
Proceedings of Machine Learning Research vol 201:1–16, 2023 34th International Conference on Algorithmic Learning Theory

A Query Algorithm for Learning a Spanning Forest in
Weighted Undirected Graphs

Deeparnab Chakrabarty DEEPARNAB@DARTMOUTH.EDU
Department of Computer Science, Dartmouth College

Hang Liao HANG.LIAO.GR@DARTMOUTH.EDU

Department of Computer Science, Dartmouth College

Editors: Shipra Agrawal and Francesco Orabona

Abstract
We consider the problem of finding a spanning forest in an unknown weighted undirected graph
when the access to the graph is via CUT queries, that is, one can query a subset S ⊆ V of ver-
tices and get the cut-value

∑
e∈∂S w(e) as the response. It is not too hard to solve this prob-

lem using O(n log n) queries mimicking a Prim-style algorithm using a binary-search style idea.
In this paper we use the power of CUT queries to obtain a Monte-Carlo algorithm that makes
O(n log log n(log log log n)2) CUT queries. At the core of our contribution is a generalization of a
result in [Apers et al., 2022] which studies the same problem on unweighted graphs, but to handle
weights, we need to combine their ideas with ideas for support estimation of weighted vectors, as in
[Stockmeyer, 1983], and weighted graph reconstruction algorithms, as in [Bshouty and Mazzawi,
2012].
Keywords: Query Algorithms, Weighted Spanning Forest, Randomized Algorithms.

1. Introduction

Imagine G = (V,E,w) is an undirected weighted graph whose vertex set V is known but the edge
set and their weights w(e) ≥ 0 are unknown. The only access we have to this graph is via certain
kinds of queries. What all can be learned about this graph, and what is the query complexity of
doing so? Motivated by various applications in fields such as genome sequencing (cf. (Grebinski
and Kucherov, 2000)), and also due to close relations to questions in sketching and streaming, such
questions have been intensively studied in the past couple of decades. While many previous works
studied the question of reconstructing the whole graph itself, more recent works have focused on
the question of determining certain properties of the graph rather than wholly reconstructing it.

In this paper we consider the following basic question: given CUT query access to this unknown
weighted graph, in how few queries can you decide if G is connected, or more generally, find a
spanning forest in G? A CUT query takes input a subset S ⊆ V of vertices and outputs the value∑

e∈∂S w(e). Here ∂S denotes the set of edges with exactly one endpoint in S. Apart from being
a natural and fundamental graph algorithms question, finding a spanning forest arises as a first step
in many procedures in network analysis, clustering, etc. Therefore, a spanning forest algorithm
with small query complexity can have applications to these problems. The CUT query model is
equivalent (up to constant factors) to other kinds of possibly more natural queries such as additive
query model where one queries a subset and obtains the total weight of edges inside that subset.
Furthermore, since the cut-function is submodular, determining whether a graph is connected is a
(very) special case of symmetric submodular function minimization.

© 2023 D. Chakrabarty & H. Liao.

SPANNING FOREST RECOVERY ON WEIGHTED GRAPHS

It is actually not too hard to mimic a Prim/DFS/BFS-style algorithm to give a deterministic
O(n log n) query algorithm to find a spanning tree in an undirected weighted graph. Fascinatingly,
a better deterministic algorithm is not known and neither is it ruled out, even for unweighted graphs.
Very recently, on unweighted graphs, the paper Apers et al. (2022) gave a beautiful zero-error ran-
domized algorithm for this problem which makes O(n) queries in expectation. Indeed, the Prim-
style deterministic algorithm alluded to above also works in a much weaker query model where one
only gets to know if the cut value is zero or positive, and in this weaker model the “n log n” is tight
for deterministic algorithms. The result in Apers et al. (2022) really used the power that the CUT
queries actually give the precise value.

When weights are present, the complexity of the problem changes. To illustrate this, consider
the question of figuring out just the degree of single a vertex v, that is, the number of edges (v, x)
incident on v. When the graph is unweighted, this can be found with a single CUT query on
{v}. With weights, this problem is provably difficult: it can be shown (see Appendix C) that any
deterministic algorithm must make Ω(n) queries. The algorithm in Apers et al. (2022) uses the
degree information of all vertices crucially. Our main result is to overcome this difficulty and solve
the spanning forest problem in undirected weighted graphs in much better than O(n log n) queries,
however, we fall short of getting a clean linear dependence on the number of vertices. Furthermore,
our algorithm is not a zero-error algorithm.

Theorem 1 Given CUT query access to an unknown weighted undirected graph G = (V,E,w)
with non-negative weights, there is a polynomial time Monte-Carlo algorithm that makes
O(n log log n(log log log n)2) queries and returns a spanning forest in G with probability at least
2/3.

We believe that the triple log factors may be removable from the above expression, although it
is not completely clear how to do so. However, we don’t think our current techniques alone can help
remove the O(log log n) term. We believe that understanding whether an O(n)-query algorithm is
possible is an important question: if indeed that is the case, then it would be due to a more refined
use of the fact that we get the value of the cut, and not any coarser information. However, if there
is indeed a lower bound of ω(n) for this problem, then that would be (perhaps more) interesting as
it would be the first ω(n) query-lower bound for symmetric submodular function minimization. In
particular, it would give us a new lower bounding technique which rules out algorithms using CUT
queries. We elaborate on this in the next subsection where we describe our techniques.

1.1. Technical Overview

The general strategy for finding a spanning forest is the strategy behind Borůvka’s algorithm: one
proceeds in rounds where in a round each connected component tries to find (at least) one edge
to a different connected component. This strategy is common to many different spanning forest
algorithms in many different models; in particular, the paper of Apers et al. (2022) uses this strategy.
There are two main subroutines.

