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Abstract
Consider the setting where a ρ-sparse Rademacher vector is planted in a random d-dimensional

subspace of Rn. A classical question is how to recover this planted vector given a random basis in
this subspace.

A recent result by Zadik et al. (2021) showed that the Lattice basis reduction algorithm can
recover the planted vector when n ⩾ d + 1. Although the algorithm is not expected to tolerate
inverse polynomial amount of noise, it is surprising because it was previously shown that recovery
cannot be achieved by low degree polynomials when n≪ ρ2d2 (Mao and Wein, 2021).

A natural question is whether we can derive an Statistical Query (SQ) lower bound matching
the previous low degree lower bound in Mao and Wein (2021). This will

– imply that the SQ lower bound can be surpassed by lattice based algorithms;

– predict the computational hardness when the planted vector is perturbed by inverse polynomial amount
of noise.

In this paper, we prove such an SQ lower bound. In particular, we show that super-polynomial
number of VSTAT queries is needed to solve the easier statistical testing problem when n ≪ ρ2d2

and ρ ≫ 1√
d

. The most notable technique we used to derive the SQ lower bound is the almost
equivalence relationship between SQ lower bound and low degree lower bound (Brennan et al.,
2020; Mao and Wein, 2021).
Keywords: Statistical Query lower bound, Sparse Recovery.

1. Introduction

The Random Sparse Planted Vector problem is to recover a sparse planted vector x from a d-
dimensional subspace of Rn that is spanned by x and d− 1 spherical random vectors. This problem
is interesting in its own and is also closely related to a wide range of problems in data science
and statistics, including sparse PCA, Non-Gaussian Component Analysis, Dictionary Learning, etc.
There has been significant interest in this problem, leading to algorithms and lower bounds (De-
manet and Hand, 2014; Barak et al., 2014; Qu et al., 2014; Hopkins et al., 2016; Qu et al., 2020).

A fascinating phenomenon was discovered recently for the Random Sparse Planted Vector prob-
lem. In Mao and Wein (2021), an unconditional lower bound against algorithms based on low degree
polynomial was developed for the special case where vector x is {±1, 0} vector, which provides ev-
idence of computational hardness. Later in Zadik et al. (2021); Diakonikolas and Kane (2021), it
was surprisingly found that, the Lenstra–Lenstra–Lovász (LLL) lattice basis reduction algorithm
can surpass the low degree lower bound for this instance. The algorithm crucially exploits the fact
that the planted vector is integral.
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A natural question is whether some other common algorithm frameworks can capture algo-
rithms based on the LLL lattice basis reduction. One promising candidate is Statistical Query (SQ)
algorithms. In some cases, the SQ framework can be more powerful than low degree polynomials,
e.g. it can simulate some inefficient algorithms since these algorithms have access to some ineffi-
cient oracles. As a matter of fact, to our knowledge, before our work there was no known instance
where lattice basis reduction algorithm surpasses SQ lower bound. Therefore, we aim to answer the
following question in our paper.

Question 1 Can algorithms based on the LLL lattice basis reduction surpass Statistical Query
lower bound in Random Sparse Planted Vector problem?

We give an affirmative answer to this question by deriving an SQ lower bound falling short of
matching the guarantees of the lattice-based algorithm in Zadik et al. (2021). More concretely, the
SQ lower bound we derive in this paper indicates similar computational hardness as the previous
low degree lower bound in Mao and Wein (2021). This provides another natural example for the
almost equivalence between SQ algorithms and low degree algorithms that has been characterized
in Brennan et al. (2020).

1.1. Models

Throughout the paper, we will use n to denote the dimension of the hidden vector and d to denote
the dimension of the subspace where the hidden vector is planted in. For ease of formalization
and comparison to previous work, we will focus on the case where the planted vector is Bernoulli-
Rademacher, which is defined below.

Definition 1 (Bernoulli-Rademacher Vector) A random variable ω ∈ R is Bernoulli-Rademacher
with parameter ρ ∈ (0, 1] if

ω =


1/

√
ρ with probability ρ/2

−1/
√
ρ with probability ρ/2

0 with probability 1− ρ

A random vector x ∈ Rn is Bernoulli-Rademacher with parameter ρ, denoted by x ∼ BR(n, ρ), if
the entries of x are i.i.d Bernoulli-Rademacher with parameter ρ.

Notice that our definition for Bernoulli-Rademacher vector is not scaled, i.e. E[∥x∥22] = n.
Now, we give the precise definition of the (noisy) Sparse Planted Vector problem.

Model 1 ((Noisy) Sparse Planted Vector Problem) Given a hidden Bernoulli-Rademacher vec-
tor x ∼ BR(n, ρ) and d i.i.d. standard Gaussian vectors v0, v1, v2, . . . , vd−1 ∼ N(0, Idn), for
an arbitrary σ ⩾ 0 (which can depend on d), let Z ∈ Rn×d be the matrix whose columns are
x + σv0 and {vi}i∈{1,2,...,d−1}, i.e. Z = [x + σv0, v1, v2, . . . , vd−1]. After observing a rotated
matrix Z̃ = ZR, the goal is to recover the hidden ρ-sparse vector x.

When σ = 0 (which corresponds to the noiseless setting), the planted vector is ρ-sparse. When σ is
small, the planted vector in the subspace is close to a ρ-sparse vector.

To study the SQ lower bound, we equivalently formulate it as a multi-sample model.
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Model 2 (Multi-Sample version) Given a hidden random unit vector u ∈ Rd, for an arbitrary
σ ⩾ 0, we observe n independent samples {z̃i}i∈[n] such that

z̃i ∼ N(xiu, Idd − uuT + σ2uu⊤)

where x ∼ BR(n, ρ) is a hidden Bernoulli-Rademacher vector. For simplicity, we denote the
observation as Z̃ ∈ Rn×d where the rows are the samples {z̃i}i∈[n]. The goal is to recover the
hidden vector x given observation Z̃.

As pointed out in Lemma 4.21 of Mao and Wein (2021), when σ = 0, Model 1 and Model 2
are equivalent. Using a similar proof (see Appendix A.1 for details), it is easy to show that this
equivalence also holds when σ ̸= 0.

1.2. Estimation and hypothesis testing

There are two types of problems that are of particular interest in the models we consider: estimation
and hypothesis testing. Estimation problem aims to recover the planted vector given the obser-
vations, while hypothesis testing problem tries to distinguish whether the observations are sampled
from the planted distribution or from a null distribution. More precisely, we define the two problems
as follows.

Problem 1 (Estimation) Under Model 2, given observation Z̃, the goal is to estimate or exactly
recover the hidden Bernoulli-Rademacher vector x.

Problem 2 (Hypothesis testing) Given dimension d ∈ N, sample size n ∈ N and sparsity ρ ∈
(0, 1], define the following null and planted distributions:

– Under Q, observe Z̃ ∈ Rn×d whose entries are i.i.d. sampled from standard Gaussian
N(0, 1).

– Under P , observe Z̃ which is sampled from Model 2.

The goal is to determine whether the observations are sampled from Q or P .

In this work, we will compute the SQ lower bound for the hypothesis testing problem. Then, we will
show that the hypothesis testing problem can be reduced to estimation problem, which means lower
bounds of the hypothesis testing problem also serve as lower bounds of the estimation problem.

1.3. Statistical Query framework

In this paper, we study computational lower bounds for Model 2 under the Statistical Query (SQ)
framework. The SQ model is a popular computational model in the study of high dimension statis-
tics, including planted clique problem (Feldman et al., 2017), random satisfiability problems (Feld-
man et al., 2018), robust Gaussian mixtures (Diakonikolas et al., 2017a), etc.

The SQ framework is a restricted computational model where a learning algorithm can make
certain types of queries to an oracle and get answers that are subject to certain degree of noise
(Kearns, 1998). We will focus on the SQ model with VSTAT queries which is used in Brennan et al.
(2020), where the learning algorithm has access to the VSTAT oracle as defined below.
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Definition 2 (VSTAT Oracle) Given query ϕ : Rd → [0, 1] and distribution D over Rd, the
VSTAT(n) oracle returns Ex∼D[ϕ(x)] + ζ for an adversarially chosen ζ ∈ R such that |ζ| ⩽

max
(

1
n ,

√
E[ϕ](1−E[ϕ])

n

)
.

One way to show SQ lower bound is by computing statistical dimension of the hypothesis testing
problem, which is a measure on the complexity of the testing problem. In this paper, we use the
following definition of statistical dimension introduced by Feldman et al. (2017).

Definition 3 (Statistical Dimension) Let µ∅ be some distribution with D∅ as density function. Let
S = {µu} be some family of distributions indexed by u, such that µu has density function given by
Du. Consider the hypothesis testing problem between

– Null hypothesis: samples z1, z2, . . . , zn ∼ µ∅;

– Alternative hypothesis: z1, z2, . . . , zn ∼ µu where u is sampled from some prior distribution
µ.

For Du ∈ S , define the relative density D̄u(x) = Du(x)
D∅(x)

and the inner product ⟨f, g⟩ =

Ex∼D∅ [f(x)g(x)]. The statistical dimension SDA(S, µ, n) measures the tail of ⟨D̄u, D̄v⟩ − 1 with
u, v drawn independently from µ:

SDA(S, µ, n) = max
{
q ∈ N : E

u,v∼µ

[∣∣∣⟨D̄u, D̄v⟩−1
∣∣∣|A] ⩽ 1

m
for all events A s.t. P

u,v∈µ
(A) ⩾

1

q2

}
We will use SDA(n) or SDA(S, n) when S and/or µ are clear from the context. In Feldman et al.
(2017), it was shown that the statistical dimension is a lower bound on the SQ complexity of the
hypothesis test using VSTAT oracle.

Theorem 1 (Theorem 2.7 of Feldman et al. (2017), Theorem A.5 of Brennan et al. (2020)) Let
D∅ be a null distribution and S be a set of alternative distribution. Then any (randomised) statistical
query algorithm which solves the hypothesis testing problem of D∅ vs S with probability at least
1− δ requires at least (1− δ)SDA(S,m) queries to V STAT (m3 ).

1.4. Our results

We prove an SQ lower bound for distinguishing samples from Model 2 and from standard Gaussian
distribution.

Theorem 2 (SQ hardness of testing in noiseless model) For σ = 0, consider the distinguishing
problem between

– planted distribution P: the family of distributions S parameterized by u as described in
Model 2;

– null distribution Q: standard Gaussian N(0, Idd).

When ρ2d1.99 ⩽ n ⩽ ρ2d2

poly log d , we have

SDA(S, n) ⩾ exp

((
ρ2d2

n poly log d

)0.1
)
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As a by-product of our proof for Theorem 2, we also prove the same SQ lower bound for the
noisy case, i.e. σ > 0.

Theorem 3 (SQ hardness of testing in noisy model) For arbitrary 0 < σ < d−100, consider the
distinguishing problem between

– planted distribution P: the family of distributions S parameterized by u as described in
Model 2;

– null distribution Q: standard Gaussian N(0, Idd).

When ρ2d1.99 ⩽ n ⩽ ρ2d2

poly log d , we have

SDA(S, n) ⩾ exp

((
ρ2d2

n poly log d

)0.1
)

Implication Notice that, when n = ρ2d1.99 and ρ ⩾ 1
d0.499

, we have:

SDA(S, ρ2d1.99) ⩾ exp
(
d0.001

)
.

This implies that, any SQ algorithm to solve the testing problem D∅ vs Du with probability at least
1−o(1) requires at least (1−o(1)) exp

(
d0.001

)
queries to VSTAT(Θ

(
ρ2d1.99

)
), which corresponds

to Θ
(
ρ2d1.99

)
samples.

In previous work (Zadik et al., 2021; Diakonikolas and Kane, 2021), it has been shown that
lattice-based algorithm can estimate the component vector xwhen σ ⩽ exp(−Ω(d)) and n ⩾ Ω(d).
As we will prove in Theorem 6, there is a polynomial time reduction from testing to estimation.
Therefore, there is a polynomial-time testing algorithm that is based on the LLL algorithm and can
solve the testing problem Problem 2 using n ⩾ Ω(d) samples when σ ⩽ exp(−Ω(d)). Thus, when
ρ≫ 1√

d
, the lattice-based algorithm succeeds while the SQ lower bound predicts the problem to be

computationally hard. Thus, we can conclude that the LLL algorithm surpasses SQ lower bounds
in this problem.

