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Abstract

We consider the problem of estimating piecewise regular functions in an online setting, i.e., the
data arrive sequentially and at any round our task is to predict the value of the true function at the
next revealed point using the available data from past predictions. We propose a suitably modified
version of a recently developed online learning algorithm called the sleeping experts aggregation
algorithm. We show that this estimator satisfies oracle risk bounds simultaneously for all local
regions of the domain. As concrete instantiations of the expert aggregation algorithm proposed
here, we study an online mean aggregation and an online linear regression aggregation algorithm
where experts correspond to the set of dyadic subrectangles of the domain. The resulting algorithms
are near linear time computable in the sample size. We specifically focus on the performance of
these online algorithms in the context of estimating piecewise polynomial and bounded variation
function classes in the fixed design setup. The simultaneous oracle risk bounds we obtain for these
estimators in this context provide new and improved (in certain aspects) guarantees even in the
batch setting and are not available for the state of the art batch learning estimators.

Keywords: Online Prediction, Spatial/Local Adaptivity, Adaptive Regret, Piecewise Polynomial
Fitting, Bounded Variation Function Estimation, Oracle Risk Bounds.

1. Introduction

In this paper we revisit the classical problem of estimating piecewise regular functions from noisy
evaluations. The theory discussed here is potentially useful for a general notion of piecewise reg-
ularity although we will specifically give attention to the problem of estimating piecewise constant
or piecewise polynomial functions of a given degree m > 0 and bounded variation functions which
are known to be well approximable by such piecewise constant/polynomial functions. A classical
aim is to design adaptive estimators which adapt optimally to the (unknown) number of pieces of
the underlying piecewise constant/polynomial function. For example, if the true signal is (exactly
or close to) a piecewise constant function with unknown number of pieces k, then it is desirable
that the estimator attains a near parametric O(k /N ) rate of convergence (/N is the sample size, O(-)
indicates “upto some fixed power of log N”), for all possible values of k. This desired notion is
often shown by demonstrating that an estimator satisfies the so called oracle risk bound trading off
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a squared error approximation term and a complexity term. Several nonparametric regression esti-
mators, such as Wavelet Shrinkage Donoho and Johnstone (1994), Donoho and Johnstone (1998),
Trend Filtering Mammen and van de Geer (1997), Tibshirani et al. (2014), Tibshirani (2020), Dyadic
CART Donoho (1997), Optimal Regression Tree Chatterjee and Goswami (2021a), are known to at-
tain such an oracle risk bound in the context of estimating piecewise constant/polynomial functions.
In this context, two natural questions arise which we address in this paper.

Q1: Consider the online version of the problem of estimating piecewise constant or piecewise
polynomial functions, i.e., the data arrive sequentially and at any round our task is to predict
the value of the true function at the next revealed point using the available data from past
predictions. Does there exist an estimator which attains an oracle risk bound (similar to what
is known in the batch learning setting) in the online setting? This seems a natural and perhaps
an important question given applications of online learning to forecasting trends.

Q2: The oracle risk bounds available for batch learning estimators in the literature imply a notion
of adaptivity of the estimator. This adaptivity can be thought of as a global notion of adaptivity
as the risk bound is for the entire mean sum of squared error of the estimator. If it can be
shown that an estimator satisfies an oracle risk bound locally, simultaneously over several
subregions of the domain, then this will imply a local/spatial notion of adaptivity. We explain
this more in Section 1.2. This gives rise to our second question. Does there exist an estimator
which attains an oracle risk bound simultaneously over several subregions of the domain in
the online setting?. Even in the batch learning setting, it is not known whether state of the art
estimators such as Wavelet Shrinkage, Trend Filtering, Dyadic CART, Optimal Regression
Tree satisfy such a simultaneous oracle risk bound.

The main purpose of this paper is to recognize, prove and point out that by using a suitably
modified version of an online aggregation algorithm developed in the online learning community, it
is possible to answer both the above questions in the affirmative.

1.1. Problem Setting

Throguhout this paper, we will work with regression or signal denoising in the fixed lattice design
setup where the underlying domain is a d dimensional grid Ly, = [n] =: {1,...,n}% Here n
can be thought of as the sample size per dimension and the total sample size can be thought of as
N = n?. All of what we do here is meaningful in the regime where d is moderately low and fixed
but n is large. The specific dimensions of interest are d = 1, 2 or 3 which are relevant for sequence,
image or video denoising or forecasting respectively.

We will focus on the problem of noisy online signal prediction. Let K denote the d-dimensional
grid L, and we abbreviate | K| = N. Suppose §* € R¥ is the true underlying signal and

Y= 0"+ oc (1.1)

where o > 0 is unknown and € consists of independent, mean zero sub-Gaussian entries with unit
dispersion factor.
Consider the following online prediction protocol. Atround t € [1 : N|,

* An adversary reveals a index p(t) € K such that p(t) ¢ {p(1),...,p(t —1)}.
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* Learner predicts ép(t).
* Adversary reveals y,;) = QZ(t) + €,(t)» @ noisy version of 9;(15)-

Note that p turns out to be a possibly adversarially chosen permutation of the entries of K (see
the paragraph preceding Theorem 7). At the end of N rounds, the predictions of the learner are
measured with the usual expected mean squared loss criterion given by

A 1 A
MSE(§, 0*) := N E|6 — 6|2

Remark 1 Clearly, this online setting is a harder problem than batch learning where we get to
observe the whole array y at once and we need to estimate 0* by denoising y. Therefore, any online
learning algorithm can also be used in the batch learning setup as well.

1.2. A Definition of Spatial Adaptivity

In nonparametric function estimation, the notion of spatial/local adaptivity for an estimator is a
highly desirable property. Intuitively, an estimator is spatially/locally adaptive if it adapts to a notion
of complexity of the underlying true function locally on every part of the spatial domain on which
the true function is defined. It is accepted that wavelet shrinkage based estimators, trend filtering
estimators or optimal decision trees are spatially adaptive in some sense or the other. However, the
meaning of spatial adaptivity varies quite a bit in the literature. It seems that there is no universally
agreed upon definition of spatial adaptivity. In this section, we put forward one way to give a
precise definition of spatial adaptivity which is inspired from the literature on strongly adaptive
online algorithms (see, e.g., Daniely et al. (2015), Adamskiy et al. (2012), Hazan and Seshadhri
(2007)) developed in the online learning community. One of the goals of this paper is to convince
the reader that with a fairly simple analysis of the proposed online learning algorithm it is possible
to establish this notion of spatial adaptivity (precisely defined below) in a very general setting.

Several batch learning estimators 6 satisfy the so called oracle risk bounds of the following
form: )
MSE(9,0") < - inf (10— 6" + 0%keomp(O)p(l0g )
where kcomp denotes a complexity function defined on the vectors in R™ and p(logn) is some
power of log n. This is a risk bound which implies that the estimator § adapts to the complexity of
the true signal kcomp(6).

For example, optimal decision trees such as the Dyadic CART and the ORT estimator satisfy
an oracle risk bound (see Section 7 in Donoho (1997) and Theorem 2.1 in Chatterjee and Goswami
(2021a)), so does the Trend Filtering estimator (Remark 3.1 in Guntuboyina et al. (2020)) and
more classically, the wavelet shrinkage based estimators (see Section 1.5 in Donoho and John-
stone (1994)). Here, the complexity function Kcomp is directly proportional to the number of con-
stant/polynomial pieces for univariate functions. For multivariate functions, Kcomp is still propor-
tional to the number of constant/polynomial pieces; measured with respect to an appropriate class
of rectangular partitions of the domain, see Chatterjee and Goswami (2021a).
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However, from our point of view, this type of oracle risk bound, while being highly desirable
and guaranteeing adaptivity against the complexity function kcomp, is still a global adaptivity bound
as the bound is for the mean squared error of the whole signal §*. A good notion of local/spatial
adaptivity should reveal the adaptivity of the estimator to the local complexity of the underlying
signal. This naturally motivates us to make the following definition of spatial adaptivity.

We say that an estimator 0 is spatially adaptive with respect to the complexity parameter kcomp
and with respect to a class S of subregions or subsets of the domain Ly, if the following risk bound
holds simultaneously for every S € S,

MSE(fs, 0%) < (110 = 0%11? + 0 kcomp(0) p(logn)) .

— inf
|S| oers

The above definition of spatial adaptivity makes sense because if the above holds simultaneously
for every S € &, then the estimator # estimates at §* locally on S with a rate of convergence
that depends on the local complexity kcomp(6%). We will prove that our proposed online learning

estimator is spatially adaptive in the sense described above with respect to a large class of subregions
S.

1.3. Summary of Our Results

1. We formulate a slightly modified version of the so called sleeping experts aggregation algo-
rithm for a general class of experts and a general class of comparator signals. We then state
and prove a general simultaneous oracle risk bound for the proposed online prediction algo-
rithm; see Theorem 7. This is the main result of this paper and is potentially applicable to
several canonical estimation/prediction settings.

2. We specifically study an online mean aggregation algorithm as a special instance of our gen-
eral algorithm and show that it satisfies our notion of spatial adaptivity (see Theorem 12) with
respect to the complexity parameter that counts the size of the minimal rectangular partition
of the domain L ,, on which the true signal 6" is piecewise constant. Even in the easier offline
setting, natural competitor estimators like Dyadic CART and ORT are not known to satisfy
our notion of spatial adaptivity. Equipped with the spatially adaptive guarantee we proceed to
demonstrate that this online mean aggregation algorithm also attains spatially adaptive mini-
max rate optimal bounds (see Theorem 13) for the bounded variation function class in general
dimensions. This is achieved by combining Theorem 12 with known approximation theoretic
results. Such a spatially adaptive guarantee as in Theorem 13 is not known to hold for the TV
Denosing estimator, the canonical estimator used for estimating bounded variation functions.