1. We design a subroutine ReduceConnectedComponents (described in Algorithm 2) which
is a randomized algorithm that takes input t connected components, and with probability
≥ 1 − Θ(1

log logn), finds new edges of the graph such that after adding them, the number of
connected components becomes ≤ ct for some constant c < 1. The total number of queries

2

SPANNING FOREST RECOVERY ON WEIGHTED GRAPHS

made is O(t log logn · (log log log n)2). Since the “t” is geometrically decaying, across all
rounds we take the O(n log log n(log log log n)2) queries as promised. We keep applying this
till the number of components is ≤ n

logn , at which point

2. We apply DFSSpanningForest in Lemma 9 to recover the remaining edges in the spanning
forest using O(n) queries.

The second part is the Prim/DFS style algorithm and is quite straightforward.
For the first part, we are heavily inspired by the unweighted algorithm in Apers et al. (2022)

and it is worthwhile to describe their idea. First it abstracts each connected component using a
“representative”, a vertex with at least a neighbor in a different connected component. Then it strives
to sample a matching between the representatives. For a representative, the algorithm samples a
random set of neighbors with the size inversely proportional to the degree of the representative. As
noted before, the degree of each node can be found in 1 query per node in the unweighted case.
After sampling, every node will have exactly one neighbor with O(1) probability, and this can be
used to obtain a subgraph on ct vertices between which the graph is a matching, for some c < 1.
At this point, Apers et al. (2022) uses an algorithm by Grebinski and Kucherov (2000) which gives
an O(t) query algorithm to recover all the edges of this matching. Thus, using O(t) queries the
number of connected components diminishes by a multiplicative factor, and a geometric sum gives
the O(n) query algorithm.

Our algorithm mimics the same skeleton, except the bottleneck is that there is no way to tell the
exact degree of a vertex efficiently if the graph is weighted. In fact, it may require Ω(n) queries to
learn a vertex’s exact degree (see Appendix C). We observe that one doesn’t quite need the exact
degree, but a constant factor approximation suffices. This is where we use the DegreeEstimation
algorithm in Algorithm 1 initially proposed by Stockmeyer (1983) that estimates the degree of a
vertex up to a constant factor with constant probability using O(log log n log log log n) queries.
This is a Monte-Carlo algorithm, and we do not know how to obtain a zero-error version of the
same. The DegreeEstimation does a binary search on log n candidates that costs log log n queries.
The additional multiplicative log log log n is needed as we want each comparison in our binary
search to be correct with failure probability O(1

log logn) so that with union bound one can bound
the error probability of the algorithm by a constant. In the actual proof, more care is needed since
we actually need to bound the expected value of the ratio of the estimation over the actual degree.
In fact, this algorithm doesn’t use the full power of CUT queries, and works even when one only
obtains the answer whether the cut value is zero or positive. And in that regime, the log log n factor
is unavoidable.

With approximated degrees, we are no longer guaranteed to find a perfect matching, but for
most of the representatives we can ensure that a constant number of neighbors outside of its own
connected components are sampled. This creates a rough matching, where each representative has a
constant degree. Once the hidden edges are recovered, they ensure that number of graph’s connected
components decreases by a constant factor. The old matching recovery algorithm can’t be applied
on the rough matching. So instead, we use the deterministic O(m logn

logm + m log logm) weighted
graph recovery algorithm by Bshouty and Mazzawi (2012).

With constant probability, we are in the good scenario, where the sampled edges is proportional
to the number of connected components t, and the representatives being an endpoint to at least one
sampled edge is at least some constant times t. If this happens, we get a graph with ct connected
components with c < 1 using O(t log logn log log log n) queries. Finally, note that we want to

3

SPANNING FOREST RECOVERY ON WEIGHTED GRAPHS

use ReduceConnectedComponents to reduce the number of connected components to at most n
logn .

That means we want the above subroutine to succeed Θ(log log n) times. Therefore, we want to
boost the constant successful probability to 1−O(1

log logn), which gives an additional log log log n
factor to the query complexity of ReduceConnectedComponents.

1.2. Related Works

There is a huge literature on graph problems in the query access model depending on the kind
of queries that are allowed. For brevity’s sake, we focus this section only on CUT queries, and
on works most relevant to our work. There is a large body of work on graph reconstruction us-
ing CUT queries (cf. (Grebinski and Kucherov, 2000; Alon et al., 2004; Alon and Asodi, 2005;
Reyzin and Srivastava, 2007; Bshouty and Mazzawi, 2012; Choi, 2013)) and this problem is almost
solved. In unweighted graphs with m edges, there exists an algorithm Choi and Kim (2010) making
O(

m log m
n

logm) queries, and this is information theoretically tight up to constant factors. This algorithm
is non-adaptive but not efficient in that the set of queries isn’t explicit, and given the answers, the
reconstruction algorithm is not efficient. There also exists an efficient deterministic algorithm due
to Mazzawi (2010), but it runs in O(log n) rounds. These were followed up for algorithms for
weighted graphs with Bshouty and Mazzawi (2012) giving the best deterministic algorithm (which
we use), while Choi (2013) gives a randomized O(m logn

logm) query algorithm which is information
theoretically tight as well.

