
Proceedings of Machine Learning Research vol 201:1–21, 2023 34th International Conference on Algorithmic Learning Theory

Online Learning for Traffic Navigation in Congested Networks

Sreenivas Gollapudi SGOLLAPU@GOOGLE.COM
Google Research

Kostas Kollias KOSTASKOLLIAS@GOOGLE.COM
Google Research

Chinmay Maheshwari CHINMAY MAHESHWARI@BERKELEY.EDU
University of California, Berkeley, EECS

Manxi Wu MANXIWU@CORNELL.EDU

Cornell University, Operations Research and Information Engineering

Editors: Shipra Agrawal and Francesco Orabona

Abstract
We develop an online learning algorithm for a navigation platform to route travelers in a congested
network with multiple origin-destination (o-d) pairs while simultaneously learning unknown cost
functions of road segments (edges) using the crowd-sourced data. The number of travel requests is
randomly realized, and the travel time of each edge is stochastically distributed with the mean being
a linear function that increases with the edge load (the number of travelers who take the edge). In
each step of our algorithm, the platform updates the estimates of cost function parameters using
the collected travel time data, and maintains a rectangular confidence interval of each parameter.
The platform then routes travelers in the next step using an optimistic strategy based on the lower
bound of the up-to-date confidence interval. The key aspects of our setting include (i) the size
and the spatial distribution of collected travel time data depend on travelers’ routing strategies;
(ii) we evaluate the regret of our algorithm for platforms with different objectives, ranging from
minimizing the social cost to minimizing the individual cost of self-interested users. We prove that
the regret upper bound of our algorithm is O(

√
T log(T )|E|), where T is the time horizon, and

|E| is the number of edges in the network. Furthermore, we show that the regret bound decreases
as the number of travelers increases, which implies that the platform learns faster with a larger
user population. Finally, we implement our algorithm on the network of New York City, and
demonstrate the efficacy of the proposed algorithm.
Keywords: Online learning, Congestion games, Traffic networks, Regret analysis

1. Introduction

In recent years, travelers are increasingly relying on navigation platforms to learn the traffic con-
ditions, and make routing decisions. The quality of the navigation service heavily depends on the
platform’s ability to collect travel time data from their users in order to train machine learning al-
gorithms that accurately predict the travel time. However, the travel time data is only available in
regions where the users are routed through, and thus the spatial distribution of the data is in turn
governed by the routing strategy. How can the platform efficiently learn the network cost functions
from users’ data, and effectively route a large number of travelers in a congested network? To
answer this question, we provide a repeated routing model, and an online learning algorithm.

We consider a congested network with multiple origin - destination (o-d) pairs. In every time
step, a finite number of routing requests is randomly generated between each o-d pair. The platform
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computes a routing strategy based on the received requests, and collects the realized travel time data
from each user on their taken edges. The time cost of each edge equals to a linearly increasing
function of the edge load – the number of travelers who take that edge – plus an independently
and identically distributed random noise with zero mean. In each step, the number of data points
collected by the platform of each edge equals to the number of travelers who take it. The platform
does not have data on edges that are not taken by any traveler.

When deciding the routing strategy, the platform faces a trade-off between achieving efficiency
for the society versus fairness among all their users (Kleinberg et al. (1999); Bertsimas et al. (2011);
Jahn et al. (2005); Schulz and Stier-Moses (2006); Jalota et al. (2021)). On one hand, the platform
can adopt a socially optimal routing in order to minimize the average cost of all travelers. On the
other hand, the platform can implement the equilibrium routing that is fair for all travelers so that
no one has an incentive to deviate. Due to the congestion effect, the equilibrium routing strategy is
different from the socially optimal routing, and the efficiency gap is characterized by the notion of
price of anarchy (Roughgarden (2002); Jahn et al. (2005); Roughgarden (2005)). In our setting, we
consider the socially optimal routing, equilibrium routing, as well as a combined routing strategy
for the platform. The combined routing strategy is characterized by a parameter that allows the
platform to determine the relative weight between the goal of efficiency and fairness.

We propose an online learning algorithm for the platform to learn the estimates of edge cost
parameters using the collected travel time data, and repeatedly update the routing strategy given the
randomly realized travel demand (Algorithm 1). In each time step of the algorithm, the algorithm
updates (i) a regularized ordinary least square estimate of the cost parameters (i.e. intercept and
slope) of edge cost functions; (ii) a confidence interval that is independently constructed for each
cost parameter of each edge; (iii) an optimistic routing strategy computed using the lower bound of
each parameter in their confidence interval. We note that the parameter estimates and confidence
intervals in (i) and (ii) are only updated for edges that are taken in each step. Moreover, the strategy
in (iii) is computed as a socially optimal strategy, an equilibrium strategy, or a combined strategy
depending on the goal of the platform.