3. We then study an online linear regression aggregation algorithm based on the Vovk-Azoury-
Warmouth (VAW) forecaster (see Vovk (1998), Azoury and Warmuth (2001)) as another in-
stantiation of our general algorithm. We show that this algorithm satisfies our notion of spatial
adaptivity (see Theorem 15) with respect to the complexity parameter which counts the size
of the minimal rectangular partition of the domain L,, on which the true signal 0" is piece-
wise polynomial of any given fixed degree > 1. Like in the case with piecewise constant
signals discussed above, natural competitor estimators such as Trend Filtering or higher order
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versions of Dyadic CART are not known to satisfy our notion of spatial adaptivity even in
the easier offline setting. We then demonstrate that this online linear regression aggregation
algorithm also attains spatially adaptive minimax rate optimal bounds (see Theorem 18) for
univariate higher order bounded variation functions. This is again achieved by combining
Theorem 15 with known approximation theoretic results. Such a spatially adaptive guarantee
as in Theorem 18 is not known to hold for the state of the art Trend Filtering estimator.

1.4. Closely Related Works

In a series of recent papers Baby and Wang (2019), Baby and Wang (2020), Baby et al. (2021b), Baby
and Wang (2021), the authors there have studied online estimation of univariate bounded variation
and piecewise polynomial signals. In particular, the paper Baby et al. (2021b) brought forward
sleeping experts aggregation algorithms Chernov and Vovk (2009), Daniely et al. (2015) in the
context of predicting univariate bounded variation functions. These works have been a source of
inspiration for this current paper.

On the other hand, in another recent paper Chatterjee and Goswami (2021a), the authors studied
the offline estimation of piecewise polynomial and bounded variation functions with a particular
attention on obtaining adaptive oracle risk bounds. The estimators considered in that paper are opti-
mal decision trees such as Dyadic CART (Donoho (1997)) and related variants. After coming across
the paper Baby et al. (2021b) we realized that by using sleeping experts aggregation algorithms, one
can obtain oracle risk bounds in the online setting which would then be applicable to online estima-
tion of piecewise polynomial and bounded variation functions in general dimensions as considered
in Chatterjee and Goswami (2021a).

The main point of difference of this work with the papers Baby and Wang (2019), Baby and
Wang (2020), Baby et al. (2021b) is that here we formulate a general oracle risk bound that works
simultaneously over a collection of subsets of the underlying domain (see Theorem 7). We then
show that this result can be used in conjunction with some approximation theoretic results (proved
in Chatterjee and Goswami (2021a)) to obtain spatially adaptive near optimal oracle risk bounds
for piecewise constant/polynomial and bounded variation functions in general dimensions. To the
best of our understanding, the papers Baby and Wang (2019), Baby and Wang (2020), Baby et al.
(2021b) have not addressed function classes beyond the univariate case. Even in the univariate
case, neither have they given a unified treatment for bounded variation functions of all orders nor
have they addressed oracle risk bounds for piecewise constant/polynomial functions. But most
importantly, it appears that our work is the first, in the online setting, to formulate a simultaneous
oracle risk bound as in Theorem 7 and realize that one can deduce from this near optimal risk bounds
for several function classes of recent interest. We hope that Theorem 7 will find applications for
several other function classes (see Section 6.2 below).

1.5. Further Related Literature

Question @)1 posed in Section 1 above has been addressed in the online learning literature by
Gerchinovitz (2011) in the following sense. Their regret bound (1) with “basis” functions ¢;’s that
correspond to indicator functions of dyadic rectangles implies a regret bound similar to that of The-
orem 4.2. However, the obtained regret bound is not locally adaptive, and the underlying algorithm
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appears to be computationally intensive relying on monte carlo approximations. More generally,
our setup here falls under the umbrella of online (fixed design) nonparametric regression. The gen-
eral results of Rakhlin and Sridharan (2014), Gaillard and Gerchinovitz (2015) , Cesa-Bianchi et al.
(2017) give general non-constructive ways to attain minimax rate optimal regrets for general func-
tion classes. The algorithms we propose here are explicit and efficiently computable. The recent
work of Kuzborskij and Cesa-Bianchi (2020) is related to this current article in the sense that they
also study local adaptivity of online prediction. However, their notion of local adaptivity is different
from what is the focus of the current article.

2. Aggregation of Experts Algorithm

In this section, we describe our main prediction algorithm. Our algorithm is a slight modifi-
cation of the so called Strongly Adaptive online algorithms discussed in Hazan and Seshadhri
(2007), Adamskiy et al. (2012), Daniely et al. (2015). We then provide a regret bound in terms
of the squared error loss for this algorithm against the squared error loss incurred by any expert; see
Proposition 4.

In this section K could be any general finite domain like Lg,,. An expert will stand for a set
S C K equipped with an online rule defined on S where, by an online rule r(9) corresponding to
S, we mean a collection of (measurable) maps r(USS) :RY — Rindexedby U C Sand s € S\ U.
Operationally, the expert corresponding to a subset S € S containing p(t) predicts at the revealed
point p(t) the number given by

~(5) _ ~(9) _ .09
Yoty = Yoi1:41,0(t) = Tpl1:(t=1)]NS, p(t) Yppr:(e-1yns) - 2.1

As is clear from the above expression, the prediction at the point p(t) € S actually depends on
p[l : t], i.e., all the revealed points upto time ¢. However, in order to keep our notations light, we
will omit the reference to p[1 : t] in the sequel and denote the prediction at s € S from the expert
S as g)§5> while reinvoking this dependence whenever they are relevant. The display (2.1) defines a
vector (%) € RS containing the predictions of the expert corresponding to the subset S. A family
of experts corresponds to a sub-collection S of subsets of K. For any choice of online rules for

every S € S, we refer to them collectively as an online rule r associated to S.

As per the protocol described in Section 1, at the beginning of any round ¢ € [N] where | K| =
N, the data index p(t) is revealed. At this point, the experts corresponding to subsets S € S either
not containing p(t) or not having any data index revealed previously, become inactive. All other
experts provide a prediction of their own.

We are now ready to describe our aggregation algorithm A for a set of experts S. The input to
this algorithm is the data vector y € R’ which is revealed sequentially in the order given by the
permutation p. We denote the output of this algorithm here by § € R¥. At each round ¢ € [N], the
algorithm outputs a prediction 7,(;). Below and in the rest of the article, we use T}, () to denote the
truncation map 7, (z) = min{max{z, —a},a}.
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Aggregation algorithm. Parameters - subset of experts S, online rule r = {T(S) : S € S}and
truncation parameter A > 1

Initialize wg 1 = ﬁ forall S € S.
Fort=1,...,N:

1. Adversary reveals p(t).

2. Choose a set of active experts A; as
{S eS8 :p(t)e Sandp(t') € S for some t’ < t}

ift >1and {S € S:p(t) € S}ift = 1. If A, = (), predict J,) = 0 and skip to round

t+1.
3. Predict g, = > wey T (A(S)) where g 1= ——>t—
: Yo(t) = 2usea, WSt LAY, ST Ysea, wsi”
4. Update wg,’s so that wg 41 = wg, for S ¢ A, and
—alg —als;
w B wgt € ’ i wg € ’ Z we
t+1 — N —af — ol .t
Disea, Wspem St D gey, we e st S
otherwise, where £s; := (T\(y,()) — T (A(S) ))2 and o 1= iy
) St = LA Wp(e) MY = e

Remark 2 This algorithm is similar to the sleeping experts aggregation algorithm discussed in Daniely
et al. (2015) except that we apply this algorithm after truncating the data by the map T . Since, we
are interested in (sub-Gaussian) unbounded errors, our data vector y need not be bounded which
necessitates this modification. See Remark 6 below.

Remark 3 [t is perhaps more natural to define the set of experts Ay as {S € S : p(t) € S} in step
2 above. Although this definition yields the same theoretical bounds given in this article, we found
in our simulation experiments that “taking the opinion of too many inexperienced experts” actually
brings down the performance in practice.

In the sequel we will refer to our aggregation algorithm as A(r, S, \). The following proposition
guarantees that the performance of the above algorithm is not much worse as compared to the
performance of any expert S € S; for any possible input data y.

Proposition 4 (error comparison against individual experts for arbitrary data) For any order-
ingpof Kand S € S, we have

S (s —95)° <Y (ws—989) 7 +822logelS| +2llys — Mays | +472 3" 1 (Jys| > ), 22)
ses ses ses

where Il z, for any vector z € R4 with |A| < oo, denotes the (*>-projection of z onto the {*°-ball
of radius ), i.e., (I1xz)q = T (2q) for all a € A.
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Remark 5 A remarkable aspect of Proposition 4 is that it holds for any input data y € Rldn,
In particular, no probabilistic assumption is necessary. In the terminology of online learning, this
is said to be a prediction bound for individual sequences. Usually, such an individual sequence
prediction bound is stated for bounded data; see, e.g., Hazan and Seshadhri (2007), Daniely et al.
(2015). On the other hand, Proposition 4 holds for any data because we have introduced a trunca-
tion parameter in our aggregation algorithm.

Remark 6 The effect of truncation is clearly reflected in the last two terms of (2.2). The issue of
unbounded data points in the noisy setup was dealt earlier in the literature — see, e.g., (Baby et al.,
2021a, Theorem 5) — by choosing a value of X\ so that all the datapoints lie within the interval
[—A, A] with some prescribed (high) probability 1 — 0. The comparison bounds analogous to (2.2)
(without the last two terms) then hold on this high probability event. However, the issue of how to
choose X\ such that all the datapoints lie within the interval [—\, \| is not trivial to resolve unless
one knows something about the data generating mechanism. There is a simple way to get around
this problem in the offline version by setting A = maxX;e|N] ly;| (see (Baby et al., 2021a, Remark 8))
which is obviously not possible in the online setting. The problem of tuning the parameter « se-
quentially was also addressed by Gaillard and Gerchinovitz (2015), in his setup of online linear
regression, by taking \ as the maximum of |y1|, ..., |yi—1| at any round t, with a regret analysis. It
is not clear to us whether this time varying choice of A can be made to amalmagate with our proof
techniques. Our version of the algorithm and the accompanying Proposition 4 provide an explicit
bound on the error due to truncation for arbitrary y € R¥ in the online problem. To the best of our
knowledge, such a bound was not available in the literature in the current setup. An operational
implication of Proposition 4 is that even if a few data points exceed ) in absolute value by not too
great a margin, we still get effective risk bounds.