The question of understanding the edge-connectivity (ie, minimum cut) of an undirected graph
using CUT queries was perhaps explicitly initiated in the paper by Rubinstein et al. (2018) who
described an Õ(n) algorithm to determine the edge connectivity. The paper of Apers et al. (2022)
that we have mentioned multiple times above in fact gives a randomized Monte Carlo O(n) query
algorithm to solve this problem. The problem of determining the edge connectivity in weighted
graphs was studied in Mukhopadhyay and Nanongkai (2020) who gave a Õ(n) query algorithm
for the same. The particular question of deciding whether a graph is connected or not (or more
generally finding spanning forests) using CUT-queries was studied in Assadi et al. (2021). This
paper was focused on deterministic algorithms and round versus query-complexity trade-off, thus
ignores the poly log factors in query-complexity that this paper improves upon.

1.3. Notations and Observations

We first define the CROSS queries used throughout this paper:
CROSS queries: Given a graph G = (V,E). Let A,B ⊆ V be two disjoint subsets. CROSS(A,B)

returns the total weights of the edges that have an endpoint in A and the other in B,
∑

e∈E(A,B)w(e),
where E(A,B) denote the collection of vertex pairs (a, b) ∈ A × B such that there is an edge be-
tween a and b.

Proposition 2 A CROSS query can be simulated by a constant number of CUT queries, and vice
versa.

Proof It is trivial to simulate a CUT query using a CROSS query. To simulate a CROSS query using
CUT queries, observe that CROSS(A,B) = 1

2(CUT(A) + CUT(B)− CUT(A ∪B)), where A,B
are two arbitrary disjoint subsets of V .

4

SPANNING FOREST RECOVERY ON WEIGHTED GRAPHS

From this point on, our query model sticks to CROSS queries because it is more intuitive and
versatile when used in algorithm description and analysis.

The following lemma is used in the later analysis.

Proposition 3 Let t1, t2, · · · , t⌈logn⌉ be integers at least 2. If
∑⌈logn⌉

i=1 ti = t where n
logn ≤ t ≤ n,

then
∑⌈logn⌉

i=1
ti

log ti
= O(t

log t).

Proof See Appendix A.

Support of a vector v, or supp(v) in notation, is the number of non-zero entries of v.
All the logs in the paper are log2 by default.

2. Subroutines

In this section, we provide a few subroutines that we need for our final algorithm. These are mostly
minor modifications of algorithms that have appeared in previous works. We also state and prove
some extra properties that we need for our purpose.

The first subroutine is a degree estimation algorithm which, for any given vertex, returns an
estimate of its degree. This is equivalent to finding the support of a non-negative vector, and this
problem was studied in Stockmeyer (1983). We provide a version of the algorithm below both for
completeness, and also to prove an extra property that we need. We note that the algorithm actually
works with a much weaker query access than what we have: for any subset S, we only need to know
if its weight w(S) > 0 or not, that is, if S intersects the support of the vector or not. This query is
called an OR query in the literature.

Given a parameter i, an (i, t)-test samples t independent random subsets S1, . . . , St where in
each set every element is present independently with probability 1/2i. We query w(Sj) and use
fi to denote the fraction of samples with w(Sj) > 0. Below, C is a large constant which can be
thought of as 104, but we don’t optimize this.

Lemma 4 (Paraphrasing and modifying Stockmeyer, 1983, Theorem 2.1). Given a vector v ∈
(R+

0)
n, the algorithm DegreeEstimation makes O(log log n log log log n) queries and returns an

estimate est(v) such that (i) supp(v)
2 ≤ est(v) ≤ 2supp(v) holds with probability 0.99, and (ii)

2
5supp(v) < E[1

est(v) | not FAIL] < 3
supp(v) .

Proof The idea of the algorithm is similar to the algorithms for probabilistic counting. It tries to
find the scale i such that supp(v) ∈ [2i, 2i+1]. Given such a guess i, it samples a set where every
element is picked with probability 1/2i. If the guess of i is accurate, then there is a Θ(1) probability
of obtaining a non-empty subset. If the guess is too high, then the chances of getting an empty
set is too low; otherwise it’s too high. We can thus perform binary search on the scale. Since the
number of scales is log n, the number of rounds is O(log log n). To union bound over all possible
such rounds, in each round we make O(log log log n) queries, thus giving the total number.

The proof of (i) is already present in Stockmeyer (1983) (also see Ron and Tsur (2016)). We
need the statement (ii), but the proof is not much more involved. We give the details below.

We begin by proving (i) which also implies the probability of returning FAIL is ≤ 0.01. Fix an
iteration i. We say that this iteration is good if the following is true depending on supp(v).

5

SPANNING FOREST RECOVERY ON WEIGHTED GRAPHS

Algorithm 1 DegreeEstimation

Input: OR query access to v ∈ (R+
0)

n

Output: Returns est(v), an estimate of the support of v.
i← 1, lo← 1, hi← ⌈log n⌉

while hi > lo do
Perform (i, t) test with t = C log log log n, and obtain fi.
if fi ≤ 0.6 then

// conclude that supp(v) < 2i−1

hi← i− 1; i← ⌈(lo+ i)/2⌉
else if fi ≥ 0.7 then

// conclude that supp(v) > 2i+1

lo← i+ 1; i← ⌊(i+ hi)/2⌋
else

break while loop.
end

end
// All conclusions correct implies 2i−1 ≤ supp(v) ≤ 2i+1.
Perform (i, C)-test and obtain fi.
if f ∈ [0.35, 0.95] then

return est(v)← 2i.
return FAIL.

• supp(v) < 2i−1 and the algorithm concludes supp(v) < 2i, or
• supp(v) > 2i+1 and the algorithm concludes supp(v) > 2i,

That is, when support is much smaller or much larger than the scale, then the binary search moves
in the correct direction.

Proposition 5 Fix an iteration i. The probability that i is not good is ≤ 1
200 log logn .

