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Abstract
We study the sample complexity of learning an ε-optimal policy in the Stochastic Shortest Path (SSP)
problem. We first derive sample complexity bounds when the learner has access to a generative
model. We show that there exists a worst-case SSP instance with S states, A actions, minimum cost
cmin, and maximum expected cost of the optimal policy over all states B?, where any algorithm
requires at least Ω(SAB3

?/(cminε
2)) samples to return an ε-optimal policy with high probability.

Surprisingly, this implies that whenever cmin = 0 an SSP problem may not be learnable, thus
revealing that learning in SSPs is strictly harder than in the finite-horizon and discounted settings.
We complement this result with lower bounds when prior knowledge of the hitting time of the
optimal policy is available and when we restrict optimality by competing against policies with
bounded hitting time. Finally, we design an algorithm with matching upper bounds in these cases.
This settles the sample complexity of learning ε-optimal polices in SSP with generative models.

We also initiate the study of learning ε-optimal policies without access to a generative model
(i.e., the so-called best-policy identification problem), and show that sample-efficient learning is
impossible in general. On the other hand, efficient learning can be made possible if we assume the
agent can directly reach the goal state from any state by paying a fixed cost. We then establish the
first upper and lower bounds under this assumption.

Finally, using similar analytic tools, we prove that horizon-free regret is impossible in SSPs
under general costs, resolving an open problem in (Tarbouriech et al., 2021c).
Keywords: Stochastic Shortest Path, Markov Decision Process, PAC Learning

1. Introduction

The Stochastic Shortest Path (SSP) formalizes the problem of finding a policy that reaches a des-
ignated goal state while minimizing the cost accumulated over time. This setting subsumes many
important application scenarios, such as indoor and car navigation, trade execution, and robotic
manipulation. The SSP is strictly more general than the popular finite-horizon and discounted
settings (see e.g., Bertsekas, 2012; Tarbouriech et al., 2020a) and it poses specific challenges due
to the fact that no horizon is explicitly prescribed in the definition of the problem. In fact, different
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c© 2023 L. Chen, A. Tirinzoni, M. Pirotta & A. Lazaric.



SETTLING THE SAMPLE COMPLEXITY OF SSPS

policies may have varying hitting times to the goal, e.g., the optimal policy may not be the policy
with smallest hitting time whereas some policies may not even reach the goal.

While planning in SSPs is a widely studied and well-understood topic (Bertsekas and Tsitsik-
lis, 1991; Bertsekas and Yu, 2013), the problem of online learning in SSP, often referred to as
goal-oriented reinforcement learning (GRL), only recently became an active venue of research (Tar-
bouriech et al., 2020a, 2021b,c; Rosenberg and Mansour, 2020; Cohen et al., 2020, 2021; Chen
et al., 2021a,b,c, 2022; Chen and Luo, 2021, 2022; Jafarnia-Jahromi et al., 2021; Vial et al., 2021;
Min et al., 2021; Zhao et al., 2022). Most of the literature focuses on the regret minimization
objective1, for which learning algorithms with minimax-optimal performance are available even
when no prior knowledge about the optimal policy is provided (e.g., its hitting time or the range of its
value function). On the other hand, the probably approximately correct (PAC) objective, i.e., to learn
an ε-optimal policy with high probability with as few samples as possible, has received little attention
so far. One reason is that, as it is shown in (Tarbouriech et al., 2021b), in SSP it is not possible to
convert regret into sample complexity bounds through an online-to-batch conversion (Jin et al., 2018)
and PAC guarantees can only be derived by developing specific algorithmic and theoretical tools.
Assuming access to a generative model, Tarbouriech et al. (2021b) derived the first PAC algorithm
for SSP with sample complexity upper bounded as Õ(

T‡B
2
?ΓSA

ε2
), where S is the number of states, A

is the number of actions, Γ is the largest support of the transition distribution, B? is the maximum
expected cost of an optimal policy over all states, T‡ = B?/cmin, where cmin is the minimum cost
over all state-action pairs, and ε is the desired accuracy. The most intriguing aspect of this bound is
the dependency on T‡, which represents a worst-case bound on the hitting time T? of the optimal
policy (i.e., the horizon of the SSP) and it depends on the inverse of the minimum cost. While some
dependency on the horizon may be unavoidable, as conjectured in (Tarbouriech et al., 2021b), we
may expect the horizon to be independent of the cost function2, as in finite-horizon and discounted
problems. Moreover, in regret minimization, there are algorithms whose regret bound only scales
with T?, with no dependency on cmin, even when cmin = 0 and no prior knowledge is available. It
is thus reasonable to conjecture that the sample complexity should also scale with T? instead of T‡.
This leads us to the first question addressed in this paper:

Question 1: Is the dependency on T‡ = B?/cmin in the sample complexity of learning with a
generative model unavoidable?

Surprisingly, we derive a lower bound providing an affirmative answer to the question. In
particular, we show that Ω(

T‡B
2
?SA

ε2
) samples are needed to learn an ε-optimal policy, showing that

a dependency on T‡ is indeed unavoidable and that it is not possible to adapt to the optimal policy
hitting time T?3. This result also implies that there exist SSP instances with cmin = 0 (i.e., T‡ =∞)
that are not learnable. This shows for the first time that not only SSP is a strict generalization of the
finite-horizon and discounted settings, but it is also strictly harder to learn. We then derive lower
bounds when prior knowledge of the form T ≥ T? is provided or when an optimality criterion
restricted to policies with bounded hitting time is defined. Finally, we propose a simple algorithm
based on a finite-horizon reduction argument and we prove upper bounds for its sample complexity
matching the lower bound in each of the cases considered above; see Table 1.

1. We refer the reader to Appendix A for a detailed summary of prior works in related settings.
2. Notice that in general T? � B?/cmin.
3. In our proof, we construct SSP instances where T? < T‡.
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Performance
(gen model)

Lower Bound Upper Bound Tarbouriech et al. (2021b)

(ε, δ)
Definition 1

min
{
T‡, T

} B2
?SA
ε2

min
{
T‡, T

} B2
?SA
ε2

T‡B
2
?ΓSA

ε2

(ε, δ, T )
Definition 5

TB2
?,TSA

ε2
when min{T‡, T} =∞ min {T‡, T}

B2
?,TSA

ε2
TB3

?,TΓSA

ε3

Performance
(BPI)

Assumption Lower Bound Upper Bound

(ε, δ)
Definition 1

None AΩ(min{B?,S})

ε -

Assumption 1 min
{
T‡, T

} B2
?SA
ε2

+ J
ε

T‡B
2
?SA

ε2
+ B?J4S2A2

c3minε

Table 1: Result summary with (upper table) and without (lower table) a generative model. Here, T is a known
upper bound on the hitting time of the optimal policy (T = ∞ when such a bound is unknown),
T‡ = B?

cmin
, B?,T is the maximum expected cost over all starting states of the restricted optimal

policy with hitting time bounded by T , and J is the cost to directly reach the goal from any state
(Assumption 1). Operators Õ(·) and Ω(·) are hidden for simplicity.

When no access to a generative model is provided, the learner needs to directly execute a policy
to collect samples to improve their estimate of the optimal policy. No result is currently available for
this setting, often referred to as the best-policy identification (BPI) problem, and in this paper we
address the following question:

Question 2: Is it possible to efficiently learn a near-optimal SSP policy when no access to a
generative model is provided?

In this setting, we first derive a lower bound showing that in general sample efficient BPI is
impossible. To resolve this negative result, we introduce an extra assumption requiring that the learner
can reach the goal by paying a fixed cost J from any state. We then establish a Ω(min{T‡, T}B

2
?SA
ε2

+
J
ε ) lower bound under this assumption. We also develop a finite-horizon reduction based algorithm

with sample complexity Õ(
T‡B

2
?SA

ε2
+ B?J4S2A2

c3minε
), whose dominating term is minimax-optimal when

cmin > 0 and prior knowledge T is unavailable. This result is summarized in Table 1.
Finally, we show how similar technical tools derived for our lower bounds can be adapted to

resolve an open question in Tarbouriech et al. (2021c) by showing that in regret minimization, a
worst-case dependency on the hitting time of the optimal policy is indeed unavoidable without any
prior knowledge (see Appendix G).

2. Preliminaries

An SSP instance is denoted by a tupleM = (S,A, g, c, P ), where S with S = |S| is the state space,
A with A = |A| is the action space, g /∈ S is the goal state, c ∈ [cmin, 1]S+×A with cmin ∈ [0, 1],
c(g, a) = 0 for all a, and S+ = S ∪ {g} is the cost function, and P = {Ps,a}(s,a)∈S+×A with
Ps,a ∈ ∆S+ and P (g|g, a) = 1 for all a is the transition function, where ∆S+ is the simplex over
S+. All of these elements are known to the learner except the transition function.
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A stationary policy π assigns an action distribution π(·|s) ∈ ∆A to each state s ∈ S . A policy is
deterministic if π(·|s) concentrates on a single action (denoted by π(s)) for all s. Denote by T π(s)
the expected number of steps it takes to reach g starting from state s and following π. A policy is
proper if starting from any state it reaches the goal state with probability 1 (i.e., T π(s) <∞ for all
s ∈ S), and it is improper otherwise (i.e., there exists s ∈ S such that T π(s) =∞). We denote by Π
the set of stationary policies, and Π∞ the set of stationary proper policies.

Given a cost function c and policy π, the value function of π, V π ∈ [0,∞]S+ is defined as
V π(s) = Eπ[

∑∞
i=1 c(si, ai)|s1 = s], where the randomness is w.r.t. ai ∼ π(·|si) and si+1 ∼ Psi,ai .

We define the optimal proper policy π? = argminπ∈Π∞ V
π(s) for all s ∈ S, and we write V π? as

V ?. It is known that π? is stationary and deterministic.
We introduce a number of quantities that play a major role in characterizing the learning complex-

ity in SSP: B? = maxs V
?(s), the maximum expected cost of the optimal policy starting from any

state, T? = maxs T
π?(s), and D = maxs minπ∈Π T

π(s), the diameter of the SSP instance. Then,
we have that

B? ≤ D ≤ T? ≤
B?
cmin

=: T‡.

Note that these inequalities may be strict and the gap arbitrarily large. Furthermore, this shows that
the knowledge of B? (or an upper bound) does not only provide an information about the range of the
value function but also a worst-case bound T‡ on the horizon T?. We assume B? ≥ 1, a commonly
made assumption in previous work of SSP (Tarbouriech et al., 2021c; Chen et al., 2021a).4

Learning objective The goal of the learner is to identify a near-optimal policy of desired accuracy
with high probability, with or without a generative model. We formalize each component below.

Sample Collection With a generative model (PAC-SSP), the learner directly selects a state-action
pair (s, a) ∈ S ×A and collects a sample of the next state s′ drawn from Ps,a. Without a generative
model (i.e., Best Policy Identification (BPI)), the learner directly interacts with the environment
through episodes starting from an initial state sinit and sequentially taking actions until g is reached.

ε-Optimality With a generative model, we say a policy π is ε-optimal if V π(s)− V ?(s) ≤ ε for all
s ∈ S. Without a generative model, a policy π is ε-optimal if V π(sinit)− V ?(sinit) ≤ ε.

Definition 1 ((ε, δ)-Correctness) Let T be the random stopping time by when an algorithm ter-
minates its interaction with the environment and returns a policy π̂. We say that an algorithm is
(ε, δ)-correct with sample complexity n(M) if PM(T ≤ n(M), π̂ is ε-optimal inM) ≥ 1− δ for
any SSP instanceM, where n(M) is a deterministic function of the characteristic parameters of the
problem (e.g., number of states and actions, inverse of the accuracy ε).

Other notation We denote by T an upper bound of T? known to the learner, and let T = ∞ if
such knowledge is unavailable. The Õ(·) operator hides all logarithmic dependency including ln 1

δ

for some confidence level δ ∈ (0, 1). For simplicity, we often write a = Õ(b) as a . b. Define
(x)+ = max{0, x}. For n ∈ N+, define [n] = {1, . . . , n}.

3. Lower Bounds with a Generative Model

In this section, we derive lower bounds on PAC-SSP in various cases.

4. Note that in regret minimization, the lower bounds for B? ≥ 1 and B? < 1 are different (Cohen et al., 2021).
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(a) (b) (c)

Figure 1: (a) hard instance (simplified for proof sketch) in Theorem 2 when cmin > 0. (b) hard
instance in Theorem 2 when cmin = 0. (c) hard instance in Theorem 9. Here, c represents
the cost of an action, while p represents the transition probability.

3.1. Lower Bound for ε-optimality

We first establish the sample complexity lower bound of any (ε, δ)-correct learning algorithm when
no prior knowledge is available.

Theorem 2 For any S ≥ 3, A ≥ 3, cmin > 0, B ≥ 2, T0 ≥ max{B, logA S + 1}, ε ∈ (0, 1
32), and

δ ∈ (0, 1
2e4

) such that T0 ≤ B/cmin, there exists an MDP with S states, A actions, minimum cost
cmin, B? = Θ(B), and T? = Θ(T0), such that any (ε, δ)-correct algorithm has sample complexity

Ω
(
T‡B

2
?SA

ε2
ln 1

δ

)
.5 There also exists an MDP with cmin = 0, T? = 1, T =∞, and B? = 1 in which

every (ε, δ)-correct algorithm with ε ∈ (0, 1
2) and δ ∈ (0, 1

16) has infinite sample complexity.

Details are deferred to Appendix C.1. We first remark that the lower bound qualitatively matches
known PAC bounds for the discounted and finite-horizon settings in terms of its dependency on the
size of the state-action space and on the inverse of the squared accuracy ε. As for the dependency on
B? and cmin, it can be conveniently split in two terms: 1) a term B2

? and 2) a factor T‡ = B?/cmin.

Dependency on B2
? This term is connected to the range of the optimal value function V ?. Inter-

estingly, in finite-horizon and discounted settings H and 1/(1 − γ) bound the range of the value
function of any policy, whereas in SSP a more refined analysis is required to avoid dependencies on,
e.g., maxπ V

π, which can be unbounded whenever an improper policy exists.

Dependency on T‡ While T‡ is an upper bound on the hitting time of the optimal policy, in the
construction of the lower bound T? is strictly smaller than T‡. For the case cmin > 0, this shows
that the algorithm proposed by Tarbouriech et al. (2021b) has an optimal dependency in B? and T‡.
On the other hand, this reveals that in certain SSP instances no algorithm can return an ε-optimal
policy after collecting a finite number of samples. This is the first evidence that learning in SSPs is
strictly harder than the finite-horizon and discounted settings, where the sample complexity is always
bounded. This is also in striking contrast with results in regret minimization in SSP, where the regret
is bounded even for cmin = 0 and no prior knowledge about B? or T? is provided. This is due to
the fact that the regret measures performance in the cost dimension and the algorithm is allowed to

5. Formally, for any n ≥ 0, we say that an algorithm has sample complexity Ω (n) on an SSP instanceM if PM(T ≤
n, π̂ is ε-optimal inM) ≥ 1− δ.

5



SETTLING THE SAMPLE COMPLEXITY OF SSPS

change policies within and across episodes. On the other hand, in learning with a generative model
the performance is evaluated in terms of the number of samples needed to confidently commit to a
policy with performance ε-close to the optimal policy. This requires to distinguish between proper
and improper policies, which can become arbitrarily hard in certain SSPs where cmin = 0.

Proof Sketch In order to provide more insights about our result, here we present the main idea of
our hard instances construction. We consider two cases separately: 1) cmin > 0 and 2) cmin = 0.
When cmin > 0, our construction is a variant of that in (Mannor and Tsitsiklis, 2004, Theorem 1);
see an illustration in Figure 1 (a). Let’s consider an MDPM with a multi-arm bandit structure: it
has a single state s0 and N + 1 actions A = {0, 1, . . . , N} (in the general case this corresponds
to N + 1 state-action pairs). Taking action 0 incurs a cost B

T0
and transits to the goal state with

probability 1+ε/2
T0

(stays in s0 otherwise), where ε = 32ε
B . For each i ∈ [N ], taking action i incurs

a cost B
T1

and transits to the goal state with probability 1
T1

. Note that in M the optimal action
(deterministic policy) is 0, with B? = Θ(B), T? = Θ(T0), T‡ = Θ(T1), whereas all other actions
are more than ε suboptimal. Also note that it takes Ω(T1B2

?
ε2

) samples to estimate the expected cost

of action i ∈ [N ] with accuracy ε. If an algorithm A spends o(T1B2
?

ε2
) samples on some action i′,

then we can consider an alternative MDPM′, whose only difference compared toM is that taking
action i′ transits to the goal state with probability 1+ε

T1
. Note that inM′ the only ε-optimal action

is i′. However, algorithm A cannot distinguish betweenM andM′ since it does not have enough
samples on action i′, and thus has a high probability on outputting the wrong action in eitherM or
M′. Applying this argument to each arm i ∈ [N ], we conclude that an (ε, δ)-correct algorithm needs
at least Ω(NT1B2

?
ε2

) = Ω(
T‡B

2
?SA

ε2
) samples.

We emphasize that in our construction, T? (whose proxy is T0) can be arbitrarily smaller than
T‡ (whose proxy is T1) inM. However, the learner still needs Ω(

T‡B
2
?

ε2
) samples to exclude the

alternativeM′ in which T? = T‡. A natural question to ask is what if we have prior knowledge on
T?, which could potentially reduce the space of alternative MDPs. We answer this in Section 3.2.

