
Proceedings of Machine Learning Research vol 201:1–33, 2023 34th International Conference on Algorithmic Learning Theory

Reconstructing Ultrametric Trees from Noisy Experiments

Eshwar Ram Arunachaleswaran ESHWAR@SEAS.UPENN.EDU

Anindya De ANINDYAD@CIS.UPENN.EDU

Sampath Kannan KANNAN@CIS.UPENN.EDU

Department of Computer and Information Science, University of Pennsylvania

Editors: Shipra Agrawal and Francesco Orabona

Abstract
The problem of reconstructing evolutionary trees or phylogenies is of great interest in computa-
tional biology. A popular model for this problem assumes that we are given the set of leaves
(current species) of an unknown weighted binary tree and the results of ‘experiments’ on triples of
leaves (a, b, c), which return the pair with the deepest least common ancestor. If the tree is assumed
to be an ultrametric (i.e., with all root-leaf paths of the same length), the experiment can be equiv-
alently seen to return the closest pair of leaves. In this model, efficient algorithms are known for
reconstructing the tree.

In reality, since the data on which these ‘experiments’ are run is itself generated by the stochas-
tic process of evolution, it is noisy. In all reasonable models of evolution, if the branches leading
to the three leaves in a triple, separate from each other at common ancestors that are very close to
each other in the tree, the result of the experiment should be close to uniformly random. Motivated
by this, in the current paper, we consider a model where the noise in an experiment on any triple is
just dependent on the three pairwise distances (referred to as distance-based noise). Our results are
the following:

1. Suppose the length of every edge in the unknown tree is at least Õ(1√
n

) fraction of the length of a
root-leaf path, where n is the number of leaves. Then, we give an efficient algorithm to reconstruct
the topology of the unknown tree for a broad family of distance-based noise models. Further, we show
that if the edges are asymptotically shorter, then topology reconstruction is information-theoretically
impossible.

2. Further, for a specific distance-based noise model – which we refer to as the homogeneous noise model
– we show that the edge weights can also be approximately reconstructed under the same quantitative
lower bound on the edge lengths. Note that in the noiseless case, such reconstruction of edge weights
is impossible.

The phylogeny reconstruction problem is essentially the problem of hierarchical clustering.
Our result here apply to a suitably defined version of this problem.
Keywords: Ultrametric Binary Trees, Noisy Experiments, phylogenetic trees, distance based noise,
hierarchical clustering

1. Introduction

The problem of clustering is an important computational problem and a primitive that is used in
multiple domains with the goal of grouping elements based on some underlying notion of distance in
order to understand the relationship among them. In the standard clustering problem, the set of given
elements is to be partitioned into a few sets with the goal of putting similar elements in the same
partition (captured by minimizing an objective function). A natural and well studied variant (and

c© 2023 E.R. Arunachaleswaran, A. De & S. Kannan.

RECONSTRUCTING ULTRAMETRIC TREES

generalization) of this problem is hierarchical clustering, where the goal is to find a hierarchical
partition of the elements, in which groups of elements form a nested structure. Equivalently, a
hierarchical clustering can be thought of as a rooted tree with the elements at the leaves. Thus, the
task of hierarchical clustering can be seen as the task of recovering the underlying unknown rooted
tree.

Naturally, canonical applications of the problem of hierarchical clustering are settings where
there is an underlying tree structure – examples include learning evolutionary trees of a set of species
and evolutionary trees of languages. In particular, the problem of reconstructing evolutionary trees
or phylogenies from data about extant species is an important one in computational biology Saitou
and Nei (1987); Semple and Steel (2003); Farach and Kannan (1999); Mossel (2007); Kearney
et al. (1997); Ailon and Charikar (2005); Amir Ben-Dor and Benny Chor and Dan Graur and Ron
Ophir and Dan Pelleg (1998); Daskalakis et al. (2006); Erdős et al. (1999); Kannan et al. (1996);
Emamjomeh-Zadeh and Kempe (2018) and is the principal motivation for this paper.

In order to define a hierarchical clustering problem, we need the precise notion of similarity, as
well as the mode by which the algorithm gets access to this information. The formulation that is
closest to the one in this paper is from Kannan et al. (1996). Here, the evolutionary tree is assumed
to be an ultrametric binary tree, which is a weighted, rooted tree in which all root-leaf paths have the
same length. This assumption is often justified in the computational biology literature based on the
so-called molecular clock hypothesis, whereby the lengths of edges correspond to the evolutionary
time that they represent. Then since all extant species are alive today and they are the leaves of this
tree, they have all evolved for the same length of time. Consequently, all root to leaf paths have the
same length. The model in Kannan et al. (1996) assumes that we are able to perform experiments
on any 3 extant species (leaves) a, b, and c and the result of the experiment (alternately, referred
to as query) is the pair that is closest together, i.e., has the most recent least common ancestor. In
this model, the authors Kannan et al. (1996) give efficient algorithms for reconstruction of the tree
topology – in fact, they give several procedures, each obtaining a different tradeoff between the
running time and the number of experiments (i.e., queries).

A principal shortcoming of Kannan et al. (1996) is the assumption that the experiments do
not have any noise – on any triple (a, b, c), the queries always returns the closest pair. However,
experiments are often noisy and thus it is natural to ask if we can design a tree-reconstruction
algorithm which is tolerant to this noise. Several works such as Brown and Truszkowski (2013);
Gang Wu and Ming-Yang Kao and Guohui Lin and Jia-Huai You (2008); Emamjomeh-Zadeh and
Kempe (2018) have explored this theme. In particular, in Emamjomeh-Zadeh and Kempe (2018),
the authors gave an algorithm to reconstruct the (topology of the) ultrametric tree with O(n log n)
queries even in presence of noise. However, in all the previous works Brown and Truszkowski
(2013); Gang Wu and Ming-Yang Kao and Guohui Lin and Jia-Huai You (2008); Emamjomeh-
Zadeh and Kempe (2018), the probability of success is identical across queries – in other words,
each experiment is assumed to succeed with some fixed probability p > 1/2.

In this paper, we study the tree reconstruction problem under a broad family of noise models
where the noise on any triple (a, b, c) is just dependent on the three pairwise distances between the
leaves a, b and c – note that by the ultrametric assumption, the two largest distances are the same.
We refer to such noise models as distance-based noise models. Our motivation is that if the data
at the leaves is generated by a process like evolution then the data at each leaf is the result of a set
of stochastic mutations encountered on the path from the root to that leaf. If we have three leaves
a, b, and c where the least common ancestor of a and b is at distance 1 from the leaves, while the

2

RECONSTRUCTING ULTRAMETRIC TREES

least common ancestor of c with either a or b is at distance 1 + ε, then the expected number of
mutational differences between a or b on the one hand and c on the other hand, is quite close to
the expected number of mutational differences between a and b. Any experiment trying to assess
which pair is closest based on mutational differences would therefore have a good probability of
identifying the wrong pair in this situation. Finally, similar to Brown and Truszkowski (2013) (as
well as many other results in the phylogenetic reconstruction literature), we assume that the noise in
each experiment is permanent – i.e., repeating the same experiment always yields the same outcome.
Since repetitions of an experiment will use the same noisy data, this assumption is justified. This
naturally rules out repeating the same experiment as a way to denoise the answers, thus making the
algorithm design more challenging.

Our results: We now give an overview of our results. First of all, by rescaling the edge lengths
(alternatively referred to as weights), we can assume that all root to leaf paths are of unit length.
For our first algorithmic result, we define a so-called general noise model. This is any distance-
based noise model that satisfies some mild properties we refer to as the monotonicity and anti-
Lipschitzness properties. Informally, these properties say that the probability of getting the correct
pair is always greater than 1/3 (i.e. the experiments are better than uniformly random answers) and
that for each value of the maximum distance in a triple, the probability of the experiment returning
the closest pair in the triple is sufficiently sensitive to the distance between this pair.

More specifically, this success probability is monotonically decreasing as a function of the dis-
tance between the closest pair, and anti-Lipschitzness guarantees that this rate of decrease is at least
a constant. We argue that one should expect to see these conditions satisfied qualitatively by any
reasonable distance-based noise model for experiments to find the closest pair of a triple. The exact
conditions are described in Section 3.

Our first algorithmic result shows that in the general noise model, as long as each edge length
is at least Ω̃(n−1/2) (where n is the number of leaves), there is an algorithm that takes the results
of the

(
n
3

)
experiments and reconstructs the topology of tree with high probability (Theorem 1).

We also show a matching lower bound – namely, if the minimum edge length is õ(n−1/2), then it is
information-theoretically impossible to recover the topology of the tree (Theorem 6). Thus, together
Theorem 1 and Theorem 6 give the minimal requirements under which topology of the tree can be
recovered in the general noise model. Intuitively, these theorems quantify how “well-separated” the
vertices of an ultrametric tree need to be, for us to be able to exactly reconstruct the topology of the
tree under distance-based noise.

For our second algorithmic result, we explore a special instance of the general noise model
which we refer to as the homogeneous noise model. Let us denote this model by Qh(·) – then, on
the triple (a, b, c), the probability of returning the pair (a, b) is given by

Pr[Qh(a, b, c) = (a, b)] =
d(a, c) + d(b, c)

2(d(a, b) + d(b, c) + d(a, c))
,

where d(·, ·) denotes the distance function on the tree. Under natural ‘boundary conditions’ that
the probability of any pair being returned should approach 1/3 as the 3 pairwise distances approach
each other, that the probability of the closest pair being returned should approach some higher
constant value when the other two distances tend to infinity, and that the probability of returning
either wrong pair is equal, Qh(·) is essentially the only probability function that is a ratio of linear
functions. One particularly appealing feature is that the model is invariant upon rescaling of the
distance function d(·, ·). For the homogeneous noise model, we can achieve a significantly stronger

3

RECONSTRUCTING ULTRAMETRIC TREES

result than Theorem 1. In particular, in Theorem 5, we show that as long as all the edge weights
are at least Ω̃(n−1/2), there is an efficient algorithm to approximately reconstruct the edge weights.
In other words, for the homogeneous noise model, we can not just recover the topology of the tree
but the actual distances between leaves. Such a reconstruction of the edge weights is information-
theoretically impossible in models such as Kannan et al. (1996); Brown and Truszkowski (2013);
Gang Wu and Ming-Yang Kao and Guohui Lin and Jia-Huai You (2008); Emamjomeh-Zadeh and

Kempe (2018) where either the queries have no noise or the probability of success does not depend
on the pairwise distances. We remark that our techniques for reconstructing distances are quite
general, and should be applicable to a broader class of noise models. Determining the conditions
under which the entire ultrametric can be reconstructed is left as a topic for future work.

2. Related Work

The problem of reconstructing evolutionary trees has received a lot of attention over the years. There
are many formulations of this problem based on the type of data available and the objective function
being optimized. Most formulations assume that the observed data is on extant species or leaves of
an unknown tree. Objective functions seek to capture properties of the evolutionary process, with the
hope that the optimal tree under an objective function is in fact the true evolutionary tree. The most
popular formulations are distance-based methods Farach et al. (1995); Erdős et al. (1999); Erdös
et al. (1999); Saitou and Nei (1987); Mossel and Roch (2017); Daskalakis and Roch (2013) (where
we are given a matrix of distances between leaves and we want to find the best-fitting edge-weighted
tree), character-based methods Agarwala and Fernández-Baca (1994); Kannan and Warnow (1994);
Mossel and Roch (2005); Mossel and Steel (2007); Steel (2016), where we want to explain the
evolution of different characters, each taking on a state in each extant species using the fewest
number of state changes, and likelihood methods Neyman (1971); Felsenstein (1981); Farach and
Kannan (1999); Roch and Sly (2017), where we assume that evolution is a stochastic process drawn
from a family of processes, and want to estimate the most likely parameters. In all cases the data
observed at the leaves is the result of the stochastic process of evolution. These formulations and
other related types lend themselves naturally to the model considered in this paper.