1.5. Background and prior work

1.5.1. FAILURE OF SQ LOWER BOUND

Although the majority of machine learning algorithms are captured by SQ algorithm, Gaussian
elimination and its alike can surpass SQ lower bounds. A celebrated scenario for the failure of
SQ lower bound is learning parity function (Blum et al., 2003). It is worth mentioning that, very
recently, the SQ lower bound was also found to fall short in asymmetric tensor PCA model (Dudeja
and Hsu, 2021).

1.5.2. ALGORITHM RESULTS FOR SPARSE PLANTED VECTOR PROBLEM

For the Random Sparse Planted Vector problem we consider here, it has been shown that the l1/l2
minimization problem recovers the planted vector as long as ρ ⩽ c and d ⩽ cn for a sufficiently
small constant c (Qu et al., 2014). However, the l1/l2 minimization problem is non-convex and is
computationally expensive. The Sum-of-Squares method proposed in Barak et al. (2014) estimates
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the planted vector based on the l2/l4 minimization problem in the region ρ ⩽ c and d
√
ρ ⩽ c

√
n.

Inspired by the Sum-of-Squares method, a fast spectral method to estimate the planted vector was
proposed in Hopkins et al. (2016) which works in the region ρ ⩽ c and d ≪

√
n. The optimal

spectral algorithm was proposed in Mao and Wein (2021) which builds on Hopkins et al. (2016) and
recovers the planted vector when n ⩾ Ω̃

(
ρ2d2

)
. Very surprisingly, it was recently shown in Zadik

et al. (2021); Diakonikolas and Kane (2021) that lattice-based algorithms can recover the planted
sparse vector when n ⩾ Ω(d), which surpasses previous lower bound on low degree polynomials.

1.5.3. COMPUTATIONAL LOWER BOUNDS

For the Random Sparse Planted Vector problem (with σ = 0), it was shown in Mao and Wein (2021)
that low-degree polynomial algorithms fail when n ⩽ Õ

(
ρ2d2

)
. When the sparsity ρ = 1, i.e. the

planted vector is Rademacher, Sum-of-Squares lower bound is proved for n ≪ d3/2 in Davis et al.
(2021). These lower bounds are surpassed by the aforementioned lattice-based algorithm in Zadik
et al. (2021). For the noisy case σ ̸= 0, similar low degree lower bound has been obtained in d’Orsi
et al. (2020b); Chen and d’Orsi (2022).

1.5.4. RELATION TO NON-GAUSSIAN COMPONENT ANALYSIS

The Random Sparse Planted Vector problem can be considered as a special case of non-Gaussian
component analysis. In such class of models, conditioning on a hidden direction u ∈ Rd, the
samples z1, z2, . . . , zn are i.i.d randomly distributed d-dimensional vectors. The projection of zi in
the direction perpendicular to u follows standard Gaussian distribution, while ⟨zi, u⟩ follows some
specified non-Gaussian distribution. The problem is to estimate the hidden direction u.

Another famous Non-Gaussian component analysis model is homogeneous continuous learning
with error (hCLWE) (Bruna et al., 2021). There are SQ lower bounds for this model when inverse
polynomial amount of Gaussian noise is added to the hidden direction (Diakonikolas et al., 2017b,a).
However, note that lattice-based algorithms are not believed to be robust against inverse polynomial
amount of noise (Zadik et al., 2021; Diakonikolas and Kane, 2021). Therefore, we cannot conclude
that the LLL algorithm surpasses SQ lower bound in their setting.

2. Preliminaries

2.1. Notations

Let D∅ vs S = {Du}u∼ν be a hypothesis testing problem with prior ν. We write D̄u(z) =
Du(z)
D∅(z)

to refer to the likelihood ratio or relative density. For real valued functions f and g, we define their
inner product with respect to distribution D∅ to be ⟨f, g⟩D∅ = Ez∼D∅ [f(z)g(z)], we write ⟨f, g⟩
whenD∅ is clear from context. The corresponding norm of the inner product is ∥f∥D∅ =

√
⟨f, f⟩D∅

For distribution D and integer k, we write D⊗k to denote the density function of the joint dis-
tribution of k independent samples from D. From the definition of inner product and independence
of samples, we have:

⟨f⊗k, g⊗k⟩D⊗k
∅

= ⟨f, g⟩kD∅

2.2. Notations for distributions under alternative hypothesis

We define some notations for probability measures under alternative hypothesis in Problem 2.
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Definition 4 (Notations for distributions under alternative hypothesis) We define µσ to be the
distribution of alternative hypothesis in distinguishing Problem 2, and µ be the distribution of a
single sample under alternative hypothesis when σ = 0. Furthermore, we define µx0,u,σ to be
the distribution of a single sample under alternative hypothesis, conditioning on unit vector u and
sparse Bernoulli-Rademacher variable x0. We define µu,σ to be the distribution of alternative hy-
pothesis conditioning on u, and µu to be the distribution of alternative hypothesis conditioning on
u when σ = 0.

2.3. Lower bound from low degree method

Low degree method is a well studied heuristic for computational hardness of hypothesis testing
problems. Essentially it rules out testing algorithms which are based on thresholding low degree
polynomials. Originating in Hopkins and Steurer (2017) and Hopkins (2018), it has been success-
fully applied to a wide range of hypothesis testing problems (Kunisky et al., 2019; d’Orsi et al.,
2020a; Ding et al., 2019; Kunisky, 2021), optimization problems (Gamarnik et al., 2020; Wein,
2022; Bresler and Huang, 2022) and recovery problems (Schramm and Wein, 2020) (the list is not
exhaustive).

In multi-sample hypothesis testing problem, the formulation of low degree method is given in
Brennan et al. (2020):

Definition 5 (Definition 2.3 in Brennan et al. (2020), Samplewise degree) For integers m,n ⩾
1, we say that a function f : (Rn)⊗m → R has samplewise degree (d, k) if f (x1, . . . , xm) can
be written as a linear combination of functions which have degree at most d in each xi, and non-
zero degree in at most k of the xi’s.

Definition 6 (Definition 2.4 in Brennan et al. (2020), Low degree likelihood ratio) For a hy-
pothesis testing problem D∅ vs. S = {Du}, the m-sample (ℓ, k)-low degree likelihood ratio
function is the projection of them-sample likelihood ratio Eu∼S

(
D̄⊗m

u

)
to the span of non-constant

functions of sample-wise degree at most (ℓ, k) :(
E

u∼S
D̄⊗m

u − 1

)⩽ℓ,k

= E
u∼S

(
D̄⊗m

u

)⩽ℓ,k − 1.

In low degree method, we want to show that the variance of low degree likelihood ratio under
D∅ is bounded by a constant:∥∥∥∥∥

(
E

u∼S
D̄⊗m

u − 1

)⩽ℓ,k
∥∥∥∥∥
2

=

∥∥∥∥ E
u∼S

(
D̄⊗m

u

)⩽ℓ,k − 1

∥∥∥∥2 ⩽ O(1).

where the norm ∥·∥ here is defined for distribution D∅:

∥f(z)∥ :=
√

E
z∼D∅

f(z)2

This can be thought of as a computational counterpart of Le-Cam’s method, and provides evidence
of hardness in its own sense.
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3. Overview of techniques

3.1. Smoothed measure

When σ = 0, for the conditional distribution of sample zi given xi and u i.e N(xiu, I − uu⊤),
the density function is not well defined. Therefore, for technical reasons, we first consider the case
σ ̸= 0, where the conditional distribution N(u, I − uu⊤ + σ2uu⊤) admits a density function. We
will first derive the desired SQ lower bound for such smoothed measure (i.e. σ ̸= 0 but arbitrarily
small), then use weak convergence and continuity arguments to get the same SQ lower bound for
the case σ = 0. Similar technique has been used for proving information-theoretic lower bound in
Zadik et al. (2021).

3.2. Almost equivalence between low degree method and SQ model

Our strategy is to first obtain low degree likelihood ratio (LDLR) lower bound, and then translate
it to SQ lower bound using the almost equivalence relationship proved in Brennan et al. (2020). In
particular, they proved the following theorem.

Theorem 4 (Theorem 3.1 in Brennan et al. (2020), LDLR to SDA Lower Bounds) Let ℓ, k ∈
N with k even and S = {Dv}v∈S be a collection of probability distributions with prior µ over
S. Suppose that S satisfies:

– The k-sample high-degree part of the likelihood ratio is bounded by
∥∥∥Eu∼S

(
D̄>ℓ

u

)⊗k
∥∥∥ ⩽ δ.

– For some m ∈ N, the (ℓ, k) − LDLRm is bounded by
∥∥∥Eu∼S

(
D̄⊗m

u

)⩽ℓ,k − 1
∥∥∥ ⩽ ε. Then

for any q ⩾ 1, it follows that

SDA

(
S, m

q2/k
(
kε2/k + δ2/km

)) ⩾ q.

Note that for lower bounding the statistical dimension via this almost equivalence relationship,
we not only need to bound the low degree likelihood ratio, but also need to verify the bound on
high degree part. The condition on high degree part

(
D̄>ℓ

u

)⊗k is inherently needed, since the query
functions in SQ model don’t need to be low degree polynomials.

3.3. Stronger low degree lower bound

A low degree lower bound for σ = 0 has been developed in Mao and Wein (2021). However, this
is not strong enough for applying the almost equivalence relationship, since we also need the bound
on the high degree part of likelihood ratio. Let Dσ(z) : Rd → R be the density function of sample
distribution under alternative hypothesis, by taking ℓ → ∞ in Theorem 4, it is sufficient to show
that ∥∥∥∥∥∥ E

u∼S

(
D⊗m

u,σ

D⊗m
∅

)⩽∞,k

− 1

∥∥∥∥∥∥
2

⩽ O(1) .
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For this, we use the identity which already appeared in Brennan et al. (2020):∥∥∥∥∥∥ E
u∼S

(
D̄⊗m

u,σ

D̄⊗m
∅

)⩽∞,k

− 1

∥∥∥∥∥∥
2

=
k∑

t=1

(
m

t

)
E

u,v∼S

(
⟨D̄u,σ, D̄v,σ⟩ − 1

)t
.

where D̄u,σ is the ratio of density functions D̄u,σ =
Du,σ

D∅
. Then, for any t ⩽ n0.1, we will prove the

bound Eu,v∼S
(
⟨D̄u,σ, D̄v,σ⟩ − 1

)t ≪ (
t

em

)t. Combine the bounds in the summation, we conclude
that when k ⩽ n0.1, we have:

k∑
t=1

(
m

t

)
E

u,v∼S

(
⟨D̄u,σ, D̄v,σ⟩ − 1

)t
⩽ O(1) .

3.4. Inner product between likelihood ratios

We obtain analytical expression for the inner product ⟨D̄u,σ, D̄v,σ⟩ for arbitrary pairs of unit norm d-
dimensional vectors u, v. Let Dxu,u,σ represents the density of distribution of sample conditioning
on xu and u, and density ratio D̄xu,u,σ = Dxu,u,σ/D∅. It is easy to see that

⟨D̄u,σ, D̄v,σ⟩ = E
xu,xv

⟨D̄xu,u,σ, D̄xv ,v,σ⟩

where xu, xv are independent ρ-sparse Bernoulli-Rademacher variables. Notice that Dxu,u,σ

follows from Gaussian distribution N(xuu, Idd − uu⊤ + σ2uu⊤). Given the observation that
Dxu,u,σ, Dxv ,v,σ and D∅ are all Gaussian distributions, we can obtain ⟨D̄xu,u,σ, D̄xu,u,σ⟩ exactly
and explicitly by Gaussian integral. Finally, by taking expection over xu and xv, we obtain an ex-
plicit expression for ⟨D̄u,σ, D̄v,σ⟩. In particular, the inner product turns out to be a function of u⊤v,
that is,

⟨D̄u,σ, D̄v,σ⟩ = fσ(u
⊤v)

for some function fσ : R 7→ R.

3.5. Moments of inner product of likelihood ratio

To bound the moments of ⟨D̄u,σ, D̄v,σ⟩, we use a standard fact from probability theory that
1
2

(
u⊤v + 1

)
follows Beta distribution Beta(d−1

2 , d−1
2 ). Let y = 1

2

(
u⊤v + 1

)
. Using the proba-

bility density function for Beta(d−1
2 , d−1

2 ), we have the moment bound:

E
u,v

(
⟨D̄u,σ, D̄v,σ⟩ − 1

)k
⩽ O

(√
d− 1E f(y)k (4y(1− y))d/2−1

)
To bound this integral, we divide [0, 1] into several regions. In particular, when y ≈ 1

2 , f(c) is small
and we can approximate it by its Taylor expansion around 1/2. When y is away from 1

2 , the upper
bound on the integral is imposed since (4y(1− y))d/2−1 is very small. Combine these regions, we
can get our desired bound on the integral between [0, 1].