When cmin = 0, we consider a much simpler MDPM with two states {s0, s1} and two actions
{a0, ag}; see an illustration in Figure 1 (b). At s0, taking a0 transits to s0 with cost 0 and taking
ag transits to g with cost 1

2 . At s1, taking both actions transits to g with cost 1. Clearly cmin = 0,
B? = T? = 1, V ?(s0) = 1

2 , and both actions in s0 are ε-optimal inM. Now consider any algorithm
A with sample complexity n <∞ onM, and without loss of generality, assume that A outputs a
deterministic policy π̂. We consider two cases: 1) π̂(s0) = a0 and 2) π̂(s0) = ag. In the first case,
consider an alternative MDPM+, whose only difference compared toM is that taking a0 at s0

transits to s1 with probability 1
n , and to s0 otherwise. Note that the optimal action at s0 is ag in

M+. Since A uses at most n samples, with high probability it never observes transition (s0, a0, s1)
and is unable to distinguish betweenM andM+. Thus, it still outputs π̂ with π̂(s0) = a0 inM+.
This gives V π̂(s0)− V ?(s0) = 1− 1

2 and π̂ is not ε-optimal for any ε ∈ (0, 1
2). In the second case,

consider another alternative MDPM−, whose only difference compared toM is that taking a0 at s0

transits to g with probability 1
n , and to s0 otherwise. The optimal action at s0 is a0 inM−. Again,

algorithm A cannot distinguish betweenM andM− and still output π̂ with π̂(s0) = ag inM−.
This gives V π̂(s0)− V ?(s0) = 1

2 and π̂ is not ε-optimal for any ε ∈ (0, 1
2). Combining these two

cases, we have that any (ε, δ)-correct algorithm with ε ∈ (0, 1
2) cannot have finite sample complexity.

Remark Our construction reveals that the potentially infinite horizon in SSP does bring hardness
into learning when cmin = 0. Indeed, we can treatM as an infinite-horizon MDP due to the presence

6
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of the self-loop at s0. Any algorithm that uses finite number of samples cannot identify all proper
policies inM, that is, it can never be sure whether (s0, a0) has non-zero probability of reaching
states other than s0.

3.2. Lower Bound for ε-optimality with Prior Knowledge on T?
Now we consider the case where the learning algorithm has some prior knowledge T ≥ T? on
the hitting time of the optimal proper policy. Intuitively, we expect the algorithm to exploit the
knowledge of parameter T to focus on the set of policies {π : ‖T π‖∞ ≤ T} with bounded hitting
time.6

Theorem 3 For any S ≥ 3, A ≥ 3, cmin ≥ 0, B ≥ 2, T0 ≥ max{B, logA S + 1}, T ≥ 0,
ε ∈ (0, 1

32), and δ ∈ (0, 1
2e4

) such that T0 ≤ min{T/2, B/cmin} < ∞, there exist an MDP
with S states, A actions, minimum cost cmin, B? = Θ(B), and T? = Θ(T0) ≤ T , such that any
(ε, δ)-correct algorithm has sample complexity Ω

(
min

{
T‡, T

} B2
?SA
ε2

ln 1
δ

)
.

Details are deferred to Appendix C.1. The main idea of proving Theorem 3 still follows from that of
Theorem 2. Also note that the bound in Theorem 3 subsumes that of Theorem 2 since we let T =∞
when such knowledge is unavailable.

Dependency on min{T‡, T} We distinguish two regimes: 1) When T ≤ T‡ the bound reduces

to Ω(TB
2
?SA
ε2

) with no dependency on cmin. In this case, an algorithm may benefit from its prior
knowledge to effectively prune any policy with hitting time larger than T , thus reducing the sample
complexity of the problem and avoiding infinite sample complexity when cmin = 0. 2) When T > T‡,

we recover the bound Ω(
T‡B

2
?SA

ε2
). In this case, an algorithm does not pay the price of a loose upper

bound on T?. Again, in our construction it is possible that T? < min{T‡, T}. This concludes that it
is impossible to adapt to T? for computing ε-optimal policies in SSPs.

3.3. Lower Bound for (ε, T )-optimality

Knowing that we cannot solve for an ε-optimal policy when min{T‡, T} =∞, that is, cmin = 0 and
T =∞, we now consider a restricted optimality criterion where we only seek ε-optimality w.r.t. a
set of proper policies.

Definition 4 (Restricted (ε, T )-Optimality) For any T ∈ [1, T ], we define the set ΠT = {π ∈
Π : ‖T π‖∞ ≤ T}. Also define π?T,s = argminπ∈ΠT V

π(s), V ?,T (s) = V π?T,s(s), and B?,T =

maxs V
?,T (s). We say that a policy π is (ε, T )-optimal if V π(s)− V ?,T (s) ≤ ε for all s ∈ S. We

define V ?,T (s) =∞ for all s when ΠT = ∅.7

When T ≥ T?, we have π?T,s = π? for all s. When D ≤ T < T?, the policy π?T,s exists and
may vary for different starting state s due to the hitting time constraint. It can even be stochastic

6. Notice that {π : ‖Tπ‖∞ ≤ T} includes the optimal policy by definition since T ≥ T?.
7. Tarbouriech et al. (2021b) consider a slightly different notion of restricted optimality, where they let T = θD with
θ ∈ [1,∞) as input to the algorithm, and D is unknown.

7
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from the literature of constrained MDPs (Altman, 1999). 8 When T < D, we have ΠT = ∅, and
V ?,T (s) =∞ for all s. Clearly, V ?,T (s) ≥ V ?(s) for any s and T .

Definition 5 ((ε, δ, T )-Correctness) Let T be the random stopping time by when an algorithm
terminates its interaction with the environment and returns a policy π̂. We say that an algorithm
is (ε, δ, T )-correct with sample complexity n(M) if PM(T ≤ n(M), π̂ is (ε, T )-optimal inM) ≥
1 − δ for any SSP instance M, where n(M) is a deterministic function of the characteristic
parameters of the problem (e.g., number of states and actions, inverse of the accuracy ε).

Note that π being (ε, T )-optimal does not require π ∈ ΠT . For example, π? is (ε, T )-optimal for
any T ≥ 1. Similarly, policy output by an (ε, δ, T )-correct algorithm is not required to be in ΠT , and
it is allowed return a better cost-oriented policy.

Now we establish a sample complexity lower bound of any (ε, δ, T )-correct algorithm when
min{T‡, T} =∞ (see Appendix C.2 for details).

Theorem 6 For any S ≥ 6, A ≥ 8, B? ≥ 2, T ≥ 6(logA−1(S/2) + 1), BT ≥ 2, ε ∈ (0, 1
32), and

δ ∈ (0, 1
8e4

) such that B? ≤ BT ≤ B?(A− 1)S/2−1/4 and BT ≤ T/6, and for any (ε, δ, T )-correct
algorithm, there exist an MDP with B?,T = Θ(BT ), cmin = 0, and parameters S, A, B?, such that

with a generative model, the algorithm has sample complexity Ω

(
TB2

?,TSA

ε2
ln 1

δ

)
.

Note that when T ≥ T?, the lower bound reduces to TB2
?SA
ε2

, which coincides with that of Theorem 3.
On the other hand, the sample complexity lower bound for computing (ε, T )-optimal policy when
min{T‡, T} <∞ is still unknown and it is an interesting open problem.

Proof Sketch We consider an MDPM with state space S = ST ∪ S?. The learner can reach the
goal state either through states in ST or S?, where in the first case the learner aims at learning an
(ε, T )-optimal policy, and in the second case the learner aims at learning an ε-optimal policy. In
ST , we follow the construction in Theorem 2 so that learning an ε-optimal policy on the sub-MDP

restricted on ST takes Ω(
TB2

?,TSA

ε2
) samples. In S?, we consider a sub-MDP that forms a chain

similar to (Strens, 2000, Figure 1), where the optimal policy suffer B? cost but a bad policy could
suffer Ω(B?A

S) cost. For each state s in S?, we make the probability of transiting back to s by

taking any action large enough, so that learner with sample complexity of order Õ(
TB2

?,TSA

ε2
) hardly

receive any learning signals in S?. Therefore, any algorithm with Õ(
TB2

?,TSA

ε2
) sample complexity

should focus on learning the sub-MDP restricted on ST . This proves the statement.

8. Consider an MDP with one state and two actions. Taking action one suffers cost 1 and directly transits to the goal
state. Taking action 2 suffers cost 0 and transits to the goal state with probability 1/3. Now consider T = 2. Then the
optimal constrained policy should take action 2 with probability 3/4.

8



SETTLING THE SAMPLE COMPLEXITY OF SSPS

4. Algorithm with a Generative Model

Algorithm 1 Search Horizon
Input: hitting time bound T (T = T with prior knowledge), accuracy ε ∈ (0, 1), and probability δ ∈ (0, 1).
Initialize: i← 1.

1 Let Bi = 2i, Hi = 4 min{Bi/cmin, T} ln(48Bi/ε), cf,i(s) = 0.6BiI{s 6= g}, δi = δ/(40i2), N?
i =

N?(Bi, Hi,
ε
2 , δi) and Ni = N̂(Bi, Hi, 0.1Bi, δi), where N?, N̂ are defined in Lemma 22 and Lemma 23

respectively.
// ESTIMATE B?,T
while True do

Reset counter N, and then draw Ni samples for each (s, a) to update N.
2 πi, V i = LCBVI(Hi,N, Bi, cf,i, δi) (refer to Algorithm 3).
3 if

∥∥V i1∥∥∞ ≤ 0.1Bi and maxh∈[H+1]

∥∥V ih∥∥∞ ≤ 0.7Bi then break.
i← i+ 1.

4 if Bi > 40T then output π̂ = ∅. // I.E., T < D (EVERY POLICY IS (ε, T )-OPTIMAL)
end
// COMPUTE ε-OPTIMAL POLICY
Reset counter N, and then draw N?

i samples for each (s, a) to update N.
5 π̂, V̂ = LCBVI(Hi,N, Bi, cf,i, δi) (refer to Algorithm 3).

Output: policy π̂ extended to infinite horizon.

In this section, we present an algorithm whose sample complexity matches all the lower bounds
introduced in Section 3. We notice that the horizon (or hitting time) of the optimal policy plays an
important role in the lower bounds. Thus, a natural algorithmic idea is to explicitly determine and
control the horizon of the output policy. This leads us to the idea of finite-horizon reduction, which
is frequently applied in the previous works on SSP (e.g., Chen et al., 2021b,c; Cohen et al., 2020).

Now we formally describe the finite-horizon reduction scheme. Given an SSPM, letMH,cf be
a time-homogeneous finite-horizon MDP with horizon H and terminal cost cf ∈ [0,∞)S+ , which
has the same state space, action space, cost function, and transition function asM. When interacting
withMH,cf , the learner starts in some initial state and stage h, it observes state sh, takes action
ah, incurs cost c(sh, ah), and transits to the next state sh+1 ∼ Psh,ah . It also suffers cost cf (sH+1)
before ending the interaction. When the finite-horizon MDPMH,cf is clear from the context, we
define V π

h (s) as the expected cost of following policy π starting from state s and stage h inMH,cf .
Although the finite-horizon reduction has become a common technique in regret minimization

for SSP, it is not straightforward to apply it in our setting. Indeed, even if we solve a near-optimal
policy in the finite-horizon MDP, it is unclear how to apply the finite-horizon policy in SSP, where
any trajectory may be much longer than H . Our key result is a lemma that resolves this. It turns
out that when the terminal cost in the finite-horizon MDP is large enough, all we need for applying
the finite-horizon policy to SSP is to repeat it periodically. Specifically, given a finite-horizon
policy π ∈ (∆A)S×[H], we abuse the notation and define π ∈ (∆A)S×N+ as an infinite-horizon
non-stationary policy, such that π(a|s, h+ iH) = π(a|s, h), ∀i ∈ N+. The following lemma relates
the performance of π inM to its performance inMH,cf (see Appendix D.1 for details).

Lemma 7 For any SSPM, horizon H , and terminal cost function cf , suppose π is a policy in
MH,cf and V π

1 (s) ≤ cf (s) for all s ∈ S+. Then V π(s) ≤ V π
1 (s).

9
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Thanks to the lemma above, for a given horizon T , we can first learn an ε-optimal policy π̂ in
MH,cf with H = Õ(T ) and cf (s) = O(B?,T I{s 6= g}), and then extend it to an SSP policy with
performance V π̂(s) ≤ V π̂

1 (s) ≈ V ?
1 (s) ≈ V ?(s), where V ?

1 is the optimal value function of stage 1
inMH,cf , and the last step is by the fact that H is sufficiently large compared to T . As a result, π̂
would then be (ε, T )-optimal policy in the original SSP problem. Algorithm 1 builds on this idea. It
takes a hitting time upper bound T as input, and aims at computing an (ε, T )-optimal policy. The
main idea is to search the range of B?,T and min{T‡, T} via a doubling trick on estimators Bi and
Hi (Line 1). 9 For each possible value of Bi and Hi, we compute an optimal value function estimate
with 0.1Bi accuracy using SANi . S2AHi samples (Line 2), and stop if Bi becomes a proper upper
bound on the estimated value function (Line 3). Here we need different conditions bounding V i

1 and
V i
h as the terminal cost cf should be negligible starting from stage 1 but not for any stage. Once

we determine their range, we compute an ε-optimal finite-horizon policy with final values of Bi
and Hi using SAN?

i . HiB
2
i SA

ε2
samples (Line 5). On the other hand, if Bi becomes unreasonably

large, then the algorithm claims that T < D (Line 4), in which case V ?,T (s) = ∞ for any s (see
Definition 4), and any policy is (ε, T )-optimal by definition. In the procedure described above, we
need to repeatedly compute a near-optimal policy with various accuracy and horizon. We use a
simple variant of the UCBVI algorithm (Azar et al., 2017; Zhang et al., 2020b) to achieve this (see
Algorithm 3 in Appendix D.2). The main idea is to compute an optimistic value function estimate by
incorporating a Bernstein-style bonus (Line 1).

We state the guarantee of Algorithm 1 in the following theorem (see Appendix D.3 for details).

Theorem 8 For any given T ≥ 1, ε ∈ (0, 1), and δ ∈ (0, 1), with probability at least 1− δ, Algo-

rithm 1 either uses Õ
(
S2AT

)
samples to confirm that T < D, or uses Õ

(
min {T‡, T}

B2
?,TSA

ε2

)
samples to output an (ε, T )-optimal policy (ignoring lower order terms).

When prior knowledge∞ > T ≥ T? is available, we simply set T = T . In this case, we have
that (ε, T )-optimality is equivalent to ε-optimality, B?,T = B? and Algorithm 1 matches the lower
bound in Theorem 3. When min{T‡, T} = ∞, Algorithm 1 computes an (ε, T )-optimal policy

with Õ(
TB2

?,TSA

ε2
) samples, which matches the lower bound in Theorem 6. Thus, our algorithm is

minimax optimal in all cases considered in Section 3.
When comparing with the results in (Tarbouriech et al., 2021b), in terms of computing an ε-

optimal policy, we remove a Γ factor and improve the dependency of T‡ to min{T‡, T}, that is, our
algorithm is able to leverage a given bound on T? to improve sample efficiency while theirs cannot.
In terms of computing an (ε, T )-optimal policy, we greatly improve over their result by removing a
B?,TΓ
ε factor and improving the dependency of T to min{T‡, T}, that is, our algorithm automatically

adapts to a smaller hitting time upper bound of the optimal policy.
Finally, it is interesting to notice that even though the (ε, T )-optimal policy is possibly stochastic,

the policy output by Algorithm 1 is always deterministic, and it does not necessarily have hitting
time bounded by T . In fact, Algorithm 1 puts no constraint on the hitting time of the output policy,
except that the horizon for the reduction is Õ (T ). Nevertheless, as shown in Theorem 8, we can still
prove that the policy is (ε, T )-optimal since the requirement only evaluates the expected cost and not
the constraint on the hitting time.

9. Note that
∥∥∥Tπ?

T,s

∥∥∥
∞
≤ T‡ for any T ≥ D and state s since π?T,s = π? when T ≥ T‡ ≥ T?.

10
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5. Lower Bounds without a Generative Model

In this section, we consider the best policy identification problem in SSP, where the learner collects
samples by interacting with the environment. This is a more challenging setting compared to having
access to a generative model since the learner cannot “teleport” to any arbitrary state-action pair but
it only observes trajectories obtained by playing policies from some initial state. Yet, this setting is
more practical, and it naturally generalizes beyond tabular MDPs. Surprisingly, we find that BPI
with polynomial number of samples is impossible in general.

Theorem 9 For any S ≥ 4, A ≥ 4, B? ≥ 1, cmin ≥ 0, ε ∈ (0, 1
4), and δ ∈ (0, 1

16), and any
(ε, δ)-correct algorithm, there exists an MDP with parameters S, A, B?, and cmin, such that without
a generative model, the sample complexity of the algorithm is Ω

(
Amin{bB?c,S−3}

ε

)
.

Details are deferred to Appendix E.1. The exponential dependencyAΩ(min{B?,S}) implies that sample
efficient BPI is impossible. The intuition of our construction is that if there are N unvisited states
where the learner has no samples, then the learner may suffer Ω(AN ) cost on visiting these states.
Therefore, the learner needs to spend Ω(AN/ε) samples on estimating the transition distribution to
guarantee ε-optimality when there are N hardly reachable states; see an illustration in Figure 1 (c).