As noted earlier, the closest formulation to that in our paper is the one introduced by Kannan
et al. (1996) on learning an ultrametric tree through experiments involving three leaves. In this pa-
per the authors seek to reconstruct an ultrametric tree given the outcomes of noise-free experiments
on triples. They show 3 different algorithms whose run-times vary from O(n2) to O(n log n). The
algorithm that takes O(n2) performs is a divide-and-conquer algorithm that performs a number of
experiments that is asymptotic to n log2 n, while the algorithm that runs in O(n log n) performs
a number of experiments that is bounded by 4n log n. Since experiments might be a lot more
expensive than computational time, the first algorithm might be preferable to the second. This
paper motivated several follow-ups such as Emamjomeh-Zadeh and Kempe (2018); Brown and
Truszkowski (2013); Gang Wu and Ming-Yang Kao and Guohui Lin and Jia-Huai You (2008) with
closely related models. In particular, in Emamjomeh-Zadeh and Kempe (2018), the authors con-
sidered a noisy version of these experiments to learn hierarchical clusterings, with each experiment
succeeding with some probability p > 1/2 or failing adversarially. In the current paper, we consider
the same problem but with a different, incomparable noise model. Similar to Emamjomeh-Zadeh
and Kempe (2018), the noise in each experiment is independent. However, the noise in our model
depends upon the pairwise distances of the triples involved, in contrast to Emamjomeh-Zadeh and

4

RECONSTRUCTING ULTRAMETRIC TREES

Kempe (2018). This leads to significant differences in the behavior of the noise model - in particular,
for three leaves a, b and c, where the pairwise distances are close to each other (in the ultrametric
tree), the probability of getting the correct answer can be as small as 1/3 + θ(logn√

n
) in our model.

An additional feature of our model is that each experiment can only be performed once (similar to
Brown and Truszkowski (2013)). In contrast, Emamjomeh-Zadeh and Kempe (2018) allows for rep-
etition of the same experiment multiple times with fresh randomness each time. Finally, we remark
that while Emamjomeh-Zadeh and Kempe (2018) allows for repetition of the same experiment, they
view the number of experiments (equivalently the query complexity) as a key measure of perfor-
mance of their algorithm – in fact, their topology reconstruction algorithm has query complexity
O(n log n) (which is essentially optimal). In contrast, the focus of this paper is to identify a broad
class of noise models under which tree reconstruction is even possible.

Besides evolutionary biology, “distance based noise models” have also been studied in other
reconstruction problem. In Tamuz et al. (2011), Tamuz et al. study the following problem: there
are n elements with an unknown embedding in the Euclidean space. The algorithm gets noisy
answers to relative similarity queries and the goal is to reconstruct this embedding. More precisely,
the algorithm can query any triple (a, b, c) with the underlying semantics being “Is a closer to b or to
c?”. On such a query, it gets the pair (a, b) with probability d(a,c)

d(a,b)+d(a,c) (and otherwise the pair (a, c)

is returned). Here d(·) is the underlying distance metric. We note that the model is both in form and
spirit, very similar to the homogeneous noise model studied in Theorem 5. Indeed, as the distances
d(a, b) and d(a, c) approach each other, the response to the query (a, b, c) is basically a coin flip.
On the other hand, if one of the distances is much smaller than the other, then the probability of
returning the closer pair approaches 1. Along similar lines Van Der Maaten and Weinberger (2012)
study the problem of learning a low dimensional embedding of a set of elements in Euclidean space
based upon seeing the closest pair in a triplet. Just as in our model, each possible closest pair
appears with a probability that depends upon an underlying dissimilarity/ distance function relating
these elements.

Distance-based models are also quite popular in the ranking literature. In particular, in the
well-known Bradley-Terry-Luce (BTL) model Bradley and Terry (1952); Luce (1959), there are
n elements where the ith element is assigned (an unknown) weight wi ∈ [0, 1] – thus defining a
total order on these elements. The algorithm queries pairs (i, j) and is returned i with probability
wi/(wi + wj). Note that this can be interpreted as a noisy comparison query where the probability
of returning the larger element depends on the relative scores of the two elements. The goal in the
BTL model is to recover the underlying ranking given these noisy comparison queries. Again, the
BTL model bears strong syntactic resemblance to our homogeneous noise model (from Theorem 5).
In fact, similar to the current paper, in the BTL model, each query can be made at most once. We
also note that higher arity generalizations of the BTL model have also been explored in literature,
for example, in Plackett (1975); McFadden (1973) (under the name multinomial logistic model).

Outside of distance-based noise models, there is large body of literature in computer science
which aims to model relations between elements by an (unknown) embedding in some metric space.
The algorithm makes relational queries and gets noisy responses where the noise is governed by the
hidden embedding. Several models including the famous stochastic block model McSherry (2001);
Mossel et al. (2018); Decelle et al. (2011); Abbe (2017) and its variants Chen et al. (2020) fit this
motif and the current paper can be seen as yet another instantiation of this general framework.
Further examples from the world of machine learning include Jamieson and Nowak (2011), Klein-

5

RECONSTRUCTING ULTRAMETRIC TREES

dessner and Luxburg (2014), Agarwal et al. (2007), Hoffer and Ailon (2015), Schultz and Joachims
(2003).

3. Model, Notation, and Preliminaries

There is an underlying weighted tree T with the weights constrained such that the distance function
between leaves is an ultrametric. We refer to any tree having this property as an ultrametric tree.
We assume that the height of the tree h(T) is normalized to 1.

Distance-Based Noise Model: For each triple of leaves (a, b, c), we perform an experiment
and get back one of the pairs (a, b), (b, c), or (c, a) probabilistically. Such an experiment will be
denoted by Q(a, b, c). Repeating an experiment produces the same answer, and results of distinct
experiments are independent of each other. Recall that in an ultrametric, the largest two of the three
pairwise distances are equal. Thus we will model the probabilities of different answers as a function
of just two distances — d1, the distance between the closest pair of leaves and d2 the distance
between either of the two other pairs in the triple (So d1 ≤ d2). In our model, the two incorrect
pairs have equal probabilities of being returned, which is justified because their pairwise distances
are the same. Thus, we define two probability functions: pCORRECT and pINCORRECT where pCORRECT

denotes the probability that the closest pair is returned and pINCORRECT denotes the probability that
each of the other pairs is returned. Thus ∀d1, d2, pCORRECT(d1, d2) + 2pINCORRECT(d1, d2) = 1.

We impose some mild conditions on the probability functions. First, we naturally insist that
pCORRECT > pINCORRECT, since otherwise the output of the experiment is not useful. Second, we
require that the probability of returning the correct pair is sufficiently sensitive to the change in
distance. In mathematical terms, for any d2 and 0 < d1 < d2, ∂pCORRECT(d1,d2)

∂d1
≤ −ε for some

constant ε > 0. We are implicitly also assuming that the probability functions are continuous in each
coordinate since we are assuming that their partial derivatives are defined. The latter assumption
captures both the monotonicity and anti-Lipschitzness properties mentioned in the introduction.

We will refer to this model as the distance-based noise model or the general noise model.
When it comes to reconstructing weights (Section 5), we show that this is possible for a specific

instantiation of the distance based model, called the homogeneous model, denoted by Qh(a, b, c).
Recall the definition of this model from the introduction - on the triple (a, b, c), the probability of
returning the pair (a, b) is given by

Pr[Qh(a, b, c) = (a, b)] =
d(a, c) + d(b, c)

2(d(a, b) + d(b, c) + d(a, c))
,

where d(·, ·) denotes the distance function on the tree.
If d(a, b) is the smallest of the 3 pairwise distances, then the probability of the experiment

returning (a, b) is between 1/3 and 1/2. Since the other two distances, d(a, c) and d(b, c) are equal
in an ultrametric, the experiment has equal probability of returning (a, c) or (b, c). Thus for pairs a, b
that are very close and c that is much farther, the probability of getting the result (a, b) approaches
.5, while for triples (a, b, c) whose least common ancestors are very close, the probability of getting
any pair approaches 1/3. In the introduction we provided intuition on why this is a natural model.

Even in this simple model, we cannot hope to reconstruct arbitrary ultrametrics as the following
example shows. Suppose the underlying tree is a balanced binary tree, where the edge at depth i has
weightC ·22i . Let the height of the tree be h = log n. (In this paragraph ‘height’ denotes the number
of edges on the longest root-leaf path, and ignores the weights of these edges.) The constant C is

6

RECONSTRUCTING ULTRAMETRIC TREES

chosen so that any root to leaf path has weight C ·
∑h−1

i=0 22i = 1. Now, consider any three leaves
a, b and c such that the least common ancestor for any of the pairs is at height at least h/2. Further,
for any three leaves x, y, z, let us call Qh(x, y, z) to be δ-random if any of the pairs is returned
with probability 1/3± δ. Then, the following can be easily verified. (i) The experiment Qh(a, b, c)
is exp(−Θ(n))-random. (ii) If x 6= a, b, c is any other leaf, then the experiments, Qh(a, b, x),
Qh(b, c, x) and Qh(a, c, x) are exp(−Θ(n))-random. (iii) If x, y 6= a, b, c are two other leaves,
then the experiments, Qh(a, x, y), Qh(b, x, y) and Qh(c, x, y) are exp(−Θ(n))-random. From the
above, it easily follows that using just

(
n
3

)
experiments, the relative topology of the leaves a, b and

c cannot be resolved.
Thus, we will need to impose some conditions on the ultrametric to make the problem tractable.

Specifically, we show that a lower bound on the length of each edge is necessary and sufficient (up
to log factors) for reconstructing the topology in the general model, and reconstructing the weights
in the homogeneous model.

Without loss of generality, we will assume that the tree is a full binary tree, since an internal
node with 1 child does not affect the response to any experiment and can be eliminated.

Through this paper, when we refer to events having overwhelmingly high probability, we mean
a probability of at least 1 − 1

n6 . Since we will consider at most o(n5) such events, using the union
bound, we can assume that all of them happen with high probability (at least 1− 1

n), and condition
our analysis upon this event.

We fix some standard notation for full binary trees that will be used in our algorithms.
Subtrees: By a subtree of some tree T , we will mean the entire tree rooted at some internal

node of T . (Thus we use the term “subtree” in a more restrictive manner than usual.) For any tree
T , L(T) denotes the set of leaves of T . We will also refer to the set of all leaves in the tree by L.

Subtree-Induced Partition: If TB is a subtree of T , it naturally partitions L(T)− L(TB) into
buckets S1, S2, · · ·Sk , where x and y are in the same bucket if and only if for any z ∈ L(TB), the
least common ancestors of x and z, and of y and z are the same. An alternative characterization of
these buckets is that x and y are in the same bucket if and only if for any z in TB , the closest pair
out of the triple (x, y, z) is (x, y). Each bucket can be thought of as a subtree hanging off from the
path from the root of TB to the root of T . Thus there is a natural order on the buckets that is defined
by this path, with S1 being the bucket closest to TB and Sk the farthest. A visual depiction is shown
in Figure 1.

Figure 1: Partition of buckets with respect to Subtree TB

For any j ∈ [k], the set of leaves in TB, S1, S2 · · ·Sj form the leaves of a subtree.

7

RECONSTRUCTING ULTRAMETRIC TREES

Induced Topology: For any subset of leaves S, the induced topology on S is defined by remov-
ing all leaves outside of S and removing internal nodes that now have only one child. (Since we are
talking about weighted trees, when we have an internal node v with one child, we replace the two
edges incident on v by a single edge whose weight is the sum of the weights of the two edges.) It is
not hard to see that the weighted tree obtained by this process will define an ultrametric on S. As a
special case, when TB is a subtree of T , we will denote the induced topology on the leaves not in
TB by T − TB . We will also define a slightly different induced topology where we replace TB by a
single leaf (of TB). We think of this operation as taking the quotient of T with respect to TB , and
denote the resulting topology by T /TB .

By the topology of a triple of leaves (x, y, z) we mean the induced subtree of T with just these
leaves. This topology is completely specified by specifying the pair among x, y, and z that has the
least common ancestor of smallest height.

Finally, we use some standard concentration inequalities and results about measures of statistical
distance in our paper. These can be found in Appendix D .

4. Reconstructing Full Binary Trees

This section is devoted to the proof of the following result.

Theorem 1 There exists an efficient algorithm Topology-Reconstruction, that works as follows:
Given access to the general model on the leaves of a weighted full binary ultrametric tree T where

all root-leaf paths are of length 1, and each edge is of weight at least τε

√
logn
n for some large con-

stant τ , Topology-Reconstruction exactly reconstructs the topology of this tree with high proba-
bility.