4. Statistical Query lower bound for non-zero noise

In this section, we compute the SQ lower bound for noisy Sparse Planted Vector problem by exploit-
ing the almost equivalence relationship between low degree likelihood ratio and SQ lower bound.
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4.1. Exact formula for projection of likelihood ratio

First, we show that the second moment of likelihood ratio projection can be reduced to some simple
single variable integral.

Lemma 1 Let θ = 1 − σ2 and c = u⊤v where u, v ∼ Sd−1 are independently and uniformly
sampled from the sphere. We have∥∥∥∥ E
u∼Sd−1

(
D̄⊗n

u,σ

)⩽∞,k − 1

∥∥∥∥2 =E
c

k∑
t=1

(
n

t

)(
1√

1− θ2c2

[
(1− ρ)2 + 2ρ(1− ρ) exp(−1

ρ

θc2

2− 2θ2c2
)

+
ρ2

2
exp(

c

ρ(1 + θc)
) +

ρ2

2
exp(− c

ρ(1− θc)
)
]
− 1

)t

(4.1)

For fixed unit vector u, let Dxu,u,σ(zi) be the density of conditional distribution of sample zi given
xi and u, i.e zi ∼ N(xiu, I − uu⊤ + σ2uu⊤). The critical step for proving Lemma 1 is to compute
Ez∼D∅ [D̄u,xu(z) · D̄v,xv(z)] for arbitrary xu, xv ∈ {0,±1}, where D̄u,xu(z) = Du[z|xu]/D∅(z).
The result of this step is stated in Lemma 2, whose proof is deferred to Appendix C.1.

Lemma 2 In the setting of Lemma 1, for D̄xu,u,σ(z) =
Dxu,u,σ(z)

D∅(z)
and D̄xv ,v,σ(z) =

Dxv,v,σ(z)
D∅(z)

,

⟨D̄xu,u,σ, D̄xv ,v,σ⟩ =
exp

(
1

2−2θ2c2
[2xuxvc− θ(x2u + x2v)c

2]
)

√
1− θ2c2

The next step is to take expectation over xu and xv. The result is shown in Lemma 3, whose proof
is deferred to Appendix C.2.

Lemma 3 In the setting of Lemma 1, we have

⟨D̄u,σ, D̄v,σ⟩ =
1√

1− θ2c2

[
(1− ρ)2 + 2ρ(1− ρ) exp(−1

ρ

θc2

2− 2θ2c2
)

+
ρ2

2
exp(

c

ρ(1 + θc)
) +

ρ2

2
exp(− c

ρ(1− θc)
)
]

Given Lemma 3, we can prove Lemma 1.
Proof [Proof of Lemma 1] By Claim 3.3 of Brennan et al. (2020), we have:∥∥∥∥ E

u∼Sd−1
[D̄⊗n

u,σ]
⩽l,k − 1

∥∥∥∥2 = E
u,v∼Sd−1

k∑
t=1

(
n

t

)(
⟨D̄⩽l

u,σ, D̄
⩽l
v,σ⟩ − 1

)t
Take ℓ→ ∞, we have:∥∥∥∥ E

u∼Sd−1
[D̄⊗n

u,σ]
⩽∞,k − 1

∥∥∥∥2 = E
u,v∼Sd−1

k∑
t=1

(
n

t

)(
⟨D̄u,σ, D̄v,σ⟩ − 1

)t (4.2)

Plug the expression of ⟨D̄u,σ, D̄v,σ⟩ from Lemma 3 into Eq. (4.2), we get:∥∥∥∥ E
u∼Sd−1

[D̄⊗n
u,σ]

⩽∞,k − 1

∥∥∥∥2 = E
u,v∼Sd−1

k∑
t=1

(
n

t

)(
⟨D̄u,σ, D̄v,σ⟩ − 1

)t
10
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=E
c

k∑
t=1

(
n

t

)( 1√
1− θ2c2

[
(1− ρ)2 + 2ρ(1− ρ) exp(−1

ρ

θc2

2− 2θ2c2
)

+
ρ2

2
exp(

c

ρ(1 + θc)
) +

ρ2

2
exp(− c

ρ(1− θc)
)
]
− 1
)t

Additionally, by Lemma 10, c+1
2 follows Beta distribution Beta(d−1

2 , d−1
2 ). Using the density

function of Beta distribution, we can write this expectation explicitly as an integral. In the following
sections, we will bound this integral. We will start from the case where σ → 0 in Section 4.2, then
bound the integral for σ ⩽ d−K in Section 4.3 where K is a constant that is large enough.

4.2. Low degree lower bound for σ → 0

In this section, we prove that, when σ → 0, we have lower bound n ⩽ ρ2d2

k8
for ρ-sparse vectors

with sparsity ρ ⩾ k√
d

and degree log2 d ⩽ k ⩽
√

d
log d .

Lemma 4 Suppose ρ ⩾ k√
d

. When n ⩽ ρ2d2

k8
and log2 d ⩽ k ⩽

√
d

log d , we have

lim
σ→0

∥∥∥∥ E
u∼Sd−1

[D̄⊗n
u,σ]

⩽∞,k − 1

∥∥∥∥2 ⩽ O(1)

When σ → 0, we can apply a change of variables to Eq. (4.1) by c = 2y − 1 where y ∼
Beta(d−1

2 , d−1
2 ), then plug in the probability density function of Beta(d−1

2 , d−1
2 ) to get Lemma 5,

whose proof is deferred to Appendix C.3.

Lemma 5 In the setting of Lemma 4, let y = c+1
2 and c = u⊤v, we have

lim
σ→0

∥∥∥∥ E
u∼Sd−1

(
D̄⊗n

u,σ

)⩽∞,k − 1

∥∥∥∥2
⩽O

(
2d−2

√
d− 1

k∑
t=1

(
n

t

)∫ 1

0

( 1

2
√
y(1− y)

[(1− ρ)2 + 2ρ(1− ρ) exp(−1

ρ

(2y − 1)2

8y(1− y)
)

+
ρ2

2
exp(

1

ρ
(1− 1

2y
)) +

ρ2

2
exp(

1

ρ
(1− 1

2− 2y
))]− 1

)t
[y(1− y)]

d−3
2 dy

) (4.3)

Now, we prove Lemma 4.
Proof [Proof of Lemma 4] From Lemma 5, we have:

lim
σ→0

∥∥∥∥ E
u∼Sd−1

[D̄⊗n
u,σ]

⩽∞,k − 1

∥∥∥∥2
=Θ

(
2d−2

√
d− 1

k∑
t=1

(
n

t

)∫ 1

0

( 1

2
√
y(1− y)

[(1− ρ)2 + 2ρ(1− ρ) exp(−1

ρ

(2y − 1)2

8y(1− y)
)

+
ρ2

2
exp(

1

ρ
(1− 1

2y
)) +

ρ2

2
exp(

1

ρ
(1− 1

2− 2y
))]− 1

)t
[y(1− y)]

d−3
2 dy

)
11
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=Θ

(
√
d− 1

k∑
t=1

(
n

t

)∫ 1

0

( 1

2
√
y(1− y)

[(1− ρ)2 + 2ρ(1− ρ) exp(−1

ρ

(2y − 1)2

8y(1− y)
)

+
ρ2

2
exp(

1

ρ
(1− 1

2y
)) +

ρ2

2
exp(

1

ρ
(1− 1

2− 2y
))]− 1

)t
[4y(1− y)]

d−3
2 dy

)
=Θ
(√

d− 1

k∑
t=1

(
n

t

)∫ 1
2

0

( 1

2
√
y(1− y)

[(1− ρ)2 + 2ρ(1− ρ) exp(−1

ρ

(2y − 1)2

8y(1− y)
)

+
ρ2

2
exp(

1

ρ
(1− 1

2y
)) +

ρ2

2
exp(

1

ρ
(1− 1

2− 2y
))]− 1

)t
[4y(1− y)]

d−3
2 dy

)
=Θ

(√
d− 1(S1 + S2)

)
where we split the integral into two parts:

S1 =
k∑

t=1

(
n

t

)∫ 1
2
− ε

2

0

( 1

2
√
y(1− y)

[(1− ρ)2 + 2ρ(1− ρ) exp(−1

ρ

(2y − 1)2

8y(1− y)
)

+
ρ2

2
exp(

1

ρ
(1− 1

2y
)) +

ρ2

2
exp(

1

ρ
(1− 1

2− 2y
))]− 1

)t
[4y(1− y)]

d−3
2 dy

(4.4)

and,

S2 =
k∑

t=1

(
n

t

)∫ 1
2

1
2
− ε

2

( 1

2
√
y(1− y)

[(1− ρ)2 + 2ρ(1− ρ) exp(−1

ρ

(2y − 1)2

8y(1− y)
)

+
ρ2

2
exp(

1

ρ
(1− 1

2y
)) +

ρ2

2
exp(

1

ρ
(1− 1

2− 2y
))]− 1

)t
[4y(1− y)]

d−3
2 dy

(4.5)

We set ε = k√
d

. Combine upper bounds S1 ⩽ 1√
d

from Lemma 11 and S2 ⩽ 1√
d

from Lemma 12
(the details are deferred to Appendix C.4 and Appendix C.5), we get:∥∥∥∥ E

u∼Sd−1
[D̄⊗n

u,σ]
⩽l,k − 1

∥∥∥∥2 ⩽Θ
{√

d− 1(S1 + S2)
}

⩽Θ
{2√d− 1√

d

}
=Θ(1)

4.3. Low degree lower bound for non-zero σ

Now, we prove that, when there is non-zero noise σ ⩽ d−K for some constant K that is large
enough1, we have lower bound n ⩽ ρ2d2

k8
for ρ-sparse vectors with sparsity ρ ⩾ k√

d
and degree

log2 d ⩽ k ⩽
√

d
log d .

1. This is required for technical reasons. Intuitively the problem gets harder for larger noise.

12
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Lemma 6 Let σ ⩽ d−K for some large enough univeral constant K and ρ ⩾ k√
d

. When n ⩽ ρ2d2

k8

and log2 d ⩽ k ⩽
√

d
log d , we have

∥∥∥∥ E
u∼Sd−1

[D̄⊗n
u,σ]

⩽∞,k − 1

∥∥∥∥2 ⩽ Θ(1)

Proof From Eq. (4.1), we get:∥∥∥∥ E
u∼Sd−1

[D̄⊗n
u,σ]

⩽∞,k − 1

∥∥∥∥2 =E
c

k∑
t=1

(
n

t

)( 1√
1− θ2c2

[
(1− ρ)2 + 2ρ(1− ρ) exp(−1

ρ

θc2

2− 2θ2c2
)

+
ρ2

2
exp(

c

ρ(1 + θc)
) +

ρ2

2
exp(− c

ρ(1− θc)
)
]
− 1
)t

=2

∫ 1

0

k∑
t=1

(
n

t

)( 1√
1− θ2c2

[
(1− ρ)2 + 2ρ(1− ρ) exp(−1

ρ

θc2

2− 2θ2c2
)

+
ρ2

2
exp(

c

ρ(1 + θc)
) +

ρ2

2
exp(− c

ρ(1− θc)
)
]
− 1
)t
P (c)dc

=2
{
T1 + T2

}
where we split the integral into two parts:

T1 =

∫ 1−d−kσ

0

k∑
t=1

(
n

t

)( 1√
1− θ2c2

[
(1− ρ)2 + 2ρ(1− ρ) exp(−1

ρ

θc2

2− 2θ2c2
)

+
ρ2

2
exp(

c

ρ(1 + θc)
) +

ρ2

2
exp(− c

ρ(1− θc)
)
]
− 1
)t
P (c)dc

(4.6)

and,

T2 =

∫ 1

1−d−kσ

k∑
t=1

(
n

t

)( 1√
1− θ2c2

[
(1− ρ)2 + 2ρ(1− ρ) exp(−1

ρ

θc2

2− 2θ2c2
)

+
ρ2

2
exp(

c

ρ(1 + θc)
) +

ρ2

2
exp(− c

ρ(1− θc)
)
]
− 1
)t
P (c)dc

(4.7)

for some constant kσ that is large enough but smaller than K
2 . Combine upper bounds T1 ⩽ Θ(1)

from Lemma 13 and T2 ⩽ Θ(1) from Lemma 14 (the details are deferred to Appendix C.6 and
Appendix C.7), we get:∥∥∥∥ E

u∼Sd−1
[D̄⊗n

u,σ]
⩽∞,k − 1

∥∥∥∥2 = 2
{
T1 + T2

}
⩽ Θ(1)

when noise is σ ⩽ d−K for some constant K that is large enough.