Proof When supp(v) < 2i−1, we expect each set Sj sampled in the ith iteration to have Pr[w(Sj) =

0] = (1 − 1
2i
)supp(v) > (1 − 1

2i
)2

i−1 ≥ 0.5. Thus, in this case we get that the expected fraction
of sets with w(Sj) > 0 is E[fi] ≤ 0.5. Therefore, in this case, using Chernoff bounds we get that
Pr[fi > 0.55] ≤ 2−ct for some constant c. When t = C log log log n, for large enough constant C,
this number is ≤ 0.0001

log logn .
Similarly, when supp(v) > 2i+1, we expect each set Sj sampled in the ith iteration to have

Pr[w(Sj) = 0] = (1 − 1
2i
)supp(v) ≤ (1 − 1

2i
)2

i+1 ≤ 0.14. Thus, in this case we get E[fi] ≥ 0.86,
and so Pr[fi < 0.7] ≤ 0.0001

log logn .

Now consider the i’s encountered by the binary search algorithm. There are at most 2 log log n such
iterations, and thus by union bound, with probability ≥ 0.999 all of them are good. This implies
that when the while loop breaks, we are guaranteed 2i−1 ≤ supp(v) ≤ 2i+1. The probability that
the final test fails is ≤ 0.0001. To see this, when 2i−1 ≤ supp(v) ≤ 2i+1, the probability a single
Sj is empty is Pr[w(Sj) = 1] = 1−

(
1− 1

2i

)supp(v) ∈ [1− 1
e1/2

, 1516] ⊆ [0.35, 0.95]. And therefore,
the probability the final test aborts, again by Chernoff bounds, is ≤ 0.0001. This proves (i).

6

SPANNING FOREST RECOVERY ON WEIGHTED GRAPHS

To establish (ii), first note that the lower bound E[1
est(v)] ≥

2
5supp(v) follows from (i): the LHS

is ≥ 0.99 · 1
2supp(v) . To establish the upper bound on the LHS, we need to worry that there may be a

“largish” 0.0001 chance that est(v) ≤ supp(v)/1012. This is not ruled out by the statement (i), but
indeed, it’s easy to see this is not possible.

Proposition 6 For any L ≥ 40, Pr[est(v) ≤ supp(v)/L] ≤ e−L.

Proof Suppose the algorithm returns est(v) = 2i but supp(v) ≥ L · 2i for some L ≥ 40. In
the final (i, C) test, the probability that a sample Sj has w(Sj) = 0 is =

(
1− 1

2i

)supp(v) ≤ e−L.
Therefore, the probability f ≤ 0.95, that is, 0.05C of these sets are indeed empty, is at most
2C · e−0.05CL ≤ e−0.0025CL for large enough L ≥ 40. When C is large enough, this is ≤ e−L.

This is enough to upper bound E[1
est(v)].

E[
1

est(v)
] ≤ 0.99 · 2

supp(v)
+ 0.01 · 40

supp(v)
+

∑
L≥40

Le−L

supp(v)
≤ 3

supp(v)

where the first term corresponds to when est(v) ≥ supp(v)/2 and the latter two sums is an (overes-
timation) using the previous proposition.

The next tool we need is an algorithm which reconstructs weighted graphs using CROSS
queries. In particular, we use an algorithm by Bshouty and Mazzawi (2012) which reconstructs
graphs on n vertices and m edges. We state this as a lemma.

Lemma 7 (Paraphrasing Bshouty and Mazzawi, 2012, Theorem 3). There is a deterministic poly-
nomial time algorithm BMGraphReconstruction for reconstructing a hidden matrix A ∈ (R+

0)
n×n

with at most m non-zero entries that uses

O

(
m log n

logm
+m log logm

)
queries of the form Q(w, q) = w⊺Aq, where w, q ∈ {0, 1}n.

For our purposes, the number of edges would be unknown (in fact, random variables), and so
we use a simple modification to get an efficient algorithm that recovers the hidden edges of a graph
using CROSS queries that doesn’t require to know the number of the hidden edges to be known.

Lemma 8 (Follows readily from Bshouty and Mazzawi, 2012, Theorem 3). There is an algorithm
GraphReconstruction that can recover a bipartite graph (V1, V2, E) with non-negative weights
|V1| ≤ n, |V2| ≤ n and |E| = m using

O

(
m log n

logm
+m log logm

)
CROSS queries even if m is unknown to the algorithm.

7

SPANNING FOREST RECOVERY ON WEIGHTED GRAPHS

Proof An observation about Lemma 7 is that if A had more than m non-zero entries, then the deter-
ministic algorithm detects this and aborts. This is a standard idea: we run BMGraphReconstruction
with number of edge guesses growing in powers of 2 and accept the first time that algorithm doesn’t
abort. We provide some details in Appendix B for completeness.

The final tool we need is the simple DFS style algorithm to find a spanning forest. In particular,
if the number of connected components is q, then the remaining edges can be found in O(q log n)
many queries. This was also used by Apers et al. (2022) for unweighted graphs but an inspection
of their proof shows that it readily works with weights as well. The idea is that even in a weighted
non-negative vector, a single element in the support can be found using binary search, and every
connected component can find an edge coming out of it (if they exist) in O(log n) queries.

Lemma 9 (Paraphrasing Apers et al., 2022, Lemma 5.1) Let G = (V,E) be an n-vertex weighted
graph with non-negative weights. Let G′ be a contraction of G with q many supervertices, which
are given explicitly as the partition P = A1, · · · , Aq of V . There is a deterministic algorithm
DFSSpanningForest that takes in G,G′ and outputs a set of edges F ⊆ E that form a spanning
forest of G′ and makes O(q log n) CUT queries to G.