For simplicity’s sake, we normalize ε to be 1, the proof can be easily modified for general values
of ε by scaling the constant τ in the edge weight lower bound by 1

ε .
We start by providing a high-level description of the algorithm Topology-Reconstruction. We

want to infer an unknown tree T on a given set of leaves L. We are given the result of the exper-
iments on each triple (a, b, c) ∈ L. This result is one of the three possible pairs with probabilities
specified by the distance-based noise model (defined in Section 3). We use the phrase ‘resolving the
topology’ of a subtree T ′ to mean that we know the rooted tree representation of T ′.

Before describing the algorithm, we make an important observation regarding the probability of
getting the correct answer.

Observation 1 The assumption that all edge weights are at least τ
√

(log n/n) implies that d1 +
2τ
√

(log n/n) ≤ d2 for the distances d1, d2 involved in every experiment Q(a, b, c). Thus, using
the properties of the model, we observe that pCORRECT ≥ pINCORRECT + 2τ

√
(log n/n).

Our algorithm works by resolving the topologies of small subtrees, and then stitching these
together until all of T is resolved.

1. In a bottom-up manner by combining sibling subtrees, we build a “base” tree TB containing
between

√
n and 2

√
n leaves that is a subtree of T with high probability. (This is as large a

tree as we can build to be confident that we have a subtree of T .)

8

RECONSTRUCTING ULTRAMETRIC TREES

2. We use the same idea to build a “pivot” tree TP on about the same number of leaves outside
of L(TB). With high probability, TP will also be a subtree of the induced tree on L−L(TB).

3. Using the fact that |L(TB)| × |L(TP)| = Ω(n), we partition the leaves in L(T)−L(TB) into
3 parts (some possibly empty) — leaves in buckets to the left of TP (i.e., buckets with smaller
indices than the bucket that the leaves of TP come from), leaves in the same bucket as TP ,
and leaves in buckets to the right of TP (i.e., buckets with larger indices than the bucket(s)
that the leaves of TP come from).

4. We show that if a subtree excludes Ω(n) leaves then we can infer its entire topology with high
probability. Likewise, if it contains Ω(n) leaves, we can infer the topology of the complement
of the subtree with high probability. Using these two facts, we fully resolve the topology of
all but one of the 3 parts in the previous step and recurse on the unresolved part. When this
part has fewer than 11n

12 leaves, we can infer its topology directly from the leaves outside, and
the recursion bottoms out.

We will now elaborate on the algorithm. All proofs in the section have been moved to Ap-
pendix A in the interest of space. To begin, we state a lemma that establishes the claims made in
Step 4 above.

Lemma 2 There exists an algorithm Completion that takes as input a subtree T ′ of an ultrametric
tree T with n leaves and has the following properties.

1. Given the set L(T ′), if |L(T ′)| ≥ n
24 , Completion resolves the topology of the quotient T /T ′

with high probability. (Recall that this quotient is arrived at by collapsing T ′ to a single leaf
and taking the induced topology on the resulting set of leaves.)

2. Given the set L(T ′), if |L(T ′)| ≤ n− n
25 , Completion resolves the induced topology on this

set with high probability.

We now fill in the details of Step 1 in our algorithm outline above, describing and analyzing
an algorithm that constructs an approximately

√
n sized subtree within the induced tree of a large

enough set of leaves.

Lemma 3 There exists an algorithm Build-Subtree that given a subset S ⊆ L of leaves with
|S| ≥ n

12 , finds a subtree T ′ of TS such that |L(T ′)| ∈ [
√
n, 2
√
n] w.h.p. Here TS denotes the

(unknown) induced topology on S.

We show how to partition the leaves within a contiguous interval of buckets onto either side of
a
√
n sized subtree in the induced topology on the leaves within this interval.

Lemma 4 There exists an algorithm Partition that takes the following inputs: 1) A subtree TB of
T with |TB| ≥

√
n, 2) A contiguous interval I in the partition of buckets with respect to TB , and

3) A subtree TP of the tree induced on L(I) such that
√
n ≤ |L(TP)| ≤ 2

√
n and w.h.p. partitions

L(I)−L(TP) into 3 sets P1, P2, and P3 such that P1 consists of all leaves in lower indexed buckets
than the leaves of TP , P2 consists of leaves in the same bucket(s) as TP , and P3 consists of leaves
in higher numbered buckets. If L(TP) comprises leaves from more than one bucket, then P1 and P2

are empty.

9

RECONSTRUCTING ULTRAMETRIC TREES

Before describing the algorithm, we introduce some notation that will aid in describing and
tracking the progress of the algorithm.

We have seen that we can bucket the complement of a subtree TB . We can also find a subtree
of the induced tree on one of the buckets, and partition the rest of the leaves in this bucket. We can
recurse on this idea, repeatedly descending into one of the buckets in a partition, finding a subtree
in this bucket, and partitioning the leaves in the bucket not in the subtree. We call this a recursive
bucketing of the tree.

We make a straightforward observation about the buckets in a recursive bucketing, which can
be seen by induction over the depth of the recursion.

Observation 2 The leaves in the bucket of a recursive bucketing form the leaves of a subtree of the
entire tree.

As an immediate corollary, a subtree in the induced topology of the leaves of a bucket of a
recursive bucketing is in fact a subtree of the entire tree.

Consider a recursive bucketing within a bucket B containing at least 11n
12 leaves with a base tree

TB of size in [
√
n, 2
√
n]. Let TP be a pivot tree of size in [

√
n, 2
√
n] in the induced topology of

L(B) \L(TB). On using the algorithm Partition from Lemma 4, we get three partitions P1, P2 and
P3 of the leaves in the bucket and not in the base or pivot tree. We show that any partition with
less than 11n

12 leaves can be partially resolved, i.e., added to the set of leaves for which we know the
answer to any closest pair of three leaves.

Claim 1 There exists an algorithm Partial-Resolution that resolves any partition P with fewer
than 11n

12 leaves.

Proof At most one of the partitions can be larger than 11n
12 . First, we deal with the case where one

of the partitions has at least 11n
12 leaves. If P1 is this partition, then TB ∪ P1 forms a subtree in

the induced topology of the recursive bucket B and hence is a subtree of the entire tree with over
11n
12 leaves. We can thus use Lemma 2 to resolve P2 and P3. When P2 has at least 11n

12 leaves,
TB ∪ P1 ∪ P2 is a subtree with at least 11n

12 leaves and can therefore be used (through Lemma 2) to
resolve P3. Further, TB ∪ P1 is a subtree with at most n

12 leaves, therefore we can use Lemma 2 to
resolve this subtree and hence P1. If P3 is the largest partition, then TB ∪ P1 ∪ P2 is a subtree with
at most n

12 leaves, which allows us to resolve P1 and P2.
Now, consider the case where all three partitions have fewer than 11n

12 leaves. Since the recursive
bucket B has 11n

12 leaves and the base and pivot trees have at most 2
√
n leaves, the largest partition

has at least n
3 leaves. In the first case, let P1 be the largest partition. Then the subtree TB ∪ P1

has at least n
3 leaves and at most 11n

12 + 2
√
n leaves, allowing us to resolve the entire tree using

Lemma 2. If P2 is the largest partition, the algorithm again branches into two cases – either P1 has
at least n

24 leaves or it does not. If P1 has at least n
24 leaves, then the subtree TB ∪ P1 has at least

n
24 leaves and at most 11n

12 leaves, allowing us to resolve the entire tree using Lemma 2. Else, if
P1 has less than n

24 leaves, then the subtree TB ∪ P1 ∪ TP ∪ P2 has at least n3 leaves and at most
11n
12 + n

24 + 4
√
n leaves, allowing us to resolve the entire tree using Lemma 2. Finally, consider P3

being the largest partition. Consider the case where P1 and P2 have at least n
24 leaves together. In

this case, the subtree TB ∪P1 ∪TP ∪P2 has at least n
24 leaves and at most 2n

3 leaves, allowing us to
resolve the entire tree using Lemma 2. If P1 and P2 do not have n

24 leaves in total, then the subtree

10

RECONSTRUCTING ULTRAMETRIC TREES

TB ∪ P1 ∪ TP ∪ P2 ∪ P3 has at least n3 leaves and at most 11n
12 + n

24 + 4
√
n leaves, allowing us to

resolve the entire tree using Lemma 2.

Algorithm 1 Algorithm Topology-Reconstruction
Initialization: Create a base tree TB with no. of leaves in [

√
n, 2
√
n] using Build-Subtree

(Lemma 3). Let the resolved leaves be R = L(TB) and the unresolved leaves U be the rest of
the tree. Set the current recursive bucket B to be the entire tree
while U is non empty do

1. Use Algorithm Build-Subtree to build a subtree TP of the induced topology of U , with
Θ(
√
n) leaves.

2. Use Algorithm Partition to partition the leaves L(B) \ (L(TP) ∪ L(TB)) into the partitions
P1, P2 and P3

3. Use algorithm Partial-Resolution to resolve any of the partitions with less than 11n
12 leaves.

4. If either P1 or P3 has more than 11n
12 leaves, then set U ← (U \ TP)∩P where P is the large

partition.

5. If P2 has more than 11n
12 leaves, set the new recursive bucket B ← TP ∪ P2, set the base tree

TB ← TP and set U ← U ∩ P2.

end

In the course of our algorithm, we maintain a set of “resolved leaves” R with the property
that we know the answers to all queries involving only leaves from this set. The complement set
of “unresolved” leaves U has the additional invariant property that it is exactly the set of leaves
contained in some contiguous interval of buckets in a recursive bucketing. Our algorithm works by
shrinking the set U and growing the set R by at least

√
n in each step. Additionally, we keep track

of the current recursive bucketing (through the variable B) and ensure that it always has at least 11n
12

leaves. In fact, we maintain the stronger property that the unresolved set U has at least 11n
12 leaves

at the start of each iteration of the for loop and B contains U . The progress of the algorithm can
be seen from the fact that each iteration of the while loop reduces the size of the unresolved set
by at least

√
n (the minimum size for the pivot tree TP). We note two subtle points used in the

execution of the algorithm. First, we use the algorithm Partition to partition the leaves of a large (at
least 11n

12 leaves) recursive bucket rather than the entire tree as the algorithm is originally described.
However, it is easy to see that the algorithm and its analysis in facts works as is for this altered
application. Second, we critically use the invariant that the unresolved set has at least 11n

12 leaves (or
it is resolved using Partial-Resolution) in using Build-Subtree to construct a pivot tree TP in the
induced topology of U (since the precondition is that the set must have at least n

12 leaves).
To conclude the proof of Theorem 1, we argue that the algorithm Topology-Reconstruction

succeeds with high probability. The key observation is that we use the various subroutines Completion,
Build-Subtree and Partition at most O(

√
n) times each. This is because we reduce the size of the

unresolved part by
√
n using only a constant number of calls to these subroutines. Each of them as-

sume at most O(n3) overhwelmingly high probability events to be simultaneously true to succeed,

11

RECONSTRUCTING ULTRAMETRIC TREES

implying that we only need a total of O(n7/2) overwhwelmingly high probability events to all be
true for the algorithm to correctly recover the topology of the tree. Since each of them occurs with
probability at least 1 − 1

n6 , an application of the union bound gives us the desired result. Further,
since each subroutine runs in polynomial time, the overall algorithm is also efficient.

5. Weight Reconstruction

In the previous section, we gave an algorithm to reconstruct the topology of the tree in the general
model. In this section, we will show how to approximately reconstruct the edge weights in the
homogeneous model. The precise theorem is stated below (Theorem 5). Assuming that each root
to leaf path has unit weight, our algorithm can reconstruct the tree as long as each edge has weight
at least τ · log n/

√
n. Note that the condition required here is stronger than Theorem 1 where it

suffices that each edge weight is Ω(
√

log n/n).

Theorem 5 There exists an algorithm Tree-reconstruct-weight, that works as follows: Given
access to the homogeneous model on the leaves of a weighted full binary ultrametric tree T where
all root-leaf paths have length 1 and all edges have weight at least τ logn√

n
for some large constant

τ , Tree-reconstruct-weight reconstructs the weight of each edge with high probability within an
additive error κ logn√

n
, where κ� τ .