Proof The proof is similar to the proof of regret bounds for exponentially weighted average fore-
casters with exp-concave loss functions (see, e.g., Hazan and Seshadhri (2007), Cesa-Bianchi and
Lugosi (2006)). However, we need to take some extra care in order to deal with our particular
activation rule (see step 2) and obtain the error terms as in (2.2).

Let us begin with the observation that the function e 1@=2)? where n > 0, is concave in x for
all z,z € [-1/+/8n,1/+/8n]. Clearly, this condition is satisfied for n = o and all z,z € [-\, A].
Therefore, since §,4) is an average of T’ (y)%)) )’s (which by definition lie in [— A, A]) with respective
weights wg; (see step 3 in the algorithm), we can write using the Jensen’s inequality,

exp (—a (g)p(t) — T,\(yp(t)))2> > E We,t o st
SecAs
(8) \\2
where we recall that £ := (T (1)) — Tx (yp(t))) .
Fix a subset S € S such that S € A;. Taking logarithm on both sides and using the particular
definition of updates in step 4 of A, we get

—af
N 2 1 e arsit | WS t+1
(o) = Tao0))” — st < @ log<z T R v b
sres WS, ’ g
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However, since wg 411 = wg; and hence the logarithm is 0 whenever S ¢ A; (see step 4 in the
algorithm), we can add the previous bound over all ¢ such that S € A; to deduce:

Z ( Yp(t) — T)\ ypt) Z ESt—i—a 1Zlg< St+1>§ Z 557t+a7110g|8\

1:SEA, t:SEA, te[N] wsit 1SEA,

where in the final step we used the fact that wg; = ‘%' and wg ny+1 < 1. Now let p(t) € S. It
follows from our activation rule in step 2 that unless ¢ is the first round such that p(¢) € S (call it
ts), one has S € A;. Therefore, the previous display gives us,

> oD wo) = 2 oy = Do) + (o) = TrWos))”
t:S3p(t) t:SeA

< Y lsi+ AN +a M log|S| = ) Ly +8MlogelS]
t:S3p(t) t:S5p(t)

(2.3)

where in the second step we used the fact that both 7,y and Tx(y,1s)) lie in [=A, A]. Now we
have to get rid of the truncation function 7’ (-) from both sides of this expression. To this end we
will use the following elementary inequality,

(x — 2)% < (T\(x) — 2)* + 2(Ta(z) — )% + 4X*1(|z| > ), when |z] < X (2.4)

and also,
(Tx(z) — T\ (2))?* < (z — 2)2 (2.5)

We apply (2.4) to x = y,4) and 2z = §,(+) € [~ A, A] for each ¢ satisfying p(t) € S and subsequently
use (2.3) to deduce

S (=) < 3 (s — Tals))? + 8N logelS| +2 3 (5 — Ta(w))? + 402 31 ([l > V)

seS seS seS sES
2
<3 (Taw) ~ T 0)) + 83 logelS| +2liys — Myl + 432 31 (] > )
SES seS

We can now conclude the proof from the above display by plugging x = ys and z = gés) into (2.5)

foreachs € S [ |

3. A General Simultaneous Oracle Risk Bound

In this section we will state a general simultaneous oracle risk bound for online prediction of noisy
signals. As in the last section, in this section also K refers to any arbitrary finite domain. Recall
from our setting laid out in the introduction that we observe a data vector y € R¥ in some order
where we can write

y=0"+0¢
where o > 0 is unknown and ¢;’s are independent, mean zero sub-Gaussian variables with unit
dispersion factor. For specificity, we assume in the rest of the paper that

max(Ple; > 2|, Ple; < —x]) < 2¢=**/2 forallz > 0andt € K.
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Let us emphasize that the constant 2 is arbitrary and changing the constant would only impact the
absolute constants in our main result, i.e., Theorem 7 below . Our focus here is on estimating signals
0* that are piecewise regular on certain sets as we now explain. Let S be a family of subsets of K
(cf. the family of experts S in our aggregation algorithm) and for each S € S, let F5 C R® denote
a class of functions defined on S.

We now define P to be the set of all partitions of K all of whose constituent sets are elements
of S. For any partition P € P, define the class of signals

@p:@p((F515€S)):{QERKzeseFS VSGP}. 3.1

In this section, when we mention a piecewise regular function, we mean a member of the set © p
for a partition P € P with not too many constituent sets.

For example, in this paper we will be specifically analyzing the case when K = Lg,, = [n]?is
the d dimensional lattice or grid, S is the set of all (dyadic) rectangles of L ,, and Fjs is the set of
polynomial functions of a given degree m > 0 on the rectangular domain .S. Then, P becomes the
set of all (dyadic) rectangular partitions of L4, and © p becomes the set of piecewise polynomial
functions on the partition P.

Coming back to the general setting, to describe our main result, we need to define an additional
quantity which is a property of the set of online rules {T(S ):SeS }. For any partition P € P and
any 6 € Op, let R(y,0, P) = R(r,y,0, P) > 0 be defined as,

~(S
R(y,0.P) =sup > (3 (0 — ) — llys — 0sI1?) (3.2)
P SeP tp(t)es

(recall the definition of g

(f) from (2.1)). Clearly R(y, 6, P) is a random variable and we denote by

p(t)

R(0, P) = ER(y,0, P), (3.3)

its expected value.

Here is how we can interpret R(y, 6, P). Given a partition P € P consider the following
prediction rule p. For concreteness, let the partition P = (S1,...,Sg). At round ¢, there will be
only one index i € [k] such that p(t) is in S;. Then the prediction rule rp predicts a value Q(SZ). In
other words, rp uses the prediction of the expert corresponding to the subset S; in this round. Also,
consider the prediction rule ry which at round ¢ predicts by 6, for any fixed vector 6 € Op. If we
have the extra knowledge that the true signal 8* indeed lies in © p then it may be natural to use the
above online learning rule rp if the experts are good at predicting signals (locally on the domain
S) which lie in Fis. We can now interpret R(y, 0, P) as the excess squared loss or regret (when the
array revealed sequentially is y) of the online rule rp as compared to the online rule rg.

In the sequel we use ||6]| o to denote the /,-norm of the vector §. We also extend the definitions
of P and ©p (see around (3.4)) to include partitions of subsets of K comprising only sets from S.
In particular, for any T C K, define P to be the set of all partitions P of T all of whose constituent
sets are elements of S. For any partition P € Py, define the class of signals

Op=0p((Fs:5€S8,SCT))={0cR":05€ Fs VS € P}. (3.4)

Notice that the dependence © p on the subset T is implicit in the choice of P € Pr.

10
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Let us now say a few words about the choice of ordering p which we can generally think of as
a stochastic process taking values in K. We call p as non-anticipating if, conditionally on (p[1 :
t], Yp[1:t—1])» €p(r) is distributed as €5 on the event {p(t) = s} for any ¢ € [N]. Such orderings
include deterministic orderings and orderings that are independent of the data. But more generally,
any ordering where p(t) is allowed to depend on the data only through Yp[1:¢—1) IS non-anticipating.
In particular, an adversary can choose to reveal the next index after observing all of the past data
and our actions.

We are now ready to state our general result. In order to emphasize our primary interest in pre-
dicting the vector 6%, below we use 6 intechangeably with the output 3 of the algorithm A(r, S, \)
applied to the data y for some suitable ordering p.

Theorem 7 (General Simultaneous Oracle risk bound) Let K be a finite set. Fix a set of experts
S equipped with online learning rule r. For each S € S, fix Fs C RS to be a class of functions
defined on S. Suppose y is generated from the model (1.1) and is input to the algorithm A(r,S, \).
Let T be any subset of K. There exist absolute constants ¢ € (0,1) and C > 1 such that for any
non-anticipating ordering p of K,

E||6r — 0% < PiengT (165 — 0]I> + CA? |P|loge|S| + R(6, P)) + CX*|{s € T : 65| > A}|
peOp
(105212 |62 +A2
O — T05 |2 + C(o? + 22) S ememin (F5 520

seT
3.5)

In particular, there exists an absolute constant C' > 1 such that for A > C(o+/log|T| V [|0*]| ),
one has

o2+ N2

A 1
MSE (61, 0%) < — _
S (T’ T) ‘T|2

< i (105 — 07 + C X Pllogels| + R0.P)) +

(3.6)

Remark 8 Our truncation threshold C(o+/log | T|V ||0*| o) is comparable to the threshold given
in (Baby et al., 2021a, Theorem 5) for Gaussian errors.

Remark 9 Notice that Pt can be empty if T does not admit of any partition with elements only in
S. In this case, the bounds (3.5) and (3.6) continue to hold by adopting the standard convention that
infimum over an empty set is 00.

We now explain various features and aspects of the above theorem.

¢ The reader can read the bound in (3.6) as

. 1 _
MSE(f,07) < inf — (|67 — 0]> + C X2 |P|loge|S] +R(9, P)) + lower order term.
PePr, T’ —_———— —
0€Op Ty Ty Ts

Indeed, the only importance of the factor TLP in the last term of (3.6) is that it is o(%‘), i.e.,
of lower order than the principal term. Indeed, by suitably increasing the constant C', we can
get any given power of | T| in the denominator.

11
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* To understand and interpret the above bound, it helps to first consider T = K and then fix a
partition P € Px = P and a piecewise regular signal § € ©p. We also keep in mind two
prediction rules, the first one is the online rule rp and the second one is 7y (both described
before the statement of Theorem 7). The bound inside the infimum is a sum of three terms,
T1,T5 and T3 as in the last display.

1. The first term 77 is simply the squared distance between 6 and 6*. This term is obviously
small or big depending on whether 6 is close or far from 6*.

2. The second term captures the complexity of the partition P where the complexity is
simply the cardinality or the number of constituent sets/experts | P| multiplied by log
cardinality of the total number of experts log e|S|. The reader can think of this term as
the ideal risk bound achievable and anything better is not possible when the true signal
0* is piecewise regular on P. This term is small or big depending on whether |P| is
small or big.

