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Abstract
We characterize the query complexity of finding stationary points of one-dimensional non-convex
but smooth functions. We consider four settings, based on whether the algorithms under consid-
eration are deterministic or randomized, and whether the oracle outputs 1st-order or both 0th- and
1st-order information. Our results show that algorithms for this task provably benefit by incorpo-
rating either randomness or 0th-order information. Our results also show that, for every dimension
d ≥ 1, gradient descent is optimal among deterministic algorithms using 1st-order queries only.
Keywords: gradient descent, non-convex optimization, oracle complexity, stationary point

1. Introduction

We consider optimizing a non-convex but smooth function f : Rd → R, a task which underlies the
spectacular successes of modern machine learning. Despite the fundamental nature of this question,
there are still important aspects which remain poorly understood.

To set the stage for our investigation, let f : Rd → R be a β-smooth function with bounded
objective gap: f(0) − inf f ≤ ∆. Since global minimization of f is, in general, computationally
intractable (c.f. Nemirovsky and Yudin, 1983), we focus on the task of outputting an ε-stationary
point, that is, a point x⋆ ∈ Rd such that ∥∇f(x⋆)∥ < ε. By a standard rescaling argument (see
Lemma 1), it suffices to consider the case β = ∆ = 1. Then, it is well-known (see, e.g., Nesterov,
2018), that the standard gradient descent (GD) algorithm solves this task in O(1/ε2) queries to an
oracle for the gradient ∇f . Conversely, Carmon et al. (2020) proved that if the dimension d is
sufficiently large, then any randomized algorithm for this task must use at least Ω(1/ε2) queries to
a local oracle for f , thereby establishing the optimality of GD in high dimension.

However, the low-dimensional complexity of computing stationary points remains open. Indeed,
the main limitation of Carmon et al. (2020) is that their lower bound constructions require the am-
bient dimension to be large: more precisely, they require d ≥ Ω(1/ε2) for deterministic algorithms,
and d ≥ Ω̃(1/ε4) for randomized algorithms. The large dimensionality arises because they adapt to
the non-convex smooth setting a “chain-like” lower bound construction for optimization of a convex
non-smooth function (Nesterov, 2018). The chain-like construction forces certain natural classes of
iterative algorithms to explore only one new dimension per iteration, and hence the dimension of
the “hard” function in the construction is at least as large as the iteration complexity.

* This work was completed while SC was a research intern at Microsoft Research.
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COMPLEXITY OF FINDING STATIONARY POINTS IN ONE DIMENSION

In fact, the non-convex and smooth setting shares interesting parallels with the convex and non-
smooth setting, despite their apparent differences (in the former setting, we seek an ε-stationary
point, whereas in the latter setting, we seek an ε-minimizer). Namely, in both settings the optimal
oracle complexity is Θ(1/ε2) in high dimension, and the optimal algorithm is (sub)gradient descent
(as opposed to the convex smooth setting, for which accelerated gradient methods outperform GD).
However, for the convex non-smooth setting, we know that the large dimensionality d ≥ Ω(1/ε2)
of the lower bound construction is almost necessary, because of the existence of cutting-plane meth-
ods (see, e.g., Bubeck, 2015; Nesterov, 2018) which achieve a better complexity of O(d log(1/ε))
in dimension d ≤ Õ(1/ε2). This raises the question of whether or not there exist analogues of
cutting-plane methods for non-convex optimization.

A negative answer to this question would substantially improve our understanding of non-
convex optimization, as it would point towards fundamental algorithmic obstructions. As such,
the low-dimensional complexity of finding stationary points for non-convex optimization was in-
vestigated in a series of works (Vavasis, 1993; Hinder, 2018; Bubeck and Mikulincer, 2020). These
results show the existence of algorithms which improve upon GD in dimension d ≤ O(log(1/ε)).
This suggests that GD is actually optimal for all d ≥ Ω(log(1/ε)). To date, there has been little
progress on this tantalizing conjecture because the existing low-dimensional lower bounds are del-
icate, relying on the theory of unpredictable random walks (Vavasis, 1993; Benjamini et al., 1998;
Bubeck and Mikulincer, 2020).

Algorithm Class Oracle Complexity Lower Bound Upper Bound

Deterministic 1st Θ(1/ε2) Theorem 4 GD (well-known)
Randomized 1st Θ(1/ε) Theorem 2 Theorem 3
Deterministic 0th + 1st Θ(log(1/ε)) Theorem 5 Theorem 6
Randomized 0th + 1st Θ(log(1/ε)) Theorem 5 Theorem 6

Table 1: Summary of the results of this work.

Our contributions. In this paper, we study the task of finding an ε-stationary point of a smooth
and univariate function f : R → R. Our results, which are summarized as Table 1, provide a
complete characterization of the oracle complexity of this task in four settings, based on whether
or not the algorithm is allowed to use external randomness and whether or not the oracle outputs
zeroth-order information. In particular, our lower bounds, which hold in dimension one, also hold in
every dimension d ≥ 1. In spite of the simplicity of the setting, we can draw a number of interesting
conclusions from the results.

• Optimality of GD for any dimension d ≥ 1. Our results imply that, among algorithms
which are deterministic and only use first-order queries, GD is optimal in every dimension
d ≥ 1. This was previously known only for d ≥ Ω(1/ε2) (Carmon et al., 2020).