The regret of our algorithm is defined as the accumulated gap between the value of the platform’s
objective function with the stage routing strategy and the optimal value if the platform were to
know the true cost parameter of all edges. Since we allow for fluctuation of travel demand, and the
platform’s objective is in a continuous spectrum between efficiency and fairness, our regret in each
stage is averaged over the number of travelers, and is parametrized by the efficiency-fairness trade-
off parameter. We present an upper bound of the accumulated regret of our algorithm (Theorem 6).
Our regret bound is O(

√
T log(T )|E|), where T is the time horizon, and |E| is the number of edges

in the network. This implies that the regret sub-linearly scales with the time steps, and linearly
scales with the network size.

Interestingly, we find that the bound on the regret decreases with N , where N is the minimum
number of travelers per step increases. Therefore, the platform learns faster, and achieves lower
regret for each user when the user population increases. This result is aligned with the practical
observation that platforms with higher market share in a region often achieves high accuracy in
travel time prediction thanks to their accessibility to a larger data set of travel time. Furthermore,
we also notice that the advantage of user size decreases as the platform increases its relative weight
on the goal of achieving fairness. This is because as the number of travelers increase, the congestion
effect caused by selfish routing behavior becomes more prominent.
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Our algorithm and regret analysis is inspired by the stochastic linear bandits literature (Dani
et al. (2008); Rusmevichientong and Tsitsiklis (2010); Abbasi-Yadkori et al. (2011); Lattimore and
Szepesvári (2020); Agrawal and Goyal (2013); Abeille and Lazaric (2017)). Both our algorithm and
the classical learning algorithms for linear bandits maintains a confidence set of the unknown linear
cost/reward function parameters and update strategies according to an optimistic decision rule. We
emphasize that our setting, algorithm, and analysis approach are different from the classical linear
bandit literature in the following three aspects:

(1) In our setting, the number of data on the realized travel time cost of each road segment equals
to the edge load induced by the routing strategy (i.e. the covariate of the linear regression of
each edge cost function). This is in contrast to the setting of stochastic linear bandit, where
only one data point is collected every time step regardless of the selected strategy. As a result,
our computation of the regularized OLS estimate and the bound of the probability of “clean
event” is different from that in the linear bandit setting (Lemmas 2, 3, and 4).

(2) Our algorithm constructs a rectangular confidence set for each edge cost parameters that is
the product of the independent confidence intervals of the intercept and slope parameters.
This is inspired by Dani et al. (2008), and is in contrast to the approach of constructing an
ellipse confidence set that is joint for all linear parameters. It is well known that computing
the optimistic estimate and optimistic strategy with ellipse confidence set is computation-
ally expensive (Lattimore and Szepesvári (2020)). Our approach of constructing rectangular
confidence set allows us to directly compute the optimistic routing strategy with respect to
the lower bound of each parameter (Lemma 5) This significantly simplifies the computation
especially in large networks with many edges.

(3) In our problem, the objective function of regret minimization is not the same function that pro-
vides bandit feedback. Specifically, the objective function of the routing platform is quadratic
average cost function, which depends on network topology, the cost estimates of every edge
and the fluctuating total demand. On the other hand, the collected cost data is generated by the
linear cost function of each edge that is taken. This is different compared with the majority of
bandit literature, where the stochastic reward used in parameter estimate is generated by the
same objective function of regret minimization.

Additionally, the online congestion routing problem studied in our work is complementary to the
extensively studied online shortest path problem, which falls in the broad category of online linear
optimization (Hannan (1957); Kalai and Vempala (2005); Lai et al. (1985); Littlestone and Warmuth
(1994); Freund and Schapire (1997); Auer et al. (2002)) and combinatorial bandit problem (Cesa-
Bianchi and Lugosi (2012); Gai et al. (2012); Kveton et al. (2015); Wen et al. (2015)) in networked
settings. The online shortest part problem addresses the problem with finding the shortest path in a
network with edge costs that have constant but unknown means. Specifically, the literature on online
shortest path problem can be divided in two categories based on whether or not the randomness
of edge costs is adversarial McMahan and Blum (2004); Dani and Hayes (2006); Awerbuch and
Kleinberg (2008); Cesa-Bianchi and Lugosi (2012), or stochastic Gai et al. (2012); Combes et al.
(2015); Talebi et al. (2017). Recently, the papers Levine et al. (2017); Pike-Burke and Grunewalder
(2019); Awasthi et al. (2022) considers edges costs that are changing across time steps depending
on the number of times being used. The problem considered in our paper is different from the
online shortest path problem in that we consider a congested network with linearly increasing edge
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cost functions, and simultaneously routing potentially a large number of travelers with fluctuating
demand and different o-d pairs. Consequently, our technical approach is also different from that
adopted in online shortest path problem.