3. The third term T is R(#, P) which can be interpreted as the expected excess squared
loss or regret of the online rule rp as compared to the prediction rule ry. This term
is small or big depending on how good or bad is the online rule rp compared to the
prediction rule rg.

* Our bound is an infimum over the sum of three terms 17,75, 75 forany P € P and § € Op
which is why we can think of this bound as an oracle risk bound in the following sense.
Consider the case when T = K and 6™ lies in © p« for some P* which is of course unknown.
In this case, an oracle who knows the true partition P* might naturally trust experts locally and
use the online prediction rule rp+. In this case, our bound reduces (by setting P = P*, 0 =
6*) to the MSE incurred by this oracle prediction rule plus the ideal risk |P*|loge|S| term
which is unavoidable. Because of the term 77, this argument holds even if 8* does not exactly
lie in ©p+ but is very close to it. To summarize, our MSE bound ensures that we nearly
perform as well as an oracle prediction rule which knows the true partition corresponding to
the target signal 6*.

* The term 73 in the MSE bound in (3.6) behooves us to find experts with good online prediction
rules. If each expert S € S indeed is equipped with a good prediction rule, then under the
assumption that 6* is exactly (or is close to) piecewise regular on a partition P* € P, the
term T3 = R(0*, P*) will be small and our bound will thus be better. This is what we do in
our example applications, where we use provably good online rules such as running mean or
the online linear regression forecaster of Vovk Vovk (1998). Infact, in each of the examples
that we discuss subsequently in this paper, we bound the term R(6, P) in two stages. First,

we write

_ ~(S
RO, P) =ER(y,0,P) < |PI E swp (" (o0 — 50)*  llus = 0s1%)-
p.SEP t:p(t)eS

Then in the second stage we obtain a bound on the expectation in the right side above by a
log factor. Thus there is no real harm if the reader thinks of R (6, P) as also being of the order
| P| up to log factors which is the ideal and unavoidable risk as mentioned before.

12
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* A remarkable feature of Theorem 7 is that the MSE bound in (3.6) holds simultaneously for all
sets T C K. Therefore, the interpretation that our prediction rule performs nearly as well as an
oracle prediction rule holds locally for every subset or subregion T of the domain K. This fact
makes our algorithm provably spatially adaptive to the class of all subsets of /K with respect
to the complexity parameter proportional to |P| in the sense described in Section 1.2. The
implications of this will be further discussed when we analyze online prediction of specific
function classes in the next two sections.

Proof [Proof of Theorem 7] For convenience of referencing, we will use the notation ¢ instead of
. Since y = 0* + o€, we can write for any S € S,

lys — 9slI” = l9s — 0511° + 20(es, 9s) + o°|les |

However, since p is non-anticipating and ;) is measurable relative to (p[1 : t], y,(1:(:—1)]) and €5’s
have mean zero, it follows from the previous display that

Ellys — gsl* = Ellgs — 05]* + oE s *. (3.7)

On the other hand, adding up the upper bound on ||ys — 95| given by Proposition 4 over all S € P
for some P € P we get

lyr — g7l < D Z (W) ) + 2|yt — ayt|” + 8A*|P|loge|S|
SEP t:p(t
+4)\221{|y5| > AL
seT

Now taking expectations on both sides and using the definition of R(6, P) from (3.3), we can write
Ellyr —g7l* < Ellyr — 01 + R(9, P) + 8X* |P| loge|S| + 2E ||yt — Iyt |*

+AND " P(lys| > A). (3.8)
seT

Since €4’s have mean zero, we get by expanding |yt — 62,
Ellyr — 0] < 1167 — 01> + o*Eller|*.
Plugging this bound into the right hand side of (3.8), we obtain
Elyr — g7l1* < 107 = 0* + o”Eller||* + R(0, P) + 8X* | P|log e[ S| + 2E|lyT — Lyt

+ AN " P(lys| > N).
seT

Together with (3.7), this gives us
Ellyr — 07]* < 107 — 0I* + R(0, P) + 8X* | P|log e| S| + 2E|lyr — Lyt |
+ AN T P(Jys| > N).

seT
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Minimizing the right hand side in the above display over all P € P and § € ©p, we get

Bllyr — 651° < ,_inf (165 — 6] +R(6.P) + 8| Pllog |S]) + 2E]yr — My

+AX2Y " P(Jys| > N). (3.9)
seT

It only remains to verify the bounds on the error terms due to truncation. Since |js| < A by the
design of our algorithm, we have

(95 — 03)* < 2(05 — Ta(0))” + 8X\° (3.10)

for all s € T. We will apply this naive bound whenever |0%| > A. So let us assume that s is such
that |6%| < \. Let us start by writing

E(ys - T)\(ys))Q = I—I— +1,

where, with x4 := max(z,0) and z_ := — min(z, 0),

I =E(ys— N7 = 202/ (z — g) Ples >z — %S] dz, and

x>

Al

*

(:L"—i—g)]P’[es <x-— —S] dx.

I_:=E(y, +))?% = —202/
o

z<—%
In writing these expressions we used the standard fact that
E(X —a)} = 2/ (x — a)P[X > z]dx.
r>a

We deal with I first. Since 67 < X and €, has sub-Gaussian decay around 0 with unit dispersion
factor, we can bound I as follows:

A — 0% _jor=a2

I+—202/ s (ac— . S)P[es>x] de < Co’e™ 252 3.11)
> =

where C' is an absolute constant. Similarly we can deduce

2
_log A2

I_<Co%e 27 . (3.12)
On the other hand, for any |6%| < A, we have
A— 6% -\ — 0} B RN 2V
Pllys| > ] < P[es > S+ Ples < —=2] <2 22 Mo (3.13)
(o)

Finally we plug the estimates (3.11), (3.12) and (3.13) into (3.9) when |0%| < A, and the estimate
(3.10) and the trivial upper bound on probabilities when |0%| > X to get (3.5). (3.6) then follows
immediately from (3.5) by choosing C' large enough. |

In the next few sections we will introduce and discuss online prediction rules for several classes
of functions. In each case we will apply Theorem 7 to derive the corresponding risk bounds. The
proofs of all the results are given in the Appendix section in the supplementary material.
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4. Online Mean Aggregation over Dyadic Rectangles (OMADRE)

In this section, we will specifically study a particular instantiation of our general algorithm (laid out
in Section 2) which we tentatively call as the Online Mean Aggregation over Dyadic Rectangles
estimator/predictor (OMADRE). Here, K = Lg ,, and the set of experts corresponds to the set of all
dyadic rectangles of L ,,. Some precise definitions are given below.

An axis aligned rectangle or simply a rectangle R is a subset of Ly, which is a product of
intervals, .., R = [J%_, [as, b;] for some 1 < a; < b; < n;i € [d]. A sub-interval of [1, 7] is called
dyadic if it is of the form ((a — 1)2°, a2°] for some integers 0 < s < kand 1 < a < 2F~% where we
assume n = 2F for simplicity of exposition. We call a rectangle dyadic if it is a product of dyadic
intervals.

Now we take our experts to be the dyadic sub-rectangles of L, i.e., in the terminology of
Section 3, S is the set of dyadic sub-rectangles of Lg,. We set Fig = span({1}) —- the space of
all constant functions on S — for all S € S. We also let Py, be the set of all dyadic rectangular
partitions of Lg,, where a (dyadic) rectangular partition P is a partition of Ly, comprising only
(respectively, dyadic) rectangles. Since there are at most 2n dyadic sub-intervals of [n], we note
that

S| = (2n)? = 29N. (4.1)

Under this setting, for any partition P of L ,, the set © p refers to the set of all arrays ¢ & REdan
such that 6 is constant on each constituent set of P.

Finally we come to the choice of our online rule r. It is very natural to consider the online
averaging rule r defined as:

ri (yu:ueU)) =gy forallU ¢ S e Sands € S\ U. (4.2)
By convention, we set 73 = 0.

Lemma 10 (Computational complexity of OMADRE) There exists an absolute constant C > 0
such that the computational complexity, i.e., the number of elementary operations involved in the
computation of OMADRE is bounded by C'N (log, 2n)%.

Remark 11 The above computational complexity is near linear in the sample size N but expo-
nential in the dimension d. Therefore, the estimators we are considering here are very efficiently
computable in low dimensions which are the main cases of interest here.

The OMADRE, being an instance of our general algorithm will satisfy our simultaneous oracle
risk bound in Theorem 7. This oracle risk bound can then be used to derive risk bounds for several
function classes of interest. We now discuss two function classes of interest for which the OMADRE
performs near optimally.

4.1. Result for Rectangular Piecewise Constant Functions in General Dimensions

Suppose 6* is piecewise constant on some unknown rectangular partition P* of the domain K =
L.y, For concreteness, let the partition P* = (R, ..., Ry). An oracle predictor é(oracle) — which
knows the minimal rectangular partition (R1, ..., Ry) of 6* exactly —can simply use the online
averaging prediction rule given in (4.2) separately within each of the rectangles(R;, ..., R;). By a
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basic result about online mean prediction, (see Lemma 21), it can be shown that the MSE of this
oracle predictor is bounded by O(’M%). In words, the MSE of this oracle predictor scales
(up to a log factor which is necessary) like the number of constant pieces of 0* divided by the sample
size N which is precisely the parametric rate of convergence.

A natural question is whether there exists an online prediction rule which a) adaptively achieves
a MSE bound similar to the oracle prediction rule b) is computationally efficient. In the batch set
up, this question is classical (especially in the univariate setting when d = 1) and has recently been
studied thoroughly in general dimensions in Chatterjee and Goswami (2021a). It has been shown
there that the Dyadic CART estimator achieves this near (up to log factors) oracle performance when
d < 2 and a more computationally intensive version called the Optimal Regression Tree estimator
(ORT) can achieve this near oracle performance in all dimensions under some assumptions on the
true underlying partition. However, we are not aware of this question being explicitly answered
in the online setting. We now state a theorem saying that the OMADRE essentially attains this
objective. Below we denote the set of all partitions of Lg ,, into rectangles by Py)1. Note that the set
Pap is strictly contained in the set Pyyy.