13
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4.4. SQ lower bound via low degree likelihood ratio

Now, we can prove our main theorem on SQ lower bound for noisy Sparse Planted Vector problem.
Proof [Proof of Theorem 3] By Lemma 6, for ρ-sparse rademacher vectors with ρ ⩾ k√

d
, when

n ⩽ ρ2d2

k8
and log2 d ⩽ k ⩽

√
d

log d , we have:

∥∥∥∥ E
u∼Sd−1

[D̄⊗n
u,σ]

⩽∞,k − 1

∥∥∥∥2 ⩽ Θ(1)

In theorem 3.1 of Brennan et al. (2020) (recorded as Theorem 4 in this paper), taking ℓ =

∞, ε = O(1), q = exp(k), we get for ρ ⩾ k√
d

, when n ⩽ ρ2d2

k8
and log2 d ⩽ k ⩽

√
d

log d , we have:

SDA(S,Θ(n)) ⩾ exp (k)

Then, by Theorem 1.3 of Brennan et al. (2020), any SQ algorithm to solve the hypothesis testing
problem D∅ vs Du,σ with probability at least 1 − o(1) requires at least (1 − o(1)) exp (k) queries
to V STAT (Θ (n)).

5. SQ lower bound in noiseless setting

We have proven the SQ lower bound for distinguishing problem when σ → 0. In this section, we
show that the SQ lower bound for σ → 0 also applies for σ = 0.

Theorem 5 [Restatement of Theorem 2] For σ = 0, consider the distinguishing problem between

– planted distribution P: the family of distributions S parameterized by u as described in
Model 2;

– null distribution Q: standard Gaussian N(0, Idd).

When ρ2d1.99 ⩽ n ⩽ ρ2d2

poly log d , we have

SDA(S, n) ⩾ exp

((
ρ2d2

n poly log d

)0.1
)

The proof is very similar to the proof of lemma 7.3 in Zadik et al. (2021) (in particular the
special case n = 1). We first prove that the measure µ1,σ almost surely converges to µ̃1, such that

lim
σ→0

|Eµσϕ(z)− Eµ̃ϕ(z)| = 0 .

Then we prove that µσ weakly converges to µ. It follows that µ = µ̃. Therefore, we obtain

lim
σ→0

|Eµσϕ(z)− Eµϕ(z)| = 0

Therefore, if an SQ algorithm can solve testing problem for σ = 0, it can also solve the testing
problem for σ → 0. This implies that SQ lower bound for σ → 0 also applies for the case σ = 0.

14
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5.1. Weak convergence

Lemma 7 As σ → 0, µσ weakly converges to a measure µ̃ : Rd → R, which satisfies

E
z∼µ̃

ϕ(z) = lim
σ→0

E
z∼µσ

ϕ(z)

for any query function ϕ(z) : Rd → [0, 1].

Proof Let Dx0,u,σ be the density function of measure µx0,u,σ, the distribution of a single sample
given sparse Bernoulli-Rademacher variable x0 and direction u. Then for Σ = Id− uu⊤ + σ2uu⊤,
we have

Dx0,u,σ = (2π)−d/2 det(Σ)−1/2 exp

(
−1

2
(z − x0u)

⊤
(
I +

(
σ−2 − 1

)
uu⊤

)
(z − x0u)

)
= (2π)−d/2σ exp

(
− 1

2σ2

)
exp

(
−1

2

(
∥z∥2 + (σ−2 − 1)⟨z, u⟩2 − 2σ−2x0⟨z, u⟩

))
Let µx0,σ be the measure for a single sample conditioning on the sparse Rademacher variable x0
associated with the sample. Let the density function of distribution µx0,σ be Dx0,σ. Then we have

Dx0,σ = E
u
Dx0,u,σ

where the expectation of u is taken uniformly over the d-dimensional sphere. Thus, we have

Dx0,σ = (2π)−d/2 exp

(
−1

2
∥z∥2

)
σ−1

∫
Sd−1

exp
(
−σ−2F (u)

)
dν(u)

where F (u) = 1
2

(
1− σ2

)
⟨u, z⟩2 − x0⟨u, z⟩+ 1

2 . Using Laplace’s approximation method, we can
show2 that Dx,σ(z) point-wise converges to D̃x(z), where

D̃x(z) = (2π)−d/2 exp

(
−1

2
∥z∥2

) (
1− x20∥z∥−2

) d−n−2
2

+

∥z∥

(here (·)+ is the relu function). Taking the expectation over x0 ∼ BR(ρ), we have

Dσ = E
x0

Dx0,σ → E
x0

Dx0 .

Next we show that Dσ(z) is dominated by some Lebesgue-integrable functions in Rd 3. Let
D∅(z) be the density function of N(0, Idd). By taking n = 1 in Lemma 6, for σ ̸= 0, we have

⟨Dσ(z)

D∅(z)
,
Dσ(z)

D∅(z)
⟩ ⩽ O(1) .

This is equivalent to ∫
z

D2
σ(z)

D∅(z)
dz ⩽ O(1) .

2. The proof is implied in the proof of Lemma 7.3 in Zadik et al. (2021), by taking n = 1 and replacing 1n with x0.
3. Alternatively the proof of Lemma 7.3 in Zadik et al. (2021) also contains a proof for this fact.
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Since D∅(z) ⩽
1

(2π)d/2
, we have D2

σ(z) is dominated by some Lebesgue-integrable function, which
implies that Dσ(z) is also dominated by some Lebesgue-integrable function.

Let µ̃ be the measure induced by density function D̃(z). Now, by dominated convergence
theorem (Theorem 1.19 in Evans (1992)), we have measure µσ weakly converge to µ̃ as σ → 0.
Furthermore, due to pointwise convergence of density function Dσ(z) → D̃(z), by dominated
convergence theorem, we have∫

z

∣∣∣(Dσ(z)− D̃(z)
)∣∣∣ · ϕ(z)dz = 0 .

Therefore, we can conclude
lim
σ→0

E
z∼µσ

ϕ(z) = E
z∼µ̃

ϕ(z) .

5.2. Continous argument

Lemma 8 As σ → 0, we have µσ weakly converges to µ.

The proof already appears in Zadik et al. (2021).
Proof The distribution µx0,u and µx0,u,σ share the same mean, and have covariance matrix I−uu⊤
and σ2uu⊤+(I−uu⊤) respectively which commute. It follows from Olkin and Pukelsheim (1982)
that we have 2-Wasserstein distance bound

W2 (µx0,u, µx0,u,σ) =

∥∥∥∥(σ2uuT +
(
I − uu⊤

))1/2
−
(
I − uu⊤

)1/2∥∥∥∥2
F

= O
(
σ2
)

By taking expectation over u, we have

W2 (µx0 , µx0,σ) ⩽
∫
Sd−1

W2 (µx0,u, µx0,u,σ) dν(u) = O
(
σ2
)

By taking expectation over x0, we then have

W2 (µ, µσ) ⩽
∫
Sd−1

W2 (µu, µu,σ) dν(u) = O
(
σ2
)

SinceW2 metrizes weak convergence on Euclidean spaces, we then have µ weakly converges to µσ,
by theorem 6.9 in Villani (2008).

5.3. Proof of Theorem 5

Now we finish the proof of Theorem 5.
Proof [Proof of Theorem 5] Since µσ weakly converges to both µ̃ and µ, we have µ = µ̃. Therefore,
we have

E
z∼µ

ϕ(z) = lim
σ→0

E
z∼µσ

ϕ(z) .

This means, in SQ model, the query functions always yield the same result under µ and µσ when
σ → 0. Thus, the SQ lower bound for σ → 0 implies the same SQ lower bound for σ = 0.
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6. Conclusion and discussions

We have shown that lattice basis reduction algorithm can surpass SQ lower bound in the Random
Sparse Planted Vector problem. There are some interesting directions which we leave as future
work:

– Can we show SQ lower bound for sparse planted vector problem, where the planted vector is
sampled from sparse Gaussian? In this case, the problem is resistant against the attack from
lattice basis reduction algorithm, since the planted vector is not integral. Notably, the low
degree lower bound for this problem is proved recently by Mao and Wein (2021).

– For the noisy version of Model 1 or its variants, can we show Cryptographic hardness result
for recovering the sparse vector, when n≪ ρ2d2? A potential starting point is the continuous
learning with error problem(CLWE) (Bruna et al., 2021; Gupte et al., 2022).
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Appendix A. Reductions

A.1. Equivalence relationship between Model 1 and Model 2

In this section, we show that Model 1 and Model 2 are equivalent when σ ̸= 0. The proof is similar
to the proof of Lemma 4.21 of Mao and Wein (2021) which shows that Model 1 and Model 2 are
equivalent when σ = 0.

Lemma 9 When u is chosen uniformly at random from the unit sphere in Rd, Model 1 is equivalent
to Model 2.

Proof Consider the setting of Model 1 where we have Z̃ = ZR. Denote the rows of R as
{Ri}i∈{0,1,...,d−1} and let the first row of R be u, that is R0 = u. Condition on R and x, row
z̃i of Z̃ can be expressed as:

z̃i = (xi + σµ0)u+
d−1∑
j=1

µjRj

where {µi}i∈{0,1,...,d−1} are sampled independently from N(0, 1). Given this expression, it is easy
to verify that the rows {z̃i}i∈{0,1,...,d−1} of Z̃ are independently sampled from N(xiu, Idd −uuT +

σ2uu⊤). Thus, Model 1 and Model 2 are equivalent.

A.2. From hypothesis testing to estimation

It has been shown in Mao and Wein (2021) that there exists a polynomial time reduction from the
hypothesis testing problem Problem 2 to the estimation problem Problem 1 when σ = 0, which
implies that estimation is at least as hard as hypothesis testing in the noiseless case. Now, we show
that the reduction holds for σ ̸= 0 using the same test ψ̃ as defined in Theorem 3.1 of Mao and Wein
(2021). The key observation is that the test ψ̃ works as long as the estimator x̃ satisfies ∥x̃−x∥ ⩽ C
for some constant C if Z̃ ∼ P and x̃ is in the column span of Z̃.

Theorem 6 Let us denote the observation as Z̃. Given distribution P,Q as defined in Problem 2,
if there exists an estimator f : Rn×d → Rn that,

– when Z̃ ∼ P , returns a vector x̃ such that ∥x̃−x∥ ⩽ C for some constant C with probability
1− o(1);

– when Z̃ ∼ Q, returns an arbitrary vector x̃;

then we can construct, in polynomial time, a test that uses the estimator f to solve the hypothesis
testing problem Problem 2 with probability 1− o(1).

Proof Let us denote ΠZ̃ as the projection matrix onto the column span of Z̃ and the projection of x̃
onto the column span of Z̃ as x̃p, that is x̃p = ΠZ̃ x̃. When Z̃ ∼ P , by the property of the projection
matrix, we have:

∥x̃p − x̃∥ ⩽ ∥x− x̃∥ ⩽ C

with probability 1− o(1). Hence, by triangle inequality, we can get:

∥x̃p − x∥ ⩽ ∥x̃p − x̃∥+ ∥x̃− x∥ ⩽ 2C
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with probability 1− o(1). Now, we have constructed a new estimator x̃p that is in the column span
of Z̃ and ∥x̃p − x∥ ⩽ 2C for some constant C when Z̃ ∼ P . Therefore, we can apply the test ψ̃
defined in Theorem 3.1 of Mao and Wein (2021) and get:

P
P
(ψ̃(x̃p) = Q) + P

Q
(ψ̃(x̃p) = P) ⩽ o(1)

Since projection x̃p = ΠZ̃ x̃ can be done in polynomial time and the test ψ̃ is constructed in polyno-
mial time according to Theorem 3.1 of Mao and Wein (2021), the reduction from hypothesis testing
to estimation is in polynomial time.

Theorem 6 implies that the estimation problem Problem 1 is at least as hard as hypothesis testing
problem Problem 2. Since the lattice-based reduction algorithm in Zadik et al. (2021); Diakonikolas
and Kane (2021) solve the estimation problem exactly given 2d samples when σ ⩽ O(exp(−d2)),
it can also solve the hypothesis testing problem in polynomial time by this reduction.

A.3. Implication of Statistical Query lower bound for estimation

In the SQ model, we are given an SQ oracle that allows us to query the distribution. However, in
the given model definition, the planted vector x is sampled at random in the distribution. Therefore,
it does not make much sense to estimate x from the distribution in the SQ model.