We explain the high-level strategy for procedure Tree-reconstruct-weight. Instead of estimat-
ing the weight of each edge, we will give a procedure which for any vertex v, will estimate the
weight of the path from root to v up to an additive κ log n/2

√
n. This trivially implies reconstruc-

tion of the weight of each edge up to ±κ log n/
√
n. Our algorithm assumes that τ � κ.

Since the homogeneous model is a special case of the general model (with ε = 1/6) and the
edge weights satisfy the condition required by Theorem 1 on the edge weights, we can first run
Topology-Reconstruction to reconstruct the topology of the tree (with high probability). The rest
of the proof assumes we have access to the topology of the tree. The main workhorse for weight
reconstruction is the idea that if we have two leaves a and b that lie in the left subtree of some node
v, and the right subtree of v has Ω(n) leaves, then we can get a good approximation to the height
of the least common ancestor of a and b. A related idea is that if we have an internal node v such
that the product of the number of leaves in its left and right subtrees is Ω(n), then we can also get
a good approximation to the height of v. This leaves the case of nodes v for which neither of these
properties is true and much of the technical difficulty of our algorithm is in handling such nodes
(Lemma 13). For such a node we get several coarse approximations of its height, which need to be
combined carefully because of subtle dependence between these approximations.

In interest of space, we move the detailed description of the algorithm and its associated proof
to Appendix B.

6. Necessary Conditions

The goal of this section is to show that to reconstruct the topology of the tree, it is necessary for
each edge to have weight Ω(1/

√
n) – thus, essentially matching the lower bound assumption in

Theorem 1. Recall that we normalize the edge weights so that the height (weighted root to leaf
distance) of the tree is 1.

12

RECONSTRUCTING ULTRAMETRIC TREES

Figure 2: Lower Bound Instance Tree T1 Figure 3: Lower Bound Instance Tree 2

In the theorem below, we give a nearly matching lower bound on the minimum weight of each
edge even for topology reconstruction in our model. We also note that such edge weight lower
bounds are commonplace in the literature on phylogenetic reconstruction Felsenstein (1981); Farach
and Kannan (1999); Erdős et al. (1999).

Theorem 6 Let T be the set of weighted full binary trees tree such that the weights induce an
ultrametric on the distances between leaves (within each tree). Then, for any algorithm with access
to the homogeneous model, as described in Section 3), there exist two trees with edge weights
allowed to be as small as ρ√

n
that the algorithm cannot distinguish with better than .51 probability.

Here ρ is a sufficiently small constant (ρ ≤ 1
100). A fortiori, we obtain the same lower bound for the

general model as well.

To prove this result, we construct two trees with the following properties:

1. They have distinct topologies and the weight of each edge is at least ρ/
√
n.

2. It is information-theoretically impossible to distinguish between the trees with probability
more than 0.51 (in the homogeneous model).

The two trees T1 and T2 are as follows. Both have roots with identical weighted left subtrees B.
The right subtrees of both T1 and T2 both have three leaves a, b, and c but with different induced
topologies. In T1, a and b are sibling leaves with parent p. The parent of c and p is the node q,
which is the right child of the root. In T2, a and c are siblings, whose parent is x. x and b have a
parent y, which is the right child of the root. All ‘corresponding’ edge lengths are identical and in
particular, the edges (p, q) and (x, y) have weight ρ√

n
. The edges to the sibling pair of leaves in the

right subtree of both trees have the same weight, say 1
3 . The two trees we construct are shown in

Figures 2 and 3.
The rest of the proof of Theorem 6 has been moved to Appendix C.

13

RECONSTRUCTING ULTRAMETRIC TREES

Acknowledgements

The first author was supported by NSF Award CCF 1910534 and ”start up support from the Uni-
versity of Pennsylvania”, the second author was supported by NSF Awards CCF 1926872, CCF
1910534 and CCF 2045128 and the third author was supported by NSF Award CCF 1763307.

References

Gang Wu and Ming-Yang Kao and Guohui Lin and Jia-Huai You. Reconstructing phylogenies from
noisy quartets in polynomial time with a high success probability. Algorithms for Molecular
Biology, 3(1):377–390, 2008.

Emmanuel Abbe. Community detection and stochastic block models: recent developments. The
Journal of Machine Learning Research, 18(1):6446–6531, 2017.

Sameer Agarwal, Josh Wills, Lawrence Cayton, Gert Lanckriet, David Kriegman, and Serge Be-
longie. Generalized non-metric multidimensional scaling. In Artificial Intelligence and Statistics,
pages 11–18. PMLR, 2007.

Richa Agarwala and David Fernández-Baca. A polynomial-time algorithm for the perfect phy-
logeny problem when the number of character states is fixed. SIAM J. Computing, 23:1216–1224,
January 1994.

Nir Ailon and Moses Charikar. Fitting tree metrics: Hierarchical clustering and phylogeny. In 46th
Annual IEEE Symposium on Foundations of Computer Science (FOCS’05), pages 73–82. IEEE,
2005.

Amir Ben-Dor and Benny Chor and Dan Graur and Ron Ophir and Dan Pelleg. Constructing
phylogenies from quartets: elucidation of eutherian superordinal relationships. . Journal of Com-
putational Biology, pages 377–390, Jan 1998.

Boaz Barak, Moritz Hardt, Ishay Haviv, Anup Rao, Oded Regev, and David Steurer. Rounding
parallel repetitions of unique games. In 2008 49th Annual IEEE Symposium on Foundations of
Computer Science, pages 374–383. IEEE, 2008.

Ralph Allan Bradley and Milton E. Terry. Rank Analysis of Incomplete Block Designs: I. The
Method of Paired Comparisons. Biometrika, 39(3/4):324–345, 1952.

Daniel Brown and Jakub Truszkowski. Fast error-tolerant quartet phylogeny algorithms. Theoretical
Computer Science, 483:104–114, 2013.

Yu Chen, Sampath Kannan, and Sanjeev Khanna. Near-perfect recovery in the one-dimensional
latent space model. In Proceedings of The Web Conference 2020, pages 1932–1942, 2020.

Constantinos Daskalakis and Sebastien Roch. Alignment-free phylogenetic reconstruction: Sample
complexity via a branching process analysis. The Annals of Applied Probability, 23(2):693–721,
2013.

14

RECONSTRUCTING ULTRAMETRIC TREES

Constantinos Daskalakis, Elchanan Mossel, and Sébastien Roch. Optimal phylogenetic reconstruc-
tion. In Proceedings of the thirty-eighth Annual ACM Symposium on Theory of Computing, pages
159–168, 2006.

Aurelien Decelle, Florent Krzakala, Cristopher Moore, and Lenka Zdeborová. Asymptotic analysis
of the stochastic block model for modular networks and its algorithmic applications. Physical
Review E, 84(6):066106, 2011.

Ehsan Emamjomeh-Zadeh and David Kempe. Adaptive Hierarchical Clustering Using Ordinal
Queries. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, page 415–429, 2018.

Péter L Erdős, Michael A Steel, László A Székely, and Tandy J Warnow. A few logs suffice to build
(almost) all trees (i). Random Structures & Algorithms, 14(2):153–184, 1999.

Péter L Erdös, Michael A Steel, LászlóA Székely, and Tandy J Warnow. A few logs suffice to build
(almost) all trees: Part II. Theoretical Computer Science, 221(1-2):77–118, 1999.

M. Farach, S. Kannan, and T. Warnow. A robust model for finding optimal evolutionary trees.
Algorithmica, 13(1-2):155–179, February 1995.

Martin Farach and Sampath Kannan. Efficient algorithms for inverting evolution. Journal of the
ACM (JACM), 46(4):437–449, 1999.

Joseph Felsenstein. Evolutionary trees from DNA sequences: a maximum likelihood approach.
Journal of Molecular Evolution, 17(6):368–376, 1981.

Elad Hoffer and Nir Ailon. Deep metric learning using triplet network. In International workshop
on similarity-based pattern recognition, pages 84–92. Springer, 2015.

Kevin G Jamieson and Robert Nowak. Active ranking using pairwise comparisons. Advances in
neural information processing systems, 24, 2011.

Sampath Kannan and Tandy Warnow. Inferring evolutionary history from dna sequences. SIAM J.
Computing, 23(4):713–737, August 1994.

Sampath K Kannan, Eugene L Lawler, and Tandy J Warnow. Determining the evolutionary tree
using experiments. Journal of Algorithms, 21(1):26–50, 1996.

Paul E. Kearney, Ryan B. Hayward, and Henk Meijer. Inferring Evolutionary Trees from Ordinal
Data. In Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
418–426, 1997.

Matthäus Kleindessner and Ulrike Luxburg. Uniqueness of ordinal embedding. In Conference on
Learning Theory, pages 40–67. PMLR, 2014.

R Duncan Luce. Individual choice behavior: A theoretical analysis. Courier Corporation, 1959.

Daniel McFadden. Conditional logit analysis of qualitative choice behavior. 1973.

15

RECONSTRUCTING ULTRAMETRIC TREES

Frank McSherry. Spectral partitioning of random graphs. In Proceedings 42nd IEEE Symposium
on Foundations of Computer Science, pages 529–537. IEEE, 2001.

Elchanan Mossel. Distorted Metrics on Trees and Phylogenetic Forests. IEEE/ACM Transactions
on Computational Biology and Bioinformatics, 4(1):108–116, 2007.

Elchanan Mossel and Sébastien Roch. Learning nonsingular phylogenies and hidden Markov mod-
els. In Proceedings of the thirty-seventh annual ACM symposium on Theory of Computing, pages
366–375, 2005.

Elchanan Mossel and Sebastien Roch. Distance-based species tree estimation under the coales-
cent: information-theoretic trade-off between number of loci and sequence length. The Annals of
Applied Probability, 27(5):2926–2955, 2017.

Elchanan Mossel and Mike A. Steel. How much can evolved characters tell us about the tree that
generated them? In Olivier Gascuel, editor, Mathematics of Evolution and Phylogeny. Oxford
University Press, 2007.

Elchanan Mossel, Joe Neeman, and Allan Sly. A proof of the block model threshold conjecture.
Combinatorica, 38(3):665–708, 2018.

Jerzy Neyman. Molecular studies of evolution: a source of novel statistical problems. In Statistical
decision theory and related topics, pages 1–27. Elsevier, 1971.

Robin L Plackett. The analysis of permutations. Journal of the Royal Statistical Society: Series C
(Applied Statistics), 24(2):193–202, 1975.

David Pollard. A User’s Guide to Measure Theoretic Probability. Cambridge Series in Sta-
tistical and Probabilistic Mathematics. Cambridge University Press, 2001. doi: 10.1017/
CBO9780511811555.

Sebastien Roch and Allan Sly. Phase transition in the sample complexity of likelihood-based phy-
logeny inference. Probability Theory and Related Fields, 169(1):3–62, 2017.

Naruya Saitou and Masatoshi Nei. The neighbor-joining method: a new method for reconstructing
phylogenetic trees. Molecular biology and evolution, 4(4):406–425, 1987.

Matthew Schultz and Thorsten Joachims. Learning a distance metric from relative comparisons.
Advances in neural information processing systems, 16, 2003.

C. Semple and M. Steel. Phylogenetics. Oxford Lecture Series in Mathematics and Its Applications.
Oxford University Press, 2003.

Mike Steel. Phylogeny: discrete and random processes in evolution. SIAM, 2016.

Omer Tamuz, Ce Liu, Serge Belongie, Ohad Shamir, and Adam Tauman Kalai. Adaptively learning
the crowd kernel. In International Conference on Machine Learning (ICML), 2011.

Laurens Van Der Maaten and Kilian Weinberger. Stochastic triplet embedding. In 2012 IEEE
International Workshop on Machine Learning for Signal Processing, pages 1–6. IEEE, 2012.

16

RECONSTRUCTING ULTRAMETRIC TREES

Appendix A. Proofs from Section 4 (Topology Reconstruction)

Before describing the proofs of the different parts used in our algorithm, we state and prove a simple
lemma about sums of independent random variables that recurs in multiple proofs.

Lemma 7 Let L ≥ n
25 , let X1, X2, · · ·XL and Y1, Y2, · · ·YL be two sets of independent 0 − 1

random variables such that for all i ∈ [L], E[Xi] ≤ E[Yi] − c
√

(log n/n), for a sufficiently large
constant c. Let X =

∑l
i=1Xi and let Y =

∑l
i=1 Yi Then, with overhwelmingly high probability,

i.e. at least 1− 1/n6, we have Y > X + 24
√
n log n.