More broadly, our online learning algorithm when adopting the equilibrium routing strategy in
each stage is related to the literature on learning Nash equilibrium or Coarse Correlated equilibrium
in routing games (Blum et al. (2006); Kleinberg et al. (2009); Krichene et al. (2014); Cominetti et al.
(2010)). Our setup is different from these papers in that the traveler set in our problem changes from
step to step, and thus the dynamics must be facilitated by a platform that collect travel time data to
learn the parametrized cost functions. The papers Meigs et al. (2017) and Wu and Amin (2019)
studied the similar setting of learning facilitated by navigation platforms for reaching equilibrium,
but their focus is the asymptotic properties in non-atomic routing games. These papers do not
provide finite-time regret analysis.

Finally, we test our learning analysis using a real-world example of routing travelers in Man-
hattan, New York City. We implement learning with both equilibrium routing and socially optimal
routing. We demonstrate that our algorithm is computationally feasible even when the network scale
is large. The algorithm efficiently learns the true edge cost parameters, and the equilibrium/optimal
routing strategy. The numerical experiment is consistent with our theoretical regret bound: We
observed that the accumulated regret scales sub-linearly with the number of stages, and the accu-
mulated regret with respect to socially optimal routing is smaller than that with equilibrium routing.

2. The Model

Consider a traffic network G = (E ,V) where E is the set of edges and V is the set of vertices. Each
edge e ∈ E has a finite integer capacity de ∈ N+.1 The network has a set of I origin-destination (o-
d) pairs, where each o-d pair i ∈ I is connected by route setRi. The set of all routes isR = ∪i∈IRi

A navigation platform repeatedly provide route recommendations to travelers in discrete time
steps t = 1, 2, . . . , T .2 In each step t, a finite set of agents N t

i request route recommendation to
travel between each o-d pair i. The number of travelers N t

i are randomly realized (and can be
correlated) across steps and o-d pairs with a positive lower bound N ∈ R+.3 The platform route
travelers according to a strategy qt = (qtr)r∈R, where qtr is the number of travelers sent to take route
r in step t. A routing strategy is feasible if it satisfies the following constraints:∑

r∈Ri

qtr = N t
i , ∀i ∈ I,

∑
r∋e

qtr ≤ de, ∀e ∈ E , qtr ≥ 0, ∀r ∈ R. (1)

The constraints in (1) ensure that the demand of every origin-destination pair i and every time step
t is routed; the load of each edge e ∈ E induced by qt does not exceed the edge capacity; and the
flow on each route is non-negative. We assume that the number of travelers requesting the trip is

1. The finite edge capacity ensures that the cost of each edge is bounded. This is a standard assumption in bandit
literature – the cost/reward of edge arm is upper bounded. The setting of capacity is without loss of generality when
the network capacity is higher than the number of travelers.

2. The time steps in our model can be viewed as service batches such that the travelers in the same batch impose
congestion externality on each other, but there is no congestion effect across batches (e.g. travelers in different
batches have distance in between).

3. When N = 1, then the platform only routes one traveler at a time, and there is no congestion effect. In practice, N
is typically a large number.
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below the capacity of the network in the sense that there always exists a feasible routing strategy qt

that satisfies (1). We denote the set of all feasible strategies in stage t as Qt.
Given a routing strategy qt ∈ Qt, the edge load on each edge e ∈ E is wt

e =
∑

r∋e q
t
r. The

expected driving time cost of edge e is ℓe(wt
e) = θe,0 + θe,1w

t
e, where θe,0,θe,1 > 0 is the free

flow travel time, and the slop of edge e, respectively.4 We denote the cost parameter vector of each
edge e as θe = (θe,0,θe,1).5,6 Each edge e is congestible in that the average travel time increases in
the load on the edge. In each step t, the driving time experienced by traveler k ∈ [wt

e] on edge e is
given by:

cte,k = ℓe(w
t
e) + ϵte,k, ∀k ∈ [wt

e], (2)

where ϵte,k is a 1−sub-Gaussian random variable, and is independently and identically distributed
across all wt

e travelers.7 The platform collects data of realized driving time of each traveler on all
taken edges, denoted as ct = (cte,k)k∈[wt

e],e∈Et , where Et = {e ∈ E|wt
e > 0} is the set of edges

taken by positive number of travelers. The number of data points collected by the platform on an
edge equals to the edge load, thus no data is available on edges that are not taken by any travelers.
We consider the following three types of routing strategies for the platform:

