condition for heavy-tailedness. Finally, we explain how we can calculate this test
statistic from samples by describing the bucketing scheme in terms of order statistics.

3.1. Defining a Bucketing Scheme

Dividing the support of a distribution into buckets is a well-known approach in distribution
testing and is used widely in the literature Birge (1987); Batu et al. (2004); Canonne et al.
(2018b); Batu et al. (2000). In essence, by considering the distribution on these buckets, we
often can see trends that are less susceptible to sampling noise. In order to capture the drop
rate of the distribution, we propose an equal-weight bucketing scheme.

We derive the expressions for the continuous notion of the Equal Weight Bucketing
Scheme. The “weight” refers to probability mass. The left endpoint of a bucket starting at y
with weight dy is given by I(y) and the length of that bucket (rate of change of endpoints) is
given by by L(·). This continuous notion allows us to derive a proxy quantity that reflects
the hazard rate condition. The endpoints of the buckets are determined by the inverse of the
CDF, giving us that in general, I(y) := F−1 (y) The derivative dI/dy gives us the length of
the intervals. By the chain rule, the lengths and derivatives of lengths of the intervals are:

L(y) :=
d

dy
F−1(y) =

1

F ′(F−1(y))
=

1

f(F−1(y))
and

d

dy
L(y) :=

−f ′(F−1(y))

f(F−1(y))3
(1)

3.2. Derivation of Proxy Quantity

Next, we present the proxy quantity that verifies the hazard rate condition for light-tailedness
and (α, ρ)-heavy-tailed. This quantity is based on partitioning the support into intervals on
which the density incurs equal weight. The full proof can be found in Appendix D.1.

Theorem 6 For L(x) (defined in Equation 1) for a well-behaved function f , define S(z) :=
L(z)
d
dz

L(z) :

• If for all z ∈ [0, 1]: S(z) > 1 − z, then the underlying distribution is light-tailed by
Definition 4.

• Otherwise, if S(z) < 1 − z − α(1−z)2

β3B1
for z ∈ [z0, z0 + ρ], for any z0 , then it is

(α, ρ)-heavy-tailed.

Definition 7 We refer to the distance in the proxy quantity between the lightest (α, ρ)-
heavy-tailed distribution and the heaviest light-tailed distribution (exponential), a lower bound
on which is α(1−z)2

β3B1
, as the gap.
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This is the gap in the proxy quantity metric between the two classes of distributions we hope
to distinguish between. Since our eventual algorithm will rely on samples, the gap gives us
some slack with which to handle error.

3.3. Test Statistic in Terms of Buckets

Here, we explain how we convert the proxy quantity into something we can calculate from
knowing bucket endpoints. We approximate the derivative by the difference quotient. For well-
behaved distributions, this approximation does not incur too much error due to Lipschitz-ness
on the domain of interest. Detailed proofs can be found in Appendix D.

When the derivative of a function g is B−Lipschitz, and the derivative g′(y) is monotone,
then approximating g′(y) by the difference quotient g(y+∆y)−g(y)

∆y incurs no more than B∆y
additive error. This yields the following lemma, used to relax derivatives in S to discrete
derivatives.

Lemma 8 When the derivative of a function g is B1-Lipschitz, the second derivative is
B2-Lipschitz, the derivative g′(y) and the second derivative g′′(y) are both monotone, then
approximating g′′(y) by:

1. estimating g̃′(y) = g(y+∆y1)−g(y)
∆y1

, and g̃′(y +∆y′) = g(y+∆y2+∆y1)−g(y+∆y2)
∆y1

,

2. and estimating g̃′′(y) = g̃′(y+∆y2)−g̃′(y)
∆y2

.

incurs no more than 2B1
∆y1
∆y2

+B2∆y2 additive error.

According to Fact 3.3, we can get bounded approximation error while approximating
the derivative with steps of size 1/k, which we can make small by setting k appropriately.
However, in order for the second derivative approximation discussed in Lemma 8 to also be
small, we need to consider buckets at two different levels of granularity, so we set ∆y1 = 1

k2

and ∆y2 = 1
k . This gives us additive error of B1

k in the numerator and additive error
of 2B1+B2

k in the denominator, which we can make small by setting k appropriately (see
Corollary 16). Thus, we can approximate the proxy quantity by a discrete equivalent without
incurring too much error (quantified in Lemma 11). Accordingly, we define:

S̃ :=
L̃1

(L̃2 − L̃1)/∆y2
, where L̃1 :=

I(y +∆y1)− I(y)
∆y1

and L̃2 :=
I(y +∆y1 +∆y2)− I(y +∆y2)

∆y1
.

(2)

3.4. Test Statistic in Terms of Order Statistic

In this section, we extend the formulation of the statistic in Equation 2 to show how we
calculate it from samples. We set y = i/k. Approximating the derivative as the difference
divided by the length, we get that the aforementioned tester can be written as follows in
terms of the order statistic:

Ŝ[i] =

Å
XÄ ik+1

k2
·(n+1)

ä −X( i
k
·(n+1))

ã
(
k

Å
XÄ (i+1)k+1

k2
·(n+1)

ä −X( i+1
k

·(n+1)) −XÄ ik+1

k2
·(n+1)

ä +X( i
k
·(n+1))

ã) .
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In order to calculate the endpoints of the equal weight buckets, we draw four sets of
samples, sort them, and then determine the bucket endpoints by considering the samples at
indices i

k2
· n; i ∈ {0, 1, ...k2}. In any given calculation of the statistic, we need four of these

order statistics; using different splits for each results in independence.
The test statistic is sensitive to the endpoints due to reliance on the length of buckets;

since a small amount of mass could lie in an interval with very long length, this concentration
of the endpoints is challenging to show (addressed in Appendix E).

4. Main Result

In this section, we present our main result (Theorem 9), the algorithm that gives us that
upper bound, and discuss an overview of the proof.

Theorem 9 There exists an algorithm that distinguishes between (α, ρ)-heavy-tailed distribu-
tions and light-tailed distributions requiring Θ

Ä
max

¶
β3B1

αρ2
, k
©
· k2 log k

√√
B1 + 1

ä
samples

with success probability 9/10, where k = max
{
Θ
(
β4B1(2B1+B2)

αρ2

)
, 4ρ

}
.6 Such an algorithm is

given in Algorithm 1.

Algorithm 1 (α, ρ)-Heavy-Tailed Test
1 Draw four sets of n samples R(1),R(2),R(3),R(4) ←

from the distribution
2 Sort the samples R(1),R(2),R(3),R(4)

3 Split each R(l) into k2 equal weight buckets.
4 ∀ i, j < k, determine the interval endpoint I(l)[i, j]

corresponding to the (i · k + j)th bucket in R(l) (which
is order statistic X(i·k+j)).

5 Calculate L1[i] = I(1)[i, 1] − I(2)[i, 0] and L2[i] =

I(3)[i, 1]− I(4)[i, 0].
6 Calculate L′[i] = L1[i+1]−L2[i]

(1/k)
.

7 Calculate the statistic Ŝ[i] = L1[i]
L′[i] for 1 < i < k.

8 if Ŝ[i] < 1− i
k
− 1

2
gap(α) for any i ∈ {2, 3, . . . , k − 1}

then
9 PASS.

else
10 FAIL.

end

Algorithm At a high level, the algorithm
draws samples, uses them to estimate the
statistic, Ŝ, for each bucket, and compares
the statistics with the threshold defined in
Theorem 6 to determine tail weight. More
specifically, the algorithm first computes the
order statistics as described in Section 3.4.
Subsequently, the algorithm calculates the
lengths L and the change in lengths L′ of
the buckets, and computes a test statistic
S[i] for i ∈ {2, · · · , k − 1}. The statistic is
calculated for every kth bucket within the
k2 buckets. We do not consider the first
and last buckets, since the function is not
Lipschitz there and so the approximations
to the derivative will not be close to the true
derivative. The parameter ζ as described in

Definition 5, thus, must be ≤ 1/2k, which allows us to safely use all but the last k − 1
buckets of length k2. If each test statistic lies above the threshold, the underlying distribution
is declared light-tailed. On the other hand, if any of them lies below the threshold, the
distribution is declared heavy-tailed.

Claim 10 If f(x) is (α, ρ)-Heavy-Tailed, then Alg. 1 will pass it with high probability.
Moreover, if the underlying distribution is light-tailed then Alg. 1 will fail it with high
probability.

6. This can be increased to probability 1− δ by repeating the algorithm log 1/δ times using the standard
amplification technique.
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Proof Overview The proof breaks down into stages that correspond to the different
approximations we make to get from the proxy quantity to the final test statistic. We will use
S to denote the proxy quantity, S̃ to denote the statistic approximated by discrete derivatives,
and Ŝ is used to denote the empirical statistic that calculated using order statistics of the
samples (Figure 2).

Our analysis proceeds through four stages: (1) correctness of proxy S; (2) S̃ close to S;
(3) Ŝ close to S̃; (4) setting k, n to satisfy theorem.

Here, we provide the lemmas that quantify the error incurred from S to S̃ and S̃ to Ŝ.
Further details and analysis of how to satisfy the conditions of these lemmas, are discussed
in Section E.

Part 1/4: SSS is an accurate proxy.

The proxy quantity derived in Theorem 6 considered with respect to the threshold (halfway
across the gap) gives a test which accurately determines whether a set of samples came from
a light-tailed distribution or a distribution that is (α, ρ)-heavy-tailed. An (α, ρ)-heavy-tailed
distribution has hazard rate decreasing at least by α over a region of the PDF with probability
mass ρ, which gives us an expression for how far the statistic must be from the original
threshold 1− i/k in order for the hazard rate to be decreasing by at least α. Further, if the
region of mass ρ lies in at least two buckets, then the proxy quantity will detect it. Thus, if
a distribution is light-tailed, then all k − 3 of the calculated proxy quantities calculated will
lie above 1− i/k; if even one of the proxies lies below 1− i/k − gap, then the distribution is
(α, ρ)-heavy-tailed. See Section 3 and Appendix D.1 for detailed discussion.

Part 2/4: S̃̃S̃S is close to SSS.

In the next step, we show that approximating the derivatives in the proxy quantity by the
respective difference quotients causes the test statistic to incur bounded error. Recall that
the proxy we are using is S = N/D =

Ä
d
dyF

−1(y)
ä
/
Ä

d2

dy2
F−1(y)

ä
, which is approximated

by S̃ = Ñ/D̃ = L̃1/((L̃2 − L̃1)/∆y2) as in Eq. 2.
If the error incurred in Ñ , D̃ by approximating the derivatives as above has value ϵ′ (we

show this condition is met in Section E due to the Lipschitzness conditions), then either we
can estimate the value of the proxy quantity within a bounded additive error (and the proxy
quantity is small) or the value of the proxy quantity is greater than 1 (and we know we are
in the light-tailed case).

Lemma 11 (Additive Bound for S̃) Given a parameter ϵ < 1, if |Ñ −N | and |D̃−D|
are at most ϵ′ := ϵ/(6β), then either |S̃ − S| < ϵ or both S, S̃ are at least one.

PART 3/4: Ŝ̂ŜS (calculated from order statistics) is close to S̃̃S̃S.

We must next show that we can approximate S̃ as defined in the previous section by Ŝ ,
computed from the order statistics of a set of samples. First, if we estimate L̃1 and L̃2

accurately up to a multiplicative (1 ± ϵ′) factor, and obtain L̂1 and L̂2, then S̃ can be
approximated by Ŝ := L̂1

k·(L̂2−L̂1)
.
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Lemma 12 (Multiplicative Bound for Ŝ) Suppose we have L̂1 and L̂2, the estimates
of L̃1 and L̃2 with a multiplicative factor of ϵ′ = min

(
Θ(ϵ/((1 + ϵ) · k)) ,Θ

(
1/k2

))
. Then,

one of the following cases holds:
1. Ŝ > 1−2/k and S̃ > 1, implying they come from a light-tailed region of the distribution.
2. (1− ϵ) · S̃ ≤ Ŝ ≤ (1 + ϵ) · S̃.

To show that we can get the multiplicative estimates L̂1, L̂2, we need to show that the
order statistics concentrate well so that the estimates for the end points are not too far off
from their theoretical values. For this, we construct a map between samples from the uniform
distribution on [0, 1] and an arbitrary distribution with CDF F , showing that concentration
of the order statistics of a set of samples from the former implies concentration of order
statistics of a set of samples from the latter. This concentration can be expressed in terms of
additive error (Lemma 17), and this can be translated to multiplicative error (Lemma 18).
We discuss this in more detail in Section E.

Part 4/4: Errors can be set to satisfy theorem.