Despite this fact, the SQ lower bound from Theorem 1 still gives us a glimpse of the computa-
tional hardness of estimation algorithms. According to Theorem 6, any polynomial-time estimation
algorithm that recovers the hidden vector x from Model 2 can be used to construct a polynomial-
time hypothesis testing algorithm. Therefore, the SQ lower bound for hypothesis testing in theorem
Theorem 1 can be compared to sample complexity of any polynomial time estimation algorithm.

A key implication from the lattice-based algorithm in Zadik et al. (2021); Diakonikolas and
Kane (2021) is that we can estimate the component vector x when σ ⩽ exp(−Ω(d)) and n ⩾ Ω(d).
According to Theorem 6, the lattice-based algorithm can also be used to construct a polynomial-time
hypothesis testing algorithm when n ⩾ Ω(d). This surpasses the SQ lower bound as the SQ lower
bound predicts the hypothesis testing problem to be computationally hard in this sample complexity
region.

Appendix B. Probability Theory Facts

B.1. Distribution of inner product of random vectors

Lemma 10 Let u, v be two random d-dimensional vectors sampled uniformly from the unit sphere.
Let y = u⊤v+1

2 ,

y ∼ Beta(
d− 1

2
,
d− 1

2
)

Proof By the spherical symmetry of u, v, we can assume without generality that v = e1, i.e the first
coordinate vector. Then u⊤v = u1. The probability that P {u1 ⩾ t} is proportional to the surface
area of spherical cap with base radius

√
1− t2. Between t and t+ dt, the spherical belt area is then

proportional to the (
√
1− t2)d−2 (which is the circle length of the base) multiplied by the slope

1√
1−t2

. Thus the density of u⊤v is proportional to (
√
1− t2)d−3. Now, using the rule of changing

variables in distribution, the density of y = u⊤v+1
2 exactly matches B(d−1

2 , d−1
2 )
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Using Stirling’s approximation, we can get the following well known asymptotic bound for Beta
function.

Fact 7 (Approximation of Beta function) We have the following asymptotic approximation for
Beta function

Beta(
d− 1

2
,
d− 1

2
) = Θ

(
((d− 1)/2)d−2

(d− 1)d−3/2

)
= Θ

(
(1/2)d−2

√
d− 1

)
(B.1)

Appendix C. Deferred proofs from Section 4

C.1. Proof of Lemma 2

Proof [Proof of Lemma 2] From the definition of inner product, we have:

⟨D̄xu,u,σ, D̄xv ,v,σ⟩ = E
z∼D∅

[D̄xu,u,σ(z) · D̄xv ,v,σ(z)]

Since D̄xu,u,σ(z) =
Dxu,u,σ(z)

D∅(z)
and D̄xv ,v,σ(z) =

Dxv,v,σ(z)
D∅(z)

, we have:

E
z∼D∅

[D̄xu,u,σ(z) · D̄xv ,v,σ(z)] =

∫
z

Dxu,u,σ(z)

D∅(z)
· Dxu,u,σ(z)

D∅(z)
D∅(z)dz

=

∫
z

exp(−1
2∆)√

(2π)d|Σu||Σv|
dz

(C.1)

where ∆ = (z − xuu)
⊤Σ−1

u (z − xuu) + (z − xvv)
⊤Σ−1

v (z − xvv) − z⊤Id−1
d z. Since Σ−1

u =
Idd − uu⊤ + 1

σ2uu
⊤ and Σ−1

v = Idd − vv⊤ + 1
σ2 vv

⊤, we have:

∆ = (z − xuu)
⊤Σ−1

u (z − xuu) + (z − xvv)
⊤Σ−1

v (z − xvv)− z⊤Id−1
d z

= z⊤(Σ−1
u +Σ−1

v − Idd)z − 2xuz
⊤Σ−1

u u− 2xvz
⊤Σ−1

v v + x2uu
⊤Σ−1

u u+ x2vv
⊤Σ−1

v v

= z⊤(Σ−1
u +Σ−1

v − Idd)z −
2xu
σ2

z⊤u− 2xv
σ2

z⊤v +
x2u
σ2

+
x2v
σ2

= z⊤(Σ−1
u +Σ−1

v − Idd)z −
2

σ2
(xuu+ xvv)

⊤z +
1

σ2
(x2u + x2v)

Let M = Σ−1
u +Σ−1

v − Idd, we have:

∆ =z⊤Mz − 2

σ2
(xuu+ xvv)

⊤z +
1

σ2
(x2u + x2v)

=(z − M−1

σ2
(xuu+ xvv))

⊤M(z − M−1

σ2
(xuu+ xvv))−

1

σ4
(xuu+ xvv)

⊤M−1(xuu+ xvv)

+
1

σ2
(x2u + x2v)

Plug this into Eq. (C.1), we get:

E
z∼D∅

[D̄xu,u,σ(z) · D̄xv ,v,σ(z)] =

∫
z

exp(−1
2∆)√

(2π)d|Σu||Σv|
dz
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=

∫
z

exp(−1
2(z −

M−1

σ2 (xuu+ xvv))
⊤M(z − M−1

σ2 (xuu+ xvv))) · exp(W )√
(2π)d|Σu||Σv|

dz

=
exp(W )√
|Σu||Σv||M |

∫
z

exp(−1
2(z −

M−1

σ2 (xuu+ xvv))
⊤M(z − M−1

σ2 (xuu+ xvv)))√
(2π)d|M−1|

dz

where W = 1
2σ4 (xuu + xvv)

⊤M−1(xuu + xvv) − 1
2σ2 (x

2
u + x2v). Notice that

exp(− 1
2
(z−M−1

σ2 (xuu+xvv))⊤M(z−M−1

σ2 (xuu+xvv)))√
(2π)d|M−1|

is the probability density function of Gaussian dis-

tribution N(M
−1

σ2 (xuu+ xvv),M
−1). Therefore, we have:∫

z

exp(−1
2(z −

M−1

σ2 (xuu+ xvv))
⊤M(z − M−1

σ2 (xuu+ xvv)))√
(2π)d|M−1|

dz = 1

Plug this into Ez∼D∅ [D̄xu,u,σ(z) · D̄xv ,v,σ(z)], we get:

E
z∼D∅

[D̄xu,u,σ(z) · D̄xv ,v,σ(z)] =
exp(W )√
|Σu||Σv||M |

(C.2)

Now, consider M = Σ−1
u + Σ−1

v − Idd. Plug in Σ−1
u = Idd − uu⊤ + 1

σ2uu
⊤ and Σ−1

v = Idd −
vv⊤ + 1

σ2 vv
⊤, we get:

M = Idd + (
1

σ2
− 1)uu⊤ + (

1

σ2
− 1)vv⊤

= Idd + α2CC⊤

where α =
√

1
σ2 − 1 andC = [u, v] is the matrix whose two columns are u and v. By the Woodbury

Matrix Identity, we can compute M−1 as:

M−1 = (Idd + α2CC⊤)−1

= Idd − α2C(Id2 + α2C⊤C)−1C⊤

Since C⊤C =

[
1 u⊤v
u⊤v 1

]
, we have:

Id2 + α2C⊤C = Id2 + (
1

σ2
− 1)

[
1 u⊤v
u⊤v 1

]
=

[
1
σ2 ( 1

σ2 − 1)u⊤v
( 1
σ2 − 1)u⊤v 1

σ2

]
Take the inverse of this matrix, we get:

(Id2 + α2C⊤C)−1 =
1

1− (1− σ2)2(u⊤v)2

[
σ2 (σ4 − σ2)u⊤v

(σ4 − σ2)u⊤v σ2

]
Plug this into M−1, we get:

M−1 = Idd −
1/σ2 − 1

1− (1− σ2)2(u⊤v)2
C

[
σ2 (σ4 − σ2)u⊤v

(σ4 − σ2)u⊤v σ2

]
C⊤
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Plug in C = [u, v], we get:

M−1 = Idd −
1/σ2 − 1

1− (1− σ2)2(u⊤v)2
[σ2uu⊤ + σ2vv⊤ + (σ4 − σ2)u⊤vvu⊤ + (σ4 − σ2)u⊤vuv⊤]

= Idd −
1− σ2

1− (1− σ2)2(u⊤v)2
[uu⊤ + vv⊤ + (σ2 − 1)u⊤vvu⊤ + (σ2 − 1)u⊤vuv⊤]

Plug in c = u⊤v and we have:

M−1 = Idd −
1− σ2

1− (1− σ2)2c2
[uu⊤ + vv⊤ + (σ2 − 1)cvu⊤ + (σ2 − 1)cuv⊤]

Plug M−1 into the expression of W , i.e

W =
1

2σ4
(xuu+ xvv)

⊤M−1(xuu+ xvv)−
1

2σ2
(x2u + x2v) ,

we get:

W =
1

2σ4
(xuu+ xvv)

⊤M−1(xuu+ xvv)−
1

2σ2
(x2u + x2v)

=
1

2σ4
(xuu+ xvv)

⊤Idd(xuu+ xvv)−
1

2σ2
(x2u + x2v)

− 1

2σ4
1− σ2

1− (1− σ2)2c2
(xuu+ xvv)

⊤[uu⊤ + vv⊤ + (σ2 − 1)cvu⊤ + (σ2 − 1)cuv⊤](xuu+ xvv)

=(
1

2σ4
− 1

2σ2
)(x2u + x2v) +

xuxvc

σ4

− 1

2σ4
1− σ2

1− (1− σ2)2c2
[(x2u + x2v) + 2(σ2 + 1)xuxvc+ (2σ2 − 1)(x2u + x2v)c

2 + 2(σ2 − 1)xuxvc
3]

=
1

2− 2(1− σ2)2c2
[2xuxvc− (1− σ2)(x2u + x2v)c

2]

Plug this into Eq. (C.2), we get:

E
z∼D∅

[D̄xu,u,σ(z) · D̄xv ,v,σ(z)] =
exp

(
1

2−2(1−σ2)2c2
[2xuxvc− (1− σ2)(x2u + x2v)c

2]
)

√
|Σu||Σv||M |

Next, we compute |Σu|, |Σv| and |M |. Since Σu = Idd − uu⊤ + σ2uu⊤ and Σv = Idd − vv⊤ +
σ2vv⊤, we know that Σu and Σv has eigenvalue σ2 with corresponding eigenvectors u and v re-
spectively, and the rest of the eigenvalues are all 1’s. Therefore, we have |Σu| = σ2 and |Σv| = σ2.

Regarding |M |, we have M = Idd + α2CC⊤ where α =
√

1
σ2 − 1 and C = [u, v]. By the Matrix

Determinant Lemma, we have:

|M | = |Idd+α2CC⊤| = |Id2+α2C⊤C| =
∣∣∣∣[ 1

σ2 ( 1
σ2 − 1)u⊤v

( 1
σ2 − 1)u⊤v 1

σ2

]∣∣∣∣ = 1

σ4
−(

1

σ2
−1)2c2

Therefore,

|Σu||Σv||M | = σ2 · σ2 · ( 1

σ4
− (

1

σ2
− 1)2c2) = 1− (1− σ2)2c2
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Plug this into Eq. (C.2), we get:

E
z∼D∅

[D̄xu,u,σ(z) · D̄xv ,v,σ(z)] =
exp

(
1

2−2(1−σ2)2c2
[2xuxvc− (1− σ2)(x2u + x2v)c

2]
)

√
1− (1− σ2)2c2

Plug in θ = 1− σ2, we get:

E
z∼D∅

[D̄xu,u,σ(z) · D̄xv ,v,σ(z)] =
exp

(
1

2−2θ2c2
[2xuxvc− θ(x2u + x2v)c

2]
)

√
1− θ2c2

which finishes the proof.

C.2. Proof of Lemma 3

Proof [Proof of Lemma 3] By the definition of inner product, we have:

⟨D̄u,σ, D̄v,σ⟩ = E
z∼D∅

[
D̄u,σ(z) · D̄v,σ(z)

]
= E

z∼D∅

[
E
xu

[D̄xu,u,σ(z)] · Exv

[D̄xv ,v,σ(z)]

]
= E

xu,xv

[
E

z∼D∅
[D̄xu,u,σ(z) · D̄xv ,v,σ(z)]

]
where xu, xv are two i.i.d sparse Rademacher variables: xu and xv is +1/

√
ρ with probability ρ/2,

−1/
√
ρ with probability ρ/2 and 0 with probability 1− ρ.

Plug in Lemma 2, we get:

⟨D̄u,σ, D̄v,σ⟩ = E
xu,xv

exp
(

1
2−2θ2c2

[2xuxvc− θ(x2u + x2v)c
2]
)

√
1− θ2c2


There are 4 cases in the computation of expectation over xu and xv:

– Case 1 (xu = xv = 0): we have
exp

(
1

2−2θ2c2
[2xuxvc−θ(x2

u+x2
v)c

2]
)

√
1−θ2c2

= 1√
1−θ2c2

and P [case 1] =
(1− ρ)2.