To enable sample efficient BPI, we need to avoid the extreme event described above. One natural
idea is to allow the learner to get out of “unfamiliar” states by paying a fixed cost. This assumption
also appears in (Tarbouriech et al., 2020a, Section I.2) in the context of non-communicating SSPs.

Assumption 1 There is an action a† ∈ A with c(s, a†) = J and P (g|s, a†) = 1 for all s ∈ S.

This assumption guarantees that there is a proper policy π with ‖V π‖∞ = J and ‖T π‖∞ = 1. We
show in Section 6 that under Assumption 1, efficient BPI is indeed possible. To better understand the
difficulty of BPI under this assumption, we also establish the following lower bound.

Theorem 10 Under Assumption 1, for any S ≥ 8, A ≥ 5, cmin ≥ 0, B ≥ max{2, (logA−1 S +
1)cmin}, T ≥ 2 max{B, logA−1 S + 1}, J ≥ 3B, ε ∈ (0, 1

32), and δ ∈ (0, 1
2e4

) such that
min{T/2, B/cmin} < ∞ and J ≤ 1

2(A − 1)N with N = min{bBc, S − 3}, and for any (ε, δ)-
correct algorithm, there exist an MDP with parameters S, A, cmin, T , and B? = Θ(B), such that
the algorithm has sample complexity Ω

(
min

{
T‡, T

} B2
?SA
ε2

ln 1
δ + J

ε

)
.

Details are deferred to Appendix E.2. Compared to the lower bound in Theorem 3, it has an extra J
ε

term, showing that BPI is harder even with the extra assumption. The first term in the lower bound
implies that within easily reachable states, the sample complexity of BPI is similar to having access
to a generative model. Compared to the lower bound in Theorem 9, we replace the exponential
factor AS by J , which reflects the worst case cost of encountering “unfamiliar” states. Whether the
dependency on J is minimax optimal remains an important future direction.

6. Algorithm without a Generative Model

In this section, we develop an efficient algorithm for BPI under Assumption 1. It is actually unclear
how to design such an algorithm at first glance. The main difficulty lies in deciding when to invoke
the action a†. In fact, if we simply apply the commonly used optimism based algorithm, then a† may

11
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Algorithm 2 BPI-SSP
Define: N = {2j}j≥0, H = 32J

cmin
ln 8J

ε , cf (s) = JI{s 6= g}.
Initialize: B ← 1, m← 1, N(s, a)← 0 and N(s, a, s′)← 0 for any (s, a, s′) ∈ S ×A× S+.

1 for r = 1, . . . do
while True do

2 πr, V r ← LCBVI(H,N, 2J, cf , δ
2B ).

if B ≥ maxh≤H/2+1,s V
r
h (s) then break.

3 B ← 2 ·maxh≤H/2+1,s V
r
h (s).

end
4 τ̂ ← 0, λ← NDEV(B, ε4 ,

δ
2r2 ) (defined in Lemma 27).

for m′ = 1, . . . , λ do
for h = 1, . . . ,H do

Observe smh , take action amh = πr(smh , h), and transit to smh+1.

5 N(smh , a
m
h )

+← 1, N(smh , a
m
h , s

m
h+1)

+← 1, τ̂ +← c(smh , a
m
h )/λ.

6 if N(smh , a
m
h ) ∈ N then

if smh+1 6= g then take action a† to reach g, and suffer cost J .
Return to Line 1 (skip round).

end
if smh+1 = g then break.
if h = H then take action a† to reach g, and suffer cost J .

end
7 if τ̂ > V r(sinit) + ε

2 then return to Line 1 (failure round).

m
+← 1.

end
8 Return policy π̂ = πr (success round).

end

never be selected since J ≥ B?. Intuitively, we want to involve a† for states with large uncertainty,
which conflicts with the principle of optimism in the face of uncertainty. Therefore, we need a more
carefully designed scheme to balance exploration and exploitation.

It turns out that we can obtain a naive sample complexity bound by reducing BPI in SSP to BPI
in a specific finite-horizon MDP. Consider a finite-horizon MDPMH,cf with H = Õ( J

cmin
) and

cf (s) = JI{s 6= g}. Executing policy π inMH,cf corresponds to following policy π inM for H
steps and then taking action a† if the goal state is not reached. Thus, any policy π inMH,cf can
directly extend toM by defining π(s,H+1) = a†, and we have V π = V π

1 . Moreover, by the choice
ofH and cf , the optimal policy inMH,cf is also near-optimal inM. Applying any minimax-optimal
finite-horizon BPI algorithm (for example, a variant of (Tarbouriech et al., 2022, Algorithm 1)), we

can solve an ε-optimal policy with Õ(
H‖V ?· ‖

2
∞SA

ε2
) = Õ( J

3SA
cminε2

) samples, where V ?
h is the optimal

value function inMH,cf and ‖V ?
· ‖∞ = maxh∈[H+1] ‖V ?

h ‖∞.
The sample complexity bound above is undesirable as J appears in the dominating term, which is

not the case in our established lower bound (Theorem 10). The main issue is that inMH,cf , the range
of optimal value function ‖V ?

· ‖∞ = O(J). Thus, simply applying finite-horizon BPI algorithm with
minimax rate is insufficient to adapt to ‖V ?‖∞ = B?. Now we present a BPI algorithm that resolves
this issue and achieves minimax optimal sample complexity in the dominating term when there is no
prior knowledge. The pseudo-code is shown in Algorithm 2.

12
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The main structure of Algorithm 2 follows that of (Lim and Auer, 2012; Cai et al., 2022) for
autonomous exploration. The learning procedure is divided into rounds (Line 1) of three types: skip
round, failure round, and success round. In each round, the learner follows a behavior policy for at
most λ episodes to collect samples and estimate its empirical performance (Line 5). If in the current
round the number of visits to some state-action pair is doubled, then the current round is classified as
a skip round (Line 6). If the empirical performance of the current behavior policy is not close enough
to its estimated performance, then the current round is classified as a failure round (Line 7). In both
cases, we start a new round and the behavior policy is updated. Otherwise, the current round is a
success round, and the algorithm returns an ε-optimal policy (Line 8).

To adapt to B? instead of J , we maintain an estimator B that is an upper bound of the estimated
value function in the first H/2 + 1 steps (Line 3). Intuitively, ‖V ?

h ‖∞ ≈ ‖V
?‖∞ when h ≤ H

2 + 1.
The estimator B is used to determine the number of episodes needed to obtain an accurate empirical
performance estimate of current behavior policy (Line 4), where λ . B2

ε2
(see Lemma 27). The

sample complexity of Algorithm 2 is summarized in the following theorem.

Theorem 11 Under Assumption 1 and assuming cmin > 0, for any ε ∈ (0, 1) and δ ∈ (0, 1),

Algorithm 2 is (ε, δ)-correct with sample complexity Õ(
T‡B

2
?SA

ε2
+ B?J4S2A2

c3minε
).

Details are deferred to Appendix F. The achieved sample complexity has no J dependency in the
dominating term, and the dominating term is minimax-optimal when there is no prior knowledge,
that is, T = ∞. On the other hand, the lower order term might be sub-optimal and the algorithm
only works for strictly positive costs. Resolving these two issues is an important open question.

7. Conclusion

In this work, we study the sample complexity of the SSP problem. We provide an almost complete
characterization of the minimax sample complexity with a generative model, and initiate the study of
BPI in SSP. We derived two important negative results: 1) an ε-optimal policy may not be learnable
in SSP even with a generative model; 2) best policy identification in SSP requires an exponential
number of samples in general. We complemented the study of sample complexity with lower bounds
for learnable settings with and without a generative model, and matching upper bounds. Many
interesting problems remain open, such as the minimax optimal sample complexity of computing an
(ε, T )-optimal policy when min{T‡, T} <∞, and the minimax optimal sample complexity of BPI
under Assumption 1. Furthermore, an important direction is to study BPI under weaker conditions
than Assumption 1 (e.g., communicating SSP). We believe that similar results can be obtained, with
a more complicated analysis, when a reset action to the initial state is available in every state, a
common assumption in the literature.
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Appendix A. Related Work

Sample complexity (with or without a generative model) is a well-studied topic in finite-horizon
MDPs (Dann et al., 2017; Sidford et al., 2018a,b; Dann et al., 2019) and discounted MDPs (Kearns
and Singh, 1998; Sidford et al., 2018a,b; Wang, 2017; Li et al., 2020). Apart from computing
ε-optimal policy for a given cost function, researchers also study obtaining ε-optimal policies for an
arbitrary sequence of cost functions after interacting with the environment, known as reward-free
exploration (Jin et al., 2020; Ménard et al., 2021; Zhang et al., 2020a).

Instead of reaching a single goal state, another line of research considers exploration problems of
discovering reachable states (Lim and Auer, 2012; Tarbouriech et al., 2020b, 2021a, 2022; Cai et al.,
2022). Sample complexity of SSP is a building block for solving these problems, and existing results
only consider strictly positive costs, that is, cmin > 0.

Another active research area is learning ε-optimal policy purely from an offline dataset, known
as offline reinforcement learning (Ren et al., 2021; Rashidinejad et al., 2021; Xie et al., 2021; Yin
and Wang, 2021; Yin et al., 2021, 2022). Offline SSP has been recently studied by Yin et al. (2022)
where they provide a minimax optimal offline algorithm. While both offline RL and our setting aim
to recover an ε-optimal policy, there are important differences. In offline SSP (Yin et al., 2022) , the
samples are collected by a behavior policy with bounded coverage (i.e., maximum ratio between the
state-action distribution of the optimal and behavior policy) while in sample complexity the algorithm
is responsible of deciding the sample collection strategy. Furthermore, the analysis in (Yin et al.,
2022) is limited to positive costs (i.e., cmin > 0) and their sample complexity is measured in terms
of number of trajectories and coverage bound. These terms hide both the dependence in terms of
action space and, most importantly, the horizon. Our analysis provides a much more comprehensive
understanding of sample complexity in SSP.
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Appendix B. Preliminaries

Extra Notations For any distributionP ∈ ∆S+ and function V ∈ RS+ , definePV = ES∼P [V (S)]
and V(P, V ) = VARS∼P [V (S)] as the expectation and the variance of V (S) with S sampled from
P respectively.

Table 2: The notation adopted in this paper.
Symbol Meaning

S number of states
A number of actions
S+ = S ∪ {g} extended state space (g included)
π ∈ ∆A a (stationary) policy
T π(s) expected number of steps it takes to reach g (hitting time) starting from state s and following π
V π = Eπ[

∑∞
i c(si, ai)|s1 = s] expected cost of following policy π starting from state s (value function of π)

Π the set of stationary policies
Π∞ the set of stationary proper policies
π? = argminπ∈Π∞ V

π(s) for all s ∈ S optimal proper policy
V ? = V π? value function of optimal policy
B? = maxs V

?(s) maximum expected cost of the optimal policy starting from any state
T? = maxs T

π?(s) maximum hitting time of the optimal policy starting from any state
D = maxs minπ∈Π T

π(s) diameter of the SSP instance
T‡ = B?/cmin a worst-case upper bound on the hitting time T? of the optimal policy
T an upper bound of T? known to the learner
ΠT = {π ∈ Π : ‖T π‖∞ ≤ T} set of policies with maximum hitting time upper bounded by T
π?T,s = argminπ∈ΠT V

π(s) optimal policy starting from state s restricted in ΠT

V ?,T (s) = V π?T,s(s) expected cost of π?T,s starting from state s
B?,T = maxs V

?,T (s) maximum expected cost of optimal policies in ΠT starting from any state s
J cost to directly reach the goal from any state under Assumption 1
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Appendix C. Omitted Details in Section 3

In this section we provide omitted proofs and discussions in Section 3.

C.1. Proof of Theorem 2 and Theorem 3

It suffices to prove Theorem 3 and the second statement in Theorem 2, since Theorem 3 subsumes
the first statement of Theorem 2. We decompose the proof into two cases: 1) min{T‡, T} <∞, and
2) min{T‡, T} =∞, and we prove each case in a separate theorem.

C.1.1. LOWER BOUND FOR min
{
T‡, T

}
<∞

In case there is a finite upper bound on the hitting time of optimal policy, we construct a hard instance
adapted from (Mannor and Tsitsiklis, 2004).
Proof [of Theorem 3] Without loss of generality, we assume S = Al−1

A−1 for some l ≥ 0. It is clear that
l ≤ logA S+1. We construct an MDPM0 of fullA-ary tree structure: the root node is s0, each action
at a non-leaf node transits to one of its children with cost cmin, and we denote the set of leaf nodes by
S ′. Since A ≥ 3, we have |S ′| ≥ S

2 . The action space is A = [A], and we partition the state-action
pairs in S ′ into two parts: Λ0 = S ′ × [1] and Λ = S ′ × {2, . . . , A} = {(s1, a1), . . . , (sN , aN )},
where N = |S ′|(A − 1) (note that here we index state-action pair instead of state, so si, sj
with i 6= j may refer to the same state in S ′). Now define T1 = min{T/2, B/cmin}. The cost
function satisfies c(s, 1) = B

T0
for s ∈ S ′, and c(si, ai) = B

T1
for i ∈ [N ]. The transition function

satisfies P (g|s, 1) = 1
T0

+ T1α
2T0

, P (s|s, 1) = 1 − P (g|s, 1) for s ∈ S ′, and P (g|si, ai) = 1
T1

,
P (si|si, ai) = 1− P (g|si, ai) for i ∈ [N ], where α = 32ε

T1B
.

Now we consider a class of alternative MDPs {Mi}Ni=1. The only difference between M0

andMi is that the transition ofMi at (si, ai) satisfies P (g|si, ai) = 1
T1

+ α and P (si|si, ai) =

1− P (g|si, ai), that is, (si, ai) is a “good” state-action pair atMi. Denote by Bi
? and T i? the value

of B? and T? inMi respectively. For i ∈ {0, . . . , N}, we have B
2 ≤ Bi

? ≤ cmin · l + B ≤ 2B by
α ≤ 1

2T1
and B ≥ 2; T0

2 ≤ T i? ≤ l + T1 ≤ T ; and cmin is indeed the minimum cost by cmin ≤ B
T1

.
It is not hard to see that at s0, the optimal behavior inM0 is to reach any leaf node and then take
action 1 until g is reached; while inMi for i ∈ {1, . . . , N}, the optimal behavior is to reach si and
then take (si, ai) until g is reached. Thus, T 0

? = Θ(T0) and T i? = Θ(T1) for i ∈ [N ].
Without loss of generality, we consider learning algorithms that output a deterministic policy,

which can be represented by v̂ ∈ S ′ ×A the unique state-action pair in S ′ reachable by following
the output policy starting from s0. Define event E1 = {v̂ ∈ Λ0}. Below we fix a z ∈ [N ]. Let T̂ be
the number of times the learner samples (sz, az), and Kt be the number of times the agent observes
(sz, az, g) among the first t samples of (sz, az). We introduce event

E2 =

{
max

1≤t≤t?
|pt−Kt| ≤ ε

}
,

where ε =
√

2p(1− p)t? ln d
θ , p = 1

T1
, d = e4, θ = exp(−d′α2t?/(p(1− p))) < 1 for some t? > 0

to be specified later, and d′ = 128. Also define events E3 = {T̂ ≤ t?} and E = E1 ∩ E2 ∩ E3. For
each i ∈ {0, . . . , N}, we denote by Pi and Ei the probability and expectation w.r.tMi respectively.

Below we introduce two lemmas that characterize the behavior of the learner if it gathers
insufficient samples on (sz, az).
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Lemma 12 If P0(E3) ≥ 7
8 , then P0(E2 ∩ E3) ≥ 3

4 .

Proof Note that inM0, the probability of observing (sz, az, g) is p for each sample of (sz, az).
Thus, pt−Kt is a sum of i.i.d random variables, and the variance of pt−Kt for t = t? is t?p(1− p).
By Kolmogorov’s inequality, we have

P0(E2) = P0

(
max

1≤t≤t?
|pt−Kt| ≤ ε

)
≥ 1− t?p(1− p)

2p(1− p)t? ln d
θ

= 1− 1

2 ln d
θ

≥ 7

8
.

Thus, P0(E2 ∩ E3) = P0(E2) + P0(E3)− P0(E2 ∪ E3) ≥ 3
4 .

Lemma 13 If P0(E3) ≥ 7
8 and P0(E1) ≥ 1− θ

2d , then Pz(E1) ≥ θ
2d .

Proof The range of ε ensures that α ≤ p
2 ≤

1−p
2 . By the assumptions of this lemma and Lemma 12,

we have P0(E1) ≥ 1− 1
2d ≥

7
8 by d ≤ 1

16 , and thus P0(E) ≥ 1
2 . Let W be the interaction history of

the learner and the generative model, and Lj(w) = Pj(W = w) for j ∈ {0, . . . , N}. Note that the
next-state distribution is identical inM0 andMz unless (sz, az) is sampled. Define K = K

T̂
. We

have

Lz(W )

L0(W )
=

(p+ α)K(1− p− α)T̂−K

pK(1− p)T̂−K
=

(
1 +

α

p

)K (
1− α

1− p

)T̂−K
=

(
1 +

α

p

)K (
1− α

1− p

)K( 1
p
−1)(

1− α

1− p

)T̂−K
p

.

By 1− u ≥ e−u−u2
for u ∈ [0, 1

2 ], e−u ≥ 1− u, and α ≤ 1−p
2 , we have(

1− α

1− p

) 1
p
−1

≥ exp

(
1− p
p

(
− α

1− p
−
(

α

1− p

)2
))

= exp

(
−α
p

)
exp

(
− α2

p(1− p)

)
≥
(

1− α

p

)(
1− α2

p(1− p)

)
.