Finally, we must limit the errors we incur in Parts 2 and 3 to determine how many buckets and
samples we require. For this, we note that after incurring both the derivative approximation
error and the sampling error, the test statistic Ŝ must still be on the same side of the
threshold (partway across the gap), as S. We ensure that we split the distribution into
sufficiently many buckets that no more than a quarter of the gap is crossed due to derivative
approximation error. Further, we draw enough samples that no more a tenth of the gap is
crossed due to sampling error. Thus, even when both errors are incurred, the test statistic
remains on the correct side of the threshold.

5. Hardness Result

In this section, we show that in the absence of assumptions, this problem cannot be solved
with finitely many samples. In particular, for any number of samples m, we present two
classes of distributions, one light-tailed and the other heavy-tailed, that are indistinguishable
using m samples. To start, we consider a slightly different definition for heavy-tailed-ness.
We then show that it is hard to distinguish these distributions from light-tailed ones.

Definition 13 We say a distribution p is (α, ρ)-scattered-heavy-tailed if the hazard rate is
decreasing by rate ≥ α over measurable intervals of the domain with probability mass ≥ ρ.

High level idea: We construct two classes of distributions that are hard to distinguish with
few samples: CL (light-tailed), and CH (heavy-tailed). The class of light-tailed distributions
contains only one member that is an exponential distribution with fexp(x) = e−x. We
construct the class of heavy-tailed distributions via a randomized process as follows: We
start off by the same distribution fexp(x) = e−x. We split the domain of fexp into s chunks
such that the probability mass in every chunk is equal to 1/s. Then, we select roughly
ρ′ = Θ(ρ) fraction of these chunks randomly and embed a heavy-tailed distribution, namely
fH , in (some of) those selected chunks. The construction has two key properties: First, the
probability mass of a chunk remains the same even when the alteration happens. Second, if
we draw one sample from a chunk, we cannot tell whether it is altered or not.

11
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When we alter a chunk, we randomly replace fexp by a heavy-tailed piece fH or another
partial PDF fH . We simply define fH such that the mixture of fH and fH each with
probability a half gives us exactly fexp. Thus, if we receive one sample from a chunk that
comes from a random CH , it is impossible to tell whether the chunk is altered or not. It
is worth noting that this process generates a class of distributions, CH , that depends on a
parameter s. We may also CH(s) to denote it. To complete our proof, we show that for any
algorithm that uses m samples, there is a sufficiently large s such that it is very unlikely
to have more than one sample per chunk. Thus, CL and CH(s) are indistinguishable when
we use m samples. This fact implies that no algorithm that uses finitely many samples
can distinguish a light tailed distribution from a distribution that is heavy on measurable
subset of the domain with mass ρ unless we make further assumptions including that the
heavy-tailed part might need to be contiguous. We state the result formally in the theorem
below, and the proof is in Appendix F.

Theorem 14 For any integer m, there is no algorithm that receives m samples from p ,
a monotone and continuous distribution, and can distinguish whether p is light-tailed or
(α, ρ)−scattered-heavy-tailed for α < 0.0043 and ρ < 0.5 with probability more than 0.5+o(1).

6. Experiments

We present experiments that validate our theoretical results. Through experiments on syn-
thetic data, we demonstrate that our statistic distinguishes between Gaussian (light-tailed)
and Lomax (heavy-tailed) distributions. The algorithm we run has weaker theoretical guaran-
tees, as we do not consider both granularities of bucketing during derivative approximation.

Data and Methods Points are sampled from (half) Gaussian and Lomax distributions
using built-in functions in numpy.random. We sample n = Θ(k4) ≈ 51 million and n =
Θ(k5) ≈ 300 million points for k = 32.

Results We find that the test statistic distinguishes between Gaussian and Lomax over
the required range of bucket indices. In Figure 1, the dashed red lines refer to the calculated
value of the test statistic for a Gaussian distribution and blue lines for the Lomax. One
standard deviation away from the mean is shaded in the appropriate color. From Figure 1,
we note: (1) the value of the test statistic calculated from samples is very close to the proxy
quantity (S); (2) in part (a) (approx. 51 million samples), we can distinguish Gaussian (red)
and Lomax (blue) well over a large range of buckets, but we see greater variability between
runs (spread of the dashed lines) than in part (b) (300 million samples, same number of
buckets), where the calculated statistic concentrates better. In Appendix H, we explore what
happens when we use substantially fewer samples, observing that we require some minimum
number of samples per bucket but start to see separation between the same two distributions
with a relatively small number of buckets. Thus, in situations where it is not essential that
we get provable guarantees, the same algorithm could work with fewer samples.
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Appendix A. Alternate Definitions of Heavy-Tailedness

It is non-trivial to give a single unifying definition of heavy-tailed distributions, since the definition
needs to accommodate a wide range of behaviors, including distributions whose tails fall off at
irregular rates. Further, no notion of having a “heavy” tail is absolute – there must be a point
of reference. Throughout the literature, a plethora of non-equivalent conditions on the tail of a
distribution are used to define what it means for the distribution to be considered “heavy-tailed.”
Some examples include increasing conditional mean exceedance Bryson (1974), decreasing hazard
rate Klugman et al. (2004), the lack of finite exponential moments, having tails that decay more
slowly than exponential Mikosch (1999); Chistyakov (1964), infinite variance Harchol-Balter (1999),
regularly varying tails Mikosch (1999), and definitions that build on these conditions Su and Tang
(2003). One uniting factor of these definitions is that the point of reference is the exponential
distribution, meaning that a distribution whose tail decays more slowly than the exponential is
considered “heavy-tailed.” 7 In this work, we focus on Klugman et al.’s definition of heavy-tailed that
is based on the property that the hazard rate of a heavy-tailed distribution is decreasing Klugman
et al. (2004); the characterization is of similar structure to the definitions that Bryson (1974); Su
and Tang (2003) use, admits a clean description, and reflects the idea that heavy tails decay more
slowly than exponential tails, thereby adequately classifying known families of distributions into
heavy-tailed versus light-tailed – e.g., Lomax (heavy), exponential (light), and Gaussian (light).

In this section, we provide alternate definitions for the notion of “heavy-tailed.” We use the usual
notation that a distribution has Probability Density Function (PDF) f(x) and Cumulative Density
Function (CDF) F (x).

A.1. Increasing Conditional Mean Exceedance

The conditional mean exceedance (CME) is defined in Bryson (1974) to be:

CME(x) = E [(X − x)|X ≥ x] =

∫∞
x

(s− x)f(s)ds

1− F (x)
(3)

According to Bryson (1974), a distribution is considered heavy-tailed if the CME is increasing for all
x. The CME essentially captures the shape of tail by considering how the expectation of the tail of
the distribution evolves throughout the tail. Thus, if it is increasing, the further into the distribution
we go, the more that remains.

This definition considers an exponential distribution the canonical “medium-tailed” distribution
and the Lomax distribution the canonical “heavy-tailed” distribution. In practical settings, this
metric is valuable, as it represents “decreasing failure rate” Harchol-Balter (1999): the longer a job
has been alive (as x increases), the longer it is expected to stay alive (E(X − x|X ≥ x) increasing).
This definition can also be framed as the reciprocal of the hazard rate of the equilibrium distribution
function of a distribution Su and Tang (2003).

A.2. Infinite Variance

Harchol-Balter says that heavy-tailed distributions are ones that have infinite variance Harchol-Balter
(1999). From samples, the variance can never really be infinite; in those cases, very large variance
signify heavy-tailedness. This definition is difficult to quantify.

This definition considers a subset of Lomax and Pareto distributions “heavy-tailed.”

7. Distributions with regularly varying tails represent a subset of distributions whose tails decay more slowly
than exponential.

17



Testing Tail Weight of a Distribution Via Hazard Rate

A.3. Regular Variation

The tail of a distribution captures how the PDF behaves as x→∞. We introduce Mikosch (1999)’s
notion of regular variation as a way to capture this behavior.

Definition 15 A positive measurable function f is called regularly varying (at infinity) with index
α ∈ R if

• It is defined on some neighborhood [x0,∞) of infinity.

• lim
x→∞

f(tx)
f(x) = tα for all t > 0 .

If α = 0, then f is said to be slowly varying (at infinity)

One class of heavy-tailed distributions is that which have regularly varying tails. This includes
distributions of the type xα, etc. Note that these are related to generalized Pareto distributions. Thus,
this class of distributions is narrower in scope than the set of heavy-tailed distributions considered
by other definitions.

A.4. Moment Generating Function Infinite

According to Su and Tang (2003), a distribution is considered heavy-tailed if it has the moment
generating function (MGF) is not bounded, i.e., the distribution has no finite exponential moments..
That is, if

∞∫
0

etxf(x)dx =∞ ∀t > 0 , (4)

then we consider a distribution heavy-tailed. This definition captures the idea that the tail of a
distribution must be heavier than exponential in order for it to be considered “heavy-tailed.”

A.5. Relating Definitions

The characterization using the moment generating function in the previous section considers any
distribution of the form e−g(x) where g(x) is asymptotically smaller than linear “heavy-tailed.”
Indeed, this is true of the CME and HR characterizations, as well, and Mikosch (1999) notes that
distributions that decay more slowly than the exponential are heavy-tailed. For the general class of
distributions with CDF F (x) = 1− e−g(x) and PDF f(x) = g′(x)e−g(x) = e−(g(x)−ln(g′(x))), the CME
characterization, the HR characterization, and the moment-generating function characterization all
consider the same families of distributions heavy-tailed and light-tailed. In light of this, we choose to
consider the hazard rate definition, as it is the simplest expression of this notion.

Appendix B. Related Work Discussion

In the works by Acharya et al. (2015) and Canonne et al. (2018b), algorithms are given to perform
the task of testing monotone hazard rate with sample complexity that has dependence on the domain
size that is nearly square root.

In them, the domain size is finite and no assumptions on the monotonicity, continuity, or
Lipschitzness of the distributions are made. The paradigm for testing MHR in Acharya et al. (2015);
Canonne et al. (2018a) can be broken into the three steps: first, approximately learning the underlying
distribution from samples (assuming that it is MHR), second, testing whether the learned distribution
is in fact close to the original distribution, and third, testing whether the learned distribution is in
the class or far from the class. The sample complexity (O(n/ϵ2 + log(n/ϵ)/ϵ4)) is dominated by the
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cost of the second step, while the third step requires no new samples and is solely computational, via
a solution to a linear programming problem. As the variables for the linear program represent the
probability mass function, this step cannot easily translate to distributions over continuous domains.
Since the sample complexity of this algorithm scales with domain size, it is not finite in our setting.
In contrast, we give a finite sample guarantee, but the result is incomparable due to the assumptions
we make.

Appendix C. PDF, CDF of Some Common Continuous Distributions

In this section, we define the various distributions that are referenced throughout the paper as are
relevant in our setting.

Exponential The cutoff between heavy-tailed and light-tailed distributions according to both the
CME and HR definitions is the exponential distribution. The continuous exponential distribution
requires parameter λ > 0 has probability density function (PDF) f(x) = λe−λx;x ∈ [0,∞), cumulative
density function (CDF) F (x) = 1− e−λx, and quantile function F−1(x) = −1

λ ln 1− x.

Lomax The Lomax distribution requires parameters α > 0, λ > 0 and has PDFf(x) = α
λ

[
1 + x

λ

]−(α+1),
CDF F (x) = 1−

[
1 + x

λ

]−α, and quantile function F−1
X,L(x) = λ

Ä
1

(1−x)1/α
− 1
ä
. We consider this the

canonical “heavy-tailed” distribution.

Half-Gaussian The half-Gaussian distribution requires parameter σ and has PDF:

f(x) =
2

σ
√
2π

e−
1
2 (

x
σ )

2

;x ∈ [0,∞) (5)

and CDF:
F (x) = erf

Å
x

σ
√
2

ã
(6)

The quantile function is:
F−1(x) = σ

√
2 erf−1(x) (7)

We consider this the canonical “light-tailed” distribution.

Appendix D. Test Statistic Analysis

D.1. Proof of Theorem 6

Theorem 6 For L(x) (defined in Equation 1) for a well-behaved function f , define S(z) := L(z)
d
dzL(z)

:

• If for all z ∈ [0, 1]: S(z) > 1− z, then the underlying distribution is light-tailed by Definition 4.
• Otherwise, if S(z) < 1−z− α(1−z)2

β3B1
for z ∈ [z0, z0+ρ], for any z0 , then it is (α, ρ)-heavy-tailed.