– Case 2 (xu = 0, xv = ± 1√
ρ or xv = 0, xu = ± 1√

ρ ): we have

exp
(

1
2−2θ2c2

[2xuxvc−θ(x2
u+x2

v)c
2]
)

√
1−θ2c2

=
exp(− 1

ρ
θc2

2−2θ2c2
)

√
1−θ2c2

and P [case 2] = 2ρ(1− ρ).

– Case 3 (xu = xv = 1√
ρ or xu = xv = − 1√

ρ ): we have
exp

(
1

2−2θ2c2
[2xuxvc−θ(x2

u+x2
v)c

2]
)

√
1−θ2c2

=
exp( c

ρ(1+θc)
)

√
1−θ2c2

and P [case 3] = ρ2

2 .

– Case 4 (xu = 1√
ρ , xv = − 1√

ρ or xu = − 1√
ρ , xv = 1√

ρ ): we have

exp
(

1
2−2θ2c2

[2xuxvc−θ(x2
u+x2

v)c
2]
)

√
1−θ2c2

=
exp(− c

ρ(1−θc)
)

√
1−θ2c2

and P [case 4] = ρ2

2 .
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Plug these into ⟨D̄u,σ, D̄v,σ⟩, we get:

⟨D̄u,σ, D̄v,σ⟩ = E
xu,xv

[exp( 1
2−2θ2c2

[2xuxvc− θ(x2u + x2v)c
2]
)

√
1− θ2c2

]
=

1√
1− θ2c2

[
(1− ρ)2 + 2ρ(1− ρ) exp(−1

ρ

θc2

2− 2θ2c2
)

+
ρ2

2
exp(

c

ρ(1 + θc)
) +

ρ2

2
exp(− c

ρ(1− θc)
)
]

C.3. Proof for Lemma 5

Proof [Proof for Lemma 5] When σ → 0, we have θ → 1 in Lemma 1. In this case, it follows that

lim
σ→0

∥∥∥∥ E
u∼Sd−1

[D̄⊗n
u,σ]

⩽∞,k − 1

∥∥∥∥2 =E
c

k∑
t=1

(
n

t

)( 1√
1− c2

[
(1− ρ)2 + 2ρ(1− ρ) exp(−1

ρ

c2

2− 2c2
)

+
ρ2

2
exp(

c

ρ(1 + c)
) +

ρ2

2
exp(− c

ρ(1− c)
)
]
− 1
)t

Apply change of variable c = 2y − 1 and take expectation over y ∼ Beta(d−1
2 , d−1

2 ),

lim
σ→0

∥∥∥∥ E
u∼Sd−1

[D̄⊗n
u,σ]

⩽∞,k − 1

∥∥∥∥2
=E

c

k∑
t=1

(
n

t

)( 1√
1− c2

[(1− ρ)2 + 2ρ(1− ρ) exp(−1

ρ

c2

2− 2c2
)

+
ρ2

2
exp(

c

ρ(1 + c)
) +

ρ2

2
exp(− c

ρ(1− c)
)]− 1

)t
= E

y∼Beta( d−1
2

, d−1
2

)

k∑
t=1

(
n

t

)( 1

2
√
y(1− y)

[(1− ρ)2 + 2ρ(1− ρ) exp(−1

ρ

(2y − 1)2

8y(1− y)
)

+
ρ2

2
exp(

1

ρ
(1− 1

2y
)) +

ρ2

2
exp(

1

ρ
(1− 1

2− 2y
))]− 1

)t
=

k∑
t=1

(
n

t

)∫ 1

0

( 1

2
√
y(1− y)

[(1− ρ)2 + 2ρ(1− ρ) exp(−1

ρ

(2y − 1)2

8y(1− y)
)

+
ρ2

2
exp(

1

ρ
(1− 1

2y
)) +

ρ2

2
exp(

1

ρ
(1− 1

2− 2y
))]− 1

)t [y(1− y)]
d−3
2

B(d−1
2 , d−1

2 )
dy

where B(d−1
2 , d−1

2 ) is the Beta function. Plug in the asymptotic approximation for Beta function
from Theorem 7, we get:

lim
σ→0

∥∥∥∥ E
u∼Sd−1

[D̄⊗n
u,σ]

⩽∞,k − 1

∥∥∥∥2
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⩽O
(
2d−2

√
d− 1

) k∑
t=1

(
n

t

)∫ 1

0

( 1

2
√
y(1− y)

[(1− ρ)2 + 2ρ(1− ρ) exp(−1

ρ

(2y − 1)2

8y(1− y)
)

+
ρ2

2
exp(

1

ρ
(1− 1

2y
)) +

ρ2

2
exp(

1

ρ
(1− 1

2− 2y
))]− 1

)t
[y(1− y)]

d−3
2 dy

⩽O

(
2d−2

√
d− 1

k∑
t=1

(
n

t

)∫ 1

0

( 1

2
√
y(1− y)

[(1− ρ)2 + 2ρ(1− ρ) exp(−1

ρ

(2y − 1)2

8y(1− y)
)

+
ρ2

2
exp(

1

ρ
(1− 1

2y
)) +

ρ2

2
exp(

1

ρ
(1− 1

2− 2y
))]− 1

)t
[y(1− y)]

d−3
2 dy

)

C.4. Proof for upper bound of Eq. (4.4)

Lemma 11 Suppose ρ ⩾ k√
d

, n ⩽ ρ2d2

k8
and log2 d ⩽ k ⩽

√
d

log d . Let ε = k/
√
d. We have

S1 =
k∑

t=1

(
n

t

)∫ 1
2
− ε

2

0

( 1

2
√
y(1− y)

[(1− ρ)2 + 2ρ(1− ρ) exp(−1

ρ

(2y − 1)2

8y(1− y)
)

+
ρ2

2
exp(

1

ρ
(1− 1

2y
)) +

ρ2

2
exp(

1

ρ
(1− 1

2− 2y
))]− 1

)t
[4y(1− y)]

d−3
2 dy

⩽
1√
d

Proof When y ∈ (0, 12 − ε
2), we have −1

ρ
(2y−1)2

8y(1−y) ⩽ 0 and 1
ρ(1 − 1

2y ) ⩽ 0, which implies that

exp(−1
ρ
(2y−1)2

8y(1−y)) ⩽ 1 and exp(1ρ(1−
1
2y )) ⩽ 1. Therefore, we have:

S1 ⩽
k∑

t=1

(
n

t

)∫ 1
2
− ε

2

0

( 1

2
√
y(1− y)

[(1− ρ)2 + 2ρ(1− ρ) +
ρ2

2
+
ρ2

2
exp(

1

ρ
(1− 1

2− 2y
))]− 1

)t
[4y(1− y)]

d−3
2 dy

=
k∑

t=1

(
n

t

)∫ 1
2
− ε

2

0

( 1

2
√
y(1− y)

[1− ρ2

2
+
ρ2

2
exp(

1

ρ
(1− 1

2− 2y
))]− 1

)t
[4y(1− y)]

d−3
2 dy

=

k∑
t=1

(
n

t

)∫ 1
2
− ε

2

0

(
[1− ρ2

2
+
ρ2

2
exp(

1

ρ
(1− 1

2− 2y
))]−

√
4y(1− y)

)t
[4y(1− y)]

d−t−3
2 dy

⩽
k∑

t=1

(
n

t

)∫ 1
2
− ε

2

0

(
1− ρ2

2
+
ρ2

2
exp(

1

ρ
(1− 1

2− 2y
))
)t
[4y(1− y)]

d−t−3
2 dy

=
k∑

t=1

∫ 1
2
− ε

2

0

(
n

t

)(
1− ρ2

2
+
ρ2

2
exp(

1

ρ
(1− 1

2− 2y
))
)t
[1− (2y − 1)2]

d−t−3
2 dy

⩽
k∑

t=1

∫ 1
2
− ε

2

0

(
n

t

)(
1− ρ2

2
+
ρ2

2
exp(

1

ρ
(1− 1

2− 2y
))
)t

exp
(
− (2y − 1)2

d− t− 3

2

)
dy
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Let h(y) =
(
n
t

)(
1− ρ2

2 + ρ2

2 exp(1ρ(1−
1

2−2y ))
)t

exp
(
− (2y− 1)2 d−t−3

2

)
, we will prove that for

any y ∈ (0, 12 − ε
2), we have:

h(y) ⩽
1

d

We prove this by showing that this inequality holds for both case (1) 1− ρ2

2 ⩽ ρ2

2 exp(1ρ(1−
1

2−2y ))

and case (2) 1 − ρ2

2 ⩾ ρ2

2 exp(1ρ(1 − 1
2−2y )). We prove case (1) in Theorem 8, and case (2) in

Theorem 9. Combine case (1) and case (2), we can plug h(y) ⩽ 1
d into S1 and get:

S1 ⩽
k∑

t=1

∫ 1
2
− ε

2

0
h(y)dy

⩽
k∑

t=1

∫ 1
2
− ε

2

0

1

d
dy

⩽
k∑

t=1

1

d

=
k

d

Since k ⩽
√

d
log d ⩽

√
d, we have:

S1 ⩽
k

d
⩽

1√
d

Fact 8 Under the setting of Lemma 11. When 1− ρ2

2 ⩽ ρ2

2 exp(1ρ(1−
1

2−2y )), for

h(y) =

(
n

t

)(
1− ρ2

2
+
ρ2

2
exp(

1

ρ
(1− 1

2− 2y
))
)t

exp
(
− (2y − 1)2

d− t− 3

2

)
,

we have h(y) ⩽ 1/d.

Proof we have

h(y) =

(
n

t

)(
1− ρ2

2
+
ρ2

2
exp(

1

ρ
(1− 1

2− 2y
))
)t

exp
(
− (2y − 1)2

d− t− 3

2

)
⩽

(
n

t

)(
ρ2 exp(

1

ρ
(1− 1

2− 2y
))
)t

exp
(
− (2y − 1)2

d− t− 3

2

)
⩽
(en
t

)t(
ρ2 exp(

1

ρ
(1− 1

2− 2y
))
)t

exp
(
− (2y − 1)2

d− t− 3

2

)
=
(eρ2
t

)t
nt exp

( t
ρ
(1− 1

2− 2y
)− (2y − 1)2

d− t− 3

2

)
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=
(eρ2
t

)t
exp

(
t log n+

t

ρ

1− 2y

2− 2y
− (1− 2y)2

d− t− 3

2

)
=
(eρ2
t

)t
exp

(
t log n+ (1− 2y)[

t

ρ

1

2− 2y
− (1− 2y)

d− t− 3

2
]
)

⩽
(eρ2
t

)t
exp

(
t log n+ (1− 2y)[

t

ρ
− (1− 2y)

d− t− 3

2
]
)

Since y ∈ (0, 12 − ε
2), t ⩽ k, ρ ⩾ k√

d
and n ⩽ ρ2d2

k8
⩽ d2, we get:

h(y) ⩽
(eρ2
t

)t
exp

(
2k log d+ (1− 2y)[

√
d− ε

d− k − 3

2
]
)

Plug in ε = k√
d

, we get:

h(y) ⩽
(eρ2
t

)t
exp

(
2k log d+ (1− 2y)[

√
d− k√

d

d− k − 3

2
]
)

=
(eρ2
t

)t
exp

(
2k log d+ (1− 2y)

[
− k

√
d

2
+
√
d+

k2

2
√
d
+

3k

2
√
d

])
Since d → ∞ and log2 d ⩽ k ⩽

√
d

log d , we can find constant C1 > 0 such that −k
√
d

2 +
√
d +

k2

2
√
d
+ 3k

2
√
d
⩽ −C1k

√
d. Therefore, we have:

h(y) ⩽
(eρ2
t

)t
exp

(
2k log d− (1− 2y)C1k

√
d
)

⩽
(eρ2
t

)t
exp

(
2k log d− εC1k

√
d
)

Again, plug in ε = k√
d

, we get:

h(y) ⩽
(eρ2
t

)t
exp

(
2k log d− k√

d
C1k

√
d
)

=
(eρ2
t

)t
exp

(
2k log d− C1k

2
)

=
(eρ2
t

)t
exp

(
k(2 log d− C1k)

)
Since k ⩾ log2 d, we have 2 log d − C1k ⩽ −C1 log

2 d + 2 log d ⩽ −C2 log
2 d for some constant

C2 > 0. Therefore, we have:

h(y) ⩽
(eρ2
t

)t
exp

(
k(2 log d− C1k)

)
⩽
(eρ2
t

)t
exp

(
− C2k log

2 d
)

⩽
(eρ2
t

)t
exp

(
− C2 log

4 d
)
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Notice that
(
eρ2

t

)t
⩽
(
e
t

)t
⩽ e. Therefore,

h(y) ⩽
(eρ2
t

)t
exp

(
− C2 log

4 d
)

⩽ exp
(
− C2 log

4 d+ 1
)

⩽ exp
(
− log d

)
=
1

d

Fact 9 Under the setting of Lemma 11. When 1− ρ2

2 ⩾ ρ2

2 exp(1ρ(1−
1

2−2y )), for

h(y) =

(
n

t

)(
1− ρ2

2
+
ρ2

2
exp(

1

ρ
(1− 1

2− 2y
))
)t

exp
(
− (2y − 1)2

d− t− 3

2

)
,

we have h(y) ⩽ 1/d.