3. Main Algorithm

The algorithm proceeds in phases. At the beginning of each phase, the algorithm has a collection
of t connected components with t = n in the first phase and the connected components are all
singletons. The main workhorse of each phase is Algorithm 2 which is a Monte Carlo algorithm
that makes O(t log logn log log log n) queries and returns a collection of connected components
which is a constant factor smaller, with probability ≥ 1 − 1

100 log logn . We first describe this, and
using this algorithm one can get the final spanning forest algorithm in a straightforward fashion as
in Apers et al. (2022).

We further assume for now that each component Ci has a representative vertex ci ∈ Ci with the
guarantee that ci has an edge to V \ Ci. It is not too hard to maintain this with an O(n) overhead
on the queries, and we describe this when we describe the final algorithm. For now, let us go with
this assumption.

Let C1, · · · , Ct be the connected components of G1. Algorithm 2 begins by coloring the compo-
nents to red or blue uniformly at random. Let B be the set of vertices colored blue. Let b : V 7→ [n]
maps a vertex to the number of its blue neighbors. Call a representative r “good” if it is colored red
and b(r) ≥ 1. Note that a representative is good with probability ≥ 1/4; its component has to be
colored red and one of its neighbor’s component has to be colored blue. Since it has at least one
neighbor outside its component, the probability follows. Call a component good if its representative
is good; the expected number of good components is ≥ t/4.

Let R be the set of good red representatives. We first estimate the number of blue neigh-
bors, est(ri) for each ri ∈ R using DegreeEstimation in Algorithm 1. More specifically, we
treat the vertex pairs with an endpoint ri and the other colored blue as a hidden non-negative
vector of dimension at most n, to which we apply DegreeEstimation. If the algo doesn’t FAIL,
DegreeEstimation ensures 1

3b(ri)
< E[1

est(ri)
] < 3

b(ri)
. We apply DegreeEstimation on every ri,

which takes O(t log logn log log log n) queries in total. Note in Lemma 4 we showed that the prob-
ability of returning FAIL is bounded by 0.01. Let R′ be the set of good red representatives that gets
a valid estimate est. We have E[|R′|] ≥ 0.99E[|R|] ≥ 0.99t/4.

8

SPANNING FOREST RECOVERY ON WEIGHTED GRAPHS

Algorithm 2 ReduceConnectedComponents

Input: G1 with t connected components C1, · · · , Ct, each with ≥ 1 representative
Output: A graph with ≤ 47

48 t connected components w.p. ≥ 1− 1
100 log logn

count← 0.
while count < 35 log log log n do

Color all vertices in Ci to red or blue uniformly at random.
B ← vertices colored blue.
R← red representatives that have at least one blue neighbor.
Estimate the number of blue neighbors of each r ∈ R with DegreeEstimation in Algorithm 1
to get est(r) or FAIL.
Ri ← {r ∈ R|2i ≤ est(r) < 2i+1}.
For each integer 0 ≤ i ≤ ⌈log n⌉, sample a set Bi with every b ∈ B sampled w.p. 1

2i
with

replacement.
try recover edges E1 := ∪i∈⌈logn⌉E(Ri, Bi) with ⌈log n⌉ calls of GraphReconstruction de-
scribed in Lemma 8 using a total of t log logn log log log n queries, and see if number of
connected components is < 47t/48:

return G1 ∪ E1.
catch:

count← count+ 1.
end

end

Break [1, n− 1] into O(log n) disjoint intervals I0, I1, · · · , I⌈logn⌉−1 where Ii = [2i, 2i+1). For
each i, Algorithm 2 samples a single set Bi from B with replacement at rate 1

2i
. Define

Ri := {r ∈ R′|2i ≤ est(r) < 2i+1}

for 0 ≤ i < ⌈log n⌉. The algorithm then tries to reconstruct the O(log n) different graphs E(Ri, Bi)
using the GraphReconstruction described in Lemma 8, with a total budget of t log logn log log log n.
If budget runs out we abort. If all graphs are reconstructed, then we add all these edges to G1. If
the number of connected components drops significantly, we return. Otherwise, we abort. Once
aborted, we repeat everything all over again. The total number of trials is C log log log n, and if
all these tries fail, we abort our algorithm. We now analyze the algo, and in particular prove the
following.

Lemma 10 Let G = (V,E) be a weighted graph with non-negative edge weights. Given a sub-
graph G1 of G with t connected components for some t ≥ n

logn . Algorithm 2 returns a graph G2 with
at most 47

48 t connected components with probability 1− 1
100 log logn using O(t log logn(log log log n)2)

CROSS queries.

Proof
Let us begin by understanding the number of edges in E(Ri, Bi)’s. Fix an i. Define Yri to be the

random variable representing the number of edges with an endpoint ri ∈ Ri and the other endpoint
in Bi. Note that

E[Yri] = E[
b(ri)

2i
]

9

SPANNING FOREST RECOVERY ON WEIGHTED GRAPHS

By construction, 2i ≤ est(ri) < 2i+1. Thus 1
est(ri)

≤ 1
2i

< 1
est(ri)/2

. It follows that

E[
b(ri)

est(ri)
] ≤ E[

b(ri)

2i
] < E[

2b(ri)

est(ri)
]

By Lemma 4, 2
5b(ri)

< E[1
est(ri)

] < 3
b(ri)

. From it we have E[b(ri)
est(ri)

] > 2
5 and E[2b(ri)est(ri)

] < 6. So

2

5
< E[Yri] < 6.