Proof Let f(y) be the PDF of a distribution and F (y) the CDF. From Equation 1, when considering
the ratio of the length of the buckets to the rate of change of the derivatives, we have that:

L(y)
d
dyL(y)

=
L(y)

−f ′(F−1(y))f(F−1(y))−2L(y)
=
−f(F−1(y))2

f ′(F−1(y))

∣∣∣∣
y=z

=
−f(F−1(z))2

f ′(F−1(z))
(8)
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First, in order for the distribution to be light-tailed, d
dyHR(f(y)) > 0, which implies:

d

dy

f(y)

1− F (y)
=

(1− F (y))f ′(y)− f(y)(−f(y))
(1− F (y))2

> 0 (9)

⇒ (1− F (y))f ′(y)− f(y)(−f(y)) > 0 (10)

⇒ −f(y)
2

f ′(y)
> 1− F (y)

∣∣∣∣
y=F−1(z)

(11)

⇒ −f(F
−1(z))2

f ′(F−1(z))
= S(z) > 1− F

(
F−1 (z)

)
= 1− z (12)

Equation 11 is a result of our assumption that f(y) is monotone decreasing, and so its derivative must
be negative. This derivation gives us a condition on the tail of the distribution which, if satisfied,
implies that the distribution is light-tailed.

Now, we consider the case where the hazard rate decreases by at least α. In this case:

d

dy

f(y)

1− F (y)
=

(1− F (y))f ′(y)− f(y)(−f(y))
(1− F (y))2

< −α (13)

⇒ (1− F (y))f ′(y)− f(y)(−f(y)) < −α(1− F (y))2 (14)

⇒ −f(y)
2

f ′(y)
< 1− F (y) +

α(1− F (y))2

f ′(y)

∣∣∣∣
y=F−1(z)

(15)

⇒ −f(F
−1(z))2

f ′(F−1(z))
= S(z) < 1− z +

α(1− z))2

f ′(F−1(z))
= 1− z +

α(1− z)2

f ′(F−1(z))
< 1− z − α(1− z)2

β3B1

(16)

Thus, if the proxy quantity is greater than 1 − z, then the distribution is light-tailed; otherwise,
if the proxy quantity lies below 1 − z − α(1−z)2

β3B1
over a domain of size ρ, then the distribution is

(α, ρ)-heavy-tailed.
By imposing the condition from Definition 3 on the hazard rate, we were able to recover an

expression where one term denotes the usual threshold and there is an additive term, dependent on
α, that specifies what the gap is between the threshold and the lightest heavy-tailed distribution for
which we can test. In particular:

S(z) ≤ −α(1− z)2

−f ′(F−1(z))
+ (1− z)⇒ gap(α, z) =

−α(1− z)2

−f ′(F−1(z))
≤ −α(1− z)2

β3B2
, z ∈

ß
i

k
,
i+ 2

k

™
In our analysis, when we refer to the gap, this is what we are referencing.

D.2. Proof of Fact 3.3

When the derivative of a function g is B − Lipschitz, and the derivative g′(y) is monotone, then
approximating g′(y) by the difference quotient g(y+∆y)−g(y)

∆y incurs no more than B∆y additive error.
Proof By the intermediate value theorem, there exists some point y′ ∈ [y, y +∆y], s.t.,

g′(y′) =
g(y +∆y)− g(y)

∆y

|g′(y′)− g′(y)| ≤ |g′(y +∆y)− g′(y)| ≤ B ·∆y
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D.3. Proof of Lemma 8

Lemma 8 When the derivative of a function g is B1-Lipschitz, the second derivative is B2-Lipschitz,
the derivative g′(y) and the second derivative g′′(y) are both monotone, then approximating g′′(y) by:

1. estimating g̃′(y) = g(y+∆y1)−g(y)
∆y1

, and g̃′(y +∆y′) = g(y+∆y2+∆y1)−g(y+∆y2)
∆y1

,

2. and estimating g̃′′(y) = g̃′(y+∆y2)−g̃′(y)
∆y2

.

incurs no more than 2B1
∆y1

∆y2
+B2∆y2 additive error.

Proof We apply Fact 3.3 once to obtain (B1∆y1)-additive approximations g̃′(y) and g̃′(y +∆y).
These approximations are then used to compute:

g̃′′(y) =
g̃′(y +∆y2)− g̃′(y)

∆y2

which is a 2B1
∆y1

∆y2
-additive approximation to the true [g′(y +∆y2)− g′(y)]/∆y2. Now, we can apply

Fact 3.3 once again to obtain the final estimate, which will have 2B1
∆y1

∆y2
+B2∆y2 additive error.

Appendix E. Proof of Main Theorem

Theorem 9 There exists an algorithm that distinguishes between (α, ρ)-heavy-tailed distributions
and light-tailed distributions requiring Θ

Ä
max

¶
β3B1

αρ2 , k
©
· k2 log k

√√
B1 + 1

ä
samples with success

probability 9/10, where k = max
{
Θ
(

β4B1(2B1+B2)
αρ2

)
, 4
ρ

}
.8 Such an algorithm is given in Algorithm 1.

Proof
As we introduced earlier, we have the quantity S that serves as a proxy for the tail weight of

a distribution. For a light-tailed distribution, the proxy quantity calculated at each bucket will
lie above the threshold, whereas for an (α, ρ)-heavy-tailed distribution, the proxy quantity will
lie below the threshold for at least one of the buckets, where the threshold is dependent on α,
how quickly the hazard rate is decreasing. However, we cannot calculate S directly without full
knowledge of the distribution, so we consider a relaxation S̃, in which derivatives are approximated
by difference quotients. Finally, we draw samples from the distribution to approximate S̃, and we
call this approximation from samples Ŝ (Figure 2). We show that Ŝ requires the stated number of
samples to distinguish between (α, ρ)-heavy-tailed and light-tailed distributions. In order to prove
the theorem, then, there are four steps:

1. Show that SSS is a correct proxy for the tail weight. The proxy quantity stated as a
condition on the tail of a distribution is equivalent to the condition on the tail of a distribution
arising from the hazard rate definition (Theorem 6). The gap implemented captures that the
hazard rate must decrease by at least α in order for a distribution to be (α, ρ) heavy-tailed.
See Section 3 and Appendix D.1 for detailed discussion.

2. Show that S̃̃S̃S is close to SSS when there are “enough” buckets. If we can estimate the
numerator and the denominator of the proxy quantity accurately to an additive error, then we
can estimate the proxy quantity correctly to an additive error if the proxy quantity is small; if
it is big, then we know we are in the light-tailed region (Lemma 11). Indeed, we can accurately
estimate the numerator and denominator accurately to an additive error while approximating
derivatives with difference quotients due to the Lipschitzness (Fact 3.3, Corollary 8).

8. This can be increased to probability 1− δ by repeating the algorithm log 1/δ times using the standard
amplification technique.
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S

approximate derivative
by difference quotient

Lemma 11
S̃

calculate difference
quotient from order

statistics
error: ϵ2

Ŝ
error: ϵ1

Fact 3.3 Corollary 16

Lemma 12

Lemma 17 Lemma 18

Figure 2: The proxy quantity S is a probe for the tail weight of the distribution based on the
hazard rate. By approximating the derivatives in the proxy by difference quotients,
we derive Ŝ while incurring error ϵ1. An analysis of how this error is incurred and
what its value is given in the statements noted.

3. Show that Ŝ̂ŜS calculated from order statistics is close to S̃̃S̃S when there are enough
samples. If we get a good multiplicative approximation of the lengths of the two buckets we
are interested in, then we have a good multiplicative approximation to the statistic (Lemma 12).
We have multiplicative approximations for the lengths of the buckets because we can show
that the order statistics used to estimate the endpoints concentrate well (Lemma 17), which
gives us an additive estimate for the error, and then we translate this to a multiplicative error
(Lemma 18).

4. Determine how to limit the errors incurred in each step by explicitly calculating
the number of buckets and number of samples. In order to do this, we note that after
incurring both the derivative approximation error and the sampling error, the test statistic Ŝ
must still be on the “correct” side, that is, the same side of the threshold as S. The threshold
is halfway between the lower bound for light-tailed distributions and the upper bound for
(α, ρ)-heavy-tailed distributions. We ensure that we split the distribution into sufficiently many
buckets that no more than a quarter of the gap is crossed due to approximation error. Further,
we draw enough samples that no more a quarter of the gap is crossed due to sampling error.
Thus, even when both errors are incurred, the test statistic remains on the correct side of the
threshold.

Part 1/4: SSS is an accurate proxy.

The proxy quantity derived in Theorem 6 considered with respect to the threshold gives a test
which accurately determines whether a set of samples came from a light-tailed distribution or a
distribution that is (α, ρ)-heavy-tailed. An (α, ρ)-heavy-tailed distribution has hazard rate decreasing
at least by α over a region of the PDF with probability mass ρ, which gives us an expression for
how far the statistic must be from the original threshold 1− i/k in order for the hazard rate to be
decreasing by at least α. Further, if the region of mass ρ lies in at least two buckets, then the proxy
quantity will detect it. Thus, if a distribution is light-tailed, then all k − 3 of the calculated proxy
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quantities calculated will lie above 1− i/k; if even one of the proxies lies below 1− i/k − gap, then
the distribution is (α, ρ)-heavy-tailed.

More formal details for this can be found in Section 3 and Appendix D.1.

Part 2/4: S̃̃S̃S is close to SSS.

In the next step, we show that approximating the derivatives in the proxy quantity by the respective
difference quotients causes the test statistic to incur bounded error. In particular, we show how
the error in the statistic is related to the number of buckets (which is directly related to how well
we approximate derivatives; in the limit as k →∞, we recover the exact derivative). To this end,
we first show that if we can estimate the numerator and the denominator of the proxy quantity to
known additive errors, we can estimate the proxy quantity within an additive error, and we give the
relationship between the two errors (Lemma 11). Then, to show that we can estimate the numerator
and denominator of S̃ well, we show that the difference quotient approximation to the derivative
incurs bounded error under stated Lipschitzness conditions (Fact 3.3, Corollary 8).

Recall that the proxy we are using is

S = N/D =

Å
d

dx
F−1(x)

ã
/

Å
d2

dx2
F−1(x)

ã
,

which is being approximated by

S̃ = Ñ/D̃; Ñ :=
F−1

(
x+ 1

k2

)
− F−1 (x)

1/k2
(17)

D̃ :=

(
F−1

(
x+ 1

k + 1
k2

)
− F−1

(
x+ 1

k2

))
−
(
F−1

(
x+ 1

k2

)
− F−1 (x)

)
1/k3

. (18)

We show that if the error incurred in Ñ , D̃ in approximating the derivatives by difference quotients
has value ϵ′, then we can estimate the value of the proxy quantity within an additive error of ϵ := 6βϵ′,
or the value of the proxy quantity is greater than 1.

Lemma 11 (Additive Bound for S̃) Given a parameter ϵ < 1, if |Ñ −N | and |D̃ −D| are
at most ϵ′ := ϵ/(6β), then either |S̃ − S| < ϵ or both S, S̃ are at least one.

Proof We start by noting that since N = 1
f(F−1(x)) and the PDF is bounded by β, N > 1/β =

6ϵ′/ϵ > 6ϵ′. The last inequality is due to the assumption that ϵ < 1.
First, assume that S ≥ S̃. We consider the lowest possible value of S̃ = Ñ/D̃ and take the

difference from the true value of S.

S − S̃ ≤ N

D
− N − ϵ′

D + ϵ′
=

ϵ′N + ϵ′D

D2 + ϵ′D
≤ ϵ′(N +D)

D2
=

ϵ′S(S + 1)

N
. (19)

We analyze the difference in two different cases:

• Case 1: S ≤ 2S ≤ 2S ≤ 2 . In this case, the above difference is at most ϵ′ · 2 · 3/N < ϵ since N is at
least 6ϵ′/ϵ.

• Case 2: S > 2S > 2S > 2 . In this case, we have N/2 > D which implies

N − ϵ′

D + ϵ′
>

N − ϵ′

N/2 + ϵ′
= 1 +

N/2− 2ϵ′

N/2 + ϵ′
> 1 .

The last inequality is due to the fact that N > 6ϵ′.
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Next, we assume that S < S̃. We consider the largest possible value of S̃ and take the
difference from the true value of S as before:

S̃ − S =
N + ϵ′

D − ϵ′
− N

D
= ϵ′

N +D

D2 − ϵ′D
= ϵ′

S + 1

D − ϵ′
. (20)

If S > 1, both S and S̃ are larger than one, and we are done. Otherwise, D > N > 1/β, which
implies that D − ϵ′ > 1/β − 1/(6β) > 1/(2β), and therefore, we can conclude that:

S̃ − S ≤ ϵ′
S + 1

D − ϵ′
< 4ϵ′β < 6ϵ′β = ϵ .

Thus, the statement of the lemma is concluded.

Now, we must show that we can estimate N,D by Ñ , D̃ respectively within additive error ϵ′.
First, we bound the additive error arising from the gradient approximation. When the derivative
of a function g is B − Lipschitz, and the derivative g′(y) is monotone, then approximating g′(y) by
the difference quotient g(y+∆y)−g(y)

∆y incurs no more than B∆y additive error. As discussed in 3.3,
this allows us to determine the error bound for the difference quotient approximations of derivatives
in the proxy quantity.