Theorem 12 (Oracle Inequality for Arbitrary Rectangular Partitions) Let T be any subset of
K and 6°M denote the OMADRE predictor. There exists an absolute constant C' such that for any
A > C(ov/log N V ||6*||s0), one has for any non-anticipating ordering p of Lq p,
Lgov _griz < ine ()0t — 0P + X2 (logen)T10g 27N) +
T 7 pepas T IT|

0cOpCRT

o2 + N2

E -
TP

. (4.3)

We now discuss some noteworthy aspects of the above theorem.

1. It is worth emphasizing that the above oracle inequality holds over all subsets T of K simulta-
neously. Therefore, the OMADRE is a spatially adaptive estimator in the sense of Section 1.2.
Such a guarantee is not available for any existing estimator, even in the batch learning setup.
For example, in the batch learning setup, all available oracle risk bounds for estimators such
as Dyadic CART and related variants are known only for the full sum of squared errors over
the entire domain.

2. To the best of our knowledge, the above guarantee is the first of its kind explicitly stated in the
online learning setup. Therefore, the above theorem shows it is possible to attain a near (up
to log factors) oracle performance by a near linear time computable estimator in the online
learning set up as well; thereby answering our first main question laid out in Section 1.

3. We also reiterate that the infimum in the R.H.S in (4.3) is over the space of all rectangular
partitions Pgy. This means that if the true signal 6* is piecewise constant on an arbitrary
rectangular partition with £ rectangles, the OMADRE attains the desired O(k‘ /N) rate. Even
in the batch learning set up, it is not known how to attain this rate in full generality. For
example, it has been shown in Chatterjee and Goswami (2021a) that the Dyadic CART (or
ORT) estimator enjoys a similar bound where the infimum is over the space of all recursive
dyadic rectangular partitions (respectively decision trees) of K which is a stirct subset of
Pan. Thus, the bound presented here is stronger in this sensethan both these bounds known
for Dyadic CART/ORT. More details about comparisons with Dyadic CART and ORT is
given in Section 6.1.
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4.2. Result for Functions with Bounded Total Variation in General Dimensions

Consider the function class whose total variation (defined below) is bounded by some number. This
is a classical function class of interest in offline nonparametric regression since it contains functions
which demonstrate spatially heterogenous smoothness; see Section 6.2 in Tibshirani (2015) and
references therein. In the offline setting, the most natural estimator for this class of functions is
what is called the Total Variation Denoising (TVD) estimator. The two dimensional version of this
estimator is also very popularly used for image denoising; see Rudin et al. (1992). It is known that
a well tuned TVD estimator is minimax rate optimal for this class in all dimensions; see Hiitter and
Rigollet (2016) and Sadhanala et al. (2016).

In the online setting, to the best of our knowledge, the paper Baby and Wang (2019) gave the first
online algorithm attaining the minimax optimal rate. This algorithm is based on wavelet shrinkage.
Recently, the paper Baby et al. (2021b) studied a version of the OMADRE in the context of online
estimation of univariate bounded variation functions. In this section we state a result showing that
with our definition of the OMADRE, it is possible to predict/forecast bounded variation functions
online in general dimensions at nearly the same rate as is known for the batch set up.

We can think of K = Lg , as the d dimensional regular lattice graph. Then, thinking of § €
RLdn as a function on L, we define

TV(EO) = Y [0u—0,] (4.4)

(uvv)eEd,n

where F ,, is the edge set of the graph L, ,,. The above definition can be motivated via the analogy
with the continuum case. If we think 6[iy,...,i,] = f (%, cee %d) for a differentiable function
f:[0,1]¢ — R, then the above definition divided by n?~! is precisely the Reimann approximation
for f[O,l]d IV f]]1. In the sequel we denote,

BVin(V*) :={0 € R" : TV(0) < V*}.
We are now ready to state:

Theorem 13 (Prediction error for 3V, (V*) with online averages) Fix any T C K that is a
dyadic square and denote Vi = TV (03). If A > C(o+/log N V ||6*||o) as in Theorem 7, we have

for some absolute constant C > 1 and any non-anticipating ordering p of Lq p,

1 som g2 o C g2 dAm2 « A3y, 00N
E \T|H0T 051> < m()\ (log 27 N)? + AVF (log 2°N)*/?) + TP 4.5)
when d > 1. On the other hand, for d = 1 we have
1, - Va3 o2 A2
E WHQQM — 0%1? < C X3 (log 2¢N)*/3 <‘TT|> + U|T+‘2 (4.6)

Here are some noteworthy aspects of the above theorem.

1. The above theorem ensure that the OMADRE matches the known minimax rate of estimating
bounded variation functions in any dimension. To the best of our knowledge, this result is
new in the in the online setting for the multivariate (i.e., d > 2) case.
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2. Note that our MSE bounds hold simultaneously for all dyadic square regions. Thus, the
OMADRE adapts to the unknown variation of the signal V7, for any local dyadic square
region T. In this sense, the OMADRE is spatially adaptive. Even in the batch setting, this
type of simultaneous guarantee over a class of subsets of L, is not available for the canonical
batch TVD estimator.

3. We require T to be a dyadic square because of a particular step in our proof where we ap-
proximate a bounded variation array with an array that is piecewise constant over a recursive
dyadic partition of Lg ,, with pieces that have bounded aspect ratio. See Proposition 23 in the
appendix.

5. Online Linear Regression Aggregation over Dyadic Rectangles (OLRADRE)

In this section, we consider another instantiation of our general prediction algorithm which is based
on the Vovk, Azoury and Warmuth online linear regression forecaster, e.g see Vovk (1998). Similar
to Section 4, we take our set of experts S to be the set of all dyadic sub-rectangles of L ,,. However,
the main difference is that we now take Fs to be the subspace spanned by a finite set F of basis
functions on R restricted to S . In the next two subsections, we will focus specifically on the case
when F is the set of all monomials in d variables with a maximum degree (see (5.2) below).

Next we need to choose an online rule r to which end the VAW linear regression forecaster leads
to an online rule defined as:

~ ~ -1
T((Ji)((yu tu € U)) = fBs - x5 with 5 := (I + Z xu$5) ( Z yul'u) 5.1
ueUU{s} uelU

forallU ¢ S € Sand s € S\ U where x,, is the vector (f(u) : f € F) € R” and - denotes the
canonical inner product in R By convention, we interpret an empty summation as 0.

The next lemma gives the computational complexity of the OLRADRE which is the same as
that of the OMADRE except that it scales cubically with the cardinality of the basis function class
F.

Lemma 14 (Computational complexity of OLRADRE) There exists an absolute constant C > 0
such that the computational complexity of OLRADRE is bounded by C|F|>N (log, 2n)?.

We reiterate here that the set of basis functions can be taken to be anything (e.g relu functions,
wavelet basis etc.) and yet a simultaneous oracle risk bound such as Theorem 7 will hold for the
OLRADRE. We now move on to focus specifically on piecewise polynomial and univariate higher
order bounded variation functions where OLRADRE performs near optimally.

5.1. Result for Rectangular Piecewise Polynomial Functions in General Dimensions

The setup for this subsection is essentially similar to that in Section 4.1 except that 8* can now be
piecewise polynomial of degree at most m on the (unknown) partition P*. More precisely, we let

P ()= T ()" i)

i€(d
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where m = (my, ..., mg) is the multidegree of the monomial (%)m and [m| = 37, m; is the
corresponding degree.

As before, an oracle predictor é(oracle) — which knows the minimal rectangular partition
(Ry,...,Ri) of 6% exactly —can simply use the online VAW online linear regression rule given
in (5.1) separately within each of the rectangles (R, ..., Ry). By a basic result about VAW online
linear regression, (see Proposition 25), it can be shown that the MSE of this oracle predictor is
bounded by Od(W). In words, the MSE of this oracle predictor again scales (up to a log
factor which is necessary) like the number of constant pieces of 0* divided by the sample size
N which is precisely the parametric rate of convergence. We will now state a result saying that
OLRADRE, which is computationally efficient, can attain this oracle rate of convergence, up to
certain additional multiplicative log factors.

Since any 6 € ©p, where P € P, 1 for some T C K (cf. the statement of Theorem 12), is
piecewise polynomial on P, we can associate to any such 6 the number

m
0) = jml here fg = m _ jml (3) . (53
Sm,oo( ) Selgﬂanﬁﬁmn /Bm,S whnere vg Inlz;m 6m,$’u n;mn ﬁm,S n ( )

The reader should think of 0 as () where g is some piecewise polynomial function defined on the
unit cube [0, 1] and hence of s, «(f) as its maximum coefficient which is a bounded number, i.e.,
it does not grow with n. Let us keep in mind that the OLRADRE depends on the underlying degree
m which we keep implicit in our discussions below. We can now state the analogue of Theorem 12
in this case.

Theorem 15 (Oracle Inequality for Arbitrary Rectangular Partitions) Let T be any subset of
K and 6° denote the OLRADRE predictor. Then there exist an absolute constant C' and a number
Cin.a > 1 depending only on m and d such that for X\ > C(o+/lIog N V ||0||), one has for any
non-anticipating ordering p of Lq p,

1 4 , 1 |P| 0%+ \?
E—09F — 05> < inf (—=6% — 0]|> + Cpn.a)?, .= (logen)?log 2IN) + ———
’T|H T TH = PEPut (‘T|H T H ,d\m, |—|—|( g ) g ) ‘T|2

#cOpCRT
(5.4)

where Ay s = X+ S o0 (0).
We now make some remarks about this theorem.

Remark 16 We are not aware of such a simultaneous oracle risk bound explicitly stated before in
the literature for piecewise polynomial signals in general dimensions in the online learning setting.