• Separations between algorithm classes and oracles. Our results exhibit a natural setting in
which both randomization and zeroth-order queries provably improve the query complexity
of optimization. It shows, in particular, that at least one of these additional ingredients is
necessary to improve upon the basic GD algorithm.

• Finding stationary points for unconstrained optimization. The methods of Vavasis (1993);
Bubeck and Mikulincer (2020) for improving upon the complexity of GD in low dimension
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are applicable to the constrained case in which the domain of f is the cube [0, 1]d, and it is
not obvious that they can be applied to unbounded domains. We address this question by
characterizing the oracle complexity for the unconstrained case.

Related works. Usually, optimization lower bounds are established for specific classes of algo-
rithms, such as algorithms for which each iterate lies in the span of the previous iterates and gradi-
ents (Nesterov, 2018). As noted in Woodworth and Srebro (2017), lower bounds against arbitrary
randomized algorithms for convex optimization are trickier and are often loose with regards to the
dimension in which the construction is embedded. The complexity of finding stationary points is
further studied in Carmon et al. (2021).

Conventions and notation. A function f : Rd → R is β-smooth if it is continuously differentiable
and its gradient ∇f is β-Lipschitz. If d = 1, we shall write f ′ instead of ∇f . We use the standard
asymptotic notation Ω(·), O(·), and Θ(·).

2. Results

In this section, we give detailed statements of our results as well as proof sketches. The full proofs
are deferred to the appendix. We also record the following lemma, which allows us to reduce to the
case of β = ∆ = 1.

Lemma 1 Let C∗(ε;β,∆, d,O) ≥ 0 denote the complexity of finding an ε-stationary point over
the class of β-smooth functions f : Rd → R with f(0)− inf f ≤ ∆ using an oracle O , where given
x ∈ Rd the oracle O returns either ∇f(x) (first-order information) or (f(x),∇f(x)) (zeroth- and
first-order information). Here, ∗ ∈ {det, rand} is a subscript denoting whether or not the algorithm
is allowed to use external randomness; when ∗ = rand, the randomized complexity refers to the
minimum number of queries required to find an ε-stationary point with probability at least 1/2.
Then, for any β,∆, ε > 0,

C∗(ε;β,∆, d,O) = C∗
( ε√

β∆
; 1, 1, d,O

)
.

Proof Given a β-smooth function f : Rd → R with f(0) − inf f ≤ ∆, define g : Rd → R via
g(x) := ∆−1f(

√
∆/β x). Then, g is 1-smooth with g(0)− inf g ≤ 1, and it is clear that the oracle

for g can be simulated using the oracle for f . Moreover, an ε/
√
β∆-stationary point for g translates

into an ε-stationary point for f . Obviously, the reduction is reversible.

Often, we will assume without loss of generality that f(0) = 1 and β = ∆ = 1, so that f ≥ 0.
Also, we may assume that f ′(0) ≤ −ε, since if f ′(0) ∈ (−ε, ε) then 0 is an ε-stationary point of
f , and if f ′(0) ≥ ε we can replace f by x 7→ f(−x). We abbreviate C∗(ε;O) := C∗(ε; 1, 1, 1,O),
and from now on we consider d = 1.

Let O1st denote the oracle which returns first-order information (given x ∈ R, it outputs f ′(x)),
and let O0th+1st denote the oracle which returns zeroth- and first-order information (given x ∈ R,
it outputs (f(x), f ′(x))). We remark that in the one-dimensional setting, we could instead assume
access to an oracle O0th which only outputs zeroth-order information, rather than O0th+1st ; this is
because we can simulate O1st to arbitrary accuracy given O0th with only a constant factor overhead
in the number of oracle queries by using finite differences. For simplicity, we work with O0th+1st

and we will not consider O0th further.
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2.1. Lower bound for randomized algorithms

We begin with a lower bound construction for randomized algorithms which only use first-order
queries. For simplicity, assume that 1/ε is an integer. We construct a family of functions (fj)j∈[1/ε],
with the following properties. On the negative half-line R−, each fj decreases with slope −ε, with
fj(0) = 1. We also set the slope of fj on the positive half-line R+ to be −ε, but this entails
that fj(x) < 0 for x > 1/ε, violating the constraint fj(0) − inf f ≤ 1. Instead, on the interval
[j − 1, j], we modify fj to increase as much as possible while remaining O(1)-smooth, so that
fj(1/ε) = fj(0) = 1; we can then periodically extend fj on the rest of R+.

Due to the periodicity of the construction, we can restrict our attention to the interval [0, 1/ε].
Without prior knowledge of the index j, any algorithm only has a “probability” (made precise in
Appendix A.2) of at most ε of finding the interval [j − 1, j], which contains all of the ε-stationary
points in [0, 1/ε]. Hence, we expect that any randomized algorithm must require at least Ω(1/ε)
queries to find an ε-stationary point of fj .

To make this formal, let Φ : [0, 1] → R be a smooth function such that Φ(0) = 0, Φ(1) = 1,
and Φ′(0) = Φ′(1) = −ε. For example, we can take

Φ(x) =

{
2 (1 + ε)x2 − ε x , x ∈ [0, 12 ] ,

2Φ(12)− Φ(1− x) , x ∈ [12 , 1] .