1. Socially optimal routing. The platform aims at minimizing the average cost of all travelers.
Given N t, the socially optimal routing strategy qt∗ is an optimal solution of the following convex
optimization problem:

min
qt

C(qt) =
1

N t

∑
e∈E

ℓe(w
t
e)w

t
e, s.t. wt

e =
∑
r∋e

qtr, qt ∈ Qt. (3)

2. Equilibrium routing. The platform aims at inducing an equilibrium qt† (the Beckmann user
equilibrium defined in Correa et al. (2004)). That is, no o-d pair has an unsaturated route (i.e. a
route is unsaturated if the number of travelers who take it is smaller than the capacity) with strictly
smaller cost than any route used by travelers:

∀i ∈ I, ∀r ∈ Ri, q
t†
r > 0, ⇒

∑
e∈r

ℓe(w
t†
e ) ≤

∑
e∈r′

ℓe(w
t†
e ), ∀r′ ∈ {Ri|

∑
r∋e

qtr < de,∀e ∈ r},

where wt† = (wt†
e )e∈E is the equilibrium edge load vector induced by qt†. Thus, no traveler has

an incentive to deviate from the taken route. Given N t, the equilibrium routing strategy qt† can
be computed by solving the following convex optimization problem that minimizes the potential
function of the routing game (Monderer and Shapley (1996); Roughgarden (2005)):

min
qt

Φ(qt) =
∑
e∈E

wt
e∑

j=1

ℓe(j), s.t. wt
e =

∑
r∋e

qtr, qt ∈ Qt.

4. Our algorithm and analysis can be extended to polynomial cost functions including the widely adopted Bureau of
Public Roads (BPR) latency functions (Dafermos and Sparrow (1969)).

5. We use the bold text to distinguish the true cost parameter θ from a generic cost parameter θ.
6. Our model accounts for the change of costs due to the fluctuation of demand, but assumes that the physical environ-

ment of road network captured by the average edge cost functions remain unchanged. We leave the nonstationary
environment as an interesting direction for future works.

7. The mean latency function ℓe(·) captures the interdependence of travel times and the congestion effect experienced
by travelers who use the same road.
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Remark 1 For any feasible routing strategy qt, the maximum reduction of any traveler’s cost of de-
viating from the route that they take in qt (i.e. the individual regret) is max{r,r′∈R|qtr>0}

∑
e∈r ℓe(w

t
e)−∑

e∈r ℓe(w
t′
e ), where wt′

e = wt
e for e ∈ r′ \ r and wt′

e = wt
e for e ∈ r ∩ r′. We can show that this

individual regret is upper bounded by the gap between Φ(qt) and ϕ(qt†):

max
{r,r′∈R|qtr>0}

∑
e∈r

ℓe(w
t
e)−

∑
e∈r

ℓe(w
t′
e ) = Φ(qt)− Φ(qt

′
) ≤ Φ(qt)−min

qt
Φ(qt)

= Φ(qt)− Φ(qt†),

(4)

where qt
′

is the routing strategy with one traveler deviating from route r to r′ and the remaining
travelers do not change their route choices. Thus, in (4), the first equality is derived from the fact
that the routing game is a potential game with potential function Φ. The last equality arises from
the fact that the equilibrium routing strategy is the minimizer of the potential function.

3. Combined routing. The platform aims at striking a balance between minimizing the average social
cost (i.e. efficiency) and minimizing the equilibrium gap of individual travelers (i.e. fairness). The
combined routing strategy qt,ξ is computed by solving the following convex optimization problem
that minimizes the linear combination between the average social cost function and the potential
function, where ξ ∈ (0, 1) governs the trade-off between efficiency and fairness:

min
qt

Ψ(ξ, qt) = ξC(qt) + (1− ξ)Φ(qt), s.t. qt ∈ Qt.

We note that when ξ = 1 (resp. ξ = 0), the combined routing strategy qt,ξ reduces to the socially
optimal routing qt∗ (resp. the equilibrium routing qt†).

In our setting, the platform does not know the edge latency function parameters (θe)e∈E . In-
stead, the platform learns the network cost parameters by repeatedly routing travelers in each stage,
and updating the parameter estimates based on the collected data of travelers’ experience travel time
ct. In the this section, we define the notion of regret of each of the three types of routing strategies
made by the platform compared to the case with complete information of the cost functions. We
also present the online learning algorithm, and provide detailed discussions on the cost parameter
estimates, and confidence intervals.