That is, each ri has Θ(1) edges, in expectation, to vertices in Bi.
Let Y =

∑
ri∈Ri,0≤i<⌈logn⌉ Yri . Y counts the total number of edges in these O(log n) sub-

graphs. Also note that the Yris are not necessarily independent. Since t
4 ≤ E[|R|] ≤ t, and in the

DegreeEstimation each vertex fails with probability 0.01, we know that t
4 ·

99
100 ≤

9
40 t ≤ E[|R′|] ≤ t.

By linearity of expectation,
t

12
≤ E[

∑
ri∈R′

Yri] ≤ 6t.

That is, the expected number of edges in the union of E(Ri, Bi)’s is Θ(t). Let E1 be the event that
Y ≥ 300t. By Markov’s inequality,

Pr[E1] ≤
1

50
,

i.e., the number of sampled edges is greater than 300t with probability at most 1
50 . Thus, we have

established the following proposition.

Proposition 11 Pr[E1] = Pr[
∑

i |E(Ri, Bi)| ≥ 300t] ≤ 1
50 .

Next, let us argue that with decent probability a significant number of the ri’s do sample at least
one edge. This will lead to the decrease in the number of connected components. To this end, define

Zri =

{
1, if Yri ≥ 1

0, otherwise.

That is, Zri is the indicator if ri has an edge to Bi.
Let G denote the event that our estimate for b(ri) was good. That is, est(ri)

2 ≤ b(ri) ≤ 2est(ri).
By Lemma 4,

Pr[G] ≥ 0.99.

Now note that

Pr[Zri = 0|G] = (1− 1

2i
)b(ri) ≤ (1− 1

2i
)est(ri)/2 ≤ (1− 1

2i
)2

i−1 ≤ 0.61

Zris are Bernoulli random variables, so Pr[Zri = 1|G] ≥ 0.39. Therefore,

Pr[Zri = 1] = Pr[Zri = 1|G]Pr[G] + Pr[Zri = 1|Gc]Pr[Gc]
≥ 0.39 · 0.99
> 0.38

10

SPANNING FOREST RECOVERY ON WEIGHTED GRAPHS

and because 9
40 t ≤ E[|R′|] ≤ t, by linearity of expectation,

t

12
≤ E[

∑
ri∈R′

Zri] ≤ t.

Let E2 represent the event
∑

r∈R Zr ≤ t
24 . Apply reverse Markov’s inequality on

∑
r∈R Zr,

Pr[E2] ≤
t− E[

∑
ri∈R′ Zri]

t− t
24

≤ 22

23
.

i.e., the number of representatives being an endpoint of at least one sampled edges is at most t
24

with probability at most 22
23 . Thus, we have established the following proposition.

Proposition 12 Pr[E2] = Pr[fewer than t/24 of ri’s have an edge to Bi] ≤ 22
23 .

Let Si be the number of edges in the induced subgraph (Ri, Bi). The subgraph (Ri, Bi) has at
most n vertices. By Lemma 8, it takes

O

(
Si log n

logSi
+ Si log logSi

)
queries to recover the edges.

If E1 doesn’t occur, we have Y < 300t. Since
∑

0≤i≤⌈logn⌉ Si = Y , summing Si up for all
groups,

⌈logn⌉∑
i=0

O(
Si log n

logSi
+ Si log logSi) ≤ log n

⌈logn⌉∑
i=0

O(
Si

logSi
) +

⌈logn⌉∑
i=0

O(Si log logn)

= log n ·O(
Y

log Y
) +O(Y log log n) (by Proposition 3)

= O(
t log n

log t
) +O(t log log n)

= O(t log log n)

That is, if E1 doesn’t occur in some while loop, then in that loop the “try” would work.
Furthermore, if E2 doesn’t occur, it guarantees that the number of representatives being an end-

point of at least one sampled edges is at least t
24 . That is, after the edges are recovered, these

t
24 connected components now connect to other connected components. The number of connected
components after this round is at most (1− 1

48)t as the t
24 connected components might connect to

each other.
By union bound, the probability that neither of E1, E2 occurs is

1− Pr[E1 ∪ E2] ≥ 1− Pr[E1]− Pr[E2] ≥
1

50
.

And therefore, we get the following.

Proposition 13 The probability that a while loop succeeds in returning a E1 is ≥ 1/50.

11

SPANNING FOREST RECOVERY ON WEIGHTED GRAPHS

Therefore, if we run for 35 log log log n trials, one of them succeeds with probability ≥ 1 −
(4950)

35 log log logn ≥ 1− 1
100 log logn .

We introduce the definition of “active” and “inactive” vertices to help maintain representatives.

Definition 14 Let C be the set of vertices of a connected component in G. Define the “active”
vertices of C to be the vertices v ∈ C such that CROSS({v}, V \C) > 0. Define the “inactive”
vertices of C to be the vertices v ∈ C such that CROSS({v}, V \C) = 0.

At any point we maintain a set of connected components. A vertex in a connected component
is inactive if it doesn’t have any edges to vertices outside the component. This can occur even when
G is connected. The reason we need to track the connected components is that we don’t want to
involve any inactive vertices in queries (otherwise we would pay Ω(n) in each iteration which is
too expensive). Given t connected components, we want to make O(t) queries for maintaining
representatives even when t≪ n.

Now we are ready to state the final algorithm.

Algorithm 3 SpanningForestAlgorithm

1 Input: G = (V,E) with w(e) ≥ 0 for all e ∈ E.
2 Output: A spanning forest of G w.p. ≥ 2

3 .
3 n← |V |.

4 i← 1.
5 Gi ← (V, ∅).
6 for v ∈ V do

7 if |E({v}, V \v)| > 0 then
8 Mark v as active.
9 else

10 Mark v as inactive.
end

11 while i < 33 log log n do
12 Gi+1 ← ReduceConnectedComponents(Gi)

13 If any of old representatives in Gi is still active, mark it as the next representative in Gi+1.
Otherwise keep marking vertices in Gi+1 inactive until one finds an active vertex.