Therefore, conditioned on E , we have

Lz(W )

L0(W )
IE ≥

(
1− α2

p2

)K (
1− α2

p(1− p)

)K (
1− α

1− p

)T̂−K
p

IE

≥
(

1− α2

p2

)pT̂+ε(
1− α2

p(1− p)

)pT̂+ε(
1− α

1− p

) ε
p

IE ,
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where in the last inequality we apply |pT̂ − K| ≤ ε by E2 and E3. Then by 1 − u ≥ e−2u for
u ∈ [0, 1

2 ] and α ≤ p
2 ≤

1−p
2 , we have

Lz(W )

L0(W )
IE ≥ exp

(
−2

(
α2

p2
(pT̂ + ε) +

α2

p(1− p)
(pT̂ + ε) +

α

1− p
ε

p

))
≥ exp

(
−2

(
T̂α2

p
+

T̂α2

1− p
+
α2ε

p2
+

α2ε

p(1− p)
+

αε

p(1− p)

))
IE

≥ exp

(
−2

(
1

d′
ln

1

θ
+

3αε

p(1− p)

))
IE (T̂ ≤ t?, α2t? = p(1−p)

d′ ln 1
θ , and α < p)

(i)
≥ exp

(
−2

(
1

d′
ln

1

θ
+ 3

√
2

d′
ln
d

θ

))
IE ≥

(
θ

d

)2
(

1/d′+3
√

2/d′
)
IE ≥

θ

d
IE ,

where in (i) we apply the definition of ε and α2t? = p(1−p)
d′ ln 1

θ to have

αε

p(1− p)
=

√
2t?α2

p(1− p)
ln
d

θ
=

√
2

d′
ln

1

θ
ln
d

θ
≤
√

2

d′
ln
d

θ
.

Then we have

Pz(E1) ≥ Pz(E) = Ez[IE(W )] = E0

[
Lz(W )

L0(W )
IE(W )

]
≥ θ

d
P0(E) ≥ θ

2d
.

This completes the proof.

Now for any δ ∈ (0, 1
2d), let t? = B2(T1−1)

322d′ε2 ln 1
2dδ . This gives θ

2d = δ.

Lemma 14 An (ε, δ)-correct algorithm with ε ∈ (0, 1
32) and δ ∈ (0, 1

2e4
) must have P0(E3) < 7

8 .

Proof Denote by π0 a deterministic policy such that when following π0 starting from s0, it reaches
some state in S ′ and then takes action 1 until reaching the goal state g. For any j ∈ [N ], denote
by πj a deterministic policy such that when following πj starting from s0, it reaches sj and then
takes action aj until reaching the goal state g. It is not hard to see that πj is an optimal policy in
Mj for j ∈ {0, . . . , N} starting from s0. Denote by V j

i the value function of πj inMi and V ?
i the

optimal value function ofMi. By the choice of α, we have V j
0 (s0)− V ?

0 (s0) = B − B
1+T1α/2

> ε

for any j ∈ [N ]. Thus, all ε-optimal deterministic policies inM0 have the same behavior as π0

starting from s0. On the other hand, V 0
z (s0) − V ?

z (s0) = B( 1
1+T1α/2

− 1
1+T1α

) > ε. Thus, all
ε-optimal deterministic policies inMz have the same behavior as πz starting from s0. Therefore, an
(ε, δ)-correct algorithm should guarantee P0(E1) ≥ 1− δ and Pz(E1) < δ. When P0(E3) ≥ 7

8 , this
leads to a contradiction by Lemma 13 and the choice of t?. Thus, P0(E3) < 7

8 .

We are now ready to prove the main statement of Theorem 3. Note that inM0, an (ε, δ)-correct
algorithm should guarantee P0(T̂z ≤ t?) < 7

8 for any z ∈ [N ] by Lemma 14, where T̂z is the number
of times the learner samples (sz, az). Define N =

∑
z I{T̂z ≤ t?}. Clearly, we have N ≤ N

and E0[N ] < 7N
8 . Moreover, P0(N ≥ 8N

9 ) ≤ 63
64 by Markov’s inequality. This implies that with
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probability at least 1
64 >

1
2e4

, we have |{z ∈ [N ] : T̂z > t?}| > N
9 and thus the total number of

samples used inM0 is at least Nt
?

9 . To conclude, there is no (ε, δ)-correct algorithm with ε ∈ (0, 1
32),

δ ∈ (0, 1
2e4

), and sample complexity Nt?

9 = Ω(NB
2T1
ε2

ln 1
δ ) = Ω(min{ B?cmin

, T}B
2
?SA
ε2

ln 1
δ ) onM0

by B? = Θ(B) and the definition of T1. This completes the proof.

Remark 15 Note that T is both a parameter of the environment and the knowledge given to the
learner. In fact, T constrains the hitting time of the optimal policy in all the possible alternative
MDPs {Mj}j∈[N ], which affects the final lower bound. Also note that the lower bound holds even if
the learner has access to an upper bound of B? (which is 2B in the proof above).

Why a faster rate is impossible with T ≥ T?? This result may seem unintuitive because when we
have knowledge of T ≥ T?, a finite-horizon reduction with horizon Õ(T ) ensures that the estimation
error shrinks at rate B?

√
T?/n (Yin and Wang, 2021, Figure 1), where n is the number of samples

for each state-action pair. Then it seems that it might be possible to obtain a sample complexity of
order T?B2

?SA
ε2

. However, our lower bound indicates that the sample complexity should scale with
T instead of T?. An intuitive explanation is that even if the estimation error shrinks with rate T? in
hindsight, since the learner doesn’t know the exact value of T?, it can only set n w.r.t T so that the
output policy is ε-optimal even in the worst case of T = T?.

C.1.2. LOWER BOUND FOR min
{
T‡, T

}
=∞

Now we show that when there is no finite upper bound on T?, it really takes infinite number of
samples to learn in the worst scenario.

Theorem 16 (Second statemnt of Theorem 2) There exist an SSP instance with cmin = 0, T? = 1,
and B? = 1 in which every (ε, δ)-correct algorithm with ε ∈ (0, 1

2) and δ ∈ (0, 1
16) has infinite

sample complexity.

Proof Consider an SSP M0 with S = {s0, s1} and A = {a0, ag}. The cost function satis-
fies c(s0, a0) = 0, c(s0, ag) = 1

2 , and c(s1, a) = 1 for all a. The transition function satisfies
P (g|s0, ag) = 1, P (s0|s0, a0) = 1, and P (g|s1, a) = 1 for all a; see Figure 1 (b). Clearly cmin = 0,
B? = T? = 1, and V ?(s0) = 1

2 inM0. Without loss of generality, we consider learning algorithm
that outputs deterministic policy π̂ and define events E1 = {π̂(s0) = a0} and E ′1 = {π̂(s0) = ag}.

If a learning algorithm is (ε, δ)-correct with δ ∈ (0, 1
8) and has sample complexity n ∈ [2,∞)

onM0, then consider two alternative MDPsM+ andM−. MDPM+ is the same asM0 except
that P (s1|s0, a0) = 1

n and P (s0|s0, a0) = 1 − 1
n . MDP M− is the same as M0 except that

P (g|s0, a0) = 1
n and P (s0|s0, a0) = 1− 1

n . Note that inM+, the optimal proper policy takes ag at
s0, and V ?(s0) = 1

2 ; while inM−, the optimal proper policy takes a0 at s0, and V ?(s0) = 0. Let
W be the interaction history between the learner and the generative model, and define Lj(w) =

Pj(W = w) for j ∈ {0,+,−}, where Pj is the probability w.r.tMj . Also let T̂ be the number
of times the learner samples (s0, a0) before outputting π̂, and γ(w) = I{L0(w) > 0}. Define
E2 = {T̂ ≤ n}, E = E1 ∩E2 and E ′ = E ′1 ∩E2. For any j ∈ {+,−}, we have Lj(W )

L0(W )IE(W )γ(W ) =
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g

s0

0

(full (A− 1)-ary tree structure)

. . . s . . .

Action 1 Action i ∈ {2, . . . , A− 1}

BT
1+ε/2

, t ≈ T BT or BT
1+ε

, t ≈ T

s?0Action A

2BT

s?1

B?

s?2

0 (correct action)

0 (wrong action)

. . .

s?N

Figure 2: Hard instance in Theorem 6. Each arrow represents a possible transition of a state-action
pair, and the value on the side is the expected cost of taking this state-action pair until
the transition happens. Value t represents the expected number of steps needed for the
transition to happen.

(1− 1
n)T̂ IE(W )γ(W ) ≥ (1− 1

n)nIE(W )γ(W ) ≥ IE(W )γ(W )
4 . Thus,

Pj(E) = Ej [IE(W )] ≥ Ej [IE(W )γ(W )] = E0

[
Lj(W )

L0(W )
IE(W )γ(W )

]
≥ P0(E)

4
.

By a similar arguments, we also have Pj(E ′) ≥ P0(E ′)/4 for j ∈ {+,−}. Now note that P0(E2) ≥ 7
8

by the sample complexity of the learner. Since E ∪ E ′ = E2 and E ∩ E ′ = ∅, we have P0(E) ≥ 7
16

or P0(E ′) ≥ 7
16 . Combining with Pj(E) ≥ P0(E)/4 and Pj(E ′) ≥ P0(E ′)/4, we have either

Pj(E) ≥ 7
64 for j ∈ {+,−}, or Pj(E ′) ≥ 7

64 for j ∈ {+,−}. In the first case, inM+, we have
V π̂(s0) − V ?(s0) = 1 − 1

2 = 1
2 with probability at least 7

64 . In the second case, inM−, we have
V π̂(s0) − V ?(s0) = 1

2 − 0 = 1
2 with probability at least 7

64 . Therefore, for any ε ∈ (0, 1
2) and

δ ∈ (0, 1
16), there is a contradiction in both cases if the learner is (ε, δ)-correct and has finite sample

complexity onM0. This completes the proof.

Remark 17 Note that although T? = 1 inM0, the key of the analysis is that T? can be arbitrarily
large in the alternative MDPs. Indeed, if we have a finite upper bound T of T?, then the learning
algorithm only requires finite number of samples as shown in Theorem 3.

C.2. Proof of Theorem 6

Proof Without loss of generality, assume that S = 2((A−1)l−1)
A−2 for some l ≥ 0. Consider a family

of MDPs {Mi,j}i∈{0,...,N ′},j∈[A−1]N with state space S = ST ∪ S? where |ST | = |S?| = N + 1,
N ′ = (A − 2)(A − 1)l, and action space A = [A]. States in ST forms a full (A − 1)-ary tree on
action subset [A− 1] as in Theorem 3 with root s0, T = T/3, T0 = T/6, B = BT , and cmin = 0. It
is clear that N ′ = |Λ| (defined in Theorem 3) in the tree formed by ST . The transition ofMi,j in
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ST corresponds toMi in Theorem 3. We denote S? = {s?0, . . . , s?N}, and for each state in ST , the
remaining unspecified action transits to s?0 with cost 0.

Consider another set of MDPs {M′i}i∈{0,...,N ′} with state space ST . The transition and cost
functions of M′i is the same as Mi in ST except that its action space is restricted to [A − 1].
Theorem 3 implies that there exists constants α1, α2, such that any (ε′, δ′)-correct algorithm with

ε′ ∈ (0, 1
32), δ′ ∈ (0, 1

2e4
) has sample complexity at least C(ε′, δ′) =

α1B2
TTSA

ε′2
ln α2

δ′ on {M′i}i
(note that in Theorem 3 we only show the sample complexity lower bound inM′0, but it not hard to
show a similar bound for otherM′i following similar arguments). Now we specify the transition and
cost functions in S? for eachMi,j such that learning {Mi,j}i,j is as hard as learning {M′i}i. At s?0,
taking any action suffers cost 1; taking any action in [A− 1] transits to s?1 with probability 1

B?
and

stays at s?0 otherwise; taking action A transits to s0 with probability 1
2BT

and stays at s?0 otherwise.
At s?n for n ∈ [N ], taking any action suffers cost 0; taking action jn (recall that j ∈ [A−1]N ) transits
to s?n+1 (define s?N+1 = g) with probability p = min{ 1

2T ,
δ

4C(ε,4δ)} and stays at s?n otherwise; taking
any other action in [A− 1] transits to s?0 with probability p and stays at s?n otherwise; taking action A
directly transits to s?0; see illustration in Figure 2. Note that anyMi,j has parameters B? (transiting
to s?0 from any state and then reaching g through S?) and satisfies B?,T ∈ [BT2 , 3BT ] (transiting from
s?0 to s0 and then reaching g through ST ). From now on we fix the learner as an (ε, δ, T )-correct
algorithm with sample complexity C(ε, 4δ)− 1 on {Mi,j}i,j . Define E1 as the event that the first
C(ε, 4δ) samples drawn by the learner from any (s?n, a) with n ∈ [N ] and a ∈ [A − 1] transits to
s?n, and denote by Pi,j the probability distribution w.r.tMi,j . By 1 + x ≥ e

x
1+x for x ≥ −1 and

ex ≥ 1 + x, we have for any i, j,

Pi,j(E1) = (1− p)C(ε,4δ) ≥ e
−pC(ε,4δ)

1−p ≥ e−2pC(ε,4δ) ≥ e−
δ
2 ≥ 1− δ

2
.

Also define E2 as the event that the learner uses at most C(ε, 4δ)− 1 samples, and E = E1 ∩ E2. We
have Pi,j(E2) ≥ 1− δ by the sample complexity of the learner, and thus Pi,j(E) ≥ 1− 3

2δ for any
i, j. We first bound the expected cost of the learner in S? conditioned on E . Denote by V π

M the value
function of policy π inM.

Lemma 18 Given any policy distribution ρ, there exists j? such that Eπ∼ρ[I{V π
Mi,j?

(s?0) ≥
2BT }] ≥ 1

2 for any i.

Proof Below we fix an i ∈ [N ′]. For any policy π and j ∈ [A− 1]N , define xπj =
∏N
n=1 p

π(jn|s?n)
and yπ = π(A|s?0), where pπ(a|s?n) is the probability that when following policy π starting from
s?n, the last action taken before leaving s?n is a. It is not hard to see that in our construction, pπ is
independent of j. Also denote by V π

j the value function of policy π inMi,j . Note that

V π
j (s?0) ≥ 1 +

1− yπ

B?
V π
j (s?1) +

(
1− yπ

2BT
− 1− yπ

B?

)
V π
j (s?0)

= 1 +
(1− yπ)(1− xπj )

B?
V π
j (s?0) +

(
1− yπ

2BT
− 1− yπ

B?

)
V π
j (s?0)

= 1 +

(
1− yπ

2BT
−

(1− yπ)xπj
B?

)
V π
j (s?0).
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Reorganizing terms gives V π
j (s?0) ≥ 1

yπ/(2BT )+(1−yπ)xπj /B?
. Now if V π

j (s?0) < 2BT , then we have

yπ + (1 − yπ)
2BT x

π
j

B?
> 1, which gives xπj >

B?
2BT

. Let X π be the set of j ∈ [A − 1]N such that
V π
j (s?0) < 2BT . By B?

2BT
|X π| ≤

∑
j x

π
j ≤ 1, we have |X π| ≤ 2BT

B?
. Define zπ(j) = I{j ∈ X π}.

We have
∑

j z
π(j) = |X π| ≤ 2BT

B?
for any π, and thus

∑
j

∫
π z

π(j)ρ(π)dπ ≤ 2BT
B?

. Therefore, there
exists j? such that

∫
π z

π(j?)ρ(π)dπ ≤ 2BT
B?(A−1)N

, which implies that

Eπ∼ρ[I{V π
Mi,j?

(s?0) ≥ 2BT }] = 1−
∫
π
zπ(j?)ρ(π)dπ ≥ 1− 2BT

B?(A− 1)N
≥ 1

2
.

The proof is completed by noting that for the picked j?, the bound above holds for any i, since the
lower bound on V π

j (s?0) we applied above is independent of i.

Now consider another set of MDPs {M′′i }i∈{0,...,N ′} with state space ST . The transition and cost
functions of M′′i is the same as Mi,j restricted on ST for any j, except that taking action A at
any state directly transits to g with cost 2BT . We show that any (ε′, δ′)-correct algorithm with
ε′ ∈ (0, 1

32), δ′ ∈ (0, 1
2e4

) has sample complexity at least C(ε′, δ′) on {M′′i }i Given any policy π on
M′′i , define gπ as a policy onM′i andM′′i such that gπ(a|s) ∝ π(a|s) and

∑A−1
a=1 gπ(a|s) = 1. It is

straightforward to see that V gπ
M′i

(s) = V gπ
M′′i

(s) ≤ V π
M′′i

(s) and V ?
M′i

(s) = V ?
M′′i

(s), where V ?
M is the

optimal value function inM. Thus, if there exists an algorithm A that is (ε′, δ′)-correct with sample
complexity less than C(ε′, δ′) on {M′′i }i, then we can obtain an (ε′, δ′)-correct algorithm on {M′i}i
with sample complexity less than C(ε′, δ′) as follows: executing A on {M′′i }i to obtain policy π̂, and
then output gπ̂. This leads to a contradiction to the definition of C(·, ·), and thus any (ε′, δ′)-correct
algorithm with ε′ ∈ (0, 1

32), δ′ ∈ (0, 1
2e4

) has sample complexity at least C(ε′, δ′) on {M′′i }i.
Since we assume that the learner has sample complexity less than C(ε, 4δ) onMi,j , for a fixed

j0, there exists i? such that Pi?,j0(E3) > 4δ, where E3 = {∃s : V π̂
M′′

i?
(s) − V ?