We can check that Φ satisfies the desired properties and that Φ is β-smooth with β = 4 (1 + ε) ≤ 5
for ε ≤ 1

4 . Then, let

fj(x) :=


1− ε x , x ∈ (−∞, j − 1] ,

1− ε (j − 1) + Φ(x− (j − 1)) , x ∈ [j − 1, j] ,

fj(j)− ε (x− j) , x ∈ [j, 1/ε] ,

fj(x− 1/ε) , x ∈ [1/ε,∞) .

It follows that fj is also 5-smooth, with fj(0)− inf fj ≤ 1; see Figure 1.

Figure 1: (Left) A plot of Φ. (Right) A plot of fj , where the dotted line indicates the value of j.

We prove the following theorem in Appendix A.2.

Theorem 2 For all ε ∈ (0, 18), it holds that

Crand

(
ε;O1st

)
≥ Ω

(1
ε

)
.
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2.2. An optimal randomized algorithm

The lower bound construction of the previous section suggests a simple strategy for computing an ε-
stationary point of f : namely, just repeatedly pick points uniformly at random in the interval [0, 1/ε].
We now show that such a strategy (together with some additional processing steps) succeeds at
obtaining an ε-stationary point in O(1/ε) queries.

Algorithm 1: RANDOMSEARCH

Data: oracle O1st for f
Result: ε-stationary point x
while true do

draw x ∼ uniform([0, 2/ε])
if |f ′(x)| < ε then

output x
else if f ′(x) > 0 then

call BINARYSEARCH(O1st , 0, x)
end

Algorithm 2: BINARYSEARCH

Data: oracle O1st for f ; initial points x0 < x1
with f ′(x0) ≤ −ε and f ′(x1) > 0

Result: ε-stationary point x
set m← x0+x1

2
if |f ′(m)| < ε then

output m
else if f ′(m) ≤ −ε then

call BINARYSEARCH(O1st ,m, x1)
else if f ′(m) > 0 then

call BINARYSEARCH(O1st , x0,m)

The pseudocode for the algorithms is given as Algorithms 1 and 2. In short, RANDOMSEARCH

(Algorithm 1) uses O(1/ε) queries to find a “good point”, i.e., either an ε-stationary point or a point
x with f ′(x) > 0. In the latter case, BINARYSEARCH (Algorithm 2) then locates an ε-stationary
point using an additional O(log(1/ε)) queries.

We prove the following theorem in Appendix A.3.

Theorem 3 Assume that f : R → R is 1-smooth, f ≥ 0, f(0) = 1, and f ′(0) ≤ −ε. Then,
RANDOMSEARCH (Algorithm 1) terminates with an ε-stationary point for f using at most O(1/ε)
queries to the oracle with probability at least 1/2.

As usual, the success probability can be boosted by rerunning the algorithm. In Figure 2, we
demonstrate the performance of RANDOMSEARCH in a numerical experiment as a sanity check.

2.3. Lower bound for deterministic algorithms

Against the class of deterministic algorithms, the construction of Theorem 2 can be strengthened
to yield a Ω(1/ε2) lower bound. The idea is based on the concept of a resisting oracle Oresist

from Nesterov (2018) which, regardless of the query point x, outputs “f ′(x) = −ε”. The goal then
is to show that for any deterministic sequence of queries x1, . . . , xN , if N ≤ O(1/ε2), there exists
a 1-smooth function f : R → R with f(0) − inf f ≤ ∆ which is consistent with the output of the
oracle, i.e., satisfies f ′(xi) = −ε for all i ∈ [N ]. Note that this strategy necessarily only provides a
lower bound against deterministic algorithms.1

1. In more detail, the argument is as follows. Let x1, . . . , xN be the sequence of query points generated by the algorithm
when run with Oresist, and suppose we can find a function f which is consistent with the responses of Oresist. Then,
for a deterministic algorithm, we can be sure that had the algorithm been run with the oracle O1st for f , it would
have generated the same sequence of query points x1, . . . , xN , and hence would have never found an ε-stationary
point of f among the N query points. This argument fails if the algorithm incorporates external randomness.

5
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Figure 2: Iteration complexity of gradient descent (GD) vs. one run of RANDOMSEARCH (Algo-
rithm 1) for various choices of ε on an instance of the construction in Section 2.1. The
flatter slope of the orange line reflects the improved O(1/ε) complexity of RANDOM-
SEARCH over the O(1/ε2) complexity of GD.

For simplicity of notation, since the order of the queries does not matter here, we assume that
the queries are sorted: x1 < · · · < xN . The function f that we construct has slope −ε at the query
points, but rapidly rises in between the query points to ensure that the condition f(0) − inf f ≤ 1
holds. Moreover, we will ensure that f ′(x) = −ε for x ≤ 0 and that f ′ is periodic on R+ with
period 1/ε; hence, we may assume that all of the queries lie in the informative interval (0, 1/ε).
The key here is that for deterministic algorithms, the intervals on which the function f rises can be
adapted to the query points, rather than being selected in advance.

The intuition is as follows. If the algorithm has made fewer than O(1/ε2) queries, then there
must be Ω(1/ε2) disjoint intervals in [0, 1/ε] of length at least Ω(ε) in which there are no query
points. On each such interval, we can grow our function value by Ω(ε2) while staying smooth and
with slope −ε at the start and end of the interval. Hence, we can guarantee that the constructed
function f remains above f(0)− 1, while answering f ′(x) = −ε at every query point x.