Lemma 8 When the derivative of a function g is B1-Lipschitz, the second derivative is B2-Lipschitz,
the derivative g′(y) and the second derivative g′′(y) are both monotone, then approximating g′′(y) by:

1. estimating g̃′(y) = g(y+∆y1)−g(y)
∆y1

, and g̃′(y +∆y′) = g(y+∆y2+∆y1)−g(y+∆y2)
∆y1

,

2. and estimating g̃′′(y) = g̃′(y+∆y2)−g̃′(y)
∆y2

.

incurs no more than 2B1
∆y1

∆y2
+B2∆y2 additive error.

For reasons discussed in Section 3.3, we set ∆y1 = 1/k2, and ∆y2 = 1/k, meaning that the
incurred error in the second derivative is B1+B2

k . We set this to be less than ϵ′ = ϵ
6β and find the value

of k for which this happens: k > 6β(2B1+B2)
ϵ . Thus, we have the following corollary that specifies the

number of buckets necessary to incur no more than ϵ error in estimating the proxy quantity when it
is not greater than 1.

Corollary 16 If k > 6β 2B1+B2

ϵ , and the estimate S̃ of the statistic S is computed as described
above, then either both S, S̃ > 1, or |S̃ − S| < ϵ.

PART 3/4: Ŝ̂ŜS (calculated from order statistics) is close to S̃̃S̃S.

We must next show that we can approximate S̃ as defined in the previous section by the order
statistics of a set of samples. First, we prove that if we can estimate the lengths of intervals accurately
up to multiplicative error, we can estimate the test statistic accurately up to multiplicative error
(Lemma 12). Then, we show that we can achieve good multiplicative estimates of the lengths of the
intervals using the following stages:

1. We construct a map between order statistics of samples from a uniform distribution, denoted
Y(i), (which we know concentrate well and in fact are sub-Gaussian) and order statistics of
samples from an arbitrary distribution (denoted X(i)).

2. Concentration of Y(i) implies concentration of X(i) up to accounting for the gap between
F (E[X(i)]) and E[F (X(i))] (Lemma 17).
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3. The additive error between realization of order statistic and the quantity in the test statistic
(which we get from the sub-Gaussianity parameter) can be converted to a multiplicative error
in terms of the length of the bucket (Lemma 18).

One can view S̃ in terms of two quantities:

L̃1 :=
F−1(y + 1/k2)− F−1(y)

1/k2

L̃2 :=
F−1(y + 1/k + 1/k2)− F−1(y + 1/k)

1/k2
.

In terms of the previous notation,

Ñ = L̃1 D̃ =
L̃2 − L̃1

1/k
,

giving us that: S̃ =
L̃1

k(L̃2 − L̃1)
=

Ñ

D̃
.

In the following lemma, we show that if we estimate L̃1 and L̃2 accurately up to a multiplicative
factor, and obtain L̂1 and L̂2, then S̃ can be approximated by

Ŝ :=
L̂1

k ·
Ä
L̂2 − L̂1

ä .
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Lemma 12 (Multiplicative Bound for Ŝ) Suppose we have L̂1 and L̂2, the estimates of
L̃1 and L̃2 with a multiplicative factor of ϵ′ = min

(
Θ(ϵ/((1 + ϵ) · k)) ,Θ

(
1/k2

))
. Then, one of

the following cases holds:
1. Ŝ > 1− 2/k and S̃ > 1, implying they come from a light-tailed region of the distribution.
2. (1− ϵ) · S̃ ≤ Ŝ ≤ (1 + ϵ) · S̃.

Proof We analyze two separate cases.

Case 1: L̃2 − L̃1 ≤ 1
k+1 L̃2L̃2 − L̃1 ≤ 1
k+1 L̃2L̃2 − L̃1 ≤ 1
k+1 L̃2. Since L̃2 − L̃1 > 0 (due to montonicity of f), we have that

1 ≥ L̃1/L̃2 ≥ k/(k + 1). Thus, we have that:

S̃ =
L̃1

k(L̃2 − L̃1)
≥ L̃1

k
k+1 L̃2

≥ 1 . (21)

In turn, since we have (1− ϵ′)L̃1 ≤ L̂1 ≤ (1 + ϵ′)L̃1 and similarly for L̂2:

Ŝ =
L̂1

k(L̂2 − L̂1)
≥ (1− ϵ′)L̃1

k((1− ϵ′)(L̃2 − L̃1) + 2ϵ′L̃2)
≥

(1− ϵ′) k
k+1 L̃2

k( 1−ϵ′

k+1 + 2ϵ′)L̃2

=
1− ϵ′

1− ϵ′ + 2ϵ′(k + 1)
(22)

= 1− 2ϵ′(k + 1)

1− ϵ′ + 2ϵ′k
. (23)

When ϵ′ ≤ 1/(k2 − k + 1), Ŝ ≥ 1− 2/k. Since S̃ > 1 in this case, as well, the test statistic falls
clearly in light-tailed territory.

This completes the first case.

Case 2: L̃2 − L̃1 >
1

k+1 L̃2L̃2 − L̃1 >
1

k+1 L̃2L̃2 − L̃1 >
1

k+1 L̃2 , which can be rearranged to give L̃2−L̃1 ≤ L̃2 < (k+1)(L̃2−L̃1).
We first show that Ŝ cannot be too small. In fact, we have:

Ŝ ≥ (1− ϵ′)L̃1

k((1 + ϵ′)L̃2 − (1− ϵ′)L̃1)
=

(1− ϵ′)L̃1

k((1− ϵ′)(L̃2 − L̃1) + 2ϵ′L̃2)
(24)

≥ (1− ϵ′)L̃1

k((1− ϵ′)(L̃2 − L̃1) + 2ϵ′(k + 1)(L̃2 − L̃1))
≥ 1− ϵ′

1 + ϵ′(2k + 1)
S̃ ≥ (1− ϵ)S̃ . (25)

where the last inequality holds if we set ϵ′ ≤ ϵ/(1 + (1− ϵ)(2k + 1)) . We can also find an upper
bound for Ŝ:

Ŝ ≤ (1 + ϵ′)L̃1

k
Ä
(1− ϵ′)L̃2 − (1 + ϵ′)L̃1

ä ≤ (1 + ϵ′)L̃1

k
Ä
(1 + ϵ′)(L̃2 − L̃1)− 2ϵ′L̃2

ä (26)

≤ (1 + ϵ′)L̃1

k
Ä
(1 + ϵ′)(L̃2 − L̃1)− 2ϵ′(k + 1)(L̃2 − L̃1)

ä ≤ (1 + ϵ′)

1− ϵ′(2k + 1)
S̃ ≤ (1 + ϵ)S̃ . (27)

To satisfy this, we can set ϵ′ ≤ ϵ/(1 + (1 + ϵ)(2k + 1)) . Note that this is always smaller than
the condition for ϵ′ derived using the lower bound.

Thus, by setting ϵ′ = min
Ä

ϵ
1+(1+ϵ)(2k+1) ,

1
k2

ä
, we get that either we are in Case (1), where

S̃ > 1, Ŝ > 1− 2/k or we can get an 1± ϵ multiplicative approximation.
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Figure 3: In order to analyze the concentration of order statistic, we construct a map between
samples drawn from a uniform distribution (orange points on vertical axis) and
samples drawn from an arbitrary distribution (blue points on horizontal axis)
with CDF F (green curve). This map preserves several important properties as
discussed in the text of the paper.

Now that we know that we can accurately estimate S̃ by Ŝ if we have good estimates of the
values of L̂1, L̂2, we will next show that we are able to estimate L̂1, L̂2 accurately, proceeding in 3
stages as discussed above.

1. Mapping to uniform distribution To prove the concentration of the X(i)s, we transform
the samples from f to samples from a uniform distribution over [0, 1] (Figure 3). The mapping is
selected in such a way that it does not change the order of the elements. This fact implies that the
order statistic with rank i, X(i) will be mapped to the order statistic with the same rank from the
samples from the uniform distribution. Then, we show the concentration of order statistics according
to the uniform distribution to establish the result.

Formally, we map every sample X to Y = F (X). Since we assumed that f is well-behaved, this
mapping is a bijection. If we draw a random X from f , it is not too hard to see that Y = F (X)
comes from a uniform distribution over [0, 1]. In particular, for every y ∈ [0, 1], we have:

PrY [[[Y ≤ y ]]] = PrX
[[[
X ≤ F−1(y)

]]]
= F (F−1(y)) = y .

By the monotonicity of F , it is not hard to see that if we transform a set of n samples from f ,
then X(i) will be mapped to the i-th element in the sorted list of the Y ’s, denoted by Y(i). On
the other hand, one can view Y(i) as the i-th order statistic among n samples from a uniform
distribution over [0, 1]. In Marchal et al. (2017), Marchal and Arbel have proved that Y(i) − E

[[[
Y(i)

]]]
is a sub-Gaussian random variable. We have used this fact to show the concentration of X(i)’s around
F−1(E

[[[
Y(i)

]]]
) = F−1(i/(n+ 1)). With appropriate choice i and n, we can show the order statistic

concentrates around the endpoint of the buckets as desired.

2. Concentration of X(i)X(i)X(i) Given this mapping, we can show that the order statistics from an
arbitrary distribution concentration around F−1(i/(n+ 1)). To do this, we use the sub-Gaussianity
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Figure 4: In Lemma 17, we show that since Y(i) concentrates around i/(n+ 1) (as evidenced
by the blue histogram on the vertical axis), X(i) must also concentrate around
F−1(i/(n+ 1)) (as evidenced by the blue histogram on the horizontal axis). Then,
in Lemma 18, we show that the distance that the order statistic (orange circle)
falls from F−1(i/(n+ 1)) (orange bar labeled λ) can converted to a multplicative
error in terms of the length of the interval L̂1 (maroon bar).

of Y(i) around i/(n+ 1), transform this to a statement about X(i) related to F−1(i/(n+ 1)), which
is the endpoint of a bucket, and analyze terms separately. To this end, we present Lemma 17 and its
proof.

Lemma 17 Suppose f is a well-behaved distribution. For ϵ ≤ B1f(F−1( i
n+1 ))+k

k2f(F−1( i
n+1 ))

, we have:

Pr

ïïï ∣∣∣∣X(i) − F−1

Å
i

n+ 1

ã∣∣∣∣ ≥ ϵ

òòò
≤ 2 exp

(
−ϵ2/λ2

)
, λ :=

B1

2 (n+ 2)
(√

4B1 + 1− 1
)
f(F−1

Ä
i

n+1

ä
)
.

Proof As we explained earlier, we map the samples from f , x1, x2, . . . , xn, to y1, y2, . . . , yn where
yi = F (xi). We have shown that one can view yi’s as random samples from the uniform distribution
over [0, 1]. Since the mapping preserve the order, the i-th order statistic X(i) is mapped to the i-th
order statistic among yi’s, which we denote by Y(i). Now, we show the concentration of the order
statistics from the uniform distribution. Note that the distribution over the order statistic is a beta
distribution with parameters α := i and β := n− i+ 1:

Pr
[[[
Y(i) = y

]]]
= n ·

Ç
n− 1

i− 1

å
· yi−1 · (1− y)n−i .

Marchal and Arbel have shown that a (centered) random variable drawn from the beta distribution
is a sub-Gaussian random variable with parameter σ2 = 1/4(α+ β + 1) = 1/4(n+ 2) (Theorem 2.1
in Marchal et al. (2017)). In other words, for any λ ∈ R, we have:
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E
[[[
exp

(
λ ·
(
Y(i) −E

[[[
Y(i)

]]]))]]]
≤ exp

Å
λ2

32 (n+ 2)2

ã
.

Then, using equivalent definitions of sub-Gaussian random variables (See Proposition 2.5.2
in Vershynin (2018).), we obtain:

Pr
[[[ ∣∣Y(i) −E

[[[
Y(i)

]]]∣∣ ≥ t
]]]
≤ 2 exp

(
−16 (n+ 2)2 t2

)
∀t ≥ 0 .

In the next step, using the Lipschitzness of F−1, we relate the probability that X deviates
from F−1

(
E
[[[
F
(
X(i)

)]]])
to the probability that Y(i) deviates from its expectation. Then, we use

the sub-Gaussianity of Y(i)’s to obtain the desired bound. Let T denote F−1
(
E
[[[
F
(
X(i)

)]]])
=

F−1
(
E
[[[
Y(i)

]]])
= F−1(i/n+ 1). Our goal here is to find a bound of the following form for some

parameter λ which we determine later.

Pr

ïïï ∣∣∣∣X(i) − F−1

Å
i

n+ 1

ã∣∣∣∣ ≥ ϵ

òòò
≤ 2 exp

(
−ϵ2/λ2

)
.