M′′
i?

(s) > ε} (note
that π̂ is computed onMi?,j0 , but we can apply π̂ restricted on ST toM′′i?). This also implies that
Pi?,j(E ∩ E3) = Pi?,j0(E ∩ E3) ≥ 5δ

2 for any j, since the value of Pi,j(ω) is independent of j when
ω ∈ E . Define E4 = {∃s : V π̂

M(s)− V ?,T
M (s) > ε}. By Lemma 18, there exists j? such that

Pi?,j?(E4|E ∩ E3) ≥ Eπ̂∼Pi? (·|E∩E3)[I{V π̂
Mi?,j?

(s?0) ≥ 2BT }] ≥
1

2
,

since the distribution of π̂ is independent of j under E ∩ E3, V ?,T
Mi?,j

(s) = V ?
M′′

i?
(s) for any j and

s ∈ ST , and V π̂
Mi?,j

(s) ≥ V π̂
M′′

i?
(s) for s ∈ ST when V π̂

Mi?,j
(s?0) ≥ 2BT . Putting everything

together, we have Pi?,j?(E4) ≥ Pi?,j?(E4 ∩ E ∩ E3) > δ, a contradiction. Therefore, there is no
(ε, δ, T )-correct algorithm with sample complexity less than C(ε, 4δ) on {Mi,j}i,j . In other words,
for any (ε, δ, T )-correct algorithm, there existsM∈ {Mi,j}i,j such that this algorithm has sample
complexity at least C(ε, 4δ) onM. This completes the proof.

Appendix D. Omitted Details in Section 4

In this section, we present the omitted proofs of Lemma 7 and Theorem 8. To prove Theorem 8,
we first discuss the guarantee of the finite-horizon algorithm in Appendix D.2. Then, we bound the
sample complexity of Algorithm 1 in Appendix D.3.

27



SETTLING THE SAMPLE COMPLEXITY OF SSPS

Algorithm 3 LCBVI (H,N, B, cf , δ)
Input: horizon H , counter N, optimal value function upper bound B, terminal cost cf , failure
probability δ, and cost function c,

Define: P̄s,a(s′) = N(s,a,s′)
N+(s,a)

and b(s, a, V ) = max

{
7
√

V(P̄s,a,V )ι
N+(s,a)

, 49Bι
N+(s,a)

}
, where ι = ln 2SAHn

δ ,

n =
∑

s,aN(s, a), and N+(s, a) = max{1,N(s, a)}.
Initialize: V̂H+1 = cf .
for h = H, . . . , 1 do

1 Q̂h(s, a) =
(
c(s, a) + P̄s,aV̂h+1 − b(s, a, V̂h+1)

)
+

.

V̂h(s) = mina Q̂h(s, a).
end
Output: (π̂, V̂ ) with π̂(s, h) = argmina Q̂h(s, a).

D.1. Proof of Lemma 7

Proof Let V π
1,h be the value function V π

1 inMh,cf . For any n ≥ 0, we have

V π
1,(n+1)H(s) = Eπ

[
nH∑
i=1

c(si, ai) + V π
1,H(snH+1)

∣∣∣∣∣ s1 = s

]

≤ Eπ

[
nH∑
i=1

c(si, ai) + cf (snH+1)

∣∣∣∣∣ s1 = s

]
= V π

1,nH(s).

Therefore, V π(s) ≤ limn→∞ V
π

1,nH(s) ≤ V π
1,H(s) and this completes the proof. Note that the first

inequality may be strict. Indeed, V π = limH→∞ V
π

1,H inMH,0. Consider an improper policy π
behaving in a loop with zero cost. Then, V π = 0 but limH→∞ V

π
1,H = cf inMH,cf .

D.2. Guarantee of the Finite-Horizon Algorithm LCBVI

In this section, we discuss and prove the guarantee of Algorithm 3.

Notations Within this section, H , N, B, cf , δ are inputs of Algorithm 3, and π̂, Q̂, V̂ , P̄s,a, N,
N+, ι, and b are defined in Algorithm 3. Value function V π

h is w.r.t MDPMH,cf , and we denote by
V ?
h , Q?h the optimal value function and action-value function, such that V ?

h (s) = argminπ V
π
h (s) and

Q?h(s, a) = c(s, a) +Ps,aV
?
h+1 for (s, a, h) ∈ S ×A× [H]. We also define V π

H+1 = V ?
H+1 = cf for

any policy π, andB?
H = maxh∈[H+1] ‖V ?

h ‖∞. For any (s̄, h̄) ∈ S× [H] and (s, a, h) ∈ S×A× [H],
denote by qπ,(s̄,h̄)(s, a, h) the probability of visiting (s, a) in stage h if the learner starts in state
s̄ in stage h̄ and follows policy π afterwards. For any value function V ∈ RS×[H+1], define
‖V·‖∞ = maxh∈[H+1] ‖Vh‖∞.

We first prove optimism of the estimated value functions.

Lemma 19 When B ≥ B?
H , we have Q̂h(s, a) ≤ Q?h(s, a) for any (s, a, h) ∈ S × A × [H] with

probability at least 1− δ.
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Proof We prove this by induction. The case of h = H + 1 is clearly true. For h ≤ H , note that

c(s, a) + P̄s,aV̂h+1 − b(s, a, V̂h+1) ≤ c(s, a) + P̄s,aV
?
h+1 − b(s, a, V ?

h+1) (Lemma 39)

= c(s, a) + Ps,aV
?
h+1 + (P̄s,a − Ps,a)V ?

h+1 −max

7

√
V(P̄s,a, V ?

h+1)ι

N+(s, a)
,

49Bι

N+(s, a)


≤ c(s, a) + Ps,aV

?
h+1 + (2

√
2− 3)

√
V(P̄s,a, V ?

h+1)ι

N+(s, a)
+ (19− 24)

Bι

N+(s, a)

(Lemma 44 and max{a, b} ≥ a+b
2 )

≤ c(s, a) + Ps,aV
?
h+1 = Q?h(s, a).

The proof is then completed by the definition of Q̂.

Lemma 20 For any state s̄ ∈ S and h̄ ∈ [H], we have∣∣∣V π̂
h̄ (s̄)− V̂h̄(s̄)

∣∣∣ ≤∑
s,a,h

qπ̂,(s̄,h̄)(s, a, h)
(∣∣∣(Ps,a − P̄s,a)V̂h+1

∣∣∣+ b(s, a, V̂h+1)
)
.

Proof First note that

V π̂
h̄ (s̄)− V̂h̄(s̄) ≤ Ps̄,π̂(s̄,h̄)V

π̂
h̄+1 − P̄s̄,π̂(s̄,h̄)V̂h̄+1 + b(s̄, π̂(s̄, h̄), V̂h̄+1) (definition of π̂ and V̂ )

= Ps̄,π̂(s̄,h̄)(V
π̂
h̄+1 − V̂h̄+1) + (Ps̄,π̂(s̄,h̄) − P̄s̄,π̂(s̄,h̄))V̂h̄+1 + b(s̄, π̂(s̄, h̄), V̂h̄+1)

=
∑
s,a,h

qπ̂,(s̄,h̄)(s, a, h)
(

(Ps,a − P̄s,a)V̂h+1 + b(s, a, V̂h+1)
)
.

(expand Ps̄,π̂(s̄,h̄)(V
π̂
h̄+1
− V̂h̄+1) recursively and V π̂

H+1 = V̂H+1)

For the other direction,

(V̂h̄(s̄)− V π̂
h̄ (s̄))+ ≤

(
P̄s̄,π̂(s̄,h̄)V̂h̄+1 − Ps̄,π̂(s̄,h̄)V

π̂
h̄+1

)
+

((a)+ − (b)+ ≤ (a− b)+)

≤ Ps̄,π̂(s̄,h̄)(V̂h̄+1 − V π̂
h̄+1)+ +

∣∣∣(Ps̄,π̂(s̄,h̄) − P̄s̄,π̂(s̄,h̄))V̂h̄+1

∣∣∣ ((a+ b)+ ≤ (a)+ + (b)+)

≤
∑
s,a,h

qπ̂,(s̄,h̄)(s, a, h)
∣∣∣(Ps,a − P̄s,a)V̂h+1

∣∣∣ . (expand Ps̄,π̂(s̄,h̄)(V̂h̄+1 − V π̂
h̄+1

)+ recursively)

Combining both directions completes the proof.

Remark 21 Note that the inequality in Lemma 20 holds even if optimism (Lemma 19) does not hold,
which is very important for estimating B?.

Lemma 22 There exists a functionN?(B′, H ′, ε′, δ′) . B′2H′

ε′2
+ SB′H′

ε′ +SH ′2 such that whenB ≥
B?
H and N(s, a) = N ≥ N?(B,H, ε, δ) for all s, a for some integer N , we have

∥∥V π̂
· − V ?

·
∥∥
∞ ≤ ε

with probability at least 1− δ.
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Proof Below we assume that B ≥ B?
H . Fix any state s̄ ∈ S and h̄ ∈ [H], we write qπ̂,(s̄,h̄) as qπ̂ for

simplicity. We have with probability at least 1− 4δ,

V π̂
h̄ (s̄)− V̂h̄(s̄)

≤
∑
s,a,h

qπ̂(s, a, h)
(∣∣(Ps,a − P̄s,a)V ?

h+1

∣∣+
∣∣∣(Ps,a − P̄s,a)(V̂h+1 − V ?

h+1)
∣∣∣+ b(s, a, V̂h+1)

)
(|a+ b| ≤ |a|+ |b| and Lemma 20)

.
∑
s,a,h

qπ̂(s, a, h)

√V(Ps,a, V ?
h+1)

N
+
SB

N
+

√
SV(Ps,a, V̂h+1 − V ?

h+1)

N
+

√
V(P̄s,a, V̂h+1)

N


(Lemma 25 and max{a, b} ≤ (a)+ + (b)+)

.

√√√√H

N

∑
s,a,h

qπ̂(s, a, h)V(Ps,a, V ?
h+1) +

√√√√SH

N

∑
s,a,h

qπ̂(s, a, h)V(Ps,a, V̂h+1 − V ?
h+1) +

SBH

N
,

where in the last inequality we apply VAR[X + Y ] ≤ 2(VAR[X] + VAR[Y ]), Cauchy-Schwarz
inequality, Lemma 24, and

∑
s,a,h qπ̂(s, a, h) ≤ H . Now note that:

∑
s,a,h

qπ̂(s, a, h)V(Ps,a, V
?
h+1) = Eπ̂

 H∑
h=h̄

V(Psh,ah , V
?
h+1)

∣∣∣∣∣∣ sh̄ = s̄


= Eπ̂

 H∑
h=h̄

(
Psh,ah(V ?

h+1)2 − (Psh,ahV
?
h+1)2

)∣∣∣∣∣∣ sh̄ = s̄


= Eπ̂

 H∑
h=h̄

(
V ?
h+1(sh+1)2 − V ?

h (sh)2
)

+
H∑
h=h̄

(
V ?
h (sh)2 − (Psh,ahV

?
h+1)2

)∣∣∣∣∣∣ sh̄ = s̄


≤ B2 + 3BEπ̂

 H∑
h=h̄

(
Q?h(sh, ah)− Psh,ahV

?
h+1

)
+


(a2 − b2 ≤ (a+ b)(a− b)+ for a, b > 0 and V ?(sh) ≤ Q?h(sh, ah))

= B2 + 3BEπ̂

 H∑
h=h̄

c(sh, ah)

∣∣∣∣∣∣ sh̄ = s̄

 = B2 + 3BV π̂
h̄ (s̄).

Plugging this back and by V(Ps,a, V̂h+1 − V ?
h+1) ≤

∥∥∥V̂h+1 − V ?
h+1

∥∥∥2

∞
, we have with probability at

least 1− δ,

0 ≤ V π̂
h̄ (s̄)− V̂h̄(s̄) . B

√
H

N
+

√
BHV π̂

h̄
(s̄)

N
+

√
SH2

N

∥∥∥V̂· − V ?
·

∥∥∥
∞

+
SBH

N
(Lemma 19)

. B

√
H

N
+

√
BH(V π̂

h̄
(s̄)− V̂h̄(s̄))

N
+

√
SH2

N

∥∥∥V̂· − V π̂
·

∥∥∥
∞

+
SBH

N
,
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where in the last step we apply V̂h̄(s̄) ≤ B and
∥∥∥V̂· − V ?

·

∥∥∥
∞
≤
∥∥∥V̂· − V π̂

·

∥∥∥
∞

since V̂ (s) ≤ V ?(s) ≤

V π̂(s) for all s ∈ S by Lemma 19. Solving a quadratic inequality w.r.t V π̂
h̄

(s̄)− V̂h̄(s̄), we have

V π̂
h̄ (s̄)− V̂h̄(s̄) . B

√
H

N
+

√
SH2

N

∥∥∥V̂· − V π̂
·

∥∥∥
∞

+
SBH

N
.

The inequality above implies that there exist quantity N?
. SH2, such that when N ≥ N?, we have

V π̂
h̄ (s̄)− V̂h̄(s̄) . B

√
H

N
+

1

2

∥∥∥V̂· − V π̂
·

∥∥∥
∞

+
SBH

N
,

for any (s̄, h̄). Taking maximum of the left-hand-side over (s̄, h̄), reorganizing terms and by
Lemma 19, we obtain ∥∥∥V π̂

· − V ?
·

∥∥∥
∞
≤
∥∥∥V π̂
· − V̂·

∥∥∥
∞

. B

√
H

N
+
SBH

N
. (1)

Now define n? = N
?

+ infn{right-hand-side of Eq. (1) ≤ ε when N = n}. We have n? .
B2H
ε2

+ SBH
ε + SH2. This implies that when B ≥ B?

H and N(s, a) = N ≥ n? for all s, a, we have∥∥V π̂
· − V ?

·
∥∥
∞ ≤ ε with probability at least 1− 5δ. The proof is then completed by treating n? as a

function with input B, H , ε, δ and replace δ by δ/5 in the arguments above.

Lemma 23 There exists functions N̂(B′, H ′, ε′, δ′) . B′2SH′

ε′2
+ SB′H′

ε′ such that when N(s, a) =

N ≥ N̂(B,H, ε, δ) for all s, a for some N and
∥∥∥V̂·∥∥∥

∞
≤ B, we have

∥∥∥V π̂
· − V̂·

∥∥∥
∞
≤ ε with

probability at least 1− δ.

Proof Below we assume that
∥∥∥V̂·∥∥∥

∞
≤ B. For any state fixed s̄ ∈ S and h̄ ∈ [H], we write qπ̂,(s̄,h̄)

as qπ̂ for simplicity. Note that with probability at least 1− 2δ,∣∣∣V π̂
h̄ (s̄)− V̂h̄(s̄)

∣∣∣ ≤∑
s,a,h

qπ̂(s, a, h)
(∣∣∣(Ps,a − P̄s,a)V̂h+1

∣∣∣+ b(s, a, V̂h+1)
)

(Lemma 20)

.
∑
s,a,h

qπ̂(s, a, h)

√SV(Ps,a, V̂h+1)

N
+

√
V(P̄s,a, V̂h+1)

N
+
SB

N


(Lemma 25 and max{a, b} ≤ (a)+ + (b)+)

.
∑
s,a,h

qπ̂(s, a, h)

√SV(Ps,a, V̂h+1)

N
+
SB

N

 (Lemma 24)

.

√√√√SH

N

∑
s,a,h

qπ̂(s, a, h)V(Ps,a, V̂h+1) +
SBH

N
.

(Cauchy-Schwarz inequality and
∑

s,a,h qπ̂(s, a, h) ≤ H)
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Now note that with probability at least 1− δ,

∑
s,a,h

qπ̂(s, a, h)V(Ps,a, V̂h+1) = Eπ̂

 H∑
h=h̄

V(Psh,ah , V̂h+1)

∣∣∣∣∣∣ sh̄ = s̄


= Eπ̂

 H∑
h=h̄

(
V̂h+1(sh+1)2 − V̂h(sh)2

)
+

H∑
h=h̄

(
V̂h(sh)2 − (Psh,ah V̂h+1)2

)∣∣∣∣∣∣ sh̄ = s̄


≤ B2 + 3BEπ̂

 H∑
h=h̄

(
Q̂h(sh, ah)− Psh,ah V̂h+1

)
+

∣∣∣∣∣∣ sh̄ = s̄


(a2 − b2 ≤ (a+ b)(a− b)+ for a, b > 0 and V̂h(sh) = Q̂h(sh, ah))

≤ B2 + 3BEπ̂

 H∑
h=h̄

(
c(sh, ah) + (P̄sh,ah − Psh,ah)V̂h+1

)
+

∣∣∣∣∣∣ sh̄ = s̄


(definition of Q̂h and (a)+ − (b)+ ≤ (a− b)+)

. B2 +BV π̂
h̄ (s̄) +B

√√√√SH

N

∑
s,a,h

qπ̂(s, a, h)V(Ps,a, V̂h+1) +
SB2H

N
,

where the last step is by (a+ b)+ ≤ (a)+ + (b)+, the definition of V π̂
h̄

(s̄) , and

Eπ̂

 H∑
h=h̄

(
(P̄sh,ah − Psh,ah)V̂h+1

)
+

∣∣∣∣∣∣ sh̄ = s̄


. Eπ̂

 H∑
h=h̄

√SV(Psh,ah , V̂h+1)

N
+
SB

N

∣∣∣∣∣∣ sh̄ = s̄

 (Lemma 25)

=
∑
s,a,h

qπ̂(s, a, h)

√SV(Ps,a, V̂h+1)

N
+
SB

N

 ≤√√√√SH

N

∑
s,a,h

qπ̂(s, a, h)V(Ps,a, V̂h+1) +
SBH

N
.