To make this precise, let ℓi := xi+1 − xi and define the function

Φi(x) := −ε (x− xi)

+


1
2 (x− xi)

2 , x ∈ [xi, xi +
ℓi
2 ] ,

ℓ2i
8 + ℓi

2 (x− xi − ℓi
2 )−

1
2 (x− xi − ℓi

2 )
2
, x ∈ [xi +

ℓi
2 , xi+1] .

The construction of Φi satisfies the following properties:

1. Φi is continuously differentiable and 1-smooth on [xi, xi+1].

2. Φi(xi) = 0 and Φi(xi+1) = ℓi (
ℓi
4 − ε).
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3. Φ′
i(xi) = Φ′

i(xi+1) = −ε.

Write x0 := 0 and xN+1 := 1/ε. Recall that xi ∈ (0, 1/ε), for all i ∈ [N ]. We now define

f(x) :=


1− ε x , x ∈ (−∞, 0] ,

f(xi)− ε (x− xi) , x ∈ [xi, xi+1] and ℓi < 8ε (0 ≤ i ≤ N) ,

f(xi) + Φi(x) , x ∈ [xi, xi+1] and ℓi ≥ 8ε (0 ≤ i ≤ N) ,

f(x− 1/ε) + a , x ∈ [1/ε,∞) ,

where a := f(1/ε) − f(0). See Figure 3 for an illustration of f . We shall prove that when
N ≤ O(1/ε2), then the function f is 1-smooth and satisfies f(0) − inf f ≤ 1, thus completing
the resisting oracle construction. It yields the following theorem, which we prove in Appendix A.4.

Figure 3: We plot an example of the function f . The dashed lines indicate the query points made
by the algorithms.

Theorem 4 For all ε ∈ (0, 1), it holds that

Cdet

(
ε;O1st

)
≥ Ω

( 1

ε2

)
.

The lower bound is matched by gradient descent. For the sake of completeness, we provide a
proof of the matching O(1/ε2) upper bound via gradient descent as Theorem 8 in Appendix A.1.

2.4. Lower bound for randomized algorithms with zeroth-order information

We now turn towards algorithms which use the 0th+1st-order oracle O0th+1st . For the lower bound,
we again use the family of functions (fj)j∈[1/ε] introduced in Section 2.1. The main difference is
that given a query point x ∈ [0, 1/ε], the value of fj(x) reveals whether or not the interval [j− 1, j]
lies to the left of x and hence allows for binary search to determine j. Consequently, the lower
bound is only of order Ω(log(1/ε)).

We prove the following theorem in Appendix A.5.
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Theorem 5 For all ε ∈ (0, 18), it holds that

Cdet

(
ε;O0th+1st

)
≥ Crand

(
ε;O0th+1st

)
≥ Ω

(
log

1

ε

)
.

2.5. An optimal deterministic algorithm with zeroth-order information

Finally, we provide a deterministic algorithm whose complexity matches the lower bound in Theo-
rem 5. At a high level, the idea is to use the zeroth-order information to perform binary search, but
the actual algorithm is slightly more involved and requires the consideration of various cases.

We summarize the idea behind the algorithm. First, as described earlier, we may freely assume
f ≥ 0, f(0) = 1, and f ′(0) ≤ −ε. Also, we recall that if the algorithm ever sees a point x with
either |f ′(x)| < ε or f ′(x) > 0, then we are done (in the latter case, we can call Algorithm 2:
BINARYSEARCH).

1. DECREASEGAP (Algorithm 4) checks the value of f(2/ε). If f(2/ε) ≤ 3
4 f(0), then we have

made progress on the objective gap and we may treat 2/ε as the new origin. This can happen
at most O(log(1/ε)) times. Otherwise, we have f(2/ε) ≥ 3

4 f(0), and we move on to the
next phase of the algorithm.

2. Set x− := 0 and x+ := 2/ε. There are two cases: either 3
4 f(x−) ≤ f(x+) ≤ f(x−), in

which case f(x−)− f(x+) ≤ ε
4 (x+ − x−), or f(x+) ≥ f(x−).

3. The first case is handled by BINARYSEARCHII (Algorithm 5). A simple calculation reveals
that the condition 0 ≤ f(x−) − f(x+) ≤ 3

4 (x+ − x−) together with f ′(x−) ≤ −ε implies
the existence of an ε-stationary point in [x−, x+]. We now check the midpoint m of x− and
x+. If f(m) /∈ [f(x+), f(x−)], then we arrive at the second case. Otherwise, we replace
either x− or x+ with m; one of these two choices will cut the value of f(x−)− f(x+) by at
least half, thereby ensuring that the condition 0 ≤ f(x−)− f(x+) ≤ 3

4 (x+ − x−) continues
to hold. This can happen at most O(log(1/ε)) times.

4. Finally, the second case is handled by BINARYSEARCHIII (Algorithm 6). In this case,
f(x+) ≥ f(x−) together with f ′(x−) ≤ −ε ensures that there is a stationary point in
[x−, x+]. We then check the value of f(m) where m is the midpoint of x− and x+. It is
straightforward to check that we can replace either x− or x+ with m and preserve the condi-
tion f(x+) ≥ f(x−). This can happen at most O(log(1/ε)) times.