For any given ξ ∈ [0, 1], we define the total regret of all T stages as follows:

R(ξ) =

T∑
t=1

(
ξC(qt) + (1− ξ)Φ(qt)− min

q∈Qt
(ξC(q) + (1− ξ)Φ(q))

)
We note that for ξ = 1 , the regret equals to the difference between the average social cost

and the socially optimal average cost, and the regret is zero if and only if the routing strategy is
socially optimal. On the other hand, for ξ = 0, the regret equals to the difference between the
potential function value and the minimum value of potential function, which is an upper bound on
individual traveler’s regret of not choosing the shortest path. In this case, the regret is zero if the
routing strategy is an equilibrium. Additionally, for ξ ∈ (0, 1), the regret is zero if and only if
the routing strategy is the optimal combined strategy with weight ξ. Therefore, by minimizing the
regret function R(ξ) with a chosen weight ξ, the platform makes the trade-off between learning for
minimizing the average social cost and learning for minimizing the individual’s travel regret.8

8. Due to the fluctuating demand, our regret is defined for inidividual travelers.
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3. Algorithms and Computation

Before presenting the learning algorithm, we first introduce the regularized ordinary least square
(OLS) estimate of the cost parameters of each stage t, and construct a rectangular confidence interval
of the cost estimates.

Lemma 2 For any t ∈ [T ], edge e ∈ E , the parameter estimate θ̂te = (θ̂tr,0, θ̂
t
e,1) is computed as

the regularized least square estimate of θe given the regularizer λe:

θ̂te = argmin
θe

 ∑
j∈{[t−1]|wj

e>0}

wj
e∑

k=1

(cje,k − θe,0 − θe,1w
j
e)

2 + λe∥θe∥2
 = (V t

e )
−1U t

e, ∀e ∈ E,

where

V t
e =

[
λe 0
0 λe

]
+

∑
j∈{[t−1]|wj

e>0}

[
wj
e (wj

e)2

(wj
e)2 (wj

e)3

]
, U t

e =
∑

j∈{[t−1]|wj
e>0}

 ∑wj
e

k=1 c
j
e,k

wj
e

(∑wj
e

k=1 c
j
e,k

) .
In Lemma 2, the OLS estimate of each edge e uses data collected by the platform in all stages

j with positive number of travelers before t, i.e. j ∈ {[t − 1]|wj
e > 0}. Additionally, the data

collected on each edge e in stage j includes the realized costs of all travelers who take that edge,
i.e. (cje,k)k∈[wj

e]
.

We next construct the rectangular confidence intervals for the OLS estimate of edge. In each
step t ∈ [T ], we denote the confidence interval asRCt =

∏
e∈E RC

t
e, whereRCte is given by:

RCte =

{
θe = (θe,0, θe,1) ∈ R2

∣∣∣∣∣ θ̂te,0 − γte,0 ≤ θe,0 ≤ θ̂te,0 + γte,0,

θ̂te,1 − γte,1 ≤ θe,1 ≤ θ̂te,1 + γte,1

}
, ∀e ∈ E. (5)

In equation (5), γte,0 (resp. γte,1) represents half the width of the confidence interval of the estimate
θ̂te,0 (resp. θ̂te,1), and is defined as follows:

γte,0 =

√
4ηteβ

t
e

4νteη
t
e − (κte)

2
, γte,1 =

√
4νteβ

t
e

4νteη
t
e − (κte)

2
, (6)

where

βte =
√
λede +

√
2 log(t) + 2 log

(
2λe + t(de)2

2λe

)
, νte = λe +

∑
j∈{[t−1]|wj

e>0}

wj
e, (7a)

κte = 2
∑

j∈{[t−1]|wj
e>0}

(wj
e)

2, ηte = λe +
∑

j∈{[t−1]|wj
e>0}

(wj
e)

3. (7b)

The following lemma shows that the unknown cost parameter vector θ falls into the constructed
rectangular confidence interval with high probability.

Lemma 3 For any edge e ∈ E , with probability at least 1 − 1/T the unknown edge latency
parameter θe ∈ RCte for all t ∈ [T ]. Consequently, with probability higher than

(
1− |E|

T

)
, θ =

(θe)e∈E ∈ RCt for all t ∈ [T ].
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We note that in (5), the rectangular confidence interval of each edge cost parameters is con-
structed as the product of the interval of the intercept and the interval of the slope, which are
independently constructed. This is in contrast to the ellipse confidence set defined in linear ban-
dits literature Abbasi-Yadkori et al. (2011); Lattimore and Szepesvári (2020), where the confidence
intervals of the intercept and the slope are jointly determined by the bound of the ∥ · ∥V t

e
-norm.