Alternatively, if Xi and Yi are identical random variables for each i, with overhwelmingly high
probability, we have |X − Y | < 12

√
n log n.

Proof Since X and Y are each sums of at least n
25 independent 0, 1 random variables, we use the

Hoeffding bound (Theorem 16) to argue that the events |X−E[X]| ≤ 6
√
n log n and |Y −E[Y]| ≤

6
√
n log n each happen with probability at least 1− 1

2n6 . Using the union bound, both events happen
with probability at least 1− 1

n6 .

For the first part of the lemma, since for each i ∈ [L], E[Xi] ≤ E[Yi]− c
√

logn
n , using linearity

of expectation gives : E[X] ≤ E[Y] − c
√

logn
n . Using the triangle inequality, we conclude that

|X − Y | < 12
√
n log n is true with probability at least 1− 1

n6 .
For the second part of the lemma, sinceXi and Yi are identical random variables, E[X] = E[Y].

Using the triangle inequality, we conclude that Y > X+24
√
n log n is true with probability at least

1− 1
n6 .

A.1. Proof of Lemma 2

Part 1: First, we describe how Completion reconstructs the buckets S1, S2, · · ·Sk that partition
L(T)− L(T ′). Let L′ be the set of leaves in T ′.

The following test is used to resolve the relative order of two leaves x, y ∈ L \ L′. For each
a ∈ L′, the random variable Xa is set to 1 if the result of the experiment Q(a, x, y) is (a, x), and to
0 otherwise. Similarly, the random variable Ya is set to 1 if the result of this experiment is (a, y),
and to 0 otherwise. Let X =

∑
a∈L′ Xa and Y =

∑
a∈L′ Ya.

If X − Y > 24
√
n log n, then we declare that x’s bucket has a lower index than y’s. Otherwise,

if |X − Y | ≤ 24
√
n log n, we say that x and y are in the same bucket. We prove that this algorithm

is correct with high probability.
We first show that the above method of comparison works correctly for any pair of leaves x, y

in different buckets. Without loss of generality, x ∈ Si and y ∈ Sj with i < j. Using Observation 1

about experiment Q(a, x, y), we conclude that E[Xa] − E[Ya] ≥ 2τ
√

logn
n . Using Lemma 7, we

get the desired result about the comparison of X and Y , with high probability.
We next extend the result to pairs of leaves x, y in the same bucket Si. We know that d(a, x) =

d(a, y) > d(x, y) for all a ∈ L′.Thus, Xa and Ya are identically distributed random variables
(since our noise model guarantees that the two incorrect answers to a experiment appear with equal
probability). Using the second part of Lemma 7, we get the desired result about the comparison of
X and Y , with high probability.

17

RECONSTRUCTING ULTRAMETRIC TREES

Finally, Completion labels the buckets generated by doing all pairwise tests using a standard
topological sorting algorithm to recover the original labels. O(n2) high probability events are as-
sumed to simultaneously occur as part of this proof, since we are comparing all pairs of leaves.

In the next phase, the algorithm Completion resolves the closest pair of three leaves from the
same bucket. A score sab is associated with each pair of leaves a, b ∈ Si and a 0 − 1 random
variables Xx

ab is defined for each x ∈ L′. Each pair a, b has at least n
25 associated random variables.

Xx
ab is set to 1 if Q(a, b, x) is (a, b) and 0 otherwise. Let sab =

∑
x∈L′ X

x
ab. Given three leaves

a, b, c ∈ Si the pair with the highest score is declared to be the closest pair.
We argue that this test succeeds with high probability. Let (a, b) be the closest pair among

(a, b, c). We will show that with high probability sab > sbc. (An identical argument helps establish

that sab > sac.) We observe that d(b, c) ≥ d(a, b) + 2τ
√

logn
n and d(a, b) < d(b, c) < d(a, x) =

d(b, x) = d(c, x) for all x ∈ L′. By the properties of the noise model (the bound on the partial

derivative), we get E[Xx
ab]− E[Xx

ac] ≥ 2τ
√

logn
n . Using Lemma 7, we get the desired result about

the comparison of sab and sbc, with high probability.
O(n3) high probability events are assumed to simultaneously occur as part of this proof, since

we are separately arguing correct recovery of the closest pair for every possible set of three leaves.
Part 2: Let L′ be the set of leaves in T ′. We describe how the algorithm Completion recovers

the topology of T ′.
A score sab is associated with each pair of leaves a, b ∈ L′ and a 0 − 1 random variables Xx

ab

is defined for each x ∈ L \ L′. Each leaf pair a, b has at least n
25 associated random variables.

Xx
ab is set to 1 if Q(a, b, x) is (a, b) and 0 otherwise. Let sab =

∑
x∈L\L′ X

x
ab. Given three leaves

a, b, c ∈ L′, the closest pair is chosen as the pair with the largest score. The argument that this test
succeeds with high probability uses Lemma 7 in a manner similar to the proof of Part 1 and hence
we omit it. O(n3) high probability events are assumed to simultaneously occur as part of this proof,
since we are separately arguing correct recovery of the closest pair for every possible set of three
leaves.

A.2. Proof of Lemma 3

The algorithm Build-Subtree builds subtrees of TS from the ground up, starting with each leaf in
S as a singleton subtree. Let T1, T2, · · ·Tl represent subtrees of TS whose leaves form a disjoint
partition of S - in each step the algorithm, with high probability, combines two of these subtrees
to form a larger subtree of TS . Let Li represent the set of leaves of Ti. Using this procedure and
starting with the initial configuration, the algorithm repeatedly keeps applying this step until the size
of the largest subtree exceeds

√
n − 1. Since each step can at most double the size of the largest

subtree, we obtain a subtree of TS of size in the range [
√
n, 2
√
n].

Now, we describe the key step (combining subtrees) of the algorithm Build-Subtree. For each
pair Ti, Tj , a score sij is generated in the following manner. Fix arbitrary a ∈ Li, and b ∈ Lj
and define a 0 − 1 random variable Xx

ij for each leaf x ∈ S \ (Li ∪ Lj) to be 1 if the experiment
Q(a, b, x) gives (a, b) as the answer, and 0 otherwise.

sij :=
∑

x∈S\(Li∪Lj)

Xx
ij

We claim that (whp) the tree pair with the highest score is in fact a “sibling - tree pair”, i.e., a pair
of subtrees of TS that can be combined through a shared parent internal node to form a subtree of

18

RECONSTRUCTING ULTRAMETRIC TREES

Figure 4: Sibling-Tree Pair between Non Sibling-Tree Pair

TS . There always exists such a sibling-tree pair, since these leaf-disjoint subtrees of TS themselves
form a full binary tree.

We start with a simple observation: For any pair Tk, Tl that is not a sibling pair, there is a sibling
pair Ti, Tj such that their least common ancestor is strictly below the root of either Tk or Tl.

To see this we consider the full binary tree resulting from starting with T and collapsing each
set of leaves Li into a single node and look at the subtree rooted at the least common ancestor of Tk
and Tl. There must be a deepest internal node in this tree whose children are sibling subtrees Ti and
Tj , completing the proof. Figure 4 shows such a set of trees.

Claim 2 With high probability, skl < sij .

Proof
Intuitively, this claim is true because the number of leaves that are used to generate the scores

of both pairs Ti, Tj and Tk, Tl is sufficiently large (at least n
16), and that these leaves all favor the

pair Ti, Tj (by at least θ(
√

(log n/n)) each). Further, the number of leaves that are used to generate
only one of the scores is bounded by 2

√
n. Consequently, these leaves do not alter the signal created

by comparing the action of the leaves used to generate both scores.
We introduce some notation to formalize the above intuition. Let S1 := S \ (Lk ∪ Ll) and

S2 := S \ (Li ∪Lj). S1 is the set of leaves used to compute the score skl and S2 is the set of leaves
used to compute the score sij . We can write S1 = A ∪B1 and S2 = A ∪B2 where A := S1 ∩ S2,
B1 := Li ∪ Lj and B2 := Lk ∪ Ll. Since |Lk|, |Ll|, |Li|, |Lj | ≤

√
n, we can assume that |A| ≥ n

16
and |B1|, |B2| ≤ 2

√
n.

Using the condition on minimum edge length and the bound on the partial derivative of the
function pCORRECT(d1, d2), it is easy to see (Ref Fig 4) that :

∀x ∈ A : E[Xx
ij]− E[Xx

kl] ≥
τ
√

log n

9
√
n

Expanding S1 and S2, we get:

skl =
∑
x∈A

Xx
kl +

∑
y∈B1

Xy
kl

19

RECONSTRUCTING ULTRAMETRIC TREES

sij =
∑
x∈A

Xx
ij +

∑
x∈B2

Xx
ij

Taking the difference and using linearity of expectation, we get:

E[sij]− E[skl] =
∑
x∈A

(E[Xx
ij]− E[Xx

kl]) +
∑
y∈B2

E[Xy
ij]−

∑
y∈B1

E[Xy
kl]

≥
∑
x∈A

(E[Xx
ij]− E[Xx

kl])−
∑
y∈B1

E[Xy
kl]

≥ τ
√
n log n

144
− 2
√
n

where the last inequality derives from the fact that each Xy
kl is a 0 − 1 random variable and

hence has expectation upper bounded by 1.
Since both skl and sij are each sums of at least n/16 independent 0 − 1 random variables, we

can use the Chernoff bound to conclude that their expectations do not differ from their value by
more than 24

√
n log n with very high probability. Putting together these inequalities, we conclude

that, for large enough τ , we have skl < sij with high probability. The proof of this claim assumes
that O(n2) high probability events occur simultaneously, since it suffices that a correct subtree pair
beats every wrong subtree pair, of which there are at most n2.

An immediate corollary of this claim, via an application of the union bound is that the highest
scoring pair is in fact a sibling-tree pair. This gives an efficient algorithm that correctly combines
subtrees of TS to form a larger subtree of TS . The proof of correctness of one call to the algorithm
Build-Subtree assumes the simultaneous occurrence of O(n3) high probability events - since the
subroutine to combine subtrees is used at most n times (from the fact that each such subroutine
introduces an internal vertex, and there are most n of them).

A.3. Proof of Lemma 4

When P2 is non empty, all leaves in TP are equidistant from TB , implying that P2 must be contained
within a single bucket Si.

We describe the algorithm Partition that does the partitioning. For each leaf x ∈ L−(TB∪TP),
introduce 0 − 1 random variables Xx

ab and Y x
ab for each a ∈ TB, b ∈ TP . Each such leaf x has 2n

such associated random variables, since |TB|, |TP | ≥
√
n. Xx

ab is set to 1 if Q(a, b, x) is (a, x) and
0 otherwise. Y x

ab is set to 1 if Q(a, b, x) is (a, b) and 0 otherwise. Let Xx =
∑

a∈TB ,b∈TP X
x
ab and

Y x =
∑

a∈TB ,b∈TP Y
x
ab. If Xx − Y x > 24

√
n log n, then, x is placed in set P ′1. If If Y x −Xx >

24
√
n log n, then, x is placed in set P ′3. Otherwise if |Y x −Xx| ≤ 24

√
n log n, x is placed in P ′2.

We claim that for i ∈ [3], P ′i = Pi with high probability.

The first case is x ∈ P1, we know that d(a, b) ≥ d(a, x) + 2τ
√

logn
n , for all a ∈ TB, b ∈ TP ,

by the definition of S1 and the minimum weight condition. Using Observation 1, we conclude that
E[Xx

ab] − E[Y x
ab] ≥

τ
√

logn
3
√
n

. Using Lemma 7, we conclude that the Xx − Y x > 24
√
n log n, with

high probability.

20

RECONSTRUCTING ULTRAMETRIC TREES

Next, consider x ∈ P3, we know that d(a, x) ≥ d(a, b) + 2τ
√

logn
n , for all a ∈ TB, b ∈ TP , by

the definition of S1 and the minimum weight condition (Observation 1). Through similar analysis
as the previous case, we conclude x is correctly placed in P ′3 whp.