Proof

h(y) =

(
n

t

)(
1− ρ2

2
+
ρ2

2
exp(

1

ρ
(1− 1

2− 2y
))
)t

exp
(
− (2y − 1)2

d− t− 3

2

)
⩽
(en
t

)t(
2− ρ2

)t
exp

(
− (2y − 1)2

d− t− 3

2

)
⩽
(en
t

)t
2t exp

(
− (2y − 1)2

d− t− 3

2

)
=
(2e
t

)t
nt exp

(
− (2y − 1)2

d− t− 3

2

)
=
(2e
t

)t
exp

(
t log n− (2y − 1)2

d− t− 3

2

)
Since y ∈ (0, 12 − ε

2), t ⩽ k and n ⩽ ρ2d2

k8
⩽ d2, we get:

h(y) ⩽
(2e
t

)t
exp

(
2k log d− ε2

d− k − 3

2

)
Plug in ε = k√

d
, we get:

h(y) ⩽
(2e
t

)t
exp

(
2k log d− k2

d

d− k − 3

2

)
⩽
(2e
t

)t
exp

(
2k log d− k2

d

d− k − 3

2

)
=
(2e
t

)t
exp

(
− k2

2
+ 2k log d+

k3

2d
+

3k2

2d

)
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Since log2 d ⩽ k ⩽
√

d
log d , we have −k2

2 + 2k log d + k3

2d + 3k2

2d ⩽ −C3 log
4 d for some constant

C3 > 0 and
(
2e
t

)t
⩽ exp(10). Hence,

h(y) ⩽
(2e
t

)t
exp

(
− k2

2
+ 2k log d+

k3

2d
+

3k2

2d

)
⩽ exp(10) · exp

(
− C3 log

4 d
)

=exp
(
− C3 log

4 d+ 10
)

⩽ exp
(
− log d

)
=
1

d

C.5. Proof for upper bound of Eq. (4.5)

Lemma 12 Suppose ρ ⩾ k√
d

, n ⩽ ρ2d2

k8
and log2 d ⩽ k ⩽

√
d

log d . Let ε = k/
√
d. We have

S2 =
k∑

t=1

(
n

t

)∫ 1
2

1
2
− ε

2

( 1

2
√
y(1− y)

[(1− ρ)2 + 2ρ(1− ρ) exp(−1

ρ

(2y − 1)2

8y(1− y)
)

+
ρ2

2
exp(

1

ρ
(1− 1

2y
)) +

ρ2

2
exp(

1

ρ
(1− 1

2− 2y
))]− 1

)t
[4y(1− y)]

d−3
2 dy

⩽
1√
d

Proof When y ∈ [12 −
ε
2 ,

1
2 ], we can apply Mean Value Theorem on the 4-th order Taylor Expansion

of 1

2
√

y(1−y)
[(1−ρ)2+2ρ(1−ρ) exp(−1

ρ
(2y−1)2

8y(1−y))+
ρ2

2 exp(1ρ(1−
1
2y ))+

ρ2

2 exp(1ρ(1−
1

2−2y ))]−1.

It follows that

1

2
√
y(1− y)

[
(1− ρ)2 + 2ρ(1− ρ) exp(−1

ρ

(2y − 1)2

8y(1− y)
) +

ρ2

2
exp(

1

ρ
(1− 1

2y
)) +

ρ2

2
exp(

1

ρ
(1− 1

2− 2y
))

]
− 1

⩽
CT (2y − 1)4

ρ2

for some constant CT > 0. Plug this into S2, we get:

S2 =

k∑
t=1

(
n

t

)∫ 1
2

1
2
− ε

2

( 1

2
√
y(1− y)

[(1− ρ)2 + 2ρ(1− ρ) exp(−1

ρ

(2y − 1)2

8y(1− y)
)

+
ρ2

2
exp(

1

ρ
(1− 1

2y
)) +

ρ2

2
exp(

1

ρ
(1− 1

2− 2y
))]− 1

)t
[4y(1− y)]

d−3
2 dy

⩽
k∑

t=1

(
n

t

)∫ 1
2

1
2
− ε

2

(CT (2y − 1)4

ρ2

)t
[4y(1− y)]

d−3
2 dy
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=

k∑
t=1

(
n

t

)∫ 1
2

1
2
− ε

2

(CT (2y − 1)4

ρ2

)t
[1− (2y − 1)2]

d−3
2 dy

Since 0 ⩽ (2y − 1)4 ⩽ ε4 and 0 ⩽ 1− (2y − 1)2 ⩽ 1, we have:

S2 ⩽
k∑

t=1

(
n

t

)∫ 1
2

1
2
− ε

2

(CT (2y − 1)4

ρ2

)t
[1− (2y − 1)2]

d−3
2 dy

⩽
k∑

t=1

(
n

t

)∫ 1
2

1
2
− ε

2

(CT ε
4

ρ2

)t
dy

=
k∑

t=1

(
n

t

)
ε

2

(CT ε
4

ρ2

)t
⩽

k∑
t=1

ε

2

(en
t

)t(CT ε
4

ρ2

)t
=

k∑
t=1

ε

2

(enCT ε
4

tρ2

)t
Since n ⩽ ρ2d2

k8
, we have:

S2 ⩽
k∑

t=1

ε

2

(eρ2d2CT ε
4

k8tρ2

)t
=

k∑
t=1

ε

2

(ed2CT ε
4

k8t

)t
Plug in ε = k√

d
, we get:

S2 ⩽
k∑

t=1

k

2
√
d

(ed2CTk
4

k8td2

)t
=

k∑
t=1

k

2
√
d

(eCT

k4t

)t
Since k ⩾ log2 d and t ⩾ 1, we have

(
eCT
k4t

)t
⩽ eCT

k4
. Hence,

S2 ⩽
k∑

t=1

k

2
√
d

eCT

k4
= k

k

2
√
d

eCT

k4
=

eCT

2k2
√
d
⩽

eCT

2 log4 d
√
d
⩽

1√
d
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C.6. Proof for upper bound of Eq. (4.6)

Lemma 13 Suppose σ ⩽ d−K for some universal constant K that is large enough and ρ ⩾ k√
d

.

Let θ = 1− σ2. When n ⩽ ρ2d2

k8
and log2 d ⩽ k ⩽

√
d

log d , we have

T1 =

∫ 1−d−kσ

0

k∑
t=1

(
n

t

)( 1√
1− θ2c2

[
(1− ρ)2 + 2ρ(1− ρ) exp(−1

ρ

θc2

2− 2θ2c2
)

+
ρ2

2
exp(

c

ρ(1 + θc)
) +

ρ2

2
exp(− c

ρ(1− θc)
)
]
− 1
)t
P (c)dc

⩽Θ(1)

for some constant kσ that is large enough but smaller than K
2 .

To prove this lemma, we first prove Theorem 10 and Theorem 11.

Fact 10 Under the setting of Lemma 13, for 0 ⩽ c ⩽ 1− d−kσ , we have:

exp(−1

ρ

θc2

2− 2θ2c2
) ⩽ exp(d−k′σ) exp(−1

ρ

c2

2− 2c2
)

and
exp(

c

ρ(1 + θc)
) ⩽ exp(d−k′σ) exp(

c

ρ(1 + c)
)

and
exp(− c

ρ(1− θc)
) ⩽ exp(d−k′σ) exp(− c

ρ(1− c)
)

Proof For 0 ⩽ c ⩽ 1− d−kσ , we have 1− θc ⩾ 1− c ⩾ d−kσ and:

exp( c
ρ(1+θc))

exp( c
ρ(1+c))

= exp(
c

ρ(1 + θc)
− c

ρ(1 + c)
)

= exp(
c2(1− θ)

ρ(1 + θc)(1 + c)
)

= exp(
c2σ2

ρ(1 + θc)(1 + c)
)

⩽ exp(
4σ2

ρ
)

and,

exp(− c
ρ(1−θc))

exp(− c
ρ(1−c))

= exp(
−c

ρ(1− θc)
− −c
ρ(1− c)

)

= exp(
c2(1− θ)

ρ(1− θc)(1− c)
)

= exp(
c2σ2

ρ(1− θc)(1− c)
)
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⩽ exp(
4σ2

ρd−2kσ
)

and,

exp(−1
ρ

θc2

2−2θ2c2
)

exp(−1
ρ

c2

2−2c2
)

⩽
exp(−1

ρ
θ2c2

2−2θ2c2
)

exp(−1
ρ

c2

2−2c2
)

= exp
(
− 1

ρ

θ2c2

2− 2θ2c2
+

1

ρ

c2

2− 2c2

)
=exp

(c2
ρ

1− θ2

2(1− θ2c2)(1− c2)

)
=exp

(c2
ρ

(1 + θ)(1− θ)

2(1 + θc)(1− θc)(1 + c)(1− c)

)
⩽ exp

(c2
ρ

2σ2

2(1− θc)(1− c)

)
=exp

(c2
ρ

σ2

(1− θc)(1− c)

)
⩽ exp

(c2
ρ

σ2

d−2kσ

)
⩽ exp

( σ2

ρd−2kσ

)
Since ρ ⩾ k√

d
⩾ 1√

d
and σ ⩽ d−K , we have σ2

ρd−2kσ
⩽ d−2K+2kσ+1, 4σ2

ρ ⩽ d−2K+1 and 4σ2

ρd−2kσ
⩽

d−2K+2kσ+1. Let k′σ = 2K − 2kσ − 1, we can get σ2

2ρd−2kσ
⩽ d−k′σ , 4σ2

ρ ⩽ d−2K+1 ⩽ d−k′σ and
4σ2

ρd−2kσ
⩽ d−k′σ . Notice that, since kσ ⩽ K

2 , we have k′σ ⩾ K − 1 which is a large enough constant.
Hence, we have:

exp(−1

ρ

θc2

2− 2θ2c2
) ⩽ exp(d−k′σ) exp(−1

ρ

c2

2− 2c2
)

and
exp(

c

ρ(1 + θc)
) ⩽ exp(d−k′σ) exp(

c

ρ(1 + c)
)

and
exp(− c

ρ(1− θc)
) ⩽ exp(d−k′σ) exp(− c

ρ(1− c)
)

Fact 11 Under the setting of Lemma 13, we have:

T1 ⩽
∫ 1−d−kσ

0

k∑
t=1

(
n

t

)(
exp(d−k′σ)Υ + d−k′′σ

)t
P (c)dc

where

Υ =
1√

1− c2

[
(1−ρ)2+2ρ(1−ρ) exp(−1

ρ

c2

2− 2c2
)+
ρ2

2
exp(

c

ρ(1 + c)
)+
ρ2

2
exp(− c

ρ(1− c)
)
]
−1
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Proof Plug Theorem 10 into T1, we get:

T1 =

∫ 1−d−kσ

0

k∑
t=1

(
n

t

)( 1√
1− θ2c2

[
(1− ρ)2 + 2ρ(1− ρ) exp(−1

ρ

θc2

2− 2θ2c2
)

+
ρ2

2
exp(

c

ρ(1 + θc)
) +

ρ2

2
exp(− c

ρ(1− θc)
)
]
− 1
)t
P (c)dc

⩽
∫ 1−d−kσ

0

k∑
t=1

(
n

t

)( 1√
1− c2

[
exp(d−k′σ)(1− ρ)2 + exp(d−k′σ)2ρ(1− ρ) exp(−1

ρ

c2

2− 2c2
)

+ exp(d−k′σ)
ρ2

2
exp(

c

ρ(1 + c)
) + exp(d−k′σ)

ρ2

2
exp(− c

ρ(1− c)
)
]
− 1
)t
P (c)dc

=

∫ 1−d−kσ

0

k∑
t=1

(
n

t

){
exp(d−k′σ)