The proof of Lemma 3 addresses two aspects that are new in our setting: (i) the number of data
points collected on each edge for each stage, and the lack of when not taken; (ii) rectangular instead
of ellipse confidence intervals. In particular, our proof builds on the following lemma that bounds
the rectangular confidence set between two ellipse confidence sets.

Lemma 4 For any edge e ∈ E, the rectangleRCte is a bounded between two ellipsoids as follows

{θ ∈ R2 : ∥θ − θ̂te∥2V t
e
≤ βte} =: Cte ⊂ RCte ⊂ C̃te := {θ ∈ R2 : ∥θ − θ̂te∥2V t

e
≤ υteβte},

where υte =
4
√

νteη
t
e

2
√

νteη
t
e−κt

e

≤ 6
√
de for all e ∈ E and all t ∈ [T ].

We define the optimistic parameter estimate and the optimistic routing strategy (θ̃t, q̃t) as the
solution of the following optimization problem that jointly minimizes the routing objective function
over the parameter estimate in the confidence interval and the routing strategy:

(θ̃t, q̃t) = argmin
θ∈RCt,qt∈Qt

Ψ(qt, ξ)

= argmin
θ∈RCt,qt∈Qt

ξ
1

N t

(∑
e∈E

(θe,0 + θe,1w
t
e)w

t
e

)
+ (1− ξ)

∑
e∈E

wt
e∑

j=1

(θe,0 + θe,1j)

 (8)

We next show that given the rectangular confidence interval, the optimistic parameter estimate
θ̃t is the minimum parameter vector in the rectangle confidence interval, and the q̃t is the minimizer
of the routing objective function associated with θ̃. Therefore, the rectangular confidence set sig-
nificantly simplifies the computation of the optimistic parameter estimates and routing strategies in
(8) compared to that with an ellipse confidence set.

Lemma 5 For any t ∈ [T ], and any ξ ∈ [0, 1],

θ̃te,0 = θ̂te,0 − γte,0, θ̃te,1 = θ̂te,1 − γte,1, ∀e ∈ E,

q̃t = argmin
qt∈Qt

Ψ̃t(ξ, qt) = argmin
qt∈Qt

ξ
1

N t

(∑
e∈E

(θ̃te,0 + θ̃te,1w
t
e)w

t
e

)
+ (1− ξ)

∑
e∈E

wt
e∑

j=1

(θ̃te,0 + θ̃te,1j)

 .

We are now ready to present our online learning algorithm. In each step t ∈ [T ], given the
total number of routing requests N t, Algorithm 1 first computes the optimistic routing strategy q̃t

using the optimistic parameter estimate θ̃t = (θ̃e)e∈E (line 3).9 Then, the platform routes travelers,

9. To improve the algorithm efficient, we solve q̃t as a (fractional) solution of continuous optimization problem, and
randomly round q̃. The difference in social cost and individual cost (and consequently the regret) is small since
the impact of individual traveler on the congestion cost is almost negligible. This is also consistent with the widely
adopted modeling framework of nonatomic routing games.
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and collect data of edge load and realized costs on edges (line 4-6). The algorithm updates the
regularized OLS estimates θ̂t+1

e (line 7-8), and the optimistic parameter estimate θ̃t+1
e as the lower

bound of the rectangular confidence interval RCt+1
e (line 9) for all edges that are taken in stage t.

The parameter estimates of the remaining edges are kept unchanged (line 10).

Algorithm 1 Online learning algorithm for exploration in routing

1 Input: For each e ∈ E, (λe = 2d2e), θ̃
1
e , (N

t
i )i∈I,t∈[T ], (de)e∈E , V

1
e =

[
λe 0
0 λe

]
, Q1

e =

[
0
0

]
.

2 for t=1,2,.. do
3 Compute q̃t ← argminqt∈Qt Ψ̃t(ξ, qt) with ξ = 1 for socially optimal routing, ξ = 0 for

equilibrium routing, and ξ ∈ (0, 1) for combined routing.
4 Compute w̃t

e ←
∑

r∋e q̃
t
r for all e ∈ E

5 for e ∈ E do
// Data collection of realized costs

6 if w̃t
e > 0 receive edge costs (cte,k)k∈[w̃t

e]
then

// Calculate least square estimate

7 V t+1
e = V t

e +

[
w̃t
e (w̃t

e)
2

(w̃t
e)

2 (w̃t
e)

3

]
, Qt+1

e = Qt
e +

 ∑w̃t
e

k=1 c
t
e,k

w̃t
e

(∑w̃t
e

k=1 c
t
e,k

)
8 θ̂t+1

e ← (V t+1
e )−1Qt+1

e

// Calculate optimistic estimate

9 θ̃t+1
e ← θ̂t+1

e −
[
γt+1
e,0

γt+1
e,1

]
, where γt+1

e,0 and γt+1
e,1 are given by (6)

else
10 V t+1

e ← V t
e , Q

t+1
e ← Qt

e, θ̂
t+1
e ← θ̂te, θ̃

t+1
e ← θ̃te

end
end

end

4. Regret Analysis

The following theorem presents the regret bound of Algorithm 1.