Finally, we see the case of x ∈ P2. We know that d(a, x) = d(a, b) > d(b, x) for all a ∈
TB, b ∈ TP , by the definition of S2.Thus, Xx

ab and Y x
ab are identical random variables, since the

incorrect answers to any query appear with equal probability. Using the second part of Lemma 7,
we get the desired result about the comparison of Xx and Y x, with high probability. Thus, x is
correctly placed in P ′2 whp.

In total, we need O(n) high probability events to happen simultaneously (one for partitioning
each leaf) in this proof of correctness.

We index the buckets of the contiguous interval I as Sj1 , Sj1+1, · · · . For the final part of the
claim, we analyze the case where TP consists of leaves from more than one bucket. Let us index
these buckets as Si1 , Si1+1, · · · where i1 ≥ j1. Clearly, TP must consist of all leaves in an interval
of buckets, since leaves within a bucket are always closer to each other than leaves in another
bucket (recall that the leaves of each bucket are the leaves of a subtree of T , Ref Fig 1). Due to this
property, P2 must be empty. Recall that the set of leaves in TB, S1, S2 · · ·Si forms a tree for any
index i. Consequently, every leaf l ∈ L(Si) is closer to any leaf in TB, S1, S2, · · ·Si−1 than to a
leaf in Sj with j > i. Now, consider the case in which TP consists of leaves contained in a union
of buckets - Si1 , Si1+1 · · ·Si2 where i1 > j1. The leaves of TP cannot be a set of leaves of a tree in
the induced topology of L(I), since any leaf in Si1 is closer to a leaf in Sj1 (which is part of the set
L(I)) than to a leaf in Si2 . We have a contradiction, invalidating the assumption i1 > j1. Thus, we
must have i1 = j1, implying that P1 is also empty.

Appendix B. Proof of Theorem 5 (Weights Reconstruction)

We start by fixing some notation. Let NL(v) denote the number of leaves in the sub-tree rooted at
vertex v. We will adopt the convention that the children of each node are ordered so that for any
node v with right child rc and left child lc, NL(rc) ≥ NL(lc). Further, without loss of generality,
we can also assume that the binary tree is full – otherwise, if an internal node v has exactly one
child, we can collapse the two edges incident on v into one. This modification does not affect the
output probabilities associated with any triple of leaves. Finally, for any vertex v, we define hv as
the “height” of v – i.e., the total weight of any path from v to a leaf in its subtree. Because the
distance on the tree is an ultrametric, the choice of the leaf is immaterial.

Definition 8 A vertex v is said to be heavy if NL(v) ≥ αn+ 1 where α = 1
6 . Otherwise, the vertex

is said to be light. By definition, the root r is a heavy vertex.

Next, given a rooted tree as above, we identify a distinguished vertex vf as follows. Let P be
the rightmost path from the root to a leaf . Starting from the root r, let the vertices in P (in order)
be r, v1, . . . , v`∗ where v`∗ is the rightmost leaf. We define f to be maximum index such that vf is
a heavy vertex.

Consider the root r, with left child lcr and right child rcr. Observe that by our convention, rcr
is a heavy vertex. We now give a procedure to (approximately) compute hv for any vertex v in the
subtree rooted at lcr.

21

RECONSTRUCTING ULTRAMETRIC TREES

Lemma 9 There is a procedure Compute-light-tree which with high probability, computes hv for
all vertices v in the tree rooted at lcr with accuracy Θ(

√
log n/n).

Proof Consider any non-leaf vertex v in the subtree of lcr. Since v is a non-leaf vertex, there is a
leaf a in its left subtree and b in the right subtree. Additionally, since rcr is a heavy vertex, there
are at least αn leaves under it - indexed by {ci}ki=1 where k ≥ αn . Let Xi be the indicator random
variable that query Q(a, b, ci) returns (a, b). Each Xi is an independent (and in fact identically
distributed) random variable such that

Pr[Xi = 1] =
d(a, ci) + d(b, ci)

2(d(a, b) + d(a, ci) + d(b, ci))
=

4

2(4 + 2hv)
=

1

2 + hv
.

Let us define A := (1/k) · (
∑k

i=1 Xi). Define h′v to be such that A = 1
2+h′v

. Now, by Hoeffding’s
inequality (Theorem 16), we get that with overwhelmingly high probability,∣∣∣∣A− 1

2 + hv

∣∣∣∣ ≤ κ2

√
log n

n
.

Thus ∣∣∣∣ 1

2 + h′v
− 1

2 + hv

∣∣∣∣ ≤ κ2

√
log n

n
.

This means that

|hv − h′v| ≤ κ2

√
log n

n
(2 + hv)(2 + h′v).

Note that hv ≤ 1. Because
∣∣ 1

2+h′v
− 1

2+hv

∣∣ ≤ 1/6, it follows that h′v ≤ 4. Thus, it follows that

|hv − h′v| ≤ Θ(
√

log n/n).

Recall that we had define P as the rightmost path in the tree with vertices {vi}`
∗
i=1 such that vf

is the last heavy vertex in the sequence. Next, we have the following lemma.

Lemma 10 There is a procedure Reconstruct-right-path which with high probability computes
hv up to ±Θ(

√
log n/n) for any v` in the path P where ` ≤ f .

Proof Consider vertex v`, since ` ≤ f , we know that NL(v`) ≥ αn + 1. Let the number of leaves
in the left (resp. right) subtree of v` be s` (resp. sr). We have s` + sr ≥ αn + 1. It immediately
follows that the number of pairs of the form (ai, bi) where ai is in the left subtree and bi is in the
right subtree is at least αn. Now, let c be a leaf in the left subtree of the root r – we know that there
exists at least one.

Let us now define Xi to be the indicator variable that the query on triple (ai, bi, c) returns
(ai, bi). Observe that each Xi is an i.i.d. Bernoulli random variable such that Pr[Xi = 1] = 1

2+hv`
.

Now repeating the same calculation as done at end of Lemma 9, we obtain an estimate h′v such that
with overwhelmingly high probability, |h′v − hv| = Θ(

√
log n/n).

22

RECONSTRUCTING ULTRAMETRIC TREES

Lemma 11 Let v be an internal vertex of the tree and let v` be a heavy vertex on path P such
that (i) v` is an ancestor of vertex v; (ii) There are k ≥ 100 leaves in the sub-tree of v` that does
not contain v. Let a and b be leaves in distinct subtrees of v and c a vertex in the subtree of vl not
containing v. Let p be the probability that a query on the triple (a, b, c) returns (a, b). Note that
p is independent of the particular choices of a, b, and c as constrained above. Then, there is an
algorithm that outputs an estimate p̂ such that

1. |p̂− p| = O
(√

log k/k
)
.

2. p̂ is an unbiased estimator of p.

We say that vertex v has been anchored to vertex vl to obtain this estimate.

Proof
We index the leaves in the sub-tree of v` not containing v as c1, c2, ..ck. Let c ∈ {c1, . . . , ck}.

As noted in the statement of the lemma, the probability that Q(a, b, c) returns (a, b) is a constant p
independent of c.

The pairwise distances are d(a, b) = 2hv and d(a, c) = d(b, c) = 2hv` . This implies that
p =

hv`
2hv`+hv

. Let Xi be the indicator random variable that Q(a, b, ci) returns (a, b). Note that

Pr[Xi = 1] =
hv`

2hv` + hv
.

Now, define p̂ := (
∑k

i=1 Xi)/k. Hoeffding’s inequality (Theorem 16) and linearity of expectation
now immediately imply the claim.

Lemma 12 Suppose v is an internal vertex which lies in the left subtree of v` – where v` lies on
the path P and 1 ≤ ` ≤ f . There is a procedure Reconstruct-height-left-heavy which given as
input such a vertex v, reconstructs the height of v up to error O(α−1 ·

√
log n/n).

Proof We are given that v` is an ancestor of v. The right subtree of v` has at least αn leaves. Thus,
applying Lemma 11, we can obtain an estimate p̂ such that∣∣∣∣p̂− hv`

hv + 2hv`

∣∣∣∣ = O

(
1

α
·
√

log n

n

)
.

Now, hv can be expressed in terms of hv` and p as follows:

hv =
hv` · (1− 2p)

p
:= f(v`, p).

Using Lemma 10, we can obtain an estimate ĥv` such that

∣∣hv` − ĥv`∣∣ = Θ

(√
log n

n

)
.

The estimate of the procedure is ĥv defined as f(ĥv` , p̂). We now observe that by triangle inequality,∣∣f(ĥv` , p̂)− f(hv` , p)
∣∣ ≤ ∣∣f(hv` , p̂)− f(hv` , p)

∣∣+
∣∣f(ĥv` , p̂)− f(hv` , p̂)

∣∣. (1)

23

RECONSTRUCTING ULTRAMETRIC TREES

To bound the terms on the right hand side, observe that hv` ≤ 1 and p ∈ [1/3, 1]. Thus, by
Lemma 11, we can assume that p̂ ≥ 1/4. Consequently,

∣∣f(hv` , p̂)− f(hv` , p)
∣∣ = O

(
|p− p̂|
p2

)
= O(|p− p̂|). (2)

∣∣f(hv` , p̂)− f(ĥv` , p̂)
∣∣ = O

(∣∣hv` − ĥv`∣∣
p̂2

)
= O

(∣∣hv` − ĥv`∣∣). (3)

Plugging (2) and (3) into (1) gives us the stated claim.

Using Lemma 10 and Lemma 12, we have constructed hv approximately (to additiveO(±
√

log n/n))
for all vertices except the ones in the subtree of vf+1. For such vertices v, we next show how to
compute hv up to an additive O(log n/

√
n). Note that this estimate is slightly worse than the ones

achieved in Lemma 12 and Lemma 10.
The above lemmas reconstruct hv for any vertex in the left subtree of any heavy vertex except

the last, as well as any vertex in the “rightmost path”. We next describe how to compute hv for
the remaining vertices, i.e., the vertices in the subtree rooted at vf+1. At this point, we also note
that if there was a vertex v with two heavy children, then the obvious adaptation of Lemma 9 gives
us the weight of every edge in the subtree rooted at v, and hence the entire tree T . However, in
general, there is no guarantee that this will happen and we have to go for a more significantly more
complicated procedure. Towards this, we prove the following crucial lemma.

Lemma 13 There is a procedure Reconstruct-Internal-left which given any internal vertex v in
the subtree of vf+1, outputs an estimate of hv that has additive error O(log n/

√
n) .

This lemma completes the proof of Theorem 5, since we have successfully reconstructed the
heights of all internal vertices of the tree within additive error O(logn√

n
).

Recall that the vertices in path P are v0, . . . , vf (in order) where v0 is the root and vf is the last
heavy vertex. By definition, this implies that the total number of leaves in the left subtrees of v0, v1,
. . ., vf is at least (1 − α)n − 1. For 0 ≤ i ≤ f , let Ci be the set of leaves in the left subtree of vi.
Then

∑f
i=0 |Ci| ≥ (1 − α)n − 1 > n/2 (as α ≤ 0.49). Let A := {vi : |Ci| < n/(4(1 + f))}. It

easily follows that
∑

i 6∈A |Ci| > n/4.
Let the elements ofA (in order) be t1, . . . , tk. Let c ∈ Cti and let a and b be vertices in different

subtrees of v. Then, note that the probability with which Q(a, b, c) returns (a, b) is pi where pi =
hti/(2hti + hv). We now apply Lemma 11 and using vti as an anchor for v – with overwhelmingly
high probability(1− 1

n6), this gives us an estimate p̂i such that

|p̂i − pi| ≤ 4

(√
log |Cti |
|Cti |

)
At this point, one might ask whether any of the estimates p̂i is good enough to construct a good

estimate ĥv for the height of vertex v. However, note that the best guarantee that we can give for any
|Cti | is at most θ(

√
n log n), since the number of vertices on a root to leaf path (to which f may be

comparable) can potentially be as bad as
√
n

logn . To demonstrate such an instance, consider the tree

where each edge the rightmost path from the root to leaf path has weight θ(
√
n

logn), and each heavy

24

RECONSTRUCTING ULTRAMETRIC TREES

vertex has θ(
√
n log n) vertices in its left subtree. With such a guarantee, using similar techniques

as in the proof of Lemma 12, we can only obtain an estimate for hv such that the additive error is
upper bounded by O(1

n1/4 logn
). Such an estimate falls well short of our target of O(logn

n) additive
error.