Using the definition of the mapping, we have:

Pr

ïïï ∣∣∣∣X(i) − F−1

Å
i

n+ 1

ã∣∣∣∣ ≥ ϵ

òòò
= Pr

[[[ ∣∣F−1
(
Y(i)

)
− F−1

(
E
[[[
Y(i)

]]])∣∣ ≥ ϵ
]]]

(28)

Using the mean value theorem, we know that there exists a y between Y(i) and E
[[[
Y(i)

]]]
such

that:
F−1′(y) ·

(
Y(i) −E

[[[
Y(i)

]]])
= F−1

(
Y(i)

)
− F−1

(
E
[[[
Y(i)

]]])
.

To bound the probability in eq. (28) via the above identity, we need to find an upper bound on
F−1′(y). Note that since F is concave, F−1′(y) is equal to 1/f(F−1(y)), and it is an increasing
function. Now, we consider a few different cases based on the interval that y belongs to. More
precisely, for some parameter 0 < δ < Θ(1/k) which we define later, we define the following events:

• E1 := indicates the event where Y(i) −E
[[[
Y(i)

]]]
≤ 0.

• E2 := indicates the event where 0 < Y(i) −E
[[[
Y(i)

]]]
< δ.

• E3 := indicates the event where Y(i) −E
[[[
Y(i)

]]]
≥ δ.

Then, we rewrite the probability in eq. (28) in terms of conditional probabilities as follows:

Pr

ïïï ∣∣∣∣X(i) − F−1

Å
i

n+ 1

ã∣∣∣∣ ≥ ϵ

òòò
= Pr

[[[∣∣∣F−1′(y) ·
(
Y(i) −E

[[[
Y(i)

]]])∣∣∣ ≥ ϵ
]]]

= Pr
[[[ ∣∣∣F−1′(y) ·

(
Y(i) −E

[[[
Y(i)

]]])∣∣∣ ≥ ϵ
∣∣∣ E1

]]]
·Pr[[[E1 ]]]

+Pr
[[[ ∣∣∣F−1′(y) ·

(
Y(i) −E

[[[
Y(i)

]]])∣∣∣ ≥ ϵ
∣∣∣ E2

]]]
·Pr[[[E2 ]]]

+Pr
[[[ ∣∣∣F−1′(y) ·

(
Y(i) −E

[[[
Y(i)

]]])∣∣∣ ≥ ϵ
∣∣∣ E3

]]]
·Pr[[[E3 ]]] .

(29)

Below, we bound each of the above terms:
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1. First term: In the case that E1 holds, y is at most E
[[[
Y(i)

]]]
. Using the monotonicity of f , we

have F−1′(y) is at most 1/f
(
F−1

(
E
[[[
Y(i)

]]]))
= 1/f(F−1 (i/n+ 1)). This bound implies that

Pr
[[[ ∣∣∣F−1′(y) ·

(
Y(i) −E

[[[
Y(i)

]]])∣∣∣ ≥ ϵ
∣∣∣ E1

]]]
·Pr[[[E1 ]]]

≤ Pr

ïïï
Y(i) −E

[[[
Y(i)

]]]
≤ −ϵ · f

Å
F−1

Å
i

n+ 1

ãã ∣∣∣∣ E1

òòò
·Pr[[[E1 ]]]

= Pr

ïïï
Y(i) −E

[[[
Y(i)

]]]
≤ −ϵ · f

Å
F−1

Å
i

n+ 1

ããòòò
−Pr

ïïï
Y(i) −E

[[[
Y(i)

]]]
≤ −ϵ · f

Å
F−1

Å
i

n+ 1

ãã ∣∣∣∣ E1

òòò
·Pr

[[[
E1

]]]
,

where the bar in E1 indicates the complement event of E1. Note that Y(i) −E
[[[
Y(i)

]]]
cannot

be smaller than a negative quantity if E1 does not happen. Thus, the last term above is zero,
and we have:

Pr
[[[ ∣∣∣F−1′(y) ·

(
Y(i) −E

[[[
Y(i)

]]])∣∣∣ ≥ ϵ
∣∣∣ E1

]]]
·Pr[[[E1 ]]]

≤ Pr

ïïï
Y(i) −E

[[[
Y(i)

]]]
≤ −ϵ · f

Å
F−1

Å
i

n+ 1

ããòòò
(30)

2. Second term: In the case that E2 holds, y is at most E
[[[
Y(i)

]]]
+ δ. Note that since δ is smaller

than 1/k, and we assume that the function is Lipschitz in the bucket which starts at E
[[[
Y(i)

]]]
,

then we can use the Lipschitzness assumption as follows:

F−1′(y) ≤ F−1′ (E[[[Y(i) + δ
]]])
≤ 1/f

Å
F−1

Å
i

n+ 1

ãã
+ δ B1 .

Now, we have:

Pr
[[[ ∣∣∣F−1′(y) ·

(
Y(i) −E

[[[
Y(i)

]]])∣∣∣ ≥ ϵ
∣∣∣ E2

]]]
·Pr[[[E2 ]]]

≤ Pr

 Y(i) −E
[[[
Y(i)

]]]
≥ ϵ

1

f(F−1( i
n+1 ))

+ δB1

∣∣∣∣∣∣ E2

 ·Pr[[[E2 ]]] .
(31)

We will use the above bound later and combine it with the bound for the third term.

3. Third term: In the case where E3 holds, we do not have an upper bound for F−1′(y).
However, we exploit the fact that this case happens with a small probability.

Pr
[[[ ∣∣∣F−1′(y) ·

(
Y(i) −E

[[[
Y(i)

]]])∣∣∣ ≥ ϵ
∣∣∣ E3

]]]
·Pr[[[E3 ]]] ≤ Pr[[[E3 ]]] = Pr

[[[
Y(i) −E

[[[
Y(i)

]]]
> δ

]]]
.

(32)

4. Combining the bounds for the last two terms: Now we combine the two bounds above
in eq. (31) and eq. (32). Note that if δ is smaller than ϵ/(1/f(F−1

Ä
i

n+1

ä
) + δB1), then the

right hand side in eq. (31) is equal to:

Pr

 Y(i) −E
[[[
Y(i)

]]]
≥ ϵ

1

f(F−1( i
n+1 ))

+ δB1

≥ δ

∣∣∣∣∣∣ 0 < Y(i) −E
[[[
Y(i)

]]]
< δ

 ·Pr[[[E2 ]]] = 0 .
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Thus, when delta is small, after combining the last two bounds, we get:

Pr
[[[ ∣∣∣F−1′(y) ·

(
Y(i) −E

[[[
Y(i)

]]])∣∣∣ ≥ ϵ
∣∣∣ E2

]]]
·Pr[[[E2 ]]]

+Pr
[[[ ∣∣∣F−1′(y) ·

(
Y(i) −E

[[[
Y(i)

]]])∣∣∣ ≥ ϵ
∣∣∣ E3

]]]
·Pr[[[E3 ]]]

≤ Pr
[[[
Y(i) −E

[[[
Y(i)

]]]
≥ δ

]]]
On the other hand, if δ is at least ϵ/(1/f(F−1

Ä
i

n+1

ä
) + δB1), then by combining eq. (31) and

eq. (32), we have:

Pr
[[[ ∣∣∣F−1′(y) ·

(
Y(i) −E

[[[
Y(i)

]]])∣∣∣ ≥ ϵ
∣∣∣ E2

]]]
·Pr[[[E2 ]]]

+Pr
[[[ ∣∣∣F−1′(y) ·

(
Y(i) −E

[[[
Y(i)

]]])∣∣∣ ≥ ϵ
∣∣∣ E3

]]]
·Pr[[[E3 ]]]

≤ Pr

 Y(i) −E
[[[
Y(i)

]]]
≥ ϵ

1

f(F−1( i
n+1 ))

+ δB1

∣∣∣∣∣∣ E2

 ·Pr[[[E2 ]]] +Pr[[[E3 ]]]

≤ Pr

 Y(i) −E
[[[
Y(i)

]]]
≥ ϵ

1

f(F−1( i
n+1 ))

+ δB1

∣∣∣∣∣∣ E2

 ·Pr[[[E2 ]]]

+Pr

 Y(i) −E
[[[
Y(i)

]]]
≥ ϵ

1

f(F−1( i
n+1 ))

+ δB1

∣∣∣∣∣∣ E3


︸ ︷︷ ︸

=1

·Pr[[[E3 ]]]

= Pr

 Y(i) −E
[[[
Y(i)

]]]
≥ ϵ

1

f(F−1( i
n+1 ))

+ δB1

∣∣∣∣∣∣ Y(i) −E
[[[
Y(i)

]]]
> 0

 ·Pr
[[[
E
[[[
Y(i)

]]]
− Y(i) < 0

]]]

= Pr

Y(i) −E
[[[
Y(i)

]]]
≥ ϵ

1

f(F−1( i
n+1 ))

+ δB1

 .

Note that the first probability in the last line above is exactly one, since we are conditioning
on the fact that Y(i) −E

[[[
Y(i)

]]]
is at least δ. Now, we get:

Pr
[[[ ∣∣∣F−1′(y) ·

(
Y(i) −E

[[[
Y(i)

]]])∣∣∣ ≥ ϵ
∣∣∣ E2

]]]
·Pr[[[E2 ]]]

+Pr
[[[ ∣∣∣F−1′(y) ·

(
Y(i) −E

[[[
Y(i)

]]])∣∣∣ ≥ ϵ
∣∣∣ E3

]]]
·Pr[[[E3 ]]]

= Pr

 Y(i) −E
[[[
Y(i)

]]]
≥ ϵ

1

f(F−1( i
n+1 ))

+ δB1

∣∣∣∣∣∣ E[[[Y(i)

]]]
− Y(i) < 0

 ·Pr
[[[
E
[[[
Y(i)

]]]
− Y(i) < 0

]]]

= Pr

Y(i) −E
[[[
Y(i)

]]]
≥ ϵ

1

f(F−1( i
n+1 ))

+ δB1

 .

Now, to obtain the best bound we solve for δ = ϵ/(1/f(F−1
Ä

i
n+1

ä
) + δB1), and set δ to the

positive solution of this quantity. Note that since ϵ is bounded from above, it is not hard to
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show that δ is at most 1/k as required in the beginning. Then, we achieve:

Pr
[[[ ∣∣∣F−1′(y) ·

(
Y(i) −E

[[[
Y(i)

]]])∣∣∣ ≥ ϵ
∣∣∣ E2

]]]
·Pr[[[E2 ]]]

+Pr
[[[ ∣∣∣F−1′(y) ·

(
Y(i) −E

[[[
Y(i)

]]])∣∣∣ ≥ ϵ
∣∣∣ E3

]]]
·Pr[[[E3 ]]]

≤ Pr
[[[
Y(i) −E

[[[
Y(i)

]]]
≥ δ

]]]
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…
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Y(i) −E

[[[
Y(i)

]]]
≥

Ç…
4 f
Ä
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Ä
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ää2
B1 + 1− 1

å
· ϵ

2 f
Ä
F−1

Ä
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n+1

ää
B1

≥
√
4B1 + 1− 1

2B1
· ϵ · f

Å
F−1

Å
i

n+ 1

ãã .

Now, we put all the pieces in eq. (29) back together. We combine the above bound with the
bound we have obtained earlier in eq. (30) and get the following:

Pr

ïïï ∣∣∣∣X(i) − F−1

Å
i

n+ 1

ã∣∣∣∣ ≥ ϵ

òòò
≤ Pr

ïïï
Y(i) −E

[[[
Y(i)

]]]
≤ − ϵ · f

Å
F−1

Å
i

n+ 1

ããòòò
+Pr

ñññ
Y(i) −E

[[[
Y(i)

]]]
≥
√
4B1 + 1− 1

2B1
· ϵ · f

Å
F−1

Å
i

n+ 1

ããôôô
≤ Pr

ñññ ∣∣Y(i) −E
[[[
Y(i)

]]]∣∣ ≥ √4B1 + 1− 1

2B1
· f
Å
F−1

Å
i

n+ 1

ãã
· ϵ
ôôô
,

where the last inequality is due to the fact that
√
4B1 + 1 − 1/(2B1) is always smaller than one.

Now, we use the sub-Gaussianity of Y(i) −E
[[[
Y(i)

]]]
, and get

Pr

ïïï ∣∣∣∣X(i) − F−1

Å
i

n+ 1

ã∣∣∣∣ ≥ ϵ

òòò
≤ 2 exp

Ñ
−
16 (n+ 2)2

(√
4B1 + 1− 1

)2
f
Ä
F−1

Ä
i

n+1

ää2
4B2

1

· ϵ2
é

.