Remark 17 Even in the batch learning setting, the above oracle inequality is a stronger result than
available results for higher order Dyadic CART or ORT (Chatterjee and Goswami (2021a)) in the
sense that the infimum is taken over the space of all rectangular partitions P,y instead of a more
restricted class of partitions.
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5.2. Result for Univariate Functions of Bounded Variation of Higher Orders

One can consider the univariate function class of all m times (weakly) differentiable functions,
whose m th derivative is of bounded variation. This is also a canonical function class in of-
fline nonparametric regression. A seminal result of Donoho and Johnstone (1998) shows that a
wavelet threshholding estimator attains the minimax rate in this problem. Locally adaptive regres-
sion splines, proposed by Mammen and van de Geer (1997), is also known to achieve the minimax
rate in this problem. Recently, Trend Filtering, proposed by Kim et al. (2009), has proved to be a
popular nonparametric regression method. Trend Filtering is very closely related to locally adaptive
regression splines and is also minimax rate optimal over the space of higher order bounded varia-
tion functions; see Tibshirani et al. (2014) and references therein. Moreover, it is known that Trend
Filtering adapts to functions which are piecewise polynomials with regularity at the knots. If the
number of pieces is not too large and the length of the pieces is not too small, a well tuned Trend
Filtering estimator can attain near parametric risk as shown in Guntuboyina et al. (2020). In the on-
line learning setting, this function class has been studied recently by Baby and Wang (2020) using
online wavelet shrinkage methods. We now state a spatially adaptive oracle risk bound attained by
the OLRADRE for this function class.

Let K = L, = [[1,n]] and for any vector # € R™, let us define its m-th order (discrete)
derivative for any integer 7 > 0 in a recursive manner as follows. We start with D(0)(9) = 4
and DM (0) = (0 — 64,...,6, — 6,_1). Having defined D™~ (f) for some m > 2, we set
D™ (9) = DM (D=1 (9)). Note that D™ (§) € R"™. For sake of convenience, we denote
the operator DY) by D. For any positive integer m > 1, let us also define the m-th order variation
of a vector 6 as follows:

V(@) = n™ 1 DM (6)) (5.5)

where |.|; denotes the usual £*-norm of a vector. Notice that V'1(6) is the total variation of a vector
defined in (4.4). Like our definition of total variation, our definition in (5.5) is also motivated by the
analogy with the continuum. If we think of € as an evaluation of an m times differentiable function
f 10,1 — R on the grid (1/n,2/n...,n/n), then the Reimann approximation to the integral
f[0,1] f™)(t)dt is precisely equal to V™) (). Here f("™) denotes the m-th order derivative of f.
Thus, the reader should assume that V(™) (0) is of constant order for a generic §. Analogous to the
class BVd,n(V*), let us define for any integer m > 1,

BYM (V) ={# e R": V™ (9) < V*}.
In the spirit of our treatment of the class BV, (V) in Section 4.2, we take
F={l,z ..., a™ .
We now state the main result of this subsection.

Theorem 18 (Prediction error for BVS\T,n) (V*),m > 1) Fixanyinterval T C K and denote Vi =
V) (0%). Also let ||0*]|m—1.00 := maxXo<j<m N7||DI(0*)||c. Then there exist an absolute con-
stant C' and a number C,, > 1 depending only on m such that for X > C(c+/log N V [|0*|| ), we
have for any non-anticipating ordering p of L1 p,

2m
1 . 4m (V*)l/m 2m+1 O'2+>\2
E—||69F — 01]]> < Cpy A2 logeN | —2— - 5.6
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where A, = X+ ||0"||;m—1,00 (cf. the statement of Theorem 15).

We now make some remarks about the above theorem.

Remark 19 The above spatially adaptive risk bound for bounded variation functions of a general
order is new even in the easier batch learning setting. State of the art batch learning estimators like
Trend Filtering or Dyadic CART are not known to attain such a spatially adaptive risk bound.

6. Discussion

In this section we discuss some natural related matters.

6.1. Detailed Comparison with Dyadic CART

The Dyadic CART is a natural offline analogue of the OMADRE described in Section 4. Similarly,
higher order versions of Dyadic CART and Trend Filtering are natural offline analogues of the uni-
variate piecewise polynomial OLRADRE described in Section 5. Therefore, it makes sense to com-
pare our oracle risk bound (notwithstanding simultaneity and the fact that OMADRE/OLRADRE
are online algorithms) in Theorems 12, 15, 18 with the available offline oracle risk bound for Dyadic
CART, see Theorem 2.1 in Chatterjee and Goswami (2021a). This result is an oracle risk bound
where the infimum is over all recursive dyadic partitions (see a precise definition in Section 1.2.1
of Chatterjee and Goswami (2021a)) of Lg,. On the other hand, our oracle risk bounds are es-
sentially an infimum over all dyadic partitions Pg,. In dimensions d = 1,2 these two classes of
partitions coincide (see Lemma 8.2 in Chatterjee and Goswami (2021a) in the arxiv version) but
for d > 2, the class of partitions Pg, strictly contain the class of recursive dyadic partitions (see
Remark 8.3 in Chatterjee and Goswami (2021a) in the arxiv version). Therefore, the oracle risk
bounds in Theorems 12, 15 are stronger in this sense.

The above fact also allows us to convert the infimum over all dyadic partitions Py, to the space
of all rectangular partitions P, since any partition in P,y can be refined into a partition in Pg,
with the number of rectangles inflated by a (logn)? factor. In dimensions d > 3, such an offline
oracle risk bound (where the infimum is over Pyj1) is not known for Dyadic CART. As far as we are
aware, the state of the art result here is shown in Chatterjee and Goswami (2021a) where the authors
show that a significantly more computationally intensive version of Dyadic CART, called the ORT
estimator is able to adaptively estimate signals which are piecewise constant on fat partitions. In
contrast, Theorems 12, 15 hold for all dimensions d, the infimum in the oracle risk bound is over
the set of all rectangular partitions P, and no fatness is needed.

It should also be mentioned here that compared to batch learning bounds for Dyadic CART, our
bounds have an extra log factor and some signal dependent factors which typically scale like O(1).
Note that the computational complexity of our algorithm is also worse by a factor (log n)%, compare
Lemma 10 to Lemma 1.1 in Chatterjee and Goswami (2021a). However, it should be kept in mind
that we are in the online setup which is a more difficult problem setting than the batch learning
setting.

6.2. Some Other Function Classes

Our simultaneous oracle risk bounds are potentially applicable to other function classes as well not
considered in this paper. We now mention some of these function classes.
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A similar batch learning oracle risk bound with an infimum over the set of all recursive dyadic
partitions was used by Donoho (1997) to demonstrate minimax rate optimality of Dyadic CART for
some anisotropically smooth bivariate function classes. Using our result, it should be possible to
attain a simultaneous version of minimax rate optimal bounds for these types of function classes.

Consider the class of bounded monotone signals on L ,, defined as

Md,n = {9 S [0, 1]L"*d Z@[il,... ,id] < H[jl,...,,jd] whenever 71 < j1,...,09 < ]d}

Estimating signals within this class falls under the purview of Isotonic Regression. Isotonic Re-
gression has been a topic of recent interest in the online learning community; see Kottowski et al.
(2016), Kotlowski et al. (2017). It can be checked that the total variation for any d dimensional iso-
tonic signal with range O(1) grows like O(n%~!) which is of the same order as a canonical bounded
variation function. Therefore, the bound in Theorem 12 would give spatially adaptive minimax rate
optimal bounds for Isotonic Regression as well. In the offline setup, a lot of recent papers have
investigated Isotonic regression with the aim of establishing minimax rate optimal rates as well as
near optimal adaptivity to rectangular piecewise constant signals; see Deng and Zhang (2020), Han
et al. (2019). Theorem 12 establishes that such adaptivity to rectangular piecewise constant signals
as well as maintaining rate optimality over isotonic functions is also possible in the online setting
by using the OMADRE proposed here.

Let us now consider univariate convex regression. In the offline setting, it is known that the least
squares estimator LSE is minimax rate optimal, attaining the O~(n*4/ %) rate, over convex functions
with bounded entries, see e.g. Guntuboyina and Sen (2013), Chatterjee et al. (2016). It is also known
that the LSE attains the O(k /n) rate if the true signal is piecewise linear in addition to being convex.
Theorem 15 and Theorem 18 imply both these facts also hold for the OLRADRE (since a convex
function automatically has finite second order bounded variation) where we fit linear functions
(polynomial of degree 1) on intervals. To the best of our knowledge, such explicit guarantees for
online univariate convex regression were not available in the literature before this work.

6.3. Computation Risk Tradeoff

The main reason for us considering dyadic rectangles (instead of all rectangles) as experts is to save
computation. In particular, if one uses the set of all rectangles as experts, the computational com-
plexity of the resulting algorithm would be O4(N?). One can think of this estimator as the online
analogue of the ORT estimator defined in Chatterjee and Goswami (2021a). For this estimator, the
risk bounds would be better. For example, the (logn)? term multiplying | P| in the bound in Theo-
rems 12, 15 would now no longer be present. In particular, the exponent of log n would be 2 for all
dimensions d which is only one log factor more than a known minimax lower bound for the space
of all rectangular piecewise constant functions; see Lemma 3.1 in Chatterjee and Goswami (2021a).

One can also easily interpolate and take the set of experts somewhere between the set of dyadic
rectangles and the set of all rectangles, say by considering all rectangles with side lengths a multiple
of some chosen integer /. Thus one can choose the set of experts by trading off computational time
and the desired statistical prediction performance.

6.4. Open Problems

In our opinion, our work here raises some interesting open questions which we leave for future
research.
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1. It appears that if a function class is well approximable by rectangular piecewise constant/
polynomial functions then the type of oracle risk bounds proved here may be used to derive
some nontrivial prediction bounds. However, for many function classes, this kind of approx-
imability may not hold. For example, we can consider the class of Hardy Krause Bounded
Variation Functions (see Fang et al. (2021)) or its higher order versions (see Ki et al. (2021))
where the existing covering argument produces nets (to estimate metric entropy) which are
not necessarily rectangular piecewise constant/linear respectively. These function classes are
also known not to suffer from the curse of dimensionality in the sense that the metric en-
tropy does not grow exponentially in % with the dimension d. More generally, it would be
very interesting to come up with computationally efficient and statistically rate optimal online
prediction algorithms for such function classes.