14 i← i+ 1

end
15 F ← Find the spanning forest of Gi with DFSSpanningForest in Lemma 9.

16 return F .

Theorem 15 Let G = (V,E,w) be a weighted graph in which we want to find a spanning forest
where |V | = n. V is known in advance but edges E and edge weights w ∈ (R+

0)
|E| are hidden. Al-

gorithm 3 is an O(n log log n(log log log n)2) CUT query complexity algorithm that reconstructs a
spanning forest of G with probability at least 2

3 .

Proof The queries we make in Algorithm 3 are from 3 parts.

12

SPANNING FOREST RECOVERY ON WEIGHTED GRAPHS

1. Calling Algorithm 2 in line 12;
2. Finding active vertices in line 6 - 10 and 13;
3. Finding the spanning forest with subgraph Gi in line 15.

Line 12: If all of the 33 log log n calls of Algorithm 2 succeed, by Lemma 10, the total number of
queries that used in calling Algorithm 2 is at most

k∑
i=0

cin log logn(log log log n)2 = O(n log log n(log log log n)2).

Line 6 - 10 and 13: To learn whether a vertex is active takes 1 query. Every time Algorithm 3
invokes Algorithm 2, in each connected component, we find one “active” vertex (if there is any)
by iterating over vertices that are not “inactive” at the end. Once a vertex is “inactive”, it becomes
“inactive” forever. The only vertices that we may query more than once are the representatives, in
which case in the ith call of Algorithm 2 there are at most cin of them. So the total number of
queries used to find representatives is at most n+

∑k
i=0 c

in = O(n).

Line 15: If all of the 33 log log n calls of Algorithm 2 succeed, the number of connected compo-
nents of G33 log logn is at most (4748)

33 log logn ≤ 1
logn . We apply Lemma 9 to find the remaining tree

edges deterministically which takes O(n) CROSS queries. Summing up the queries from the three
parts, we conclude the total number of queries is O(n log log n(log log log n)2).

Error probability: Algorithm 2 is called at most 33 log log n times by the analysis above and each
time fails with probability at most 1

100 log logn by Lemma 10. The error probability of Algorithm 3
is thus ≤ 1

3 .

4. Concluding Thoughts

In this paper, we showed a randomized algorithm which makes O(n log logn(log log log n)2) cut
queries and can recover a spanning forest of an undirected weighted graph with probability > 2/3.
On weighted graphs, this is the first algorithm which is better than the simple O(n log n)-query
deterministic algorithm.

Several questions are left open. The natural one is of course: can one actually get an O(n)-
query algorithm? At this point, even a deterministic algorithm is not ruled out. If we consider our
approach, then the biggest bottleneck is the degree estimation problem, and we believe this may
be a problem worth studying in its own right. More precisely, given a non-negative weighted N -
dimensional vector where for any subset S ⊆ [N] we can query and obtain the

∑
i∈S wi, can we

estimate the size of the support (F0 norm) up to say a constant factor making only O(1) queries?
Or is there a dependence on N necessary?

Another big question left open is about minimum cuts in weighted graphs. Currently, the best
known algorithm is by Mukhopadhyay and Nanongkai (2020) who give an O(npolylog(n)) query
algorithm to solve the minimum cut problem, where the exponent in the polylog is unspecified but
seems to be at least 3. Is there an O(n) algorithm for this problem? The paper Apers et al. (2022)
actually gives such a Monte-Carlo algorithm for unweighted graphs, but generalizing to weighted
graphs would need new techniques.

13

SPANNING FOREST RECOVERY ON WEIGHTED GRAPHS

Acknowledgments

This research was partly supported by NSF grant # 2041920

References

Noga Alon and Vera Asodi. Learning a hidden subgraph. SIAM Journal on Discrete Mathematics
(SIDMA), 18(4):697–712, 2005.

Noga Alon, Richard Beigel, Simon Kasif, Steven Rudich, and Benny Sudakov. Learning a hidden
matching. SIAM Journal on Computing (SICOMP), 33(2):487–501, 2004.

Simon Apers, Yuval Efron, Pawel Gawrychowski, Troy Lee, Sagnik Mukhopadhyay, and Danupon
Nanongkai. Cut query algorithms with star contraction. Proc., FOCS, 2022.

Sepehr Assadi, Deeparnab Chakrabarty, and Sanjeev Khanna. Graph connectivity and single ele-
ment recovery via linear and or queries. In Proc., European Symposium on Algorithms, volume
204, page 7, 2021.

Nader H. Bshouty and Hanna Mazzawi. Toward a deterministic polynomial time algorithm with
optimal additive query complexity. Theoretical Computer Science, 417:23–35, 2012.

Sung-Soon Choi. Polynomial time optimal query algorithms for finding graphs with arbitrary real
weights. In Shai Shalev-Shwartz and Ingo Steinwart, editors, Proc., Conf. on Learning Theory,
volume 30, pages 797–818, 2013.

Sung-Soon Choi and Jeong Han Kim. Optimal query complexity bounds for finding graphs. Artif.
Intell., 174(9-10):551–569, 2010.

Andrei Graur, Tristan Pollner, Vidhya Ramaswamy, and S Matthew Weinberg. New query lower
bounds for submodular function minimization. Proc., Innovations in Theoretical Computer Sci-
ence (ITCS), page 64, 2020.

Vladimir Grebinski and Gregory Kucherov. Optimal reconstruction of graphs under the additive
model. Algorithmica, 28(1):104–124, 2000.