≤ 2 exp
(
−ϵ2/λ2

)
where the last line holds when we set the parameter λ to be

λ :=
B1

2 (n+ 2)
(√

4B1 + 1− 1
)
f
Ä
F−1

Ä
i

n+1

ää . (33)

3. Converting error in X(i) to error in statistic Ŝ: We can convert the additive error
given in Lemma 17 into a multiplicative error in terms of the difference between F−1 (j/(n+ 1))−
F−1 (i/(n+ 1)). This quantity represents the length of an interval in S̃. In Lemma 18, we show how
to convert the additive error from Lemma 17 to a multiplicative error in terms of the length of the
interval.

Lemma 18 For a sufficiently large parameter τ > 1 and number of buckets k > 2B1β, suppose we
have n = O(log(k) ·

√√
B1 + 1 · τ) samples from a well-behaved distribution f . Then, we have:

Pr

ïïï ∣∣∣∣X(i) − F−1

Å
i
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ã∣∣∣∣ ≥ 2

τ(j − i)/(n+ 1)

Å
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Å
j
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ã
− F−1

Å
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n+ 1

ããòòò
≤ 0.1

4 k2
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Proof For a single interval, we have from Fact 3.3 that:

F−1
Ä

j
n+1

ä
− F−1

Ä
i

n+1

ä
j−i
n+1

≥ 1

f
Ä
F−1

Ä
i

n+1

ää −B1
j − i

n+ 1
(34)

Note that this holds regardless of whether j > i or j < i. We set j−i
n+1 ≤

1
2B1β

, which gives us:
B1

k ≤
1
2β ≤

1

2f(F−1( i
n+1 ))

. Plugging this back in, we get:

F−1
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j
n+1

ä
− F−1

Ä
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n+1

ä
j−i
n+1

≥ 1

2f(F−1
Ä

i
n+1

ä
)

(35)

This implies then, that we can convert the additive bound to a multiplicative one. In particular,
applying the bounds from Lemma 17, this gives us that:

Pr

∣∣∣∣X(i) − F−1

Å
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τ · f(F−1
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)

 ≤ 0.1

4 k2

(36)

The above result shows that by union bound we can make sure all the order statistics we use are
estimated with small error with high probability.

With this, we have all the pieces required to prove Theorem 9. We know that the proxy quantity
is correct (Theorem 6). We have shown that approximating the derivatives by difference quotients
incurs bounded error (call this ϵ1) (Lemma 11), and we have now shown that we incur bounded error
when using order statistics to approximate the test statistic (call this error ϵ2) (Lemma 12). In the
final section, we will show how many buckets and samples we require for the algorithm to succeed
with high probability.

Part 4/4: Errors can be set to satisfy theorem.

We start by giving a corollary that helps us translate the result of Lemma 18 to one that is easy to
use for analyzing the number of samples required.

Corollary 19 If we draw n = O(k log k
ϵ

√√
B1 + 1) samples, with probability at least 9/10, L̂ con-

centrates around L̃ as defined previously claim. That is,

(1− ϵ) · L̃ ≤ L̂ ≤ (1 + ϵ) · L̃ .

Proof In order to prove this, we apply Lemma 18. As a corollary of that lemma, if k ≥ 2B1β and
n = O(log k

√√
B1 + 1τ) , we have that:
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Pr[[[ ]]]
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Thus, with probability at least 1− 0.2
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And so with probability at least 1− 0.2
4k2 :
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and
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This tells us that if we draw n = O(k log k
ϵ

√√
B1 + 1) samples, then with probability at least

1− 0.2
4k2 :

(1− ϵ) L̃ ≤ L̂ ≤ (1 + ϵ) L̃ .

Now, we analyze exactly how much error we can incur while still remaining on the correct side of
the threshold. In particular, given that both approximating the derivative and sampling introduce
errors, we seek to draw enough samples that the test statistic calculated from samples lies on the
same side of the threshold as the proxy quantity. We have essentially two sources of error that we
can control: the first is ϵ1, the additive error from the derivative approximation; the second is ϵ2, the
multiplicative error from sampling. Keeping ϵ1 and ϵ2 small enough to not cross the threshold with
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high probability entails using enough buckets and sufficiently many samples per bucket. Based on
the earlier derivation of the absolute value of the gap, we have that:∣∣∣∣ α(1− z2)

2

f ′(F−1(z2))

∣∣∣∣ ≥ α(1− z2)
2

f(F−1(z2))3B1
because |F−1′′(y)| =

∣∣∣∣−f ′(F−1(x))

f(F−1(x))3

∣∣∣∣ ≤ B1 (47)

Let us define γi :=
α(1−i/k)2

f(F−1(i/k))3 B1
≥ γ := αρ2

β3B1
, a lower bound on the actual gap. We use this

quantity in our analysis. Thus, the lower bound of the test statistic calculated for a light-tailed
distribution is:

(1− ϵ2)(S − ϵ1) = S − ϵ1 − ϵ2 S + ϵ1ϵ2 ≥ 1− i

k
− 1

10
γ

First, we know that for a light-tailed distribution, S ≥ 1− 1
k , so we require that ϵ1ϵ2− ϵ1− ϵ2 S ≥

−γ
10 . Let us first consider the case where S ≤ 1 , Then, if ϵ1 ≤ γ/20 and ϵ2 ≤ γ/20 , we have that:

− γ

20
− γ

20
· S +

γ2

20
≥ − γ

20
− γ

20
= − γ

10
.

This tells us that it suffices to have ϵ1 = γ/20 and ϵ2 = γ/20 . Thus, we select the number of
buckets and the number of samples in such a way as to achieve ϵ1, ϵ2 ≤ γ

20 . In particular, from
Corollary 16, we know that if k ≥ Θ(β(2B1 +B2)/γ) , then |S̃ − S| < γ/20 . Next, Lemma 12 tells us
that in this case, we need estimates of L̃ to a multiplicative factor of 1±ϵ′ , where ϵ′ = Θ(γ/((20+γ)k)).

From the claim above, we have that with n = Θ

Å
(k2 log k)

√√
B1+1

γ

ã
, we achieve this guarantee.

Next, if we are still in the light-tailed case and S ≥ 1 , then regardless of ϵ2 , Lemma 12 tells us
we require estimates of L̃ to 1± ϵ′ , where ϵ′ = Θ(1/k2) . Again, from the claim above, we have that
with n = Θ

Ä
k3 log k

√√
B1 + 1

ä
, we can achieve the desired guarantee.

Having addressed the light-tailed case, let us consider the (α, ρ)−heavy-tailed case. We have
that:

Ŝ ≤ (1 + ϵ2)(S + ϵ1) ,which we want to be ≤ 1− i

k
− 9γ

10
.

Since the distribution is α, ρ-heavy tailed, we know that S ≤ 1− i
k − γ . Thus, we set ϵ1 such

that S + ϵ1 ≤ 1− i
k −

19γ
20 = 1− i

k − γ + γ
20 , i.e., we set ϵ1 = γ/20 . Now, ϵ2 = γ/20 suffices, since:(

1 +
γ

20

)Å
1− i

k
− 19γ

20

ã
≤ 1− i

k
+

γ

20

Å
1− i

k

ã
−
(
1 +

γ

20

) 19γ

20
≤ 1− i

k
+

γ

20
− 19γ

20
= 1− i

k
− 9γ

10

as desired. We apply the union bound over the k2 order statistics we compute to get that all simulta-
neously concentrate to 1±ϵ2 multiplicative error with probability ≥ 0.1. Thus, the number of samples

required is n = Θ

Å
k2 log k

√√
B1+1

γ

ã
, and the number of required buckets is k ≥ Θ(β(2B1+B2)

γ ) .

In the worst case, γ ≥ Θ(αρ2β−3B−1
1 ) , and so k ≥ β4B1(2B1+B2)

αρ2 . Then,

n = max

®
β3B1k

2 log k
√√

B1 + 1

αρ2
, k3 log k

»√
B1 + 1

´
.

Equivalently,

n = max

ß
β3B1

αρ2
, k

™
· k2 log k

»√
B1 + 1 .
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Appendix F. Hardness Result

In this section, we show for any number of samples m, we can construct two classes of distributions,
one light-tailed and the other heavy-tailed, such that they are indistinguishable using m samples. Our
lower bound implies that there is no algorithm to distinguish the class of light-tailed and heavy-tailed
distributions unless further assumptions is made. Here we give an alternative definition of heavy
tails, which does not require the heavy-tailed part be contiguous. Then we show that it is hard to
distinguish these type of heavy-tailed distributions from the light-tailed ones.

Definition 20 We say a distribution p is (α, ρ)-scattered-heavy-tailed if the hazard rate is decreasing
by rate at least α over measurable intervals of the domain with probability mass at least ρ.

High level idea: We construct two classes of distributions that are hard to distinguish with few
samples: light tailed distributions, CL, and heavy-tailed distribution CH . The class of light-tailed
distributions contains only one member that is an exponential distribution with fexp(x) = e−x. We
construct the class of heavy-tailed distributions via a randomized process as follows: We start off
by the same distribution fexp(x) = e−x. We split the domain of fexp into s chunks such that the
probability mass in every chunk is equal to 1/s. Then, we select roughly ρ′ = Θ(ρ) fraction of these
chunks randomly and embed a heavy-tailed distribution, namely fH , in (some of) those selected
chunks. The construction has two key properties: First, the probability mass of a chunk remains the
same even when the alteration happens. Second, if we draw one sample from a chunk, we cannot tell
whether it is altered or not. The key idea which leads to this property is in the embedding. When we
alter a chunk, we randomly replace fexp by a heavy-tailed piece fH or another partial PDF fH . We
simply define fH such that the mixture of fH and fH each with probability a half gives us exactly
fexp. Thus, if we receive one sample from a chunk that comes from a random CH , it is impossible
to tell whether the chunk is altered or not. It is worth noting that this process generates a class of
distributions, CH , that depends on a parameter s. We may also CH(s) to denote it. To complete our
proof, we show that for any algorithm that uses m samples, there is a sufficiently large s such that it
is very unlikely to have more than one sample per chunk. Thus, CL and CH(s) are indistinguishable
when we use m samples. This fact implies that no algorithm that uses finitely many samples can
distinguish a light tailed distribution from a distribution that is heavy on measurable subset of the
domain with mass ρ unless we make further assumptions including that the heavy-tailed part might
need to be contiguous.

Theorem 21 For any integer m, there is no algorithm that receives m samples from p , a mono-
tone and continuous distribution, and can distinguish whether p is light-tailed distribution or a
(α, ρ)−scattered-heavy-tailed for α < 0.0043 and ρ < 0.5 with probability more than 0.5 + o(1).

Proof By way of contradiction, let us assume there exists such algorithm, namely A, which uses
m samples and can distinguish if light-tailed distributions from heavy-tailed ones with probability
at least 0.5 + δ. Here, we assume that δ is in (0, 1/2] and 1/δ is a constant. (i.e., δ is sufficiently
away from zero.) To prove our theorem: we construct two classes of distributions: CL and CH(s)
for a sufficiently large parameter s. The main goal is to show that if we draw m samples from the
distribution in each of these classes, the outcome should be very similar, thus no algorithm can tell
the difference better than guessing.

Construction of classes: As we mentioned earlier, CL contains a single exponential distribution
with the pdf fexp(x) = e−x. We construct the class of heavy-tailed distribution via a randomized
process as follows: We start off with the same distribution fexp(x) = e−x. We split the domain of
fexp into s chunks such that the probability mass in every chunk is equal to 1/s. Then, for i ≤ 3s/4,
we select chunk i with probability ρ′ = 2ρ randomly and embed a heavy-tailed distribution, namely
fH , in those selected chunks. When we alter a chunk, we randomly replace fexp by a heavy-tailed
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Figure 5: An example of a corrupted interval.

piece fH or another partial PDF fH . We simply define fH such that the mixture of fH and fH each
with probability a half gives us exactly fexp. CH consists of the distributions that result from this
corruption process. Below are the details of a single alteration of the exponential in a chunk by fH .
The alteration on one chunk via fH has the following properties:

• The interval has the same mass that some exponential distribution (light-tailed) would have on
that interval (i.e., 1/s), but the hazard rate is decreasing on most of the mass of that interval.
We call this the fooling region of the interval.

• In place of the exponential distribution on that interval, we use a fast-dropping exponential,
followed by a uniform, followed by another fast-dropping exponential (see Figure 5).

• Note that once the starting point and the amount of weight of the interval are fixed, for a fixed
parameter β ∈ (1, 2) denoting the drop rate of the fast-dropping exponential, the rest of the
construction is determined. We fix this parameter to β = 1.5 , but a different choice would
lead to a similar analysis with slightly different constants.

• Note that since we are choosing i ≤ (3/4)s, xB for the rightmost chunk we could select is
ln(4) .