(Cauchy-Schwarz inequality and
∑

s,a,h qπ̂(s, a, h) ≤ H)

Solving a quadratic inequality w.r.t
∑

s,a,h qπ̂(s, a, h)V(Ps,a, V̂h+1), we have

∑
s,a,h

qπ̂(s, a, h)V(Ps,a, V̂h+1) . B2 +BV π̂
h̄ (s̄) +

SB2H

N
.

Plugging this back, we have

∣∣∣V π̂
h̄ (s̄)− V̂h̄(s̄)

∣∣∣ . B

√
SH

N
+

√
BSHV π̂

h̄
(s̄)

N
+
SBH

N

. B

√
SH

N
+

√
BSH|V π̂

h̄
(s̄)− V̂h̄(s̄)|
N

+
SBH

N
. (V̂h̄(s̄) ≤ B)
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Again solving a quadratic inequality w.r.t |V π̂
h̄

(s̄)− V̂h̄(s̄)| and taking maximum over (s̄, h̄) on the
left-hand-side, we have ∥∥∥V π̂

· − V̂·
∥∥∥
∞

. B

√
SH

N
+
SBH

N
. (2)

Now define n̂ = infn{right-hand-side of Eq. (2) ≤ ε when N = n}. We have n̂ . B2SH
ε2

+ SBH
ε .

This implies that when N(s, a) = N ≥ n̂ for all s, a and
∥∥∥V̂·∥∥∥

∞
≤ B, we have

∥∥∥V π̂
· − V̂·

∥∥∥
∞
≤ ε

with probability at least 1− 4δ. The proof is then completed by treating n̂ as a function with input
B, H , ε, δ and replace δ by δ/4 in the arguments above.

Lemma 24 For any (s, a) ∈ S × A and V ∈ [−B,B]S+ for some B > 0, with probability
at least 1 − δ, we have V(P̄s,a, V ) . V(Ps,a, V ) + SB2

N+(s,a)
for all (s, a), where N+(s, a) =

max{1,N(s, a)}.

Proof Note that

V(P̄s,a, V ) ≤ P̄s,a(V − Ps,aV )2 (
∑
i pixi∑
i pi

= argminz
∑

i pi(xi − z)2)

= V(Ps,a, V ) + (P̄s,a − Ps,a)(V − Ps,aV )2

. V(Ps,a, V ) +B

√
SV(Ps,a, V )

N+(s, a)
+

SB2

N+(s, a)
(Lemma 25)

. V(Ps,a, V ) +
SB2

N+(s, a)
. (AM-GM inequality)

This completes the proof.

Lemma 25 Given any value function V ∈ [−B,B]S+ , with probability at least 1 − δ, |(Ps,a −
P̄s,a)V | .

√
SV(Ps,a,V )
N+(s,a)

+ SB
N+(s,a)

for any (s, a) ∈ S ×A, where N+(s, a) = max{1,N(s, a)}.

Proof For any (s, a) ∈ S ×A, by Lemma 44, with probability at least 1− δ
SA , we have

|(Ps,a − P̄s,a)V | ≤
∑
s′

|Ps,a(s′)− P̄s,a(s′)||V (s′)− Ps,aV | (
∑

s′(Ps,a(s
′)− P̄s,a(s′)) = 0)

.
∑
s′

(√
Ps,a(s′)

N+(s, a)
+

1

N+(s, a)

)∣∣V (s′)− Ps,aV
∣∣ .√SV(Ps,a, V )

N+(s, a)
+

SB

N+(s, a)
,

where the last step is by Cauchy-Schwarz inequality. Taking a union bound over (s, a) completes the
proof.
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D.3. Proof of Theorem 8

Proof For each index i, define finite-horizon MDP Mi = MHi,cf,i . Also define V π
h,i and V ?

h,i

as value function V π
h and optimal value function V ?

h in Mi respectively. We first assume that
T ≥ D such that B?,T <∞. In this case, we have T π

?
T,s(s) ≤ min{T‡, T} for any s by π?T,s = π?

when T ≥ T‡ ≥ T?. Note that when Bi ∈ [20B?,T , 40B?,T ], by T π
?
T,s(s) ≤ min{T‡, T} for any

s, definition of Hi, and Lemma 38, we have V ?
1,i(s) ≤ V

π?T,s
1,i (s) ≤ V ?,T (s) + 0.6Bi · ε

24Bi
≤

0.1Bi and V ?
h,i(s) ≤ V

π?T,s
h,i (s) ≤ V ?,T (s) + 0.6Bi ≤ 0.7Bi for any s ∈ S and h ∈ [H], where

applying stationary policy π?T,s inMi means executing π?T,s in each step h ∈ [H]. This implies

Bi ≥
∥∥∥V ?
·,i

∥∥∥
∞

. Then according to Line 2 and by Lemma 19, with probability at least 1 − δi,

we have
∥∥V i

1

∥∥
∞ ≤

∥∥∥V ?
1,i

∥∥∥
∞
≤ 0.1Bi,

∥∥V i
·
∥∥
∞ ≤

∥∥∥V ?
·,i

∥∥∥
∞
≤ 0.7Bi, and the while loop should

break (Line 3). Let i? be the value of i when the while loop breaks, we thus have Bi? ≤ 40B?,T .
Moreover, by Lemma 23 and the definition of Ni, with probability at least 1 − δi? , we have
V πi

?

1,i? (s) ≤ (V i?
1 (s) + 0.1Bi?)I{s 6= g} ≤ cf,i?(s) for any s ∈ S+. Thus by Lemma 7, we have

V ?(s) ≤ V πi
?

(s) ≤ V πi
?

1,i? (s) ≤ V i?
1 (s) + 0.1Bi? ≤ Bi? for any s ∈ S. This gives Bi? ≥ B?.

If T < T‡ ≤ Bi?
cmin

, then Hi? . min{ Bi?cmin
, T} = min{T‡, T}. Otherwise, T ≥ T‡, B?,T = B?,

and Hi? . min{ Bi?cmin
, T} . min{T‡, T} by Bi? . B?,T . Therefore, Hi? . min{T‡, T}. By

Lemma 23,
∥∥V i?

1

∥∥
∞ ≤ 0.1Bi? ,

∥∥V i?
·
∥∥
∞ ≤ 0.7Bi? (breaking condition of the while loop), and the

definition of Ni, we have with probability at least 1 − δi? ,
∥∥∥V ?

1,i?

∥∥∥
∞
≤
∥∥∥V πi

?

1,i?

∥∥∥
∞
≤
∥∥V i?

1

∥∥
∞ +∥∥∥V πi

?

1,i? − V i?
1

∥∥∥
∞
≤ 0.2Bi? and

∥∥∥V ?
·,i?
∥∥∥
∞
≤
∥∥∥V πi

?

·,i?
∥∥∥
∞
≤
∥∥V i?
·
∥∥
∞ +

∥∥∥V πi
?

·,i? − V i?
·

∥∥∥
∞
≤ 0.8Bi? .

Therefore, by Lemma 22 and the definition of N?
i? , we have with probability at least 1 − δi? ,∥∥∥V π̂

·,i? − V ?
·,i?
∥∥∥
∞
≤ ε

2 . Moreover, by Lemma 7 and V π̂
1,i?(s) ≤ (V ?

1,i?(s) + ε
2)I{s 6= g} ≤ (0.2Bi? +

1
2)I{s 6= g} ≤ cf,i?(s) for all s ∈ S+ since Bi? ≥ 2, we have V π̂(s) ≤ V π̂

1,i?(s) for all s. Thus,
V π̂(s) ≤ V π̂

1,i?(s) ≤ V ?
1,i?(s) + ε

2 ≤ V ?,T (s) + 0.6Bi?
ε

24Bi?
+ ε

2 ≤ V ?,T (s) + ε by the definition
of Hi? and Lemma 38 for any s ∈ S. Finally, by the definition of Ni and N?

i , the total number of
samples spent is of order

Õ (SA(Ni? +N?
i?)) = Õ

(
Hi?B

2
i?SA

ε2
+
Hi?Bi?S

2A

ε
+H2

i?S
2A

)
= Õ

(
min {T‡, T}

B2
?,TSA

ε2
+ min {T‡, T}

B?,TS
2A

ε
+ min {T‡, T}2 S2A

)
.

Moreover, the bound above holds with probability at least 1 − δ since 20
∑

i δi ≤ δ. Now we
consider the case T < D. From the arguments above we know that Bi ≤ 40B?,T ≤ 40T for all
i ≤ i? if T ≥ D. Thus, we can conclude that T < D if Bi > 40T for some i still in the while loop,
and the total number samples used is of order Õ(SANi) = Õ(S2AT ) by the definition of Ni. This
completes the proof.
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Appendix E. Omitted Details in Section 5

E.1. Proof of Theorem 9

Proof Let N = min{bB?c, S − 3}. Consider a family of MDPs {Mj}j∈[A]N with S = SN ∪ S ′,
A = [A], and sinit = s0, where SN = {s0, s1, . . . , sN} and S ′ = {sb, sc, . . .}. Clearly, |SN | = N+1
and |S ′| = S −N − 1. For eachMj , the cost is 1 for every state-action pair in SN ; at s0, taking any
action transits to g with probability 1− p, and transits to state s1 with probability p, where p = 4ε

AN
;

at si for i ∈ [N ], taking action ji transits to si+1 (define sN+1 = g), while taking any other actions
transits to s1; at sb, taking any action suffers cost 1 and transits to g with probability 1/B? (stays at
sb otherwise); at sc, taking any action suffers cost cmin and directly transits to g; at any of the rest of
states in S ′, taking any action suffers cost 1 and directly transits to g. Note that all of these MDPs
have parameters S, A, B?, cmin, and all these parameters are known to the learner. Also note that
states in S ′ are unreachable and does not affect the learner. We include them simply to show that we
can obtain a hard instance for any values of S, A, B?, and cmin using dummy states.

Consider a learner that is (ε, δ)-correct with ε ∈ (0, 1
4), δ ∈ (0, 1

16), and sample complexity 1
p

on {Mj}j . Denote by E1 the event that the first 1
p steps from s0 all transit to g, E2 the event that

the learner uses at most 1
p samples, and define E = E1 ∩ E2. Also denote by Pj the distribution

w.r.t Mj . Note that event E is agnostic to j, that is, for any interaction history (including the
randomness of the learner) ω ∈ E , we have Pj(ω) = P (ω) for all j. Also note that for any j, we
have Pj(E1) = (1 − p)1/p ≥ 1

4 and Pj(E2) ≥ 1 − δ ≥ 7
8 . Thus, P (E) = Pj(E) ≥ 1

8 . Now we
show that the failure probability of such a learner is large. Note that when E is true, the learner
outputs π̂ before visiting s1. Moreover, the distribution of π̂ under E is identical for all {Mj}j , that
is, Pj(π̂|E) = P (π̂|E). This is because Pj(ω) = P (ω) for any interaction history ω ∈ E , and π̂ is a
function of ω. Denote by E ′ the bad event that π̂ is not ε-optimal. We show that there exists j such
that Pj(E ′|E) is sufficiently large.

First, for any given j and any policy π, define xπj =
∏N
i=1 π(ji|si) and V π

j as the value function
of π inMj . Since the learner transits to s1 if it does not follow the “correct” action sequence, we
have V π

j (s1) ≥ Nxπj + (1− xπj )(1 + V π
j (s1)), which gives V π

j (s1) ≥ N + 1
xπj
− 1. Moreover, if π

is ε-optimal inMj , then we have V π
j (s0) ≤ 1 + pN + ε. Combining with V π

j (s0) = 1 + pV π
j (s1)

gives xπj ≥ 1
1+ε/p ≥

p
2ε by ε/p ≥ 1. Also note that

∑
j x

π
j = 1. Therefore, each policy π can be

ε-optimal for at most 2ε
p MDPs in {Mj}j .

Denote by yπ(j) the indicator of whether policy π is ε-optimal inMj . We have
∑

j y
π(j) ≤ 2ε

p

for any π. Therefore,
∑

j

∫
π̂ P (π̂|E)yπ̂(j)dπ̂ ≤ 2ε

p , which implies that there exist j? such that∫
π̂ P (π̂|E)yπ̂(j?)dπ̂ ≤ 2ε

pAN
. Therefore,

Pj?(E ′|E) = 1−
∫
π̂
P (π̂|E)yπ̂(j?)dπ̂ ≥ 1− 2ε

pAN
=

1

2
.

The overall failure probability in Mj? is thus Pj?(E ′) ≥ P (E)Pj?(E ′|E) ≥ 1
16 , a contradiction.

Therefore, for any (ε, δ)-correct learner, there existsM∈ {Mj}j such that the learner has sample
complexity more than 1

p = Ω(AN/ε) onM. The proof is then completed by the definition of N .
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E.2. Proof of Theorem 10

Proof If min
{
T‡, T

} B2
?SA
ε2

ln 1
δ >

J
ε , then we simply construct a full (A− 1)-ary tree following

that of Theorem 3, with a remaining action a†. By J ≥ 3B, we can simply ignore action a† and the

sample complexity lower bound is Ω(min
{
T‡, T

} B2
?SA
ε2

ln 1
δ ) = Ω(min

{
B?
cmin

, T
}
B2
?SA
ε2

ln 1
δ + J

ε ).

Otherwise, we have min
{
T‡, T

} B2
?SA
ε2

ln 1
δ ≤

J
ε , and our construction follows that of Theorem 9

except that we have an action a† at every state. Consider a family of MDPs {Mj}j∈[A−1]N with S =
SN ∪ S ′, A = [A− 1] ∪ {a†}, and sinit = s0, where SN = {s0, s1, . . . , sN} and S ′ = {sb, sc, . . .}.
For eachMj , c(s, a) = 1 for all (s, a) ∈ SN × [A− 1]; at s0, taking any action in [A− 1] transits to
g with probability 1− p, and transits to state s1 with probability p, where p = 4ε

J ; at si for i ∈ [N ],
taking action ji transits to si+1 (define sN+1 = g), while taking any other actions in [A− 1] transits
to s1; at sb, taking any action in [A− 1] suffers cost 1 and transits to g with probability 1/B (stay
at sb otherwise); at sc, taking any action in [A − 1] suffers cost cmin and directly transits to g; at
any of the rest of states in S ′, taking any action in [A − 1] suffers cost 1 and directly transits to g.
Note that all of these MDPs have parameters S, A, cmin, T and satisfy B? = B. Moreover, all these
parameters are known to the learner.

Consider a learner that is (ε, δ)-correct with ε ∈ (0, 1
4), δ ∈ (0, 1

16), and sample complexity 1
p on

{Mj}j . Denote by E1 the event that the first 1
p steps from (s0, a) for some a ∈ [A− 1] all transit

to g, E2 the event that the learner uses at most 1
p samples, and define E = E1 ∩ E2. Also denote by

Pj the distribution w.r.tMj . Note that event E is agnostic to j, that is, for any interaction history
(including the randomness of the learner) ω ∈ E , we have Pj(ω) = P (ω) for all j. Also note that for
any j, we have Pj(E1) = (1− p)1/p ≥ 1

4 and Pj(E2) ≥ 1− δ ≥ 7
8 . Thus, P (E) = Pj(E) ≥ 1

8 . Now
we show that the failure probability of such a learner is large. Note that when E is true, the learner
outputs π̂ before ever visiting s1. Moreover, the distribution of π̂ under E is identical for all {Mj}j ,
that is, Pj(π̂|E) = P (π̂|E). This is because Pj(ω) = P (ω) for any interaction history ω ∈ E , and π̂
is a function of ω. Denote by E ′ the bad event that π̂ is not ε-optimal. We show that there exists j
such that Pj(E ′|E) is sufficiently large.

First, for any given j and any policy π, define xπj =
∏N
i=1 π(ji|si), V π

j as the value function of
π inMj , and yπ = π(a†|s1). If π is ε-optimal inMj , then we have V π

j (s0) ≤ 1 + pN + ε < J .
Combining with V π

j (s0) ≥ min{J, 1 + pV π
j (s1)}, we have V π

j (s1) ≤ N + ε
p = N + J

4 < J − 1.
Moreover, the learner suffers cost N if it follows the “correct” action sequence, and suffers at least
cost J > 1 + V π

j (s1) if it ever takes action a†. Thus, we have V π
j (s1) ≥ Nxπj + Jyπ + (1− xπj −

yπ)(1+V π
j (s1)), which gives V π

j (s1) ≥ Nxπj +Jyπ

xπj +yπ + 1
xπj +yπ −1. Combining with V π

j (s1) ≤ N + ε
p ,

we have
(1 + ε/p)(xπj + yπ) ≥ 1 + (J −N)yπ. (3)

Now note that
∑

j x
π
j ≤ 1 − yπ for any π. Define X π as the set of j ∈ [A − 1]N where π is

ε-optimal in Mj . Summing over j ∈ X π for Eq. (3), we have (1 + ε/p)(1 − yπ + |X π|yπ) ≥
|X π|+ (J −N)yπ|X π|. Reorganizing terms and assuming |X π| ≥ 1 gives

1− 1 + ε/p

|X π|
≤ yπ

((
1− 1

|X π|

)(
1 +

ε

p

)
− (J −N)

)
≤ yπ

(
1 +

ε

p
− (J −N)

)
.