Hanna Mazzawi. Optimally reconstructing weighted graphs using queries. In Proc., SODA, pages
608–615, 2010.

Sagnik Mukhopadhyay and Danupon Nanongkai. Weighted min-cut: sequential, cut-query, and
streaming algorithms. In Proc., STOC, pages 496–509, 2020.

Lev Reyzin and Nikhil Srivastava. Learning and verifying graphs using queries with a focus on
edge counting. In Proc., International Conference on Algorithmic Learning Theory (ALT), pages
285–297. Springer, 2007.

Dana Ron and Gilad Tsur. The power of an example: Hidden set size approximation using group
queries and conditional sampling. ACM Transactions on Computation Theory (TOCT), 8(4):
1–19, 2016.

14

SPANNING FOREST RECOVERY ON WEIGHTED GRAPHS

Aviad Rubinstein, Tselil Schramm, and S. Matthew Weinberg. Computing exact minimum cuts
without knowing the graph. In Proc., Innovations in Theoretical Computer Science (ITCS), pages
39:1–39:16, 2018.

Larry Stockmeyer. The complexity of approximate counting. In Proc., STOC, pages 118–126, 1983.

Appendix A. Proof of Proposition 3

Proposition 16 Let t1, t2, · · · , t⌈logn⌉ be integers at least 2. If
∑⌈logn⌉

i=1 ti = t where n
logn ≤ t ≤ n,

then
∑⌈logn⌉

i=1
ti

log ti
= O(t

log t).

Proof Partition {ti} into sets P1 = {ti|ti ∈ [2, t/ log2 t)}, P2 = {ti|ti ∈ [t/ log2 t, t]}. For ti ∈ P1,
note |P1| ≤ log n ≤ 2 log t, it follows that∑

i∈P1

i

log i
≤

∑
i∈P1

i ≤ 2 log t · t

log2 t
=

2t

log t
.

For ti ∈ P2, since ti >
√
t, log ti ≥ 1

2 log t. So ti/ log ti ≤ ti/
1
2 log t =

2ti
log t . For those ti,∑

i∈P2

i

log i
≤

∑
i∈P2

2i

log t
≤ 2t

log t
.

Combine the two inequalities,∑
i∈P

i

log i
=

∑
i∈P1

i

log i
+

∑
i∈P2

i

log i
≤ 4t

log t
= O(

t

log t
).

Appendix B. Proof of Lemma 8

Lemma 17 There is an algorithm GraphReconstruction that can recover a (V1, V2, E) non-negative
weighted bipartite graph with |V1| ≤ n, |V2| ≤ n and |E| = m using

O

(
m log n

logm
+m log logm

)
CROSS queries even if m is unknown to the algorithm.

Proof Lemma 7 uses queries of the form Q(w, q) = w⊺Aq where w, q ∈ {0, 1}n. Let Sw = {i ∈
V1|wi = 1}, Sq = {j ∈ V2|qj = 1}. Any such w⊺Aq query can be converted to a CROSS query on
the bipartite graph (V1, V2, E) because w⊺Aq =

∑
wi=1

∑
qj=1Aij = CROSS(Sw, Sq).

We move on to prove the claim that the lemma holds regardless of if m is known.
We can guess the magnitude of m in growing powers of 2. Assume GraphReconstruction in

Lemma 8 requires c1
m logn
logm + c2m log logm many queries for some constant c1, c2. We run the

15

SPANNING FOREST RECOVERY ON WEIGHTED GRAPHS

algorithm with parameter 2i from i = 0 to 2i ≥ m, in which case the algorithm guarantees success.
Each run stops when the number of queries reaches c12i logn

log 2i
+ c22

i log log 2i. Let q be the smallest
integer such that 2q ≥ m. The total number of queries it takes until i = q is

q∑
i=1

(
c1
2i log n

log 2i
+ c22

i log log 2i
)

= O

(
2q+1 log n

log 2q+1
+ 2q+1 log log 2q+1

)
(see Proposition 3)

= O

(
m log n

logm
+m log logm

)

Appendix C. A simple lower bound

We show a simple lower bound that no deterministic algorithm cannot obtain the exact degree of
any vertex in o(n) queries. In fact, we prove this for a stronger set of queries, namely LINEAR
queries. Given a vector v ∈ RN . A LINEAR query LINEAR(w) with input w ∈ RN returns v · w.
It is easy to see that a LINEAR query is more powerful than a CUT or CROSS query.

Theorem 18 Let v ∈ Rn
≥0 be an unknown vector. Any deterministic algorithm using LINEAR

queries that returns supp(v) exactly has query complexity at least n.

Proof The proof technique is similar to that in Graur et al. (2020, Claim 29). Fix any deterministic
algorithmA that uses at most n− 1 LINEAR queries. The coefficients of the n− 1 LINEAR queries
form an (n−1)×n matrix. Let f be a non-zero vector in its nullspace. We can find a constant c such
that cf +1 has at least 1 zero entry with the remaining entries non-negative. A fails against cf +1
and 1 because the two sets of queries would get the exact same answers yet supp(cf + 1) < n and
supp(1) = n.

A slight modification of this proof shows that any deterministic algorithm solving the graph
connectivity problem using LINEAR queries has query complexity at least n. (The graph connec-
tivity is a decision problem that asks one to determine whether a graph is connected.) The same
technique would show any n− 1 queries algorithm can’t differentiate between an n star graph and
an n− 1 star graph with a disconnected singleton vertex.

16

	Introduction
	Technical Overview
	Related Works
	Notations and Observations

	Subroutines
	Main Algorithm
	Concluding Thoughts
	Proof of Proposition 3
	Proof of Lemma 8
	A simple lower bound