Construction of fH : We start off by a chunk of weight C := 1/s starting at x = xA and the
distribution fexp(x) = e−x . Note that this uniquely defines the end point of the chunk xB . Clearly,
we have:

fexp(xA) = A , fexp(xB) = B , and

xB∫
xA

fexp(x)dx = A−B = C .

Letting x1 ∈ (xA, xB) denote the point at which the distribution switches from exponential to
uniform and x2 ∈ (xA, xB) denote the point where the distribution switches back from uniform to
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exponential in the altered chunk, fH is given by:

fH(x) =


Ae−β(x−xA) x ∈ [xA, x1)

h x ∈ [x1, x2)

Be−β(x−xB) x ∈ [x2, xB)

(48)

From the fact that this construction is continuous, we have that h = Ae−β(x1−xA) = Be−β(x2−xB) .
We use that to solve for x1, x2:

x1 = xA +
1

β
ln

Å
A

h

ã
(49)

x2 = xB +
1

β
ln

Å
B

h

ã
(50)

=
−1
β

ln

Å
A

B

ã
+ x1 − xA + xB (51)

⇒ x2 − x1 =
β − 1

β
(xB − xA) . (52)

We use Fexp and FH to refer to the CDF of fexp and fH as well. We get that the CDF is given
by the following:

Fhard(x) =


Fexp(xA) +

A
β

(
1− e−β(x−xA)

)
x ∈ [xA, x1)

Fexp(xA) +
A
β

(
1− e−β(x1−xA)

)
+ h(x− x1) x ∈ [x1, x2)

Fexp(xA) +
A
β

(
1− e−β(x1−xA)

)
+ h(x2 − x1) +

B
β (e

−β(x−xB) − 1) x ∈ [x2, xB)

(53)

Knowing that Fhard(xB)− Fhard(xA) = C , we enforce the area constraint to solve for h:

A

β

Ä
1− e−β(x1−xA)

ä
+ h(x2 − x1) +

B

β

Ä
e−β(x2−xB) − 1

ä
= C (54)

A

β

Å
1− h

A

ã
+ h · β − 1

β
(xB − xA) +

B

β

Å
h

B
− 1

ã
= C (55)

h

β
(−1 + (β − 1)(xB − xA) + 1) = C − A

β
+

B

β
(56)

h =
βC −A+B

(β − 1)(xB − xA)
=

C

(xB − xA)
(57)

Analysis of fH : Recall that we simply set fH(x) = 2fexp(x)− fH(x). We need to show that
on the region of interest, fH(x) is never below zero, and it is monotone decreasing. Given that, it
is clear that the probability mass of a chunk when we replace fexp by fH remains equal to C as
required.

Existence: To show that such an fH exists, we must show that 2e−x ≥ fhard(x) . In the first
region, this is clearly true, as 2e−x ≥ e−x = Ae−(x−xA) ≥ Ae−β(x−xA) when β ≥ 1 . In the uniform
region, we compare 2e−x to a constant function, so it suffices to compare the smallest value of 2e−x

to the constant height:

2e−x ≥ h⇔ ln

Å
2

h

ã
≥ x (58)

ln

Å
2

h

ã
≥ x2 = xB +

1

β
ln

B

h
= ln

Å
1

B1−1/βh1/β

ã
(59)

⇔ 2B1−1/β ≥ h1−1/β (60)
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We return to this condition in a moment after considering the second exponential region, where
we want to determine when: 2e−x ≥ Be−β(x−xB) , x ∈ [x2, xB). This is equivalent to checking
where 2Bβ−1 ≥ e−x(β−1) holds. For this to hold, it is sufficient for 2Bβ−1 ≥ 1 , meaning that
B ≥ (1/2)1/(β−1) . Note that if this holds, then Eqn. 60 also holds. When B ≤ e− ln(4) , β = 1.5 , this
condition indeed holds, which means Eqn. 60 also holds.

Monotonicity: To show montonicity, we must show that f̄H(x) = 2e−x − fH(x) is monotone
decreasing as well in the regions in which we are interested. We calculate the derivative:

f ′
H(x) =


−βAe−β(x−xA) x ∈ [xA, x1)

0 x ∈ (x1, x2)

−βBe−β(x−xB) x ∈ (x2, xB ]

(61)

⇒ we must check f̄ ′
H(x) = −2e−x − f ′

H(x) = −2e−x + βAe−β(x−xA) ≤ 0 , (62)

f̄ ′
H(x) = −2e−x − 0 ≤ 0 , (63)

f̄ ′
H(x) = −2e−x − f ′

H(x) = −2e−x + βBe−β(x−xB) ≤ 0 , (64)

where the second condition clearly holds, and we can summarize the first and third as checking when
−2e−x + βDe−β(x−xD) ≤ 0 holds, where D = A, xD = xA or D = B, xD = xB . Then:

2e−x ≥ βDe−β(x−xD) (65)

⇔ e−β(x−xD) ≤ 2

β
e−(x−xD) ⇔ e−(β−1)(x−xD) ≤ 2

β
⇔ −(β − 1)(x− xD) ≤ ln

Å
2

β

ã
(66)

⇐
ln 2

β

β − 1
≥ |x− xD| ⇐

ln 2
β

β − 1
≥ (xB − xA) . (67)

Since we have that xB ≤ ln(4) , and β = 1.5 , still consider chunks in a constant fraction of the
mass of the distribution, so we have that xB −xA ≤ ln(1+4C) . Thus, we are interested in the region
where the left hand side of Eqn. 67 is greater than 1 + 4C . We have full freedom to pick β subject
to 2 > β > 1 . If we set β = 1.5 , then this condition holds when C ≤ 0.194 , (i.e., s ≥ 5.2) which is
satisfied. Thus, we can conclude the existence and monotonicity of fH .

Drawing samples from classes: Here, we explain a slightly modified process, that is called
poissonization method, to draw roughly m samples from the two classes of distribution. Suppose
we generate samples from C ∈ {CL, CH}. Let p be a random distribution in C. That is, instead of
drawing m samples from p, we draw Poi(m′) samples from p where m′ = Θ(m). In this way, the
number of samples we see in every chunk is independent from the rest which simplifies the proof
greatly. Let X denotes the sample set we obtain according to this process. We use DL and DH to
denote the distributions of X when C = CL and C = CH respectively.

Proof of indistinguishability: Suppose we set C to be CL and CH each with probability a
half. Then we draw a sample from X from the class C as explained above. We define event E to
be the probabilistic event when X contains at least m samples and p is a light-tailed distribution,
or an (α, ρ)-scattered-heavy tailed one. It is worth noting that condition on E , then algorithm A
distinguishes whether C = CL or C = CH with probability at least 0.5+ δ. In the following lemma, we
claim that event E holds with high probability.

Lemma 22 Suppose X is generated from class C = CH (similarly C = CL). Then, with probability
at least 1−δ/2, p is an (α, ρ)-scattered-heavy-tailed (similarly light-tailed) distribution, and X contains
at least m samples.

We prove this lemma in Section F.1. Using the above lemma, we can show that if X is generated
from a random C, then A still distinguishes whether C = CL or C = CH with some reasonable
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probability while E does not necessary holds. In particular, we have:

Pr[[[A(X) = C ]]] ≥ Pr[[[A(X) = C | E ]]] ·Pr[[[E ]]]

≥
Å
1

2
+ δ

ã
·
Å
1− δ

2

ã
>

1

2
+

δ

4

(68)

Now, by Le Cam’s lemma, the probability of distinction is bounded by the total variation distance
between the input distributions, i.e., DL and DH . More formally, we have:

Pr[[[A(X) = C ]]] ≤ 1

2
+
∥DL −DH∥tv

2
. (69)

Now, putting Equation (69) and Equation (68) together, we obtain:

∥DL −DH∥tv >
δ

2
. (70)

However, we have the following upper bound on the total variation distance between DH and DX .

Lemma 23 For s = Ω(m2), the total variation distance between the distribution over the sample
sets, DH and DL is at most δ/2.

For the full proof of this lemma, see Section F.2. Thus, by having the contradicting bounds for
the total variation distance, we conclude that our original hypothesis regarding the existence of A
was false.

F.1. Proof of Lemma 22

Lemma 24 Suppose X is generated from class C = CH (similarly C = CL). Then, with probability at
least 1− δ/2, p is an (α, ρ)-scattered-heavy-tailed (similarly light-tailed) distribution, and X contains
at least m samples.

Proof We start off by showing that the sample set X contains at least m samples. Recall that
the number of samples, |X| is a Poisson random variable with mean (and variance) m′. We set
m′ = m+2/δ+2

√
δ m+ 1/δ which satisfies m′ −m = 2

√
m/δ. Note that since we assumed 1/δ is a

constant, m is Θ(m). Now, by Chebyshev’s inequality, we have:

Pr[[[ |X| < m]]] ≤ Pr

ñññ
m′ − |X| > m′ −m =

2
√
m′
√
δ

ôôô
≤ δ

4
.

Clearly, when C = CL , p is a light-tailed distribution. Now, we need show that if p is drawn
randomly from CH , then it is (α, ρ)-scattered-heavy-tailed. Our main claim concerns the mass in the
fooling region:

Lemma 25 For a sufficiently large s = Ω(log δ−1/ρ), if we alter chunk i for i ≤ 3s/4, then the
probability mass in the fooling region is at least 2/(3s) and the hazard rate of the distribution in the
fooling region is decreasing by rate at least α = 0.0043.

We prove this lemma in Section F.3. Now, let s′ > s/2 denote the number of chunks such that
i ≤ 3s/4. Let sa denote the number of chunks we alter and replace f by fH among these s′ intervals.
It is not hard to see that E[[[sa ]]] = ρ′ · s′/2. Given the above lemma, if sa ≥ 3 s ρ/2, it is clear that at
least on ρ-fraction of the domain, the hazard rate decreases by rate at lest α. Therefore, p will be an
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(α, ρ)-scattered-heavy-tailed. We set ρ′ = 12 · ρ. Now, by the Chernoff bound, we show that sa is
large enough with high probability:

Pr[[[sa < 3 s ρ/2]]] = Pr

ïïï
sa
s′

<
ρ′

2
·
Å
1− 1

2

ãòòò
≤ exp (−3 s ρ/8) ≤ δ/4.

where the last inequality holds for s = Ω(log δ−1/ρ). Now, by the union bound, with probability
δ/2, we have at least m samples, and a random p ∈ C is either a light tailed distribution, or an
(α, ρ)-scattered-heavy-tailed one.

F.2. Proof of Lemma 23

Lemma 26 For s = Ω(m2), the total variation distance between the distribution over the sample
sets, DH and DL is at most δ/2.

Proof To prove the lemma, we propose a new process for drawing samples from a random
C ∈ {CL, CH} based on piossonization method. In this new process, instead of drawing sample from
the distribution directly, we first determine the number of samples in a chunk, and then draw samples
from each chunk separately.

Let p be a random distribution in C. We use mi to denote the number of sample in chunk i
when we draw Poi(m′) samples from p. Given the properties of the poissonization method, mi is a
random variable drawn from Poi(m′/s). We claim if mi = 1, regardless of C being equal to CL or
CH , the sample from chunk i, xi, is drawn from the exponential distribution fexp over chunk i. The
claim is trivial when C = CL or when we have not alter chunk i in p. Now, assume C = CH , and the
alteration happens. In this case, since p is randomly selected, the conditional distribution in chunk i
is either fH or fH each with probability half. Recall that we define fH to be in such a way that the
mixture of fH and fH is exactly fexp. Thus, for a random p ∈ CH , when mi = 1, sample x comes
from exactly fexp.

The above property implies that a sample set X for which each chunk has one sample will be
generated with the same probability regardless of the choice of C. Therefore, the total variation
distance between DH and DL is bounded by the probability of at seeing at least two sample from a
chunk. By properties of the Poisson distribution, we show it is very unlikely to see two samples from
the same chunk:

Pr[[[mi ≥ 2]]] = 1−Pr[[[mi = 0]]]−Pr[[[mi = 1]]] = 1− e−m′/s −m′ e−m′/s/s ≤ m′2

2 s2
.

Using the union bound, the probability of having a two samples from the same chunk is

∥DL −DH∥tv ≤ Pr[[[∃i : mi ≥ 2]]] ≤ m′2

2 s
≤ δ

2
.

where the last inequality is true when s ≥ m′2/δ = Θ(m2).

F.3. Proof of Lemma 25

Lemma 27 For a sufficiently large s = Ω(log δ−1/ρ), if we alter chunk i for i ≤ 3s/4, then the
probability mass in the fooling region is at least 2/(3s) and the hazard rate of the distribution in the
fooling region is decreasing by rate at least α = 0.0043.