Algorithm 3: ZEROTHORDER

Data: oracle O0th+1st for f
Result: ε-stationary point x
set x− ← DECREASEGAP(O0th+1st , 0)
set x+ ← x− + 2/ε
if |f ′(x−)| < ε then

output x−
else if f(x+) ≤ f(x−) then

call BINARYSEARCHII(O0th+1st , x−, x+)
else if f(x+) > f(x−) then

call BINARYSEARCHIII(O0th+1st , x−, x+)
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Algorithm 4: DECREASEGAP

Data: oracle O0th+1st for f ; point x0
Result: either an ε-stationary point x or a point x such that f(x) ≤ f(x0), f ′(x) ≤ −ε, and

f(x+ 2/ε) ≥ 3
4 f(x)

if |f ′(x0 + 2/ε)| < ε then
output x0 + 2/ε

else if f ′(x0 + 2/ε) > 0 then
call BINARYSEARCH(O0th+1st , x0, x0 + 2/ε)

else if f(x0 + 2/ε) ≥ 3
4 f(x0) then

output x0
else

call DECREASEGAP(O0th+1st , x0 + 2/ε)

Algorithm 5: BINARYSEARCHII
Data: oracle O0th+1st for f ; points x− < x+ with f ′(x−) ≤ −ε and 0 ≤ f(x−) − f(x+) ≤

ε
4 (x+ − x−)

Result: an ε-stationary point x
set m← x−+x+

2
if |f ′(m)| < ε then

output m
else if f ′(m) > 0 then

call BINARYSEARCH(O0th+1st , x−,m)
else if f(m) ≥ f(x−) then

call BINARYSEARCHIII(O0th+1st , x−,m)
else if f(m) ≤ f(x+) then

call BINARYSEARCHIII(O0th+1st ,m, x+)
else if f(x−)− f(m) ≤ 1

2 (f(x−)− f(x+)) then
call BINARYSEARCHII(O0th+1st , x−,m)

else if f(m)− f(x+) ≤ 1
2 (f(x−)− f(x+)) then

call BINARYSEARCHII(O0th+1st ,m, x+)

Algorithm 6: BINARYSEARCHIII
Data: oracle O0th+1st for f ; points x− < x+ with f ′(x−) ≤ −ε and f(x+) ≥ f(x−)
Result: an ε-stationary point x
set m← x−+x+

2
if |f ′(m)| < ε then

output m
else if f ′(m) > 0 then

call BINARYSEARCH(O0th+1st , x−,m)
else if f(m) ≥ f(x−) then

call BINARYSEARCHIII(O0th+1st , x−,m)
else

call BINARYSEARCHIII(O0th+1st ,m, x+)
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We prove the following theorem in Appendix A.6.

Theorem 6 Assume that f : R → R is 1-smooth, f ≥ 0, f(0) = 1, and f ′(0) ≤ −ε. Then, ZE-
ROTHORDER (Algorithm 3) terminates with an ε-stationary point for f using at most O(log(1/ε))
queries to the oracle.

3. Conclusion

We have characterized the oracle complexity of finding an ε-stationary point of a smooth univariate
function f : R→ R in four natural settings of interest. Besides providing insight into the limitations
of gradient descent, our results exhibit surprising separations between the power of deterministic and
randomized algorithms, and between algorithms that use zeroth-order information and algorithms
(like gradient descent) which only use first-order information.

We conclude with a number of open directions for future research.

• The main question motivating this work remains open, namely, for randomized algorithms
using zeroth- and first-order information, is it possible to prove a Ω(1/ε2) complexity lower
bound with a construction in dimension d = O(log(1/ε))? An affirmative answer to this
question would likely build upon the lower bound techniques used in Vavasis (1993); Bubeck
and Mikulincer (2020).

An even more ambitious goal is to fully characterize the query complexity of finding station-
ary points using zeroth- and first-order information in every fixed dimension d.

• Towards the above question, we also ask: is there an analogue of gradient flow trap-
ping (Bubeck and Mikulincer, 2020) for unconstrained optimization?

• We have established that among deterministic algorithms which only use first-order queries,
gradient descent is optimal already in dimension one. Although randomized algorithms out-
perform GD in our setting of investigation, it is unclear to what extent randomness helps in
higher dimension. Hence, we make the following bold conjecture: can one prove a Ω(1/ε2)
complexity lower bound for randomized algorithms which only make first-order queries
in dimension two?
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Appendix A. Proofs

A.1. Preliminaries

The standard approach for proving lower bounds against randomized algorithms is to reduce the
task under consideration to a statistical estimation problem, for which we can bring to bear tools
from information theory. Namely, we use Fano’s inequality; we refer readers to Cover and Thomas
(2006, Chapter 2) for background on entropy and mutual information.

Theorem 7 (Fano’s inequality) Let m be a positive integer and let J ∼ uniform([m]). Then, for
any estimator Ĵ of J which is measurable w.r.t. some data Y , it holds that

P{Ĵ ̸= J} ≥ 1− I(J ;Y ) + ln 2

lnm
,

where I denotes the mutual information.

For the sake of completeness, we also include a proof of the O(1/ε2) complexity bound for
gradient descent.
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Theorem 8 Suppose that f : Rd → R is 1-smooth with f(0) − inf f ≤ 1. Set x0 := 0 and for
k ∈ N, consider the iterates of GD with step size 1:

xk+1 := xk −∇f(xk) .

Then,

min
k=0,1,...,N−1

∥∇f(xk)∥ ≤
√

2

N
.