2. The analysis presented here relies a lot on the light-tailed nature of the noise. It can be checked
that Theorem 7 can also be proved when the noise is mean 0 sub-exponential, we would only
get an appropriate extra log factor. However, the proof would break down for heavy-tailed
noise. This seems to be an open area and not much attention has been given to the noisy
online prediction problem with heavy tailed noise. Most of the existing results in the online
learning community assume bounded but arbitrary data. The heavy tailed setting we have in
mind is that the data y is not arbitrary but of the form signal plus noise, except that the noise
can be heavy tailed. It would be very interesting to obtain an analogue of Theorem 7 in this
setting. Clearly, the algorithm has to change as well in the sense that instead of aggregating
means one should aggregate medians of various rectangles in some appropriate way.
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Appendix A. Simulations
A.1. 1D Plots

We provide plots of the OMADRE for a visual inspection of its performance. There are three plots
for scenarios corresponding to different true signals 6*, where for any ¢ € [n], we have 0 = f(i/n)
for some function f : [0, 1] — R, specified below and the errors are generated from N (0, 1). The
sample size is taken to be n = 216 for these plots, given in Figure 1. The truncation parameter A has
been taken to be 2 max{||6*||~, o (21og n)t/ 21 for all our 1D simulations. It may be possible to
get better predictions by choosing a smaller value of A but we have not done any systematic search
for these simulations as this particular choice seemed to work well.

The ordering of the revealed indices is taken to be the forward ordering 1,2,3,... and the
backward ordering n,n —1,n—2,.... The predictions corresponding to the two orderings are then
averaged in the plots.

1. Scenario 1 [Piecewise Constant Signal]: We consider the piecewise constant function
fl@) =2(1(x € [1/5,2/5])) + Lz € [2/5,3/5]) + 21(x € [3/5,4/5]),

and consider the the 1D OMADRE. The corresponding plot is shown in the second diagram
of Figure 1.

2. Scenario 2 [Piecewise Linear Signal]: We consider the piecewise linear function
f(z) =6z(1(z €[0,1/3])) + (—12z + 6)1(z € [1/3,2/3]) + (z — 8/3)(1(x € [2/3,1])),

and consider the 1D OMADRE. The corresponding plot is shown in the second diagram of
Figure 1.

3. Scenario 3 [Piecewise Quadratic Signal]: We consider the piecewise quadratic function

1822 if x€[0,1/3]
f@) =< —=36(x —1/2 - 1/V12)(x —1/2++/12)  if x€[1/3,2/3].
18(x — 1)? if x€[2/3,1]
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and consider the 1D OMADRE estimator. The corresponding plot is shown in the third dia-
gram of Figure 1.

N e,

T T
000000000000000000000000000000 0 10000 20000 30000 40000 50000 60000 o 10000 20000 30000 40000 50000 60000

||||||

Figure 1: The blue curve is the true signal, the grey points are data points and the green curve
constitutes the OMADRE predictions. The plotted predictions are averaged over two
predictions when the data are revealed in the forward and backward order.

A.2. 1D Comparisons

We conduct a simulation study to compare the performance of the OMADRE and the OLRADRE
of order 1,2 which aggregates linear function predictions and quadratic function predictions. We
consider the ground truth signal as the smooth sinusoidal function

f(x) = sin 272 + cos Hm.

We considered various signal to noise ratios by setting the noise standard deviation ¢ to be 0.5, 1
or 2. We also considered sample sizes n = 2'0 212 214 In each case, we estimated the MSE by
50 Monte Carlo replications. Here also, the predictions corresponding to the forward and backward
orderings are averaged. We report the MSE’s in Tables 1, 2 and 3 respectively.

Table 1: MSEs of OMADRE estimator in different scenarios
n |c=05|c=1|0c=2
2101 0.045 | 0.076 | 0.191
2121 0.027 | 0.048 | 0.127
2141 0.014 | 0.031 | 0.087

Table 2: MSEs of OLRADRE (linear) in different scenarios
n |c=05|c=1|0c=2
2191 0.088 | 0.099 | 0.143
2121 0.049 | 0.057 | 0.087
2141 0.025 | 0.030 | 0.050
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Table 3: MSEs of OLRADRE (quadratic) in different scenarios
n |c=05|c=1]|0c=2
210°10.079 | 0.091 | 0.136
2121 0.040 | 0.048 | 0.079
2141 0.020 | 0.025 | 0.044

It is reasonable to expect that the OLRADRE aggregating quadratic function predictions would
perform no worse than the OLRADRE aggregating linear function predictions which in turn would
perform no worse than the OMADRE estimator. From the tables 1, 2 and 3 we see that when the
noise variance is low, the opposite happens and the OMADRE gives a better performance. It is
only when the noise variance becomes high, the OLRADRE aggregating quadratic functions starts
to perform the best. We see a similar phenomenon for other ground truth functions as well. We
are not sure what causes this but we believe that in the low noise regime, the weights of the local
experts are high (for the OMADRE estimator) and for smooth functions these predictions would
be very accurate. Since the OLRADRE has a shrinkage effect (note the presence of I in the gram
matrix), there is bias for the predictions of the local experts which is why the local experts in this
case predict slightly worse than for the OMADRE estimator. In the case when the signal to noise
ratio is low, the algorithms are forced to use experts corresponding to wider intervals for which case
the bias of the OLRADRE predictions become negligible.

A.3. 2D Plots

We conduct a simulation study to observe the performance of the proposed OMADRE estimator in
three different scenarios each corresponding to a different true signal 6*. In every case, the errors are
generated from a centered normal distribution with standard deviation 0.25, the dimension d = 2
and we take the number of pixels in each dimension to be n = 64,128,256. We estimate the
MSE by 50 Monte Carlo replications and they are reported in Table 4. The truncation parameter
A has been taken to be 2 max{||6* s, o (21og(n?)) 1/2}. In each of the cases, a uniformly random
ordering of the vertices of Lo, has been taken to construct the OMADRE estimator. Overall, we
see that our OMADRE estimator performs pretty well.

1. Scenario 1 [Rectangular Signal]: The true signal 6* is such that for every (i1,42) € La p, we
have

(i1,d2) —

. 1 if n/3 <iy,ip <2n/3
0 otherwise ’

The corresponding plots are shown in Figure 2 when n = 256.
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Figure 2: The first diagram refers to the true signal, the second one to the noisy signal and the third
one to the estimated signal by the OMADRE estimator.

2. Scenario 2 [Circular Signal]: The true signal #* is such that for every (i1, i2) € La 5, we have

. {1 it /(i = /22 (i — /22 < /4

(i1i2) = ] otherwise

The corresponding plots are shown in Figure 3 when n = 256.

Figure 3: The first diagram refers to the true signal, the second one to the noisy signal and the third
one to the estimated signal by the OMADRE estimator.

3. Scenario 3 [Sinusoidal Smooth Signal]: The true signal 6* is such that for every (i1,i2) €

Lo, we have 07, = f (i1/n,ia/n), where

f(x,y) = sin(7z) sin(my).

The corresponding plots are shown in Figure 4 when n = 256.
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Figure 4: The first diagram refers to the true signal, the second one to the noisy signal and the third
one to the estimated signal by the OMADRE estimator.

Table 4: MSEs of CV Dyadic CART estimator in different scenarios

nxXn Scenario 1 | Scenario 2 | Scenario 3

64 x 64 0.035 0.037 0.014
128 x 128 0.022 0.022 0.008
256 x 256 0.012 0.013 0.005

Appendix B. Appendix
B.1. Proofs of Lemma 10 and Lemma 14

We only prove Lemma 14 since it contains the proof of Lemma 10. In the remainder of this subsec-
tion the constant C' always stands for an absolute constant whose precise value may change from
one occurrence to the next. For every s € L, we let S(s) denote the subcollection of all dyadic
rectangles S C Lg ,, containing s.

At the outset of every round £ = 1, ..., N, we maintain several objects for every S € S. These
include the weight wg, the L x L matrix Xg; := I + Zsep[lz(t—l)}ms rsx] where L = |F| and the
vector zg; = Zsép[l:(t—l)]ﬂs yszs € RL. We also store the indicator Is; € {0,1} whether S has
had any datapoint upto round ¢t — 1 which is required to determine the set of active experts A; (recall
step 2 of \A). In the beginning, wg; = % (recall the initialization step of A), Xg1 = I, 251 = 0
and Ig1 = O forall S € S. We first analyze the number of elementary operations necessary for
computing the estimate §j,(;) and updating the matrices (Xs; S € S(p(t))) as well as the indicators
Is+ after the adversary reveals p(t).

To this end observe that, we can visit all the rectangles in A; C S(p(t)) by performing binary
search on each coordinate of p(t) € Lg,, in the lexicographic order and checking for the value of
Is. This implies, firstly, that |S(p(t))| < (logy 2n)? and secondly, that the number of operations
required to update the indicators Ig;’s is bounded by (log, 2n)?. Now let us recall from (5.1) that,

~(S _
y; t)) = qul»l,t Z8t * Tp(r), Where Xgpp1 = Xgyp + mp(t)x,:op(t)-

Computing X g1 and its inverse, and the subsequent multiplication with zg ; require at most C' SL3
and C'L? many basic operations respectively. Evaluating the inner product with x4 afterwards take
at most C'L many basic steps. Thus, we incur C'L? as the total cost for computing vatTA(@,(it))) and
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updating X for each S € S(p(t)). Calculating §j,;) from the numbers w57tT>\(y)/()i)))’s (see step 3
of A), where S € S(p(t)), requires C|S(p(t))| many additional steps. Therefore, the combined
cost for computing §,(; and updating Xg,’s for all S € S(p(t)) is bounded by CL?*|S(p(t))| =
CL?(log, 2n)%.

After the adversary reveals Yp(t)» We need to update the weights wg , the vectors zg; and the
indicators I, for all S € S(t) (see step 4 of A). For this we first need to compute the numbers
wg e~ st forall S € Ay and this takes C|S(p(t))| = C(log, 2n)¢ many basic operations. It takes
an additional C'(log, 2n)? many basic operations in order to compute the sums > sea, Ws, and
> ose A w57te*a55’f. Using these numbers, we can now update the weights as

wg, tefaes,t

WS t+1 = wgs.t

—alg,
ZSEAt ws’te ¢ SGAt

and this also involves C'(log, 7)? many elementary operations. Updating the vector Z54 10 25441 =
25t + Yp(t)Tp(t) takes at most C'L many basic steps for every S and hence C'L(log, n)?% many steps
in total.