To get a better estimate, we use the fact that the set of random variables {p̂i}i∈[k] are indepen-
dent, owing to the fact that they are functions of disjoint sets of queries. We expect to see that errors
in these random variables balance out when we aggregate them in some fashion. A natural approach
is to use each p̂i to construct an estimator ĥiv = ĥti(

1
p̂i
− 2) for hv and take the weighted average

(weighted by the |Cti |s). However, this approach runs into difficulties, triggered by the fact that the
random variables ĥiv are not unbiased estimators for hv. To avoid this issue, we aggregate the p̂i’s
directly and then recover a single estimate ĥv for hv from the aggregated quantity. In particular,
we focus on estimating the quantity Q :=

∑
i |Cti |pi∑
i |Cti |

through an estimator Q̂ and recovering a good

estimate ĥv forhv using the estimate Q̂. The proof is complete if we prove the following two claims.

Claim 3 From the estimators {p̂i}i∈[k], there exists an algorithm to recover an estimator Q̂ for

Q =
∑

i |Cti |pi∑
i |Cti |

such that |Q̂−Q| ≤ θ
(

logn√
n

)
.

Claim 4 Given a good estimate Q̂ for Q =
∑

i |Cti |pi∑
i |Cti |

, i..e, with additive error O
(

logn√
n

)
, there

exists an algorithm Final- Estimate that uses estimators {ĥti}i∈[k] to construct an estimator ĥfv for

hv with additive error O
(

logn√
n

)
.

Proof of Claim 3: Assume, for sake of a thought experiment, that each p̂i is restricted to a range

of θ
(√

log |Cti |
|Cti |

)
around pi. Then, if we take the weighted average

∑
i |Cti |p̂i∑
i |Cti |

of the p̂is, the size of

the range of each term |Cti |p̂i∑
i |Cti |

is at most θ
(√

|Cti | logn

n

)
. Thus, the variance of the sum is upper

bounded by O(logn
n) (this uses the fact that n ≥

∑
i |Cti | ≥

n
4). Using an exponential tail bound

would lead us to the desired result under this thought experiment.
Consequently, the natural approach is to directly take the weighted average of the p̂is, since

this would be an unbiased estimator for Q. However, we only have the guarantee that each p̂i is at

most θ
(√

|Cti | logn

|Cti |

)
away from pi as a high probability event rather than as absolute truth. To get

around this roadblock, for each i ∈ [k], we define a real valued random variable p̃i, and introduce
the following coupling between p̂i and p̃i based on truncating p̂i:

p̃i =



p̂i, when |p̂i − pi| ≤ 4

(√
log |Cti |
|Cti |

)
pi + 4

(√
log |Cti |
|Cti |

)
, when p̂i − pi > 4

(√
log |Cti |
|Cti |

)
pi − 4

(√
log |Cti |
|Cti |

)
, otherwise

We complete the description of the algorithm by defining our final estimator : Q̂ :=
|Cti |p̂i∑
i |Cti |

.

25

RECONSTRUCTING ULTRAMETRIC TREES

We observe that the random variables {p̃i}i∈[k] are independent. This follows from the fact that
the random variables {p̂i}i∈[k] are themselves independent. As a consequence of this doing this
truncation, the resultant p̃i is no longer an unbiased estimator of pi, however we show that this does
not functionally affect us. To do so, we prove a claim showing that the expectations of the coupled
random variables are very close to each other.

Claim 5 For each i ∈ [k], |E[p̃i]− E[p̂i]| ≤ 2
n6 .

Proof We already know that Pr[|p̂i − pi| ≥ κ1

(√
log |Cti |
|Cti |

)
] ≤ 1

n6 . Additionally, the random

variable p̂i takes its value in the range [0, 1] since it is an empirical average. This also implies that
E[p̂i] = pi ∈ [0, 1]. Thus, we have:

|E[p̃i]− E[p̂i]| ≤ |
1− pi
n6
|+ | pi

n6
|

which gives us the desired result.

Now, define ji := |Cti | for each i ∈ [k]. Define the function g(p̃1, p̃2, ..p̃k) :=
∑k

i=1 jip̃i∑k
i=1 ji

on the

domain Rk Each random variable jip̃i∑k
l=1 jl

is within the interval [ai, bi] such that Li = |bi − ai| =

θ(
√
ji logn
n). We know that

∑k
i=1 L

2
i =

∑k
i=1 θ(

ji logn
n2) = θ(logn

n).
Using the above property, we appeal to the generalized Hoeffding bound (Theorem 15).With

probability at most 1
n6 , we have |g(p̃1, p̃2, .., p̃k)−E[g(p̃1, p̃2, .., p̃k)]| ≥ θ

(
logn√
n

)
. Using Claim 5,

we know that |E[g(p̃1, p̃2, .., p̃k)] − E[
∑

i jip̂i∑
i ji

]| ≤ 2
n6 . Using linearity of expectation, we know that

E[
∑

i jip̂i∑
i ji

] =
∑

i jipi∑
i ji

= Q. Using the triangle inequality, the event |Q̂ − Q| ≤ θ

(
logn√
n

)
happens

with high probability.
�

Proof of Claim 4:
First, we describe how to recover estimator ĥfv for hv from Q̂ using the estimates {ĥti}i∈[k].
Define ji := |Cti | for each i ∈ [k]. We define a multivariate function F that operates on inputs

a ∈ R and b = (b1, b2, · · · bk) ∈ Rk.

F (a, b) :=

∑k
i=1

jibi
2bi+a∑
i ji

Alternatively, we write F (a, b) =
∑k

i=1 jif(a,bi)∑
i ji

where f(a, bi) = bi
2bi+a

, i.e., we write f as a

convex combination of k functions. For ease of notation, we call αi = ji∑k
a=1 ja

. Note that all α > 0

and
∑

i αi = 1.
Let H = {ht1 , ht2 , · · ·htk} and Ĥ = {ĥt1 , ĥt2 , · · · ĥtk}. Observe that Q = F (hv, H). Intu-

itively, we want to invert the value Q̂ of the function F using our estimates H ′ to obtain an estimate
ĥv that is close to hv. We prove a claim below that tells us how to do so.

Claim 6 There exists a unique real number ĥv such that F (ĥv, Ĥ) = Q̂. Additionally, this real
number can be found using numerical methods from Q̂ and Ĥ .

26

RECONSTRUCTING ULTRAMETRIC TREES

Proof Fix the second argument of F to be Ĥ , F is now a univariate function on the first argument.
This function is monotone decreasing since each univariate function f(a, ĥti) is monotone decreas-
ing and F (a, Ĥ) is a convex combination of these functions. Thus, F is invertible. Further, simple
numerical methods such as binary search can be used to find ĥv upto arbitrary precision such that
F (ĥv, Ĥ) = Q̂.

The algorithm then makes the following final correction to the estimate : ĥfv ← min{ĥv,mini ĥti}
- there is a compelling reason to make such a correction - to ensure that the vertex v always has es-
timated height that is no larger than the estimated height of one of its ancestors. Note that since
we eventually show that the error in estimating edge weight is only a fraction of the minimum edge
weight, such an event never happens in practice - however, we include this correction for the sake
of the analysis leading to the proof of that result.

First, we show a simplified analysis, for the case that ĥv ≤ mini ĥti . Here the final estimator is
ĥfv = ĥv. We will later show a more involved analysis for when our estimate does not satisfy these
conditions.

For the sake of contradiction, assume that |ĥv − hv| ≥ ∆ logn√
n

, where ∆ is a sufficiently large

constant. Since |Q̂−Q| ≤ θ(logn√
n

), we get:

|
∑
i

αi{f(hv, hti)− f(ĥv, ĥti)}| ≤ θ(
log n√
n

)

=⇒ |
∑
i

αi{(f(hv, hti)− f(ĥv, hti)) + (f(ĥv, hti)− f(ĥv, ĥti))}| ≤ θ(
log n√
n

) (*)

Our approach is to show that each Ai := |f(hv, hti) − f(ĥv, hti)| is sufficiently larger (by at
least some Ω(logn√

n
) than any Bi := |f(ĥv, hti) − f(ĥv, ĥti)|. Using the triangle inequality would

finish the proof. To this purpose, recall that |ĥti − hti | ≤ θ(
√

logn
n).

Intuitively, we wish to show that the function f(a, bi) changes rapidly with change in the first
input a (large partial derivative in our interval of interest) while it is relatively more stable with
change in the second input bi (small partial derivative in our interval of interest). To do so, we prove
some properties of the function f(a, bi).

∂f(a, bi)

∂bi
=

a

(2bi + a)2

∂f(a, bi)

∂a
=

−bi
(2ai + b)2

We know that hti > hv for all indices i. Additionally, hti ≥ τ logn√
n

where τ is a large constant.
We argue that it is not possible to independently bound each quantity Ai and Bi - to see why this
is the case - observe that the partial derivative with respect to bi can only be upper bounded by a
constant while the partial derivative with respect to a can be as small as θ(logn√

n
). These bounds do

not suffice to prove the desired comparison between the quantities Ai and Bi. Therefore, it is im-
portant that we carefully compare these partial derivatives when establishing that Ai is significantly
larger than bi. More formally : Using the intermediate value theorem on the (continuous) univariate

27

RECONSTRUCTING ULTRAMETRIC TREES

function f(a, hti) (Second argument fixed to be hti) in the interval [hv, h
′
v], we know there exists

x ∈ [hv, h
′
v] such that:

Ai = |f(hv, hti)− f(ĥv, hti)| =
∣∣∣∣∂f(a, hti)

∂a

∣∣∣∣
a=x

.|hv − ĥv|

=

∣∣∣∣ hti
(2hti + x)2

∣∣∣∣ .|hv − ĥv|
Similarly, using the intermediate value theorem on the univariate function f(ĥv, b) (first argu-

ment fixed to be ĥv) in the interval [hti , ĥti], we know there exists y ∈ [hti , ĥti] such that:

Bi = |f(ĥv, hti)− f(ĥv, ĥti)| =

∣∣∣∣∣∂f(ĥv, b)

∂b

∣∣∣∣∣
b=y

.|hti − ĥti |

=

∣∣∣∣∣ ĥv

(2y + ĥv)2

∣∣∣∣∣ .|hti − ĥti |
Since |ĥti − hti | ≤ θ(

√
logn
n) and hti ≥ τ logn√

n
, we know that 2ĥti ≥ hti ≥ ĥti/2. We also

know that ĥv ≤ ĥti by our assumption and hence ĥv ≤ 2hti which would imply that x ≤ 2hti .
Thus, we have hti

(2hti+x)2
≥ hti

16h2ti
= 1

16hti
and ĥv

(2y+ĥv)2
≤ 2

hti
. Note that using the triangle inequality

|Ai| − |Bi| ≥ ||Ai| − |Bi||. Thus, as long as τ is large enough, we conclude that |Ai| − |Bi| ≥
τ/20 logn√

n
. Substituting this into inequality *, we get a contradiction, leading us to conclude that

|h′v − hv| ≤ ∆ logn√
n

.

The final part of the proof is for the case where there exists some i such that ĥv > ĥti . In this
event, recall that our algorithm uses the smallest such height U = mini{ĥti} as the final estimate ĥfv
for hv. We show that |U − hv| ≤ ∆ logn√

n
with high probability. First, we note that U > hv.Assume

that |U − hv| > ∆ logn√
n

, for sake of contradiction. We will show similar bounds on the expressions
Ai and Bi from the above proof. First, we lower bound |Ai|. Consider the (continuous) univariate
function f(a, hti) on the intervals [hv, U] and [U, ĥv]. Using the intermediate value theorem on both
intervals, there exists x1 ∈ [hv, U] and x2 ∈ [U, ĥv] such that:

Ai := |f(hv, hti)− f(ĥv, hti)| =
∣∣∣∣∂f(a, hti)

∂a

∣∣∣∣
a=x1

.|U − hv|+
∣∣∣∣∂f(a, hti)

∂a

∣∣∣∣
a=x2

.|ĥv − U |

≥
∣∣∣∣∂f(a, hti)

∂a

∣∣∣∣
a=x1

.|U − hv|

=

∣∣∣∣ hti
(2hti + x1)2

∣∣∣∣ .|U − hv|
Thus, with similar reasoning as before, we have hti

(2hti+x1)2
≥ hti

16h2ti
= 1

16hti
since x1 ≤ ĥti for

all i.