Proof Due to the 1-smoothness of f ,

f(xk+1)− f(xk) ≤ ⟨∇f(xk), xk+1 − xk⟩+
1

2
∥xk+1 − xk∥2 = −

1

2
∥∇f(xk)∥2 . (1)

Rearranging this and summing,

min
k=0,1,...,N−1

∥∇f(xk)∥2 ≤
1

N

N−1∑
k=0

∥∇f(xk)∥2 ≤
2

N

N−1∑
k=0

{f(xk)− f(xk+1)}

≤ 2

N
{f(0)− f(xN )} ≤ 2

N
{f(0)− inf f} ≤ 2

N
.

A.2. Proof of Theorem 2

Proof [Proof of Theorem 2] By making the value of ε larger (up to a factor of 2), we may assume
that 1/ε is an integer.

We reduce the optimization task to a statistical estimation problem. Let J ∼ uniform([1/ε]).
Since the only regions in which |f ′

j | < ε are contained in intervals of the form k/ε + [j − 1, j] for
some k ∈ N, then finding an ε-stationary point of fJ implies that the algorithm can guess the value
of J (exactly).

On the other hand, we lower bound the number of queries required to guess the value of J . Let
x1, . . . , xN denote the query points of the algorithm, which may also depend on an external source
of randomness U . Write Ofj (x) = f ′

j(x) for the output of the oracle for fj on the query x (we
omit the superscript 1st for brevity). Let Ĵ be any estimator of J based on {xi,OfJ (xi) : i ∈ [N ]}.
Then, by Fano’s inequality (Theorem 7),

P{Ĵ ̸= J} ≥ 1−
I({xi,OfJ (xi) : i ∈ [N ]}; J) + ln 2

ln(1/ε)
.

First, suppose that the algorithm is deterministic. This means that each xi is a deterministic function
of {xi′ ,OfJ (xi′) : i

′ ∈ [i− 1]}. The chain rule for the mutual information implies that

I
(
{xi,OfJ (xi) : i ∈ [N ]}; J

)
≤

N∑
i=1

I
(
OfJ (xi); J

∣∣ {xi′ ,OfJ (xi′) : i
′ ∈ [i− 1]}

)
.

12
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On the other hand, there are two possibilities for the i-th term in the summation. Either one of the
previous queries already landed in an interval corresponding to J , in which case J is already known
and the mutual information is zero, or none of the previous queries have hit an interval corresponding
to J . In the latter case, conditionally on the information up to iteration i, J is uniformly distributed
on 1/ε− i remaining intervals, and so

I
(
OfJ (xi); J

∣∣ {xi′ ,OfJ (xi′) : i
′ ∈ [i− 1]}

)
≤ H

(
OfJ (xi)

∣∣ {xi′ ,OfJ (xi′) : i
′ ∈ [i− 1]}

)
= h

( 1

1/ε− i

)
,

with h denoting the entropy function p 7→ p ln 1
p + (1 − p) ln 1

1−p . The last inequality follows
because conditionally, OfJ (xi) can only be one of two possible values with probabilities 1

1/ε−i and
1− 1

1/ε−i respectively. If N ≤ 1/(2ε), then

I
(
{xi,OfJ (xi) : i ∈ [N ]}; J

)
≤ 2

N∑
i=1

1

1/ε− i
ln
(1
ε
− i

)
≤ 4Nε ln

1

ε
.

Hence,

P{Ĵ ̸= J} ≥ 1− 4Nε ln(1/ε) + ln 2

ln(1/ε)
>

1

2
(2)

provided that ε ≤ 1
8 and N ≤ O(1/ε) for a sufficiently small implied constant. Although we have

proven the bound (2) for deterministic algorithms, the bound (2) continues to hold for randomized
algorithms simply by conditioning on the random seed U which is independent of J .

We have proven that any randomized algorithm which is guaranteed to find an ε-stationary point
of fJ must use at least N ≥ Ω(1/ε) queries, or

C (ε; 5, 1, 1,O1st) ≥ Ω
(1
ε

)
.

We conclude by applying the rescaling lemma (Lemma 1).

A.3. Proof of Theorem 3

First, we analyze the subroutine BINARYSEARCH.

Lemma 9 Suppose that f is 1-smooth. Then, BINARYSEARCH (Algorithm 2) terminates with an
ε-stationary point for f using at most O(log x1−x0

ε ) queries to the oracle.

Proof Since f is 1-smooth, f(x0) ≤ −ε and f(x1) > 0 cannot hold if x1 − x0 ≤ ε. Moreover,
each time that BINARYSEARCH fails to find an ε-stationary point for f , the length of the interval
[x0, x1] is cut in half. The result follows.

We also need one lemma about continuous functions on R.
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Lemma 10 Let g : R → R be continuous, let I be a compact and non-empty interval, and let
ε > 0. Then, there is a finite collection of disjoint closed intervals which cover I ∩ {g ≥ ε} and
which are contained in I ∩ {g ≥ 0}.

Proof For each x ∈ S := I ∩ {g ≥ ε}, by continuity of g there exists a closed interval Ix ⊆ I such
that x belongs to the interior of Ix and such that g ≥ 0 on Ix. The collection (Ix)x∈S covers the
compact set S, so we can extract a finite subcover. The connected components of the union of the
finite subcover consist of disjoint closed intervals.