Proof We prove this lemma in two parts. First, we show that the derivative of the hazard rate is
bounded above in the regions in which it is decreasing. Then, we show that in those decreasing
regions, the probability mass is a constant fraction of the total mass in that chunk. We previously
set β = 1.5 which we will use here, as well.
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Bounded Derivative of Hazard Rate First, we calculate the hazard rate for a chunk:

HRhard(x) =


Ae−β(x−xA)

1−(Fexp(xA)+A
β (1−e−β(x−xA)))

x ∈ [xA, x1)

h

1−(Fexp(xA)+A
β (1−e−β(x1−xA))+h(x−x1))

x ∈ [x1, x2)

Be−β(x−xB)

1−(Fexp(xA)+A
β (1−e−β(x1−xA))+h(x2−x1)+

B
β (e−β(x−xB)−1))

x ∈ [x2, xB)

(71)

=


A

(A−A
β )eβ(x−xA)+A

β

x ∈ [xA, x1)

h

A−A
β (1−e−β(x1−xA))−h(x−x1)

x ∈ [x1, x2)

B

(A−A
β (1−e−β(x1−xA))−h(x2−x1)+

B
β )eβ(x−xB)+B

β

x ∈ [x2, xB)

(72)

We consider the derivative of the hazard rate to determine the fooling regions and show that the
derivative is below −α:

d

dx
HR(x) =


−(β−1)eβ(x−xA)

((1− 1
β )eβ(x−xA)+ 1

β )
2 x ∈ [xA, x1)

h2

(C1−hx)2
x ∈ (x1, x2)

−BβC2e
β(x−xB)

(C2eβ(x−xB)+B
β )

2 x ∈ (x2, xB)

(73)

where C1 =
Ä
A− A

β

(
1− e−β(x1−xA)

)
+ hx1

ä
and C2 =

Ä
A− A

β

(
1− e−β(x1−xA)

)
− h(x2 − x1) +

B
β

ä
.

We first observe that because β > 1 , C1, C2 > 0 , the derivative of the hazard rate is positive in the
uniform region and negative in the two exponential regions. Thus, these are the fooling regions. We
now show that for a constant α, the derivatives of the hazard rate in the fooling regions are at most
−α . First, we lower bound the absolute value of this quantity in the first exponential region:

(β − 1)eβ(x−xA)ÄÄ
1− 1

β

ä
eβ(x−xA) + 1

β

ä2 ≥ β − 1ÄÄ
1− 1

β

ä
eβ(x−xA) + 1

β

ä2 (74)

≥ β − 1ÄÄ
1− 1

β

ä
A
h + 1

β

ä2 =
β2(β − 1)(

(β − 1)Ah + 1
)2 (75)

≥ β2(β − 1)Ä
β−1
h + 1

ä2 (76)

Next, we lower bound the absolute value of the derivative of the hazard rate in the second
exponential region:

BβC2e
β(x−xB)Ä

C2eβ(x−xB) + B
β

ä2 ≥ BβC2B/hÄ
C2 +

B
β

ä2 =
βC2B

2

h
Ä
C2 +

B
β

ä2 (77)

≥ βB3

h
Ä
A+ B

β + B
β

ä2 ≥ βB3Ä
1 + 2

β

ä2 . (78)

The transition from Eqn. 77 to Eqn. 78 results from bounding C2 as follows:

C = A−B =
A

β

Ä
1− e−β(x1−xA)

ä
+ h(x2 − x1) +

B

β

Ä
e−β(x2−xB) − 1

ä
(79)

⇒ A− A

β

Ä
1− e−β(x1−xA)

ä
− h(x2 − x1) +

B

β
= B +

B

β
e−β(x2−xB) = C2 . (80)
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Thus, A+ B
β > C2 > B .

Finally, it suffices to bound these quantities for intervals that lie in a certain region of the
distribution that comprises a constant fraction of the mass of the distribution. Thus, since we have
that i ≤ 3s/4, we know that xB ≤ − ln(1/4) = ln(4), implying that 1/4 ≤ A,B, h.This allows us to
bound Eqn. 78 by:

βB3Ä
1 + 2

β

ä2 ≥ β(1/4)3Ä
1 + 2

β

ä2 =
β

43
Ä
1 + 2

β

ä2
We also require a lower bound on h ; by definition, we have that h ≥ B = e−xB ≥ 1/4 . Finally, we
plug this back into the bounds from Eqn. 76 and Eqn. 78 to determine α :

α = min

Ñ
β2(β − 1)Ä
β−1
1/4 + 1

ä2 , β

43
Ä
1 + 2

β

ä2é
= min

Ç
β2(β − 1)

(4β + 3)
2 ,

β3

43 (β + 2)
2

å
When β = 1.5 , α ≈ 0.0043 .

Area Under Fooling Region Finally, we must show that the area under the fooling region is
large. To do this, we evaluate Fhard(xB)− Fhard(x2) + Fhard(x1)− Fhard(xA) and show that it is a
large fraction of C for the whole domain.

Evaluating this area, we get:

Fhard(xB)− Fhard(x2) + Fhard(x1)− Fhard(xA) =
A

β

Ä
1− e−β(1/β ln(A/h))

ä
+

B

β

Ä
e−β(1/β ln(B/h)) − 1

ä
(81)

=
A

β
− h

β
+

h

β
− B

β
=

C

β
(82)

Over the whole domain of the distribution, this is a constant fraction of C, the total area in a chunk.
When β = 1.5 , as before, 1/1.5 = 2/3 of the area in the chunk comes from the fooling region.

Thus, we have shown that in a chunk, a constant fraction of the area lies in a region with hazard
rate ≤ −α , for a constant α .

Appendix G. Discussion of Experiments

Here, we include a version of the algorithm with weaker theoretical guarantees that we used in our
experiments. We also discuss some preliminary experiments run on real-world data. Finally, we
present the details of the experiments run to compare our algorithm to a naive one.

G.1. TPC-H Job Distribution

Data and Methods We run experiments on a 2.8 GHz Intel i7 core using the algorithm presented
in Appendix G. The dataset considered is sampled from TPC-H queries (TPC). We use the dataset
curated by Mao et al. (2019), in which they sample jobs from different input sizes from 22 different
TPC-H queries. Our experiments verify their claim that the distribution of jobs over work is heavy-
tailed, which they justify by noting that about 20% of the jobs contain about 80% of the work, a
common heuristic for judging heavy-tailedness. In Figure 6, we plot the distribution of job durations
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Algorithm 2 Weak (α, ρ)-Heavy-Tailed Test
11 S1,S2,S3,S4 ← each n samples from the distribution
12 Sort S1,S2,S3,S4
13 Split into k equal weight buckets and determine interval endpoints I
14 Calculate L[i] = I[i+ 1]− I[i] and dL[i] = L[i+ 1]− L[i]

15 Calculate S[i] = L[i]
dL[i] for i ∈ {1, 2, ..., k − 2}

16 if S[i] < 1− i
k −

1
2gap(α) for any i ∈ {c1 · k, ..., c2 · k} then

17 PASS
else

18 FAIL
end

from the dataset and overlay an approximate Lomax fit. Notably, the distribution is not monotone,
which means it does not entirely obey our assumptions. Further, due to a limited number of jobs,
the distribution does not lie on an infinite domain. However, we show that the algorithm still picks
up on heavy-tailedness. We sample n = Θ(k4) ≈ 56 million samples for k = 50.

Results and Discussion We find that the test statistic considers the distribution heavy-tailed,
since not all of the indices considered “look” light-tailed in our statistic. In particular, the red dashed
line represents the test statistic calculated on samples from the distribution of jobs over work in
TPC-H. Thus, we are able to verify the claim of the authors of Mao et al. (2019) that this distribution
is heavy-tailed. It is worth noting that we have applied our algorithm to a practical setting where
several of the assumptions of our work do not hold, and the algorithm still shows some signal when
consider a heavy-tailed distribution. In order for this validation to be complete, however, we would
need to show that a light-tailed distribution that doesn’t match our assumptions exactly does not
behave unexpectedly.
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(a) (b)

Figure 6: The plot on the left shows the distribution of job duration with an approximate
Lomax fit. On the right, in (b), we plot the calculated value of the test statistic
in comparison to the threshold for considering a distribution heavy-tailed. Since
the dashed red line is below the orange at at least one point, the algorithm would
consider this distribution heavy-tailed, in line with the assessment of the authors
of Mao et al. (2019). We note that we don’t see a significant spread over many
runs, since the underlying distribution is finite. For the same reason, increasing
the number of samples would not add any benefit.

G.2. Comparison Against a Naive Algorithm

In this section, we describe experiments we ran to compare our algorithm to a naive algorithm, showing
that our algorithm has an edge in distinguishing difficult cases. We first explain the experimental
setup, including some context for why we chose the examples we did and the naive algorithm. We
then describe the results we saw, and finally posit an explanation as to why this is the case.

Motivation and Experimental Setup Our algorithm, to our knowledge, is the first finite-
sample algorithm for this problem over a continuous domain. As simple as our algorithm is, a natural
question is that of how a very naive algorithm might perform. In particular, we could attempt to
learn the CDF from samples, and then directly calculate the derivative of the hazard rate from that.
Based on the Dvoretzky–Kiefer–Wolfowitz (DKW) inequality, we know that with enough samples,
we can get a good approximation of the CDF. Thus, a simple idea would be to approximate the PDF
and derivative of the PDF from the empirical CDF and from there compute an approximation to
the derivative of the hazard rate. Since the DKW inequality provides a guarantee in terms of the
supremum of the difference between the true and empirical CDFs, a hard case for an algorithm that
learns the CDF would be one where the CDFs of two distributions are very close to one another in
CDF but are classified differently, one as heavy-tailed and one as light-tailed. To this end, we choose
the likelihood f(x) = exp(−x/ ln(x))9 and the PDF for an exponential, f(x) = exp(−x) .

As discussed in Appendix G, we implemented a weaker version of our algorithm that didn’t
involve the finer-grained buckets. We sought to distinguish the aforementioned distributions based on
samples drawn from the likelihood Fixing the number of samples, over the course of 50 repetitions,
we set half of them to be exponential and half to be the hard case, sampled from the chosen one, and
ran both our tester and the naive tester. We used appropriate settings for the constants β,B1, B2 for

9. the normalization constant is hard to calculate analytically so we did so numerically.
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the threshold of our algorithm. We then computed what percentage of the time each algorithm had
been correct, and we conducted this process for various sample sizes.

Results and Discussion From analytically calculating the hazard rate, we see that the distri-
bution has decreasing hazard rate over most of its support. However, from the plot of the hazard
rate from samples, the naive algorithm considers the distribution light-tailed early on, and almost
exponential later (constant hazard rate) (Figure 7). Our algorithm, too, confuses the distribution
for exponential late in the distribution. However, with the same number of samples, crucially, it
identifies the heavy-tailed-ness early on (Figure 8).

(a) (b)

Figure 7: Analytic Hazard Rate and Hazard Rate calculated by the naive algorithm for a
hard distribution, f(x) = exp(−x/ log(x))

Finally, we consider the success rates of our algorithm vs the naive one. In Figure 9, we note
that our algorithm starts to do better than random guessing with around 107 samples, where the
naive algorithm still does not do better than random guessing.
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Figure 8: The value of the statistic for our algorithm (averaged over two runs) also confuses
the distribution with an exponential toward the end of the domain (as evidenced
by the coincidence of the statistic with the threshold) but determines the heavy-
tailed-ness from early buckets.

Figure 9: Performance of Each Algorithm. Note that 0.5 is random guessing, and so only
our algorithm does better than that at any point.
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Appendix H. Low-sample Analysis

We analyze the performance of our algorithm when it is given fewer samples than what our theoretical
analysis requires. In specific applications, where the provable guarantees we give may not be required,
we may be able to get good enough results without as many buckets and samples.

→ more samples per bucket

5 buckets

10 buckets

20 buckets

30 buckets

Table 1: In this table, we consider (half) Gaussian (light-tailed) and Lomax (heavy-tailed)
distributions. We use smaller sample sizes (2500 to 20 million) than the experiments
in the main paper (Except for the bottom-rightmost plot, which has 81 million
samples). Observe that with fewer samples per bucket (further to left), there is
much more variation (pink area and light blue area) in the computed statistics, and
they do not behave as we would wish for our statistic to behave. In the rightmost
column, however, we start to see the value of our statistic gets very close to what
we theoretically expect, even with a small value for k. In particular, it concentrates
well in the tail. Indeed, in the rightmost column we see that for smaller values for k
(62,500 samples for k = 5) the test clearly distinguishes between the (half) Gaussian
and Lomax distributions. Despite promising behavior of the test even from such few
buckets and samples, it is essential to note that large k is theoretically necessary
to capture the behavior of an arbitrary underlying (well-behaved) distribution.
However, in specific applications, these provable guarantees may not be required,
and good enough results may be seen without as many buckets and samples in
these cases.
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