( 1√
1− c2

[
(1− ρ)2 + 2ρ(1− ρ) exp(−1

ρ

c2

2− 2c2
)

+
ρ2

2
exp(

c

ρ(1 + c)
) +

ρ2

2
exp(− c

ρ(1− c)
)
]
− 1
)
+ exp(d−k′σ)− 1

}t
P (c)dc

=

∫ 1−d−kσ

0

k∑
t=1

(
n

t

)(
exp(d−k′σ)Υ + exp(d−k′σ)− 1

)t
P (c)dc

where, for simplicity, we write:

Υ =
1√

1− c2

[
(1−ρ)2+2ρ(1−ρ) exp(−1

ρ

c2

2− 2c2
)+
ρ2

2
exp(

c

ρ(1 + c)
)+
ρ2

2
exp(− c

ρ(1− c)
)
]
−1

Observe that, since d−k′σ < 0.01 for large enough d and k′σ, we have exp(d−k′σ) ⩽ 1 + d−k′σ +
d−2k′σ ⩽ 1 + d−k′′σ for some constant k′′σ. Therefore, we have:

T1 ⩽
∫ 1−d−kσ

0

k∑
t=1

(
n

t

)(
exp(d−k′σ)Υ + exp(d−k′σ)− 1

)t
P (c)dc

⩽
∫ 1−d−kσ

0

k∑
t=1

(
n

t

)(
exp(d−k′σ)Υ + d−k′′σ

)t
P (c)dc

Proof [Proof of Lemma 13] Given Theorem 11, we further split the integral into two parts [0, η] and

[η, 1− d−kσ ] such that exp(d−k′σ)Υ ⩽ d−
k′′σ
2 in [0, η] and exp(d−k′σ)Υ ⩾ d−

k′′σ
2 in [η, 1− d−kσ ]:

T1 ⩽
∫ η

0

k∑
t=1

(
n

t

)(
exp(d−k′σ)Υ+d−k′′σ

)t
P (c)dc+

∫ 1−d−kσ

η

k∑
t=1

(
n

t

)(
exp(d−k′σ)Υ+d−k′′σ

)t
P (c)dc

For the first part of T1, we have:∫ η

0

k∑
t=1

(
n

t

)(
exp(d−k′σ)Υ + d−k′′σ

)t
P (c)dc ⩽

∫ η

0

k∑
t=1

(
n

t

)(
d−

k′′σ
2 + d−k′′σ

)t
P (c)dc
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⩽
∫ η

0

k∑
t=1

(
n

t

)(
2d−

k′′σ
2

)t
P (c)dc

⩽
∫ η

0

k∑
t=1

(en
t

)t(
2d−

k′′σ
2

)t
P (c)dc

⩽
∫ η

0

k∑
t=1

(2end− k′′σ
2

t

)t
P (c)dc

Plug in n ⩽ ρ2d2

k8
, ρ ⩽ 1 and t ⩾ 1, we get:

∫ η

0

k∑
t=1

(
n

t

)(
exp(d−k′σ)Υ + d−k′′σ

)t
P (c)dc ⩽

∫ η

0

k∑
t=1

(2eρ2d2− k′′σ
2

k8t

)t
P (c)dc

⩽
∫ η

0

k∑
t=1

(2ed2− k′′σ
2

k8

)t
P (c)dc

Since constant k′′σ is large enough, we have 2ed2−
k′′σ
2

k8
< 1. Hence,

∫ η

0

k∑
t=1

(
n

t

)(
exp(d−k′σ)Υ + d−k′′σ

)t
P (c)dc ⩽

∫ η

0

k∑
t=1

2ed2−
k′′σ
2

k8
P (c)dc

=

∫ η

0

2ed2−
k′′σ
2

k7
P (c)dc

⩽
2ed2−

k′′σ
2

k7

Since k ⩾ log2 d and constant k′′σ is large enough, we have:

∫ η

0

k∑
t=1

(
n

t

)(
exp(d−k′σ)Υ + d−k′′σ

)t
P (c)dc ⩽

2ed2−
k′′σ
2

log14 d
⩽ Θ(1) (C.3)

For the second part of T1, we have exp(d−k′σ)Υ ⩾ d−
k′′σ
2 , which implies d−

k′′σ
2 exp(d−k′σ)Υ ⩾ d−k′′σ .

Therefore, we can get:∫ 1−d−kσ

η

k∑
t=1

(
n

t

)(
exp(d−k′σ)Υ + d−k′′σ

)t
P (c)dc

⩽
∫ 1−d−kσ

η

k∑
t=1

(
n

t

)(
exp(d−k′σ)Υ + d−

k′′σ
2 exp(d−k′σ)Υ

)t
P (c)dc

=

∫ 1−d−kσ

η

k∑
t=1

(
n

t

)(
1 + d−

k′′σ
2

)t
exp(td−k′σ)ΥtP (c)dc
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⩽
∫ 1−d−kσ

η

k∑
t=1

(
n

t

)
exp(td−

k′′σ
2 ) exp(td−k′σ)ΥtP (c)dc

=

∫ 1−d−kσ

η

k∑
t=1

(
n

t

)
exp(td−

k′′σ
2 + td−k′σ)ΥtP (c)dc

⩽
∫ 1−d−kσ

η

k∑
t=1

(
n

t

)
exp(kd−

k′′σ
2 + kd−k′σ)ΥtP (c)dc

⩽ exp(kd−
k′′σ
2 + kd−k′σ)

∫ 1−d−kσ

η

k∑
t=1

(
n

t

)
ΥtP (c)dc

⩽ exp(kd−
k′′σ
2 + kd−k′σ)

∫ 1

−1

k∑
t=1

(
n

t

)
ΥtP (c)dc

= exp(kd−
k′′σ
2 + kd−k′σ)E

c

[ k∑
t=1

(
n

t

)
Υt
]

Since k ⩽
√

d
log d ⩽

√
d and k′σ, k′′σ are large enough constants, we have:

exp(kd−
k′′σ
2 + kd−k′σ) ⩽ exp(d

1
2
− k′′σ

2 + d
1
2
−k′σ) ⩽ Θ(1)

Notice that, in Section 4.2, we have proved:

E
c

[ k∑
t=1

(
n

t

)
Υt
]
⩽ Θ(1)

Hence, we can get:∫ 1−d−kσ

η

k∑
t=1

(
n

t

)(
exp(d−k′σ)Υ + d−k′′σ

)t
P (c)dc ⩽ exp(kd−

k′′σ
2 + kd−k′σ)E

c

[ k∑
t=1

(
n

t

)
Υt
]

⩽Θ(1)

(C.4)

Combine Eq. (C.3) and Eq. (C.4), we get:

T1 ⩽
∫ η

0

k∑
t=1

(
n

t

)(
exp(d−k′σ)Υ + d−k′′σ

)t
P (c)dc+

∫ 1−d−kσ

η

k∑
t=1

(
n

t

)(
exp(d−k′σ)Υ + d−k′′σ

)t
P (c)dc

⩽Θ(1)
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C.7. Proof for upper bound of Eq. (4.7)

Lemma 14 Suppose σ ⩽ d−K for some constant K that is large enough and ρ ⩾ k√
d

. When

n ⩽ ρ2d2

k8
and log2 d ⩽ k ⩽

√
d

log d , for θ = 1− σ2, we have

T2 =

∫ 1

1−d−kσ

k∑
t=1

(
n

t

)( 1√
1− θ2c2

[
(1− ρ)2 + 2ρ(1− ρ) exp(−1

ρ

θc2

2− 2θ2c2
)

+
ρ2

2
exp(

c

ρ(1 + θc)
) +

ρ2

2
exp(− c

ρ(1− θc)
)
]
− 1
)t
P (c)dc

⩽Θ(1)

for some constant kσ that is large enough but smaller than K
2 .

Proof When 1 − d−kσ ⩽ c ⩽ 1, we have −1
ρ

θc2

2−2θ2c2
⩽ 0, c

ρ(1+θc) ⩽ 1
ρ and − c

ρ(1−θc) ⩽ 0, which
implies:

T2 =

∫ 1

1−d−kσ

k∑
t=1

(
n

t

)( 1√
1− θ2c2

[
(1− ρ)2 + 2ρ(1− ρ) exp(−1

ρ

θc2

2− 2θ2c2
)

+
ρ2

2
exp(

c

ρ(1 + θc)
) +

ρ2

2
exp(− c

ρ(1− θc)
)
]
− 1
)t
P (c)dc

⩽
∫ 1

1−d−kσ

k∑
t=1

(
n

t

)( 1√
1− c2

[
(1− ρ)2 + 2ρ(1− ρ) +

ρ2

2
exp(

1

ρ
) +

ρ2

2

]
− 1
)t
P (c)dc

=

∫ 1

1−d−kσ

k∑
t=1

(
n

t

)( 1√
1− c2

[
1− ρ2

2
+
ρ2

2
exp(

1

ρ
)
]
− 1
)t
P (c)dc

⩽
∫ 1

1−d−kσ

k∑
t=1

(
n

t

)( 1√
1− c2

[
1 +

1

2
exp(

1

ρ
)
]
− 1
)t
P (c)dc

⩽
∫ 1

1−d−kσ

k∑
t=1

(
n

t

)( 1√
1− c2

[
1 +

1

2
exp(

1

ρ
)
])t

P (c)dc

Since we have 1
2 exp(

1
ρ) ⩾ 1 for ρ ⩽ 1, we can get:

T2 ⩽
∫ 1

1−d−kσ

k∑
t=1

(
n

t

)( exp(1ρ)√
1− c2

)t
P (c)dc

⩽
∫ 1

1−d−kσ

k∑
t=1

(en
t

)t( exp(1ρ)√
1− c2

)t
P (c)dc

=

∫ 1

1−d−kσ

k∑
t=1

(en exp(1ρ)
t
√
1− c2

)t
P (c)dc

⩽
∫ 1

1−d−kσ

k∑
t=1

(en exp(1ρ)√
1− c2

)k
P (c)dc
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=

∫ 1

1−d−kσ

k
(en exp(1ρ)√

1− c2

)k
P (c)dc

⩽keknk exp(
k

ρ
)

∫ 1

1−d−kσ

( 1√
1− c2

)k
P (c)dc

Now, we apply change of variable c = 2y − 1 and plug in y ∼ Beta(d−1
2 , d−1

2 ):

T2 ⩽ke
knk exp(

k

ρ
)

∫ 1

1−d−kσ/2

( 1√
1− (2y − 1)2

)k
P (y)dy

=keknk exp(
k

ρ
)

∫ 1

1−d−kσ/2

( 1√
4y(1− y)

)k [y(1− y)]
d−3
2

B(d−1
2 , d−1

2 )
dy

=Θ
{
keknk exp(

k

ρ
)

∫ 1

1−d−kσ/2
2d−k

√
d− 1[y(1− y)]

d−k−3
2 dy

}
Since 1− d−kσ

2 ⩽ y ⩽ 1 and 0 ⩽ 1− y ⩽ d−kσ

2 , we have:

T2 ⩽Θ
{
keknk exp(

k

ρ
)

∫ 1

1−d−kσ/2
2d−k

√
d− 1[

d−kσ

2
]
d−k−3

2 dy
}

=Θ
{
keknk exp(

k

ρ
)

∫ 1

1−d−kσ/2
2

d−k
2

√
d− 1d

−kσ(d−k−3)
2 dy

}
=Θ
{
keknk exp(

k

ρ
)
d−kσ

2
2

d−k
2

√
d− 1d

−kσ(d−k−3)
2

}
=Θ
{
keknk exp(

k

ρ
)2

d−k
2 d

−kσ(d−k−1)
2

+ 1
2

}
Plug in n ⩽ ρ2d2

k8
⩽ d2, ρ ⩾ k√

d
⩾ 1√

d
and k ⩽

√
d

log d ⩽
√
d, we get:

T2 ⩽Θ
{
keknk exp(

k

ρ
)2

d−k
2 d

−kσ(d−k−1)
2

+ 1
2

}
⩽Θ
{√

d exp(
√
d)d2

√
d exp(d) exp(

d

2
)d−

kσd
2

+ kσ
√
d

2
+ kσ

2
+ 1

2

}
=Θ
{
exp

(
− kσ

2
d log d+ (

kσ
2

+ 2)
√
d log d+

3

2
d+

√
d+ (

kσ
2

+ 1) log d
)}

Since kσ is a large enough constant, we have:

exp
(
− kσ

2
d log d+ (

kσ
2

+ 2)
√
d log d+

3

2
d+

√
d+ (

kσ
2

+ 1) log d
)
⩽ Θ(1)

Thus, we have:
T2 ⩽ Θ(1)
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