Note that 1 + ε
p ≤ J − N by p ≥ ε

J−N−1 . Thus, the right-hand-side ≤ 0, which gives |X π| ≤
1 + ε/p ≤ J − N . Therefore, each policy can be ε-optimal for at most J − N MDPs in {Mj}j .
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Denote by zπ(j) the indicator of whether π is ε-optimal inMj . We have
∑

j z
π(j) ≤ J −N for

any policy π. Therefore,
∑

j

∫
π̂ P (π̂|E)zπ̂(j)dπ̂ ≤ J −N , which implies that there exist j? such

that
∫
π̂ P (π̂|E)zπ̂(j?)dπ̂ ≤ J−N

(A−1)N
. Therefore,

Pj?(E ′|E) = 1−
∫
π̂
P (π̂|E)zπ̂(j?)dπ̂ ≥ 1− J −N

(A− 1)N
≥ 1

2
.

The overall failure probability in Mj? is thus Pj?(E ′) ≥ P (E)Pj?(E ′|E) ≥ 1
16 , a contradiction.

Therefore, for any (ε, δ)-correct learner, there existsM∈ {Mj}j such that the learner has sample
complexity more than 1

p = Ω(J/ε) = Ω(min
{
T‡, T

} B2
?SA
ε2

ln 1
δ + J/ε) onM. This completes the

proof.

Appendix F. Omitted Details in Section 6

In this section, we present the proof of Theorem 11.

Notations Denote by V ?
· , Q?· the optimal value function and action-value function of MH,cf ,

where H = 32J
cmin

ln 8J
ε and cf (s) = JI{s 6= g}. Clearly, we have V ?

h (s) = argminaQ
?
h(s, a),

Q?h(s, a) = c(s, a)+Ps,aV
?
h+1 for any (s, a, h) ∈ S×A× [H], and V ?

H+1 = cf . The whole learning
process is divided into episodes indexed by m. Define Hm = infh{smh+1 = g or amh+1 = a†} as
the length of episode m and R[m′,M ′] =

∑M ′

m=m′(
∑Hm+1

h=1 cmh − V m
1 (sm1 )) the regret w.r.t estimated

value functions of episodes in [m′,M ′], where cmh = c(smh , a
m
h ) and cmHm+1 = cf (smHm+1). We also

write R[1,M ′] as RM ′ . Define smh = g for all h > Hm + 1. Denote by P̄m, Qm, V m, bmh , Nm
h the

value of P̄ , Q̂, V̂ , b(smh , a
m
h , V

m
h+1), N+(smh , a

m
h ) from Algorithm 3 executed in Line 2 in episode m.

For any episode m in round r, define πm = πr. Define Pmh = Psmh ,a
m
h

and P̄mh = P̄msmh ,a
m
h

. Define

Cm =
∑Hm+1

h=1 cmh and CM ′ =
∑M ′

m=1C
m. Denote by λr the value of λ in round r (computed in

Line 4) and Bm the value of B in episode m.

Lemma 26 With probability at least 1 − δ, Qmh (s, a) ≤ Q?h(s, a) for any m ≥ 1 and (s, a, h) ∈
S ×A× [H].

Proof This is simply by maxh∈[H+1] ‖V ?
h ‖∞ ≤ ‖V

?‖∞ + ‖cf‖∞ ≤ 2J and Lemma 19.

We are now ready to prove Theorem 11.
Proof [of Theorem 11] Denote by Ir the set of episodes in round r. First note that in the last round
(success round) R, we have with probability at least 1− 35δ,

V π̂(sinit)− V ?(sinit) ≤ V π̂(sinit)− V ?
1 (sinit) +

ε

4
(definition of H and Lemma 38)

≤ 1

λR

∑
m∈IR

(V πm
1 (sm1 )− Cm) +

1

λR

∑
m∈IR

(Cm − V m
1 (sm1 )) +

ε

4

(πm = π̂ for m ∈ IR, sm1 = sinit, and Lemma 26)

≤ ε

4
+
ε

2
+
ε

4
≤ ε,
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where the last step is by Lemma 27, the definition of λ, the condition of success round, and V m
1 = V R

for m ∈ IR. Thus, the output policy π̂ is indeed ε-optimal. Now we bound the sample complexity of
the algorithm. Note that by Lemma 38 and the definition of H , for any h ≤ H/2 + 1 and s ∈ S,
we have V ?(s) ≤ V ?

h (s) ≤ V ?(s) + εJ
2J ≤

3
2B?. Then by Lemma 26, we have BM ′ ≤ 3B? for any

M ′ ≥ 1 with probability at least 1− δ. Note that there are at most O(SA log2(RλR)) skip rounds,
and one success round. Thus, it suffices to bound the number of failure rounds Rf . In each failure
round, we have at least λRε2 regret by the condition in Line 7. Moreover, in each skip or success
round r, we have with probability at least 1− 35δ,∑

m∈Ir

(Cm − V m
1 (sm1 )) ≥

∑
m∈Ir

(Cm − V πm
1 (sm1 )) & −λRε.

where the last step is by Eq. (4) and the value of λr. Thus, the total regret is lower bounded as
follows: RM & (Rf −SA)λRε. Denote by M the total number episodes. By Lemma 28, Lemma 32
and M ≤ RλR . (SA+Rf )λR, we have with probability at least 1− 38δ,

RM . BM
√
SAM + J2H1.25S2A . BM

√
SA(SA+Rf )λR + J2H1.25S2A.

Solving a quadratic inequality w.r.t Rf , we have

Rf . SA+
BMSA

ε
√
λR

+
B2
MSA

ε2λR
+
J2H1.25S2A

λRε
. SA.

Therefore, M ≤ RλR . B2
?SA
ε2

+ J2H2S2A2

ε by BM ≤ 3B?. Moreover, by Eq. (6) with M ′ = M
and BM ≤ 3B?, we know that CM . B?M + JS2A and thus the total number of samples is of
order

Õ
(
B?M

cmin
+
JS2A

cmin

)
= Õ

(
T‡B

2
?SA

ε2
+
B?J

4S2A2

c3
minε

)
.

This completes the proof.

Lemma 27 There exists function NDEV(B, ε, δ) . B2

ε2
+ (H1.5+J2H1.25)SA

ε , such that for any

m′ ≥ 1 and n ≥ NDEV(B, ε, δ), if B ≥ Bm′+n−1, then 1
n

∣∣∣∑m′+n−1
m=m′ (V πm

1 (sm1 )− Cm)
∣∣∣ ≤ ε with

probability at least 1− 35δ.

Proof By Lemma 30 and Lemma 32, for any m′, n ≥ 1, we have with probability at least 1− 35δ,∣∣∣∣∣ 1n
m′+n−1∑
m=m′

(V πm
1 (sm1 )− Cm)

∣∣∣∣∣ . Bm′+n−1

√
1

n
+

(H1.5 + J2H1.25)SA

n
. (4)

Thus, for any given B, ε, δ, there exists N . B2

ε2
+ (H1.5+J2H1.25)SA

ε such that if n ≥ N and

B ≥ Bm′+n−1, then 1
n

∣∣∣∑m′+n−1
m=m′ (V πm

1 (sm1 )− Cm)
∣∣∣ ≤ ε with probability at least 1−35δ. Treating

N as function of (B, ε, δ) completes the proof.

Below we state the regret guarantee of LCBVI. The main idea is to bound the regret w.r.t B
instead of B?, which is useful in deciding the number of episodes needed.
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Lemma 28 For any m′ ≥ 1, with probability at least 1− 9δ, we have for all M ′ ≥ m′ simultane-
ously

R[m′,M ′] .

√√√√SA
M ′∑

m=m′

Hm∑
h=1

V(Pmh , V
m
h+1) + JS2A.

Proof Without loss of generality, we assume m′ = 1. Note that

RM ′ =
M ′∑
m=1

(
Hm+1∑
h=1

cmh − V m
1 (sm1 )

)
(i)
.

M ′∑
m=1

Hm∑
h=1

(
cmh + V m

h+1(smh+1)− V m
h (smh )

)
+ JSA

≤
M ′∑
m=1

Hm∑
h=1

(
(Ismh+1

− Pmh )V m
h+1 + (Pmh − P̄mh )V m

h+1 + bmh

)
+ JSA, (definition of V m

h )

where (i) is by the fact that V m
Hm+1(smHm+1) 6= cmHm+1 ≤ J only if m is the last episode of a skip

round, and there are at most Õ(SA) skip rounds. We bound the three sums above separately. For the
first sum, by Lemma 42, we have with probability at least 1− δ,

M ′∑
m=1

Hm∑
h=1

(Ismh+1
− Pmh )V m

h+1 .

√√√√ M ′∑
m=1

Hm∑
h=1

V(Pmh , V
m
h+1) + J.

For the second sum, we have with probability at least 1− 7δ,

M ′∑
m=1

Hm∑
h=1

(Pmh − P̄mh )V m
h+1 =

M ′∑
m=1

Hm∑
h=1

(Pmh − P̄mh )V ?
h+1 +

M ′∑
m=1

Hm∑
h=1

(Pmh − P̄mh )(V m
h+1 − V ?

h+1)

.
M ′∑
m=1

Hm∑
h=1

(√
V(Pmh , V

?
h+1)

Nm
h

+

√
SV(Pmh , V

m
h+1 − V ?

h+1)

Nm
h

+
SJ

Nm
h

)
(Lemma 44 and Lemma 25)

.

√√√√SA
M ′∑
m=1

Hm∑
h=1

V(Pmh , V
?
h+1) +

√√√√S2A
M ′∑
m=1

Hm∑
h=1

V(Pmh , V
m
h+1 − V ?

h+1) + JS2A.

(Cauchy-Schwarz inequality and Lemma 35)

.

√√√√SA

M ′∑
m=1

Hm∑
h=1

V(Pmh , V
m
h+1) +

√√√√S2A

M ′∑
m=1

Hm∑
h=1

V(Pmh , V
m
h+1 − V ?

h+1) + JS2A.

(VAR[X + Y ] ≤ VAR[X] + VAR[Y ])

.

√√√√SA

M ′∑
m=1

Hm∑
h=1

V(Pmh , V
m
h+1) + JS2A. (Lemma 29 and AM-GM inequality)

Plugging these back and applying Lemma 34 to bound
∑M ′

m=1

∑Hm
h=1 b

m
h completes the proof.
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Lemma 29 For anym′ ≥ 1, with probability at least 1−5δ, we have
∑M ′

m=m′
∑Hm

h=1 V(Pmh , V
?
h+1−

V m
h+1) . J

√
SA

∑M ′

m=m′
∑Hm

h=1 V(Pmh , V
m
h+1) + J2S2A for all M ′ ≥ m′.

Proof Without loss of generality, we assume m′ = 1. First note that with probability at least 1− δ,

M ′∑
m=1

Hm∑
h=1

(
(V ?
h (smh )− V m

h (smh ))2 − (Pmh (V ?
h+1 − V m

h+1))2
)

. J
M ′∑
m=1

Hm∑
h=1

(V ?
h (smh )− V m

h (smh )− Pmh V ?
h+1 + Pmh V

m
h+1)+

(Lemma 26 and a2 − b2 ≤ (a+ b)(a− b)+ for a, b > 0)

. J

M ′∑
m=1

Hm∑
h=1

(cmh + Pmh V
m
h+1 − V m

h (smh ))+. (V ?
h (smh ) ≤ Q?h(smh , a

m
h ) = cmh + Pmh V

?
h+1)

By the definition of V m
h and (a)+ − (b)+ ≤ (a− b)+, with probability at least 1− 3δ, we continue

with

. J
M ′∑
m=1

Hm∑
h=1

((Pmh − P̄mh )V ?
h+1 + (Pmh − P̄mh )(V m

h+1 − V ?
h+1) + bmh )+

. J
M ′∑
m=1

Hm∑
h=1

(√
V(Pmh , V

?
h+1)

Nm
h

+

√
SV(Pmh , V

m
h+1 − V ?

h+1)

Nm
h

+
SJ

Nm
h

+ bmh

)
(Lemma 44 and Cauchy-Schwarz inequality)

. J


√√√√SA

M ′∑
m=1

Hm∑
h=1

V(Pmh , V
m
h+1) +

√√√√S2A

M ′∑
m=1

Hm∑
h=1

V(Pmh , V
m
h+1 − V ?

h+1)

+ J2S2A,

where in the last step we apply VAR[X + Y ] ≤ VAR[X] + VAR[Y ], Cauchy-Schwarz inequality,
Lemma 35 and Lemma 34. Then applying Lemma 33 with

∥∥V ?
h+1 − V m

h

∥∥
∞ ≤ J and solving a

quadratic inequality w.r.t
∑M ′

m=1

∑Hm
h=1 V(Pmh , V

?
h+1−V m

h+1), we have with probability at least 1−δ,

M ′∑
m=1

Hm∑
h=1

V(Pmh , V
?
h+1 − V m

h+1)

.
M ′∑
m=1

(V ?
Hm+1(smHm+1)− V m

Hm+1(smHm+1))2 + J

√√√√SA

M ′∑
m=1

Hm∑
h=1

V(Pmh , V
m
h+1) + J2S2A.

Now note that
∑M ′

m=1(V ?
Hm+1(smHm+1) − V m

Hm+1(smHm+1))2 . J2SA since V ?
Hm+1(smHm+1) 6=

V m
Hm+1(smHm+1) only when m is the last episode of a skip round, and the number of skip rounds is of

order Õ(SA). Plugging this back completes the proof.
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Lemma 30 For any m′ ≥ 1, with probability at least 1− 6δ, we have for all M ′ ≥ m′ simultane-
ously, ∣∣∣∣∣

M ′∑
m=m′

(Cm − V πm
1 (sm1 ))

∣∣∣∣∣ .
√√√√ M ′∑

m=m′

Hm∑
h=1

V(Pmh , V
m
h+1) +H1.5SA.

Proof Without loss of generality, we assume m′ = 1. Denote by {(s̃mh , ãmh , s̃mh+1)}Hh=1 the visited
state-action-next-state triplets in episode m if the learner follows πm till the end, that is, it does not
stop the current episode immediately if the number of visits to some state-action pair is doubled. Note
that (s̃mh , ã

m
h ) 6= (smh , a

m
h ) only if m is the last episode of a skip round and Hm < h. Also define

C̃m =
∑H

h=1 c(s̃
m
h , ã

m
h ) + cf (s̃mH+1) the corresponding total cost in episode m, and P̃mh = Ps̃mh ,ã

m
h

.
By (Chen et al., 2022, Lemma 26) and the fact that πm is a deterministic policy for any m, we have
VARπm [C̃m] = Eπm [

∑H
h=1 V(P̃mh , V

πm
h+1)]. Moreover, there are at most Õ(SA) skip rounds. Then

with probability at least 1− 2δ,∣∣∣∣∣
M ′∑
m=1

(Cm − V πm
1 (sm1 ))

∣∣∣∣∣ .
∣∣∣∣∣
M ′∑
m=1

(C̃m − V πm
1 (sm1 ))

∣∣∣∣∣+HSA .

√√√√ M ′∑
m=1

VARπm [C̃m] +HSA

(Lemma 42)

.

√√√√ M ′∑
m=1

H∑
h=1

V(P̃mh , V
πm
h+1) +H1.5SA .

√√√√ M ′∑
m=1

Hm∑
h=1

V(Pmh , V
πm
h+1) +H1.5SA

(Lemma 43, and
∑H

h=1 V(P̃mh , V
πm
h+1) ≤ H3)

.

√√√√ M ′∑
m=1

Hm∑
h=1

V(Pmh , V
m
h+1) +

√√√√ M ′∑
m=1

Hm∑
h=1

V(Pmh , V
πm
h+1 − V m

h+1) +H1.5SA.

(VAR[X + Y ] ≤ 2(VAR[X] + VAR[Y ]))
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For the second term above, note that with probability at least 1− 3δ,

M ′∑
m=1

Hm∑
h=1

(
(V πm
h (smh )− V m

h (smh ))2 − (Pmh (V πm
h+1 − V

m
h+1))2

)
. H

M ′∑
m=1

Hm∑
h=1

(
V πm
h (smh )− V m

h (smh )− Pmh V
πm
h+1 + Pmh V

m
h+1

)
+

(Lemma 26 and a2 − b2 ≤ (a+ b)(a− b)+ for a, b > 0)

. H

M ′∑
m=1

Hm∑
h=1

(
cmh + Pmh V

m
h+1 − V m

h (smh )
)

+
(V πm
h (smh ) = c(smh , a

m
h ) + Pmh V

πm
h+1)

. H

M ′∑
m=1

Hm∑
h=1

(
(Pmh − P̄mh )V m

h+1 + bmh
)

+
. (definition of V m

h )

. H
M ′∑
m=1

Hm∑
h=1

(√
SV(Pmh , V

m
h+1)

Nm
h

+
SJ

Nm
h

)
+H

√√√√SA
M ′∑
m=1

Hm∑
h=1

V(Pmh , V
m
h+1) +HJS1.5A

(Lemma 44, Cauchy-Schwarz inequality, and Lemma 34)

. H

√√√√S2A

M ′∑
m=1

Hm∑
h=1

V(Pmh , V
m
h+1) +HJS2A. (Cauchy-Schwarz inequality and Lemma 35)

Thus, by Lemma 33 with
∥∥V πm

h − V m
h

∥∥
∞ ≤ H and

∑M ′

m=1(V πm
Hm+1(smHm+1)−V m

Hm+1(smHm+1))2 .
H2SA since V πm

Hm+1(smHm+1) 6= V m
Hm+1(smHm+1) only when the number of visits to some state-action

pair is doubled, we have with probability at least 1− δ,

M ′∑
m=1

Hm∑
h=1

V(Pmh , V
πm
h+1 − V

m
h+1) . H

√√√√S2A
M ′∑
m=1

Hm∑
h=1

V(Pmh , V
m
h+1) +H2S2A.