We are now ready to prove Theorem 3.

Proof [Proof of Theorem 3] Let x ∼ uniform([0, 2/ε]). If |f ′(x)| < ε, then we are done, and if
f ′(x) > 0, then Lemma 9 shows that BINARYSEARCH terminates with an ε-stationary point of f
using O(log(1/ε)) queries. What remains to show is that x satisfies either |f ′(x)| < ε or f ′(x) > 0
with probability at least Ω(ε), which implies that Algorithm 1 succeeds using O(1/ε) queries with
probability at least 1/2.

Let m denote the Lebesgue measure restricted to [0, 2/ε]. Then,

1 ≥ f(0)− f(2/ε) = −
∫
[0,2/ε]

f ′

≥ εm{f ′ ≤ −ε} − εm{|f ′| < ε} −
∫
[0,2/ε]∩{f ′≥ε}

f ′ .

From Lemma 10, we can cover the set [0, 2/ε] ∩ {f ′ ≥ ε} with a union of disjoint closed intervals⋃K
k=1 Ik ⊆ [0, 2/ε] ∩ {f ′ ≥ 0}. On Ik, the smoothness of f ensures that

−
∫
Ik

f ′ ≥ −m(Ik) f
′(inf Ik)︸ ︷︷ ︸

≤ε

−
∫
Ik

(x− inf Ik) dx ≥ −εm(Ik)−
1

2
m(Ik)

2 .

Write ℓk := m(Ik) = sup Ik − inf Ik. Note that
∑K

k=1 ℓk ≤ m{f ′ ≥ 0}. Thus,

−
∫
[0,2/ε]∩{f ′≥ε}

f ′ ≥ −ε
K∑
k=1

ℓk −
1

2

K∑
k=1

ℓ2k ≥ −ε
K∑
k=1

ℓk −
1

2

( K∑
k=1

ℓk

)2

≥ −εm{f ′ ≥ 0} − 1

2
m{f ′ ≥ 0}2 .

Now suppose that m{|f ′| < ε or f ′ ≥ ε} ≤ c0, where c0 > 0 is a constant to be chosen later. In
this case, the inequalities above imply

1 + 2c0ε+
1

2
c20 ≥ εm{f ′ ≤ −ε} ≥ ε

(2
ε
−m{|f ′| < ε or f ′ ≥ ε}

)
which, when rearranged, yields

1 + 3c0ε+
1

2
c20 ≥ 2 .

If c0 is a sufficiently small absolute constant, we arrive at a contradiction.

14



COMPLEXITY OF FINDING STATIONARY POINTS IN ONE DIMENSION

We conclude that m{|f ′| < ε or f ′ ≥ ε} ≥ c0, which means that the random point x will be
good in the sense that either |f ′(x)| < ε or f ′(x) ≥ ε. The probability that Algorithm 1 fails to
obtain a good random point in N tries is at most (1− c0ε/2)

N , which can be made at most 1/2 by
taking N = Θ(1/ε). We conclude that with probability at least 1/2, using

O
(1
ε
+ log

1

ε

)
= O

(1
ε

)
queries ,

Algorithm 1 finds an ε-stationary point.

A.4. Proof of Theorem 4

Proof [Proof of Theorem 4] The goal is to show that when N ≤ O(1/ε2), the resisting oracle
construction succeeds, and hence no deterministic algorithm can find an ε-stationary point of an
arbitrary 1-smooth function with objective gap at most 1 using N queries.

For the resisting oracle construction, the crux of the matter is to show that a = f(1/ε)−f(0) ≥
0. Indeed, if this holds, then since f is clearly bounded below by 0 on [0, 1/ε] it will follow that
f ≥ 0 on all of R, and hence f(0)− inf f ≤ 1.

Let I be the set of indices i ∈ [N ] for which ℓi ≥ 8ε. Since f has slope −ε on all of the linear
pieces, then over all of the linear pieces the value of f drops by at most 1 on the interval [0, 1/ε].
The goal is to show that ∑

i∈I
{f(xi+1)− f(xi)}

!
≥ 1 .

To prove this, write

1

ε
=

N∑
i=1

ℓi =
∑
i∈I

ℓi +
∑
i∈Ic

ℓi ≤
∑
i∈I

ℓi + 8ε |Ic| .

There are two cases to consider. If |Ic| ≥ 1
16ε2

queries, then we are done, as the algorithm has made
Ω(1/ε2) queries. Otherwise, |Ic| ≤ 1

16ε2
, in which case

1

2ε
≤

∑
i∈I

ℓi .

In this second case, we now have∑
i∈I
{f(xi+1)− f(xi)} =

∑
i∈I

Φi(xi+1) =
∑
i∈I

ℓi
(ℓi
4
− ε

)
≥ 1

8

∑
i∈I

ℓ2i

≥ 1

8 |I|

(∑
i∈I

ℓi

)2
≥ 1

32ε2 |I|
.

This is greater than 1 provided |I| ≤ 1
32ε2

.
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In summary, the resisting oracle construction is valid provided |I| ≤ 1
32ε2

and |Ic| ≤ 1
16ε2

.
Since |I| + |Ic| = N , any deterministic algorithm which finds an ε-stationary point must use at
least N ≥ min{ 1

32ε2
, 1
16ε2
} = 1

32ε2
queries, or

Cdet(ε;O
1st) ≥ 1

32ε2
.