Theorem 6 With probability at least 1−|E|/T , the accumulated regret of individual travelers with
combined routing with weight parameter ξ ∈ [0, 1] is given by:

R(ξ) ≤ 10|E|K
(
1− ξ + ξ

N

)
(d̄)3/4

√
T

(
2 ln(T d̄) +

√
2d̄∥θ∥ ln(T d̄)

)
,

where K = maxe (αe + βede) de, N = mintNt and d̄ = maxe∈E de. In particular, the regret of
socially optimal routing is R∗ = R(1), and the regret of equilibrium routing is R† = R(0).

Our regret bound in Theorem 6 is O(
√
T ), and scales linearly on the number of edges |E| in

the network. Furthermore, with ξ = 1, the regret of socially optimal routing R(1) decreases in the
minimum number of travelers N of every stage. The intuition is that as more travelers are routed by

9
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the platform, more data is collected to learn the cost parameters faster, and thus leads to a smaller
averaged regret for every traveler under the socially optimal routing. On the other hand, as ξ = 0,
the equilibrium routing regret bound is independent of the number of travelers. This is because
although more travelers leads to more number of data points, the inefficiency due to selfish routing
also becomes more significant as the number of travelers increase. As a result, the two effect cancels
out in the analysis of the equilibrium routing regret bound. Finally, the regret bound of combined
routing ξ scales linearly between R(1) and R(0), and increases in ξ.

The proof of Theorem 6 builds on Lemmas 2 – 5
Proof of Theorem 6. Let’s consider the event Z = {θe,0 ≥ θ̃te,0,θe,1 ≥ θ̃te,1 ∀ e ∈ E, t ∈ [T ]}.
From Lemma 3 we know that Pr(E) ≥ 1 − |E|/T . In what follows we assume E holds. Given
any ξ ∈ (0, 1), we compute the value of the objective function with the optimal combined routing
strategy qt,ξ and the induced edge load vector wt,ξ:

Ψ(ξ, qt,ξ) =
∑
e∈E

 ξ

N t
(θe,0 + θe,1w

t,ξ
e )wt,ξ

e + (1− ξ)

wt,ξ
e∑

j=1

θe,0 + θe,1j


=
∑
e∈E

(
ξ

N t
(θe,0 + θe,1w

t,ξ
e )wt,ξ

e + (1− ξ)(θe,0wt,ξ
e + θe,1

(1 + wt,ξ
e )wt,ξ

e

2
)

)

=
∑
e∈E

((
1− ξ + ξ

N t

)
θe,0 +

1− ξ
2

θe,1

)
wt,ξ
e +

(
1− ξ
2

+
ξ

N t

)
θe,1(w

t,ξ
e )2

=
∑
e∈E

[θe,0,θe,1] ·M t ·

[
wt,ξ
e

(wt,ξ
e )2

]
,

where M t =

[
1− ξ + ξ

Nt 0
1−ξ
2

1−ξ
2 + ξ

Nt

]
. Under the event Z , it holds that [θe,0,θe,1] ∈ RCte.

Consequently, it follows that

Ψ(ξ, qt,ξ) =
∑
e∈E

[θe,0,θe,1] ·M t ·

[
wt,ξ
e

(wt,ξ
e )2

]
≥ min

θ∈RCt

∑
e∈E

[θe,0,θe,1] ·M t ·

[
wt,ξ
e

(wt,ξ
e )2

]

=
∑
e∈E

[θ̃te,0, θ̃
t
e,1] ·M t ·

[
wt,ξ
e

(wt,ξ
e )2

]
≥
∑
e∈E

[θ̃te,0, θ̃
t
e,1] ·M t ·

[
w̃t
e

(w̃t
e)

2

]
= ψ̃t(ξ, q̃t),

where the last inequality is due to the fact that q̃t minimizes ψ̃t(ξ, qt).
Then, the regret at stage t is given by

rt = Ψ(ξ, q̃t)−Ψ(ξ, qt,ξ) ≤ Ψ(ξ, q̃t)− ψ̃t(ξ, q̃t) =
∑
e∈E

(
θe − θ̃te

)⊤
·M t ·

[
w̃t
e

(w̃t
e)