Plugging this back and applying AM-GM inequality completes the proof.

Lemma 31 (Coarse Bound) For any m′ ≥ 1, with probability at least 1 − 2δ, we have for all
M ′ ≥ m′,

∑M ′

m=m′
∑Hm

h=1 V(Pmh , V
m
h+1) . JCM ′ + J2S2A.

Proof Without loss of generality, we assume m′ = 1. By the definition of V m
h and (a)+ − (b)+ ≤

(a− b)+, we have with probability at least 1− δ,

M ′∑
m=1

Hm∑
h=1

(V m
h (smh )− Pmh V m

h+1)+ .
M ′∑
m=1

Hm∑
h=1

(cmh + (P̄mh − Pmh )V m
h+1)+

.
M ′∑
m=1

Hm∑
h=1

cmh +
M ′∑
m=1

Hm∑
h=1

(√
SV(Pmh , V

m
h+1)

Nm
h

+
SJ

Nm
h

)
(Lemma 25)

.
M ′∑
m=1

Hm∑
h=1

cmh +

√√√√S2A
M ′∑
m=1

Hm∑
h=1

V(Pmh , V
m
h+1) + JS2A, (5)
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where the last step is by Lemma 35. Therefore,

M ′∑
m=1

Hm∑
h=1

(V m
h (smh )2 − (Pmh V

m
h+1)2) . J

M ′∑
m=1

Hm∑
h=1

(V m
h (smh )− Pmh V m

h+1)+

(a2 − b2 ≤ (a+ b)(a− b)+ for a, b > 0)

. J
M ′∑
m=1

Hm∑
h=1

cmh + J

√√√√S2A
M ′∑
m=1

Hm∑
h=1

V(Pmh , V
m
h+1) + J2S2A.

Thus by Lemma 33, we have with probability at least 1− δ,

M ′∑
m=m′

Hm∑
h=1

V(Pmh , V
m
h+1)

.
M ′∑
m=1

Hm∑
h=1

V m
Hm+1(smHm+1)2 + J

M ′∑
m=1

Hm∑
h=1

cmh + J

√√√√S2A
M ′∑
m=1

Hm∑
h=1

V(Pmh , V
m
h+1) + J2S2A

. JCM ′ + J

√√√√S2A

M ′∑
m=1

Hm∑
h=1

V(Pmh , V
m
h+1) + J2S2A. (V m

Hm+1(smHm+1) ≤ 2cmHm+1)

Solving a quadratic inequality w.r.t
∑M ′

m=1

∑Hm
h=1 V(Pmh , V

m
h+1) completes the proof.

Lemma 32 (Refined Bound) For any m′ ≥ 1, with probability at least 1− 29δ, for all M ′ ≥ m′,
we have

∑M ′

m=m′
∑Hm

h=1 V(Pmh , V
m
h+1) . B2

M ′(M
′ −m′ + 1) + J4H2.5S2A.

Proof Without loss of generality, we assume m′ = 1 and write BM ′ as B for simplicity. By
Lemma 28 and Lemma 31, we have with probability at least 1− 11δ,

RM ′ = CM ′ −
M ′∑
m=1

V m
1 (sm1 ) .

√
JSACM ′ + JS2A.

Solving a quadratic inequality w.r.t CM ′ gives

CM ′ .
M ′∑
m=1

V m
1 (sm1 ) + JS2A . BM ′ + JS2A. (6)

Thus, with probability at least 1− 16δ,

M ′∑
m=1

(V πm
1 (sm1 )− V ?

1 (sm1 )) .
M ′∑
m=1

(V πm
1 (sm1 )− Cm) +

M ′∑
m=1

(Cm − V ?
1 (sm1 ))

.

√√√√SA
M ′∑
m=1

Hm∑
h=1

V(Pmh , V
m
h+1) +H1.5S2A (Lemma 30, Lemma 28, and Lemma 26)

.
√
JSACM ′ +H1.5S2A .

√
JBSAM +H1.5S2A, (7)
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where the last two steps are by Lemma 31 and Eq. (6) respectively. Now note that

M ′∑
m=1

Hm∑
h=1

(V m
h (smh )2 − (Pmh V

m
h+1)2)

≤
M ′∑
m=1

Hm∑
h=1

(V m
h (smh ) + Pmh V

m
h )(V m

h (smh )− Pmh V m
h )+

(a2 − b2 ≤ (a+ b)(a− b)+ for a, b > 0)

= 2B

M ′∑
m=1

Hm∑
h=1

(V m
h (smh )− Pmh V m

h )+ +

M ′∑
m=1

Hm∑
h=1

(V m
h (smh ) + Pmh V

m
h − 2B)(V m

h (smh )− Pmh V m
h )+

. BCM ′ +B

√√√√S2A

M ′∑
m=1

Hm∑
h=1

V(Pmh , V
m
h+1) + JBS2A+ J2

M ′∑
m=1

Hm∑
h=H/2+1

I{smH/2+1 6= g}, (8)

where the last step is by Eq. (5) and ‖V m
h ‖∞ ≤ B when h ≤ H/2 + 1. Similarly, we have

M ′∑
m=1

V m
Hm+1(smHm+1)2 = B2M ′+

M ′∑
m=1

(V m
Hm+1(smHm+1)2−B2) ≤ B2M ′+J2

M ′∑
m=1

I{smH/2+1 6= g}.

(9)
It suffices to bound

∑M ′

m=1 I{smH/2+1 6= g}. Let Ṽ π
1 and Ṽ ?

1 be the value function and optimal value
function ofMH/4,0, where 0 represents constant function with value 0. By the value of H and (Chen
et al., 2021a, Lemma 1), we have V ?(s) ≤ Ṽ ?

1 (s) + ε
4J for all s ∈ S+. Moreover, when smH/2+1 6= g,

we have
∑H/2

h=H/4+1 c
m
h ≥ 2J . Denote by Pm(·) the probability distribution conditioned on the

events before episode m. We have

2J
M ′∑
m=1

Pm(smH/2+1 6= g) +
M ′∑
m=1

(Ṽ πm
1 (sm1 )− Ṽ ?

1 (sm1 ))

≤
M ′∑
m=1

(V πm
1 (sm1 )− V ?(sm1 )) +

M ′ε

J
.
√
JBSAM +H1.5S2A+

M ′ε

J
. (Eq. (7))

Therefore,
∑M ′

m=1 Pm(smH/2+1 6= g) .
√
SAM ′ + H1.5S2A

J + M ′ε
J2 by Ṽ πm

1 (sm1 ) ≥ Ṽ ?
1 (sm1 ), and so

does
∑M ′

m=1 I{smH/2+1 6= g} with probability at least 1 − δ by Lemma 43. Plugging this back to
Eq. (8), Eq. (9), and by Lemma 33, we have with probability at least 1− δ,

M ′∑
m=1

Hm∑
h=1

V(Pmh , V
m
h+1)

. BCM ′ +B2M ′ +B

√√√√S2A
M ′∑
m=1

Hm∑
h=1

V(Pmh , V
m
h+1) + JH2.5S2A+ J2H

√
SAM ′ +M ′Hε.

Solving a quadratic inequality w.r.t
∑M ′

m=1

∑Hm
h=1 V(Pmh , V

m
h+1), applying AM-GM inequality on

J2H
√
SAM ′, and applying Eq. (6) completes the proof.
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Lemma 33 (Chen and Luo, 2022, Lemma 9) For any sequence of value functions {V m
h }m,h with

V m
h ∈ [0, B]S+ for some B > 0, we have

∑M ′

m=1

∑Hm
h=1 V(Pmh , V

m
h+1) .

∑M ′

m=1 V
m
Hm+1(smHm+1)2 +∑M ′

m=1

∑Hm
h=1

(
V m
h (smh )2 − (Pmh V

m
h+1)2

)
+B2 for all M ′ ≥ 1 with probability at least 1− δ.

Proof For any M ′ ≥ 1, we decompose the sum as follows:

M ′∑
m=1

Hm∑
h=1

V(Pmh , V
m
h+1) =

M ′∑
m=1

Hm∑
h=1

(
Pmh (V m

h+1)2 − V m
h+1(smh+1)2

)
+

M ′∑
m=1

Hm∑
h=1

(
V m
h+1(smh+1)2 − V m

h (smh )2
)

+
M ′∑
m=1

Hm∑
h=1

(
V m
h (smh )2 − (Pmh V

m
h+1)2

)
.

For the first term, by Lemma 42 and Lemma 40, with prbability at least 1− δ,

M ′∑
m=1

Hm∑
h=1

(
Pmh (V m

h+1)2 − V m
h+1(smh+1)2

)

.

√√√√ M ′∑
m=1

Hm∑
h=1

V(Pmh , (V
m
h+1)2) +B2 . B

√√√√ M ′∑
m=1

Hm∑
h=1

V(Pmh , V
m
h+1) +B2.

The second term is bounded by
∑M ′

m=1 V
m
Hm+1(smHm+1)2. Plugging these back and solving a quadratic

inequality w.r.t
∑M ′

m=1

∑Hm
h=1 V(Pmh , V

m
h+1) completes the proof.

Lemma 34 (Chen and Luo, 2022, Lemma 10) With probability at least 1 − δ, for all M ′ ≥ 1,∑M ′

m=1

∑Hm
h=1 b

m
h .

√
SA

∑M ′

m=1

∑Hm
h=1 V(Pmh , V

m
h+1) + JS1.5A.

Proof Note that

M ′∑
m=1

Hm∑
h=1

bmh .
M ′∑
m=1

Hm∑
h=1

√V(P̄mh , V
m
h+1)

Nm
h

+
J

Nm
h

 (max{a, b} ≤ a+ b)

.
M ′∑
m=1

Hm∑
h=1

(√
V(Pmh , V

m
h+1)

Nm
h

+
J
√
S

Nm
h

)
(Lemma 24)

.

√√√√SA

M ′∑
m=1

Hm∑
h=1

V(Pmh , V
m
h+1) + JS1.5A.

(Cauchy-Schwarz inequality and Lemma 35)

This completes the proof.

Lemma 35
∑M ′

m=1

∑Hm
h=1

1
Nm
h

. SA.
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Appendix G. Horizon-free Regret is Impossible in SSP under general costs

Recently Zhang et al. (2022) show that in finite-horizon MDPs it is possible to achieve a horizon-free
regret bound with no horizon dependency even in logarithmic terms. For SSPs, Tarbouriech et al.
(2021c) achieves a nearly horizon-free regret boundRK . B?

√
SAK ln 1

λ+B?S
2A+λT?K for any

given λ > 0 in K episodes without knowledge of T?, where regret RK =
∑K

k=1(
∑Ik

i=1 c(s
k
i , a

k
i )−

V ?(sinit)), and RK = ∞ if Ik = ∞ for some k. If a prior knowledge T = T? is available, their
result is nearly horizon-free with logarithmic dependency on T?. A natural question to ask is whether
(completely) horizon-free regret is possible in SSPs without prior knowledge. We show that this is
actually impossible.

Definition 36 We say an algorithm is (c1, c2)-horizon-free if when it takes number of episodes
K ≥ 1, failure probability δ ∈ (0, 1), and an SSP instanceM with parameters B?, S, A as input, it
achieves RK ≤ c1(B?, S,A,K, δ)

√
K + c2(B?, S,A,K, δ) onM with probability at least 1− δ,

where c1, c2 are functions of B?, S, A, K, δ that have poly-logarithmic dependency on K (no
dependency on T? and 1

cmin
).

Theorem 37 For any c1, c2 that are functions of B?, S, A, K, δ, and have poly-logarithmic
dependency on K, there is no (c1, c2)-horizon-free algorithm.

Note that in regret minimization the regret bound can scale with T? even without knowledge of T?,
while in sample complexity we cannot (Theorem 3). Therefore, PAC learning in SSP is in some
sense more difficult than regret minimization.
Proof [of Theorem 37] Consider an SSPM0 with S = {s0, s1}, A = {a0, ag} and sinit = s0. The
cost function satisfies c(s0, a0) = 0, c(s0, ag) = 1, and c(s1, a) = 1

2 for a ∈ A. The transition
function satisfies P (g|s0, ag) = 1, P (s0|s0, a0) = 1, and P (g|s1, a) = 1 for a ∈ A. Clearly,
cmin = 0 and B? = 1 inM0. Suppose the learner is a (c1, c2)-horizon-free algorithm for some
functions c1, c2 as described in Definition 36. Pick δ ∈ (0, 1

8) and K large enough as input to
the learner, such that c0

1

√
K + c0

2 <
K
2 and c1

1

√
K + c1

2 <
K
2 , where c0

i = ci(1, 2, 2,K, δ) and
c1
i = ci(

1
2 , 2, 2,K, δ). Let E1 be the event that the learner reaches the goal state through (s0, ag) in all

K episodes. Since the learner ensures finite regret with high probability, we have P (E1) ≥ 1− δ in
M0. Denote by t the number of times the learner visits (s0, a0). By P (tIE1 <∞) = 1 inM0, there
exists an integer n ≥ 2 such that P (tIE1 ≤ n) ≥ 7

8 inM0. Define E2 = {t ≤ n} and E = E1 ∩ E2.
We have P (E) = P (E1 ∩ {tIE1 ≤ n}) ≥ 3

4 inM0 by δ ∈ (0, 1
8).

Now consider another MDP M1 that is the same as M0 except that P (s1|s0, a0) = 1
n and

P (s0|s0, a0) = 1 − P (s1|s0, a0). Clearly, B? = V ?(sinit) = 1
2 inM1. Let W be the interaction

history between the learner and the environment, and Lj(w) = Pj(W = w), where Pj is the
distribution w.r.t Mj . Also define γ(w) = I{L0(w) > 0}. Note that L1(W )

L0(W )IE(W )γ(W ) =

(1− 1
n)tIE(W )γ(W ) ≥ (1− 1

n)nIE(W )γ(W ) ≥ IE(W )γ(W )
4 . Therefore,

P1(E1) ≥ P1(E) ≥ E1[IE(W )γ(W )] = E0

[
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]
≥ P0(E)

4
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.

Note that the learner ensures RK ≤ ci1
√
K + ci2 with probability at least 1− δ inMi for i ∈ {0, 1}.

Moreover, when E1 is true, RK = K
2 > c1

1

√
K + c1

2 inM1. Therefore, the learner must ensure
P1(E1) < δ < 1

8 , a contradiction. This completes the proof.
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Appendix H. Auxiliary Lemmas

Lemma 38 (Rosenberg and Mansour, 2020, Lemma 6) Let π be a policy whose expected hitting
time starting from any state is at most τ . Then the probability that π takes more than n steps to reach
the goal state is at most 2e−

n
4τ .

Lemma 39 (Zhang et al., 2020b, Lemma 14) Define Υ = {v ∈ [0, B]S+ : v(g) = 0}. Let

f : ∆S+ ×Υ×R+×R+×R+ → R+ with f(p, v, n,B, ι) = pv−max
{
c1

√
V(p,v)ι
n , c2

Bι
n

}
with

c2
1 ≤ c2. Then, f is non-increasing in v, that is, for all p ∈ ∆S+ , v, v

′ ∈ Υ and n, ι > 0,

v(s) ≤ v′(s),∀s ∈ S+ =⇒ f(p, v, n,B, ι) ≤ f(p, v′, n,B, ι).

Lemma 40 (Chen and Luo, 2022, Lemma 16) For any random variable X ∈ [−C,C] for some
C > 0, we have VAR[X2] ≤ 4C2VAR[X].

Lemma 41 (Chen et al., 2021a, Lemma 34) Let {Xt}t be a sequence of i.i.d random variables with
mean µ, variance σ2, and 0 ≤ Xt ≤ B. Then with probability at least 1− δ, the following holds for
all n ≥ 1 simultaneously:∣∣∣∣∣
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2.

Lemma 42 (Chen et al., 2021b, Lemma 38) Let {Xi}∞i=1 be a martingale difference sequence
adapted to the filtration {Fi}∞i=0 and |Xi| ≤ B for some B > 0. Then with probability at least 1− δ,
for all n ≥ 1 simultaneously,∣∣∣∣∣

n∑
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Lemma 43 (Chen et al., 2022, Lemma 51) Let {Xi}∞i=1 with Xi ∈ [0, B] be a martingale sequence
w.r.t the filtration {Fi}∞i=0. Then with probability at least 1− δ, for all n ≥ 1,

n∑
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n∑
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δ
.

Lemma 44 (Chen et al., 2021a, Lemma 34) Let {Xt}t be a sequence of i.i.d random variables with
mean µ, variance σ2, and 0 ≤ Xt ≤ B. Then with probability at least 1− δ, the following holds for
all n ≥ 1 simultaneously:∣∣∣∣∣

n∑
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