28

RECONSTRUCTING ULTRAMETRIC TREES

Now, to upper bound Bi, we consider the (continuous) univariate function f(ĥv, b) on the inter-
val [hti , ĥti], we know there exists y ∈ [hti , ĥti] such that:

Bi := |f(ĥv, hti)− f(ĥv, ĥti)| =

∣∣∣∣∣∂f(ĥv, b)

∂b

∣∣∣∣∣
b=y

.|hti − ĥti |

=

∣∣∣∣∣ ĥv

(2y + ĥv)2

∣∣∣∣∣ .|hti − ĥti |
Consider the univariate function g(x) = x

(2c+x)2
. Note that g(x) > 0 if c, x > 0. Thus, |g(x)|

(for c, x > 0) is maximized at the same point as g(x) which is at x = 2c. Thus, ĥv
(2y+ĥv)2

≤ 2y
16y2

=

1
8y ≤

1
4hti

. Similar analysis as before leads us to a contradiction (we can show that |Ai| ≥ 2|Bi|,
which suffices to prove the result).

�

Appendix C. Proof of Theorem 6 (Lower Bound on Edge Weights)

Let us assign an arbitrary ordering on the set of all possible triples of leaves (r, s, t) from 1 to k
where k =

(
n
3

)
. Let Q(1)

j (resp. Q(2)
j) denote the random variable corresponding to the response on

the jth query (i.e., triple) from tree T1 (resp. T2). Let Q(1) (resp. Q(2)) denote the
(
n
3

)
-dimensional

random variable whose jth coordinate is Q
(1)
j (resp. Q

(2)
j). Both Q(1) and Q(2) follow product

distributions. To prove our theorem, it suffices to prove the following

∆(Q(1),Q(2)) ≤ 0.01.

Here ∆(·, ·) refers to the total variation distance. The above inequality follows from Lemma 14
which we prove next.

Lemma 14 For Q(1) and Q(2) as described above, ∆(Q(1),Q(2)) ≤ 0.01.

Proof We start by partitioning the set [k] into five different sets defined below:

1. Let L′ = L \ {a, b, c}. Define A1 ⊆ [k] to be the set of those indices which correspond to
triples (r, s, t) such that |{r, s, t} ∩ L′| ≥ 2.

2. Define A2 ⊆ [k] to be the set of those indices which correspond to triples (r, b, c) where
r ∈ L′.

3. Let j∗ be the index which corresponds to the triple (a, b, c). Let A3 = {j∗}.

4. Let A4 be the set of those indices which correspond to the triples of the form (a, b, x) for
x ∈ L′.

5. Let A5 be the set of those indices which correspond to the triples of the form (a, c, x) for
x ∈ L′.

29

RECONSTRUCTING ULTRAMETRIC TREES

In order to analyze ∆(Q(1),Q(2)), it is more convenient to look at the notion of Hellinger distance
(see Definition 18). We start with the following easy claims.

Claim 7 Let j ∈ A1. Then the random variables Q(1)
j and Q

(2)
j are identical. Thus,H2(Q

(1)
j ,Q

(2)
j) =

0.

Proof Let j correspond to the triple (r, s, t). Note that the random variables Q(1)
j and Q

(2)
j are just

dependent on the pairwise distances between the leaves r, s and t. It is easy to observe that as long
as two of these leaves are in L′, their pairwise distances are same both in trees T1 and T2. This
proves the claim.

Claim 8 Let j ∈ A2. Then the random variables Q(1)
j and Q

(2)
j are identical. Thus,H2(Q

(1)
j ,Q

(2)
j) =

0.

Proof Let j correspond to the triple (r, c, b). As in Claim 7, the pairwise distances between the
vertices r, c and b are the same in both T1 and T2. The claim now follows.

Using Claim 8 and Claim 7, it follows tha

Claim 9 Let A3 = {j∗}. Then, H2(Q
(1)
j∗ ,Q

(2)
j∗) ≤ 4ρ2

n .

Proof Observe that both random variables Q(1)
j∗ and Q

(2)
j∗ are supported on the set {(a, b), (b, c), (a, c)}.

Let p1 := Pr[Q
(1)
j∗ = (a, b)], p2 := Pr[Q

(1)
j∗ = (b, c)] and p3 := Pr[Q

(1)
j∗ = (a, c)]. Similarly, let

q1 := Pr[Q
(2)
j∗ = (a, b)], q2 := Pr[Q

(2)
j∗ = (b, c)] and q3 := Pr[Q

(2)
j∗ = (a, c)].

Let d1(·, ·) be the distance metric on tree T1 and d2(·, ·) be the distance metric on tree T2. Now,
define α := d1(a, b) = d2(a, c) and β := d1(a, c) = d1(b, c) = d2(a, b) = d2(b, c).

Observe that α ≥ 2
3 since d1(a, p) = d2(a, p) = 1

3 . Also, β − α = 2ρ√
n

.

H2(Q
(1)
j∗ ,Q

(2)
j∗) =

1

2
((
√
p1 −

√
q1)2 + (

√
p2 −

√
q2)2 + (

√
p3 −

√
q3)2)

.
We rewrite the probabilities in terms of the distances α and β:

p1 = q3 =
2β

2(α+ 2β)
; p2 = p3 = q1 = q2 =

α+ β

2(α+ 2β)

Next, we upper bound the quantity:
√
p1 −

√
q1.

30

RECONSTRUCTING ULTRAMETRIC TREES

√
p1 −

√
q1 =

√
2β

2(α+ 2β)
−

√
α+ β

2(α+ 2β)

=

√
2β −

√
α+ β√

2(α+ 2β)

≤
√

4

3
(
√

2β −
√
α+ β) (since α ≥ 2

3
)

=

√
4

3

β − α
(
√

2β +
√
α+ β)

(multiplying and dividing by (
√

2β +
√
α+ β))

≤ 2ρ√
n

(since α ≥ 2

3
)

We know p2 = q2. The final term of interest is |√p3 −
√
q3|. Since p1 = q3 and p3 = q1, we

get the upper bound - |√p3 −
√
q3| ≤ 2ρ√

n
.

Putting together these inequalities, we get H2(Q
(1)
j∗ ,Q

(2)
j∗) ≤ 1

2(8ρ2

n).

Claim 10 Let j ∈ A4. Then, H2(Q
(1)
j ,Q

(2)
j) ≤ ρ2

4n .

Proof Let j correspond to the triple (a, b, x). The support space of both Q
(1)
j and Q

(2)
j is {(a, b), (b, x), (a, x)}.

Let p1 := Pr[Q
(1)
j = (a, b)], p2 := Pr[Q

(1)
j = (b, x)] and p3 := Pr[Q

(1)
j = (a, x)]. Similarly, let

q1 := Pr[Q
(2)
j = (a, b)], q2 := Pr[Q

(2)
j = (b, x)] and q3 := Pr[Q

(2)
j = (a, x)].

As in Claim 9, let d1(·, ·) be the distance metric on tree T1 and d2(·, ·) be the distance metric on
T2. Let α := d1(a, b) and β := d2(a, b). We have d1(a, x) = d1(b, x) = d2(a, x) = d2(b, x) = 2,
since the associated unique path goes through the root for each of these pairs. Finally, β−α = 2ρ√

n
.

Using the definition of Hellinger distance, we have :

H2(Q
(1)
j ,Q

(2)
j) =

1

2
((
√
p1 −

√
q1)2 + (

√
p2 −

√
q2)2 + (

√
p3 −

√
q3)2)

. Thus, we have,

p1 =
4

2(4 + α)
; q1 =

4

2(4 + β)
; p2 = p3 =

2 + α

2(4 + α)
; q2 = q3 =

2 + β

2(4 + β)

Next, we upper bound the quantity
√
p1 −

√
q1 as follows:

√
p1 −

√
q1 =

√
2

(√
4 + β −

√
4 + α√

(4 + α)(4 + β)

)
≤ 1

2
√

2
(
√

4 + β −
√

4 + α)

≤ 1

2
√

2(
√

4 + β +
√

4 + α)
(β − α)

≤ 1

4
√

2

ρ√
n

(4)

31

RECONSTRUCTING ULTRAMETRIC TREES

Next, we upper bound
√
q2 −

√
p2 as follows:

√
q2 −

√
p2 =

1√
2

√
(2 + β)(4 + α)−

√
(4 + β)(2 + α)√

(4 + α)(4 + β)

≤ 1

4
√

2
(
√

8 + αβ + 4β + 2α−
√

8 + αβ + 2β + 4α)

=
1

4
√

2(
√

8 + αβ + 4β + 2α+
√

8 + αβ + 2β + 4α)
(2β − 2α)

≤ 1

8
√

2

ρ√
n

(5)

By an identical analysis, we have
√
q3 −

√
p3 ≤ 1

8
√

2

ρ√
n

. Combining this with (4) and (5) gives us
the claim.

Using an analysis identical to Claim 10, we also get the following Claim.

Claim 11 Let j ∈ A5. Then, H2(Q
(1)
j ,Q

(2)
j) ≤ ρ2

4n .

Putting together these claims, we can use Lemma 20 to show that H(Q(1),Q(2)) ≤ 0.01√
2

, and

then use Lemma 19 to conclude that ∆(Q(1),Q(2)) ≤ 0.01.

Appendix D. Concentration Bounds and Measures of Statistical Distance

We list here some standard concentration results, that will be used to aggregate the results of stochas-
tically independent queries

Theorem 15 (Generalized Hoeffding Bound) Let y1,y2, ..,yk be k independent random vari-
ables, with each variable yi having range [ai, bi] and mean yi then:

Pr
[∣∣ k∑
i=1

yi −
k∑
i=1

yi
∣∣ ≤ t] ≥ 1− e

2t2∑
i(bi−ai)

2

We state below a special case of the generalized Hoeffding bound that we use repeatedly in
proofs, referring to it as the Hoeffding bound.

Theorem 16 (Hoeffding Bound) Let y1,y2, ..,yk be k iid random variables between 0 and 1,
each with mean y, then:

Pr
[∣∣y − ∑k

i=1 yi
k

∣∣ ≤ 4

√
log n

k

]
≥ 1− 1

n6

We also list some measures of statistical distance and connections between them, that will be
employed in our lower bounds proofs. We formally define total variation distance and Hellinger
distance for discrete distributions.

32

RECONSTRUCTING ULTRAMETRIC TREES

Definition 17 (Total Variation Distance) Let X and Y be discrete distributions, having weight
pxi and pyj respectively on points z1, z2 · · · . Then, the total variation distance between X and Y ,
denoted by ∆(X,Y) is defined as:

∆(X,Y) :=
1

2

∞∑
i=1

|pxi − pyi |

An alternative, equivalent definition is as follows: Let the sample space of the two distributions
X,Y be Ω, then:

∆(X,Y) = supA∈Ω |X(A)− Y (A)|.

Definition 18 (Hellinger Distance) LetX and Y be discrete distributions, having weight px1 , px2 , · · ·
and py1 , py2 , · · · respectively on points z1, z2 · · · . Then, the total variation distance between X and
Y , denoted by H(X,Y) is defined as:

H(X,Y) :=
1√
2

√√√√ ∞∑
i=1

(
√
pxi −

√
pyi)

2

We use the following two useful lemmas about Total Variation Distance Hellinger Distance from
Barak et al. (2008).

Lemma 19 (Pollard (2001)) For two distributions X and Y :

H2(X,Y) ≤ ∆(X,Y) ≤
√

2H(X,Y)

Lemma 20 (Barak et al. (2008)) Let X1, X2 · · ·Xn and Y1, Y2 · · ·Yn be two families of distribu-
tions. Then,

H2(X1 ⊕X2 ⊕ · · ·Xn, Y1 ⊕ Y2 ⊕ · · ·Yn) ≤
n∑
i=1

H2(Xi, Yi)

whereX⊕Y denotes the product of two distributionsX and Y , generated by taking independent
samples of X and Y .

33

	Introduction
	Related Work
	Model, Notation, and Preliminaries
	Reconstructing Full Binary Trees
	Weight Reconstruction
	Necessary Conditions
	Proofs from Section 4 (Topology Reconstruction)
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4

	Proof of Theorem 5 (Weights Reconstruction)
	Proof of Theorem 6 (Lower Bound on Edge Weights)
	Concentration Bounds and Measures of Statistical Distance