Putting everything together, we get that the computational complexity of OLRADRE is bounded
by CL?N (log, n).

B.2. Proof of Theorem 12

Recall the definition of R(6, P) for any partition P of K = L4, and a § € Op given right af-
ter (3.2). It turns out that for the online averaging rule, one can give a clean bound on R(6, P)
which is stated next as a proposition.

Proposition 20 Let y; = 0 + o¢; fort € K = Lg,, where o > 0 and €;’s are independent, mean
zero sub-Gaussian variables with unit dispersion factor. Then we have for any partition P € P,
where T C K, and any 6 € Op,

R(0, P) < C|P| (||0%]|% + 0?logeN)logeN. (B.1)
where C' > 1 is some absolute constant.

Proof We have

_ ~(S
R0, P) =ER(y,6,P) <P E sup (S (0 — )% — llys — bs]2).
p.SEP t:p(t)es

Now, the following deterministic lemma is going to be of use to us.

Lemma 21 Let 2y, ..., zr be an arbitrary sequence of numbers and 2; := ﬁ 22;11 zs fort =
2,...,T where z1 = 0. Then, we have
2= 212 = |2 — 2% < 4]12]% log T (B.2)
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For a proof of the above lemma, see, e.g., Theorem 1.2 in Orabona (2019). Using the above
deterministic lemma and the previous display, we can write for any partition P € Pt and 6§ € Op,

ol ~(S _
R(O,P)<4IPIE sup (3 (e — ') — lys — 7511
pSEP t:p(t)eS

< 4|P| E|y|% logen < C|P|(||6*||% + ¢*logeN)logeN. (B.3)

where 75 denotes the mean of the entries of yg and we deduce the last inequality from a standard
upper bound on the tail of sub-Gaussian random variables. |

The following corollary is a direct implication of Theorem 7 and Proposition 20 applied to the
particular setting described at the beginning of Section 4.

Corollary 22 Let T be any subset of K. Let 6°M denote the OMADRE predictor. There exists an
absolute constant C > 1 such that for A > C(o+/log N V ||0*|| 0 ), one has for any non-anticipating
ordering p of K,

. 2 )\2
EO9 — 052 < inf  ([l6% — 6] + CX2|Pllog2?N) + T (B4)
PG'PdpA’T ’T|
0cOpCRT
We are now ready to prove Theorem 12.
Proof The proof directly follows from (3.6) and Proposition 20. |

Proof [Proof of Theorem 12] Fix any partition P € P,y 7 and any § € ©p. Consider a dyadic
refinement of P which we denote by P. By definition, P € Pap,t and 0 € O . Therefore, we
can use the bound in (B.4) given in Corollary 22. The proof is then finished by noting that ]15| <
|P|(log en). [ |

B.3. Proof of Theorem 13

It has been shown in Chatterjee and Goswami (2021a) that the class of functions BV, (V*) is
well-approximable by piecewise constant functions with dyadic rectangular level sets which makes
it natural to study the OMADRE estimator for this function class.

The following result was proved in Chatterjee and Goswami (2021a) (see Proposition 8.5 in the
arxiv version).

Proposition 23 Let € RY4n and § > 0. Then there exists a dyadic partition Pys=(Ri,...,Ry)
in Prap such that

a)k=|Pps| <1+logy N (1+ Y andforalli € [K],

¢) TV(0g,) <9, and

d) A(R;) <2

where A(R) denotes the aspect ratio of a generic rectangle R.

Let IIg Pps T IIp, ; denote the orthogonal projector onto the subspace O p, , of REd.n comprising

functions that are constant on each R; € Py s. It is clear that Il p, s0(a) = @Ri — the average value
of  over R; — for all @ € R; and i € [k]. We will use II Py« ;0% as 0 in our application of (B.4)
in this case. In order to estimate ||6* — Ilg Poe 59*H’ we would need the following approximation
theoretic result. ’
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Proposition 24 Let 0 € R¥ctal™] gpg

g:: Z 9[j17j27"'ajd]/Hni
i€[d]

(41:32--1Ja) € @ic(a)[ni]

be the average of the elements of 0. Then for every d > 1 we have,

— N\ 2
> 1001, J2, - - -, ja] — O < (1 + max %) TV(9)?. (B.5)
(J1:525-Jd) € Rielay[ra] bield 1y
For d = 1, on the other hand, we have
> 10[] - 0 < NTV(6). (B.6)

JE[N]

See Chatterjee and Goswami (2021a) (Proposition 8.7 in the arxiv version) for a proof of (B.5)
and Chatterjee and Goswami (2021b) (Lemma 10.3 in the arxiv version) for (B.6). Propositions 23
and 24 together with the description of IIp, ; as the operator that projects 6 onto its average value
on each rectangle R;, imply that

10 — g, ;0[|* < C| Py 4]6° = C'logy 2N (6% + 5TV (6)) (B.7)

for d > 1 whereas ford = 1,
16 — TIp, 0> < N&2. (B.8)

Proof [Proof of Theorem 13] We get by plugging the bounds from (B.7) and item (a) in Proposi-
tion 23 — both evaluated at 6 = Ilp,, 67 — into Corollary 22
%

o2 + \2
T|

A V*
E[6¢M — g% < Inf C((0% + 0Vy) log 2°N + A*(log 24 N)?(1 + TT)) +

Now putting § = \(log 22N)/2 in the above display, we obtain (4.5).
For d = 1, we follow the exact same steps except that we now use the bound (B.8) in lieu of
(B.7) to deduce

E(609M — 03] < inf C(|T|62 + A (log 27 N)? (1 + Vi)) + X
T T =520 5 7|
This immediately leads to (4.6) upon setting 6 = (V-F)l/3)\2/3(log 24N )2/3|T|~1/3, [ ]

B.4. Proof of Theorem 15

We take a similar approach as in the proof of Theorem 12. Let us begin with an upper bound on the
regret of the estimator (see, e.g., (Rakhlin and Sridharan, 2012, pp. 38—40) for a proof).
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Proposition 25 (Regret bound for Vovk-Azoury-Warmuth forecaster) Let (z1,21),..., (21, 27)
€ R x R? and define fort = 1,...,T (cf. (5.1)),

t—1 t—1
. R -1
2t = Bs - T5 where Bs = (I + szfl:ST) (Zysxs).
s=1 s=1
Then, we have

S (ge—2)®— inf { > (2= B-2)* + 817} < dlzoo|* log(1 + T?el?ﬁ [¢[|* /). (B.9)
te[T]

Using similar arguments as in (B.3), but applying (B.9) instead of (B.2) for bounding the regret,
we get for any P € Prand 6 € Op,

R(6, P) < CrndlP| (8m.00(0)* 4+ 0*logeN) logeN

where Cy, 4 > 1 depends only on m and d. The remaining part of the proof is similar to that of
Theorem 12.

B.5. Proof of Theorem 18

The proof requires, first of all, that the class BVng) (V*) is well-approximable by piecewise poly-

nomial functions with degree at most m — 1. To this end we present the following result which was
proved in Chatterjee and Goswami (2021a) (see Proposition 8.9 in the arxiv version).

Proposition 26 Fix a positive integer m > 1 and 0 € R", and let V" (0) := V. For any § > 0,
there exists a partition Py ., 5 (of L1 5,) in Pap and 0’ € Opy,.s({Fs : S € S}) such that

a) |Py.m.s| < C8=Y/™ for an absolute constant C,

b) |0 —0'|loc <V, and

€) maxsep, ,, 5,0<j<m njﬂjﬁ < Oy maxo<j<m n? || DI(0)|| 0o where 0 = Bo,s+- - .—l—ﬂm,l,sxm_l
on S and C,, is a constant depending only on m.

Proposition 26 immediately gives us
16 — H@P97m160||2 < NV252. (B.10)

(recall that N = n since d = 1).

Proof [Proof of Theorem 18] Given any § > 0, let §5 denote the vector given by Proposition 26 for
¢ = 07. Then from Proposition 25 and the item c) in Proposition 26, we get, for some constant C,,
depending only on m,

R(05, Pom5) < Cr| Poms| (10717 + Ellys* logeN )

m—1,00

< Col Poms| (107 112,-1 00 + 0% logeN) log eN (B.11)

where the last step follows from a similar computation as in (B.3) (observe that 6% |—1,00 >
165 |loc). Now, since log |S| = log2N (see around (4.1)), we get by plugging the bounds from
(B.10), item (a) in Proposition 26 and (B.11) into (3.6) that for any A > C(ov/log N V [|05||s0),

o2 + \?
Tl

E[69" — 671 < inf C(ITI(VF)?6% + Cnd ™™ (A+ [0 ]lm1,00)* log eN) +
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where C,,, > 0 depends only on m. Now putting

. 2m

6 = O™ (A 1165 ln—1,00) 2747 (V) "2 (log e ) 2 ||~ 2wt

in the above display, we obtain (5.6).

35



	Introduction
	Problem Setting
	A Definition of Spatial Adaptivity
	Summary of Our Results
	Closely Related Works
	Further Related Literature

	Aggregation of Experts Algorithm
	A General Simultaneous Oracle Risk Bound
	Online Mean Aggregation over Dyadic Rectangles (OMADRE)
	Result for Rectangular Piecewise Constant Functions in General Dimensions
	Result for Functions with Bounded Total Variation in General Dimensions

	Online Linear Regression Aggregation over Dyadic Rectangles (OLRADRE)
	Result for Rectangular Piecewise Polynomial Functions in General Dimensions
	Result for Univariate Functions of Bounded Variation of Higher Orders

	Discussion
	Detailed Comparison with Dyadic CART
	Some Other Function Classes
	Computation Risk Tradeoff
	Open Problems

	Simulations
	1D Plots
	1D Comparisons
	2D Plots

	Appendix
	Proofs of Lemma 10 and Lemma 14
	Proof of Theorem 12
	Proof of Theorem 13
	Proof of Theorem 15
	Proof of Theorem 18