A.5. Proof of Theorem 5

Proof [Proof of Theorem 5] The proof is very similar to the proof of Theorem 2. We follow the
proof up to the point where

I
(
OfJ (xi); J

∣∣ {xi′ ,OfJ (xi′) : i
′ ∈ [i− 1]}

)
≤ H

(
OfJ (xi)

∣∣ {xi′ ,OfJ (xi′) : i
′ ∈ [i− 1]}

)
,

where now OfJ (x) = {fJ(x), f ′
J(x)} returns zeroth- and first-order information. The key point

now is that since xi is deterministic (conditioned on previous queries), OfJ (xi) can only take a
constant number of possible values, and so the above entropy term is O(1) (as opposed to Theo-
rem 2, in which the entropy term was of order O(ε log(1/ε))). Plugging this into Fano’s inequality
(Theorem 7), we obtain

P{Ĵ ̸= J} ≥ 1− O(N) + ln 2

ln(1/ε)
>

1

2
,

provided that ε ≤ 1
8 and N ≤ O(log(1/ε)). This proves that Ω(log(1/ε)) queries to O0th+1st are

necessary to find an ε-stationary point, even for a randomized algorithm.

A.6. Proof of Theorem 6

We prove the correctness of the algorithms in reverse order, beginning with BINARYSEARCHIII.

Lemma 11 Let f : R→ R be 1-smooth. Then, BINARYSEARCHIII (Algorithm 6) terminates with
an ε-stationary point of f using O(log x+−x−

ε ) queries to the oracle.

Proof Due to the 1-smoothness of f , if x+ − x− < ε, then f ′ < 0 on the interval [x−, x+], which
contradicts the hypothesis f(x+) ≥ f(x−). Hence, BINARYSEARCHIII can only recursively call
itself at most O(log x+−x−

ε ) times. If it calls BINARYSEARCH, then by Lemma 9 this only uses an
additional O(log x+−x−

ε ) queries.

Lemma 12 Let f : R→ R be 1-smooth. Then, BINARYSEARCHII (Algorithm 5) terminates with
an ε-stationary point of f using O(log x+−x−

ε ) queries to the oracle.
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Proof First, we check that when BINARYSEARCHII calls itself, the preconditions of BINARY-
SEARCHII continue to be met. Suppose for instance that 0 ≤ f(x−)−f(m) ≤ 1

2 (f(x−)−f(x+)).
Since 0 ≤ f(x−)− f(x+) ≤ ε

4 (x+ − x−) by hypothesis, then

0 ≤ f(x−)− f(m) ≤ ε

8
(x+ − x−) =

ε

4
(x− −m) ,

which is what we wanted to show. The other case is similar.
Next, we argue that BINARYSEARCHII terminates. The hypotheses of BINARYSEARCHII im-

ply that there is an ε/2-stationary point in the interval [x−, x+]. Indeed, if this were not the case,
then f ′ ≤ −ε/2 on the entire interval, so f(x+) = f(x−) +

∫
[x−,x+] f

′ ≤ f(x−) − ε
2 (x+ − x−),

but this contradicts the assumption f(x−) − f(x+) ≤ ε
4 (x+ − x−). Therefore, if x+ − x− < ε

2 ,
it would follow that f ′(x−) > −ε, which contradicts the hypothesis f ′(x−) ≤ −ε. Since the value
of x+ − x− is cut in half each time that BINARYSEARCHII calls itself, we conclude that this can
happen at most O(log x+−x−

ε ) times. If BINARYSEARCHII calls either BINARYSEARCH or BINA-
RYSEARCHIII, then by Lemma 9 and Lemma 11, this uses at most an additional O(log x+−x−

ε )
queries to the oracle.

Lemma 13 Let f : R → R be 1-smooth. Then, DECREASEGAP (Algorithm 4) terminates, either
with an ε-stationary point of f , or with a point x such that f(x) ≤ f(x0) and f(x+2/ε) ≥ 3

4 f(x),
using O(log 1

ε ) queries to the oracle.

Proof Each time DECREASEGAP calls itself, the value of f(x0) decreases by a factor of 3
4 . If

f ′(x0) ≤ −ε, then from (1) we deduce that f(x0) ≥ 1
2 |f

′(x0)|2 ≥ ε2/2. Hence, DECREASEGAP

can call itself at most O(log 1
ε2
) = O(log 1

ε ) times. If it calls BINARYSEARCH, then by Lemma 9
this uses an additional O(log 1

ε ) queries to the oracle.

Finally, we are ready to verify the correctness of ZEROTHORDER (Algorithm 3).

Proof [Proof of Theorem 6] From Lemma 13, if |f ′(x−)| > ε then we must have f ′(x−) ≤ −ε and
f(x+) ≥ 3

4 f(x−). There are two cases. If f(x+) ≤ f(x−), then we know that

0 ≤ f(x−)− f(x+) ≤
1

4
f(x−) ≤

1

4
=

ε

8
(x+ − x−)

so the preconditions of BINARYSEARCHII are met; by Lemma 12, ZEROTHORDER terminates with
an ε-stationary point of f using O(log 1

ε ) additional queries. In the other case f(x+) ≥ f(x−),
by Lemma 11, ZEROTHORDER again terminates with an ε-stationary point of f using O(log 1

ε )
additional queries. This concludes the proof.
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