2

]
(9)

Moreover, since the capacity on each edge is finite, and costs are positive, we have:

rt = Ψ(ξ, q̃t)− ψ̃t(ξ, q̃t) ≤ Ψ(ξ, q̃t) ≤
∑
e∈E

(
1− ξ + ξ

N t

)(
θe,0 + θe,1w̃

t
e

)
w̃t
e

≤
∑
e∈E

(θe,0 + θe,1w̃
t
e)w̃

t
e ≤

∑
e∈E

(θe,0 + θe,1de)de (10)

10
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where the second to last inequality follows by noting that N t ≥ 1 otherwise w̃t
e = 0 which will not

contribute to the sum and the final inequality follows by the capacity constraint w̃t
e ≤ de. We define

the constant Ke = (θe,0 + θe,1de) de, then combining (9) and (10) we obtain

rt ≤
∑
e

{
Ke ∧

(
θe − θ̃te

)⊤
M t ·

[
w̃t
e

(w̃t
e)

2

]}
We apply Cauchy-Schwartz inequality to bound the total regret as follows:

R =

T∑
t=1

rt =
∑
e∈E

T∑
t=1

{
Ke ∧

(
θe − θ̃te

)⊤
M t ·

[
w̃t
e

(w̃t
e)

2

]}

≤ |E|

√√√√T

T∑
t=1

{
K ∧

(
θẽ − θ̃tẽ

)⊤
M t ·

[
w̃t
ẽ

(w̃t
ẽ)

2

]}2

(11)

where ẽ = argmaxe
∑T

t=1

{
Ke ∧

(
θe − θ̃te

)⊤
M t ·

[
w̃t
e

(w̃t
e)

2

]}
, K = maxe∈EKe. Next, we note

that for every e ∈ E it holds that(
θe − θ̃te

)⊤
M ·

[
w̃t
e

(w̃t
e)

2

]
= w̃t

e

[
θe,0 − θ̃te,0 θe,1 − θ̃te,1

] [1− ξ + ξ
Nt 0

1−ξ
2

1−ξ
2 + ξ

Nt

] [
1
w̃t
e

]
≤ w̃t

e

(
1− ξ + ξ

N t

)(
(θe,0 − θ̃te,0) + (θe,1 − θ̃te,1)w̃t

e

)
(12)

where the inequality is obtained by noting that under the event E , we have θe,0 ≥ θ̃te,0 and θe,1 ≥

θ̃te,1. Define Ξt =
(
1− ξ + ξ

Nt

)
and ytẽ =

[
1
w̃t
ẽ

]
. Then, it follows that

∣∣∣∣ (θẽ − θ̃tẽ)⊤M t · ytẽ
∣∣∣∣2 ≤ (w̃t

ẽΞ
t)2
∣∣∣∣ (θẽ − θ̃tẽ)⊤ ytẽ∣∣∣∣2 ≤ (w̃t

ẽΞ
t)2∥θẽ − θ̃tẽ∥2V t

e
∥ytẽ∥2(V t

e )
−1

=(w̃t
ẽΞ

t)2
(
∥θẽ − θ̂tẽ + θ̂tẽ − θ̃tẽ∥2V t

ẽ

)
∥ytẽ∥2(V t

ẽ )
−1

≤2(w̃t
ẽΞ

t)2
(
∥θẽ − θ̂tẽ∥2V t

ẽ
+ ∥θ̂te − θ̃tẽ∥2V t

ẽ

)
∥ytẽ∥2(V t

ẽ )
−1 ≤ 4(w̃t

ẽΞ
t)2υtẽβ

T
ẽ ∥ytẽ∥2(V t

ẽ )
−1 , (13)

where the first inequality is due to (12), the second inequality is due to Cauchy Schwartz inequality
and the third inequality holds due to the fact that θ̃te ∈ RCte along with Lemma 3 and Lemma 4.
Thus, combining (11) and (13) we obtain

R ≤ |E|KΞmax

√√√√4Tυmax
ẽ βTẽ

T∑
t=1

(
1 ∧ (w̃t

ẽ)
2∥ytẽ∥2(V t

ẽ )
−1

)
,

11
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where Ξmax = 1 − ξ + ξ
N , N = 1 ∧ mintN

t and γmax
e = maxt γ

t
e. Next, we note that for any

e ∈ E

T∑
t=1

(
1 ∧ (w̃t

e)
2∥yte∥2(V t

e )
−1

)
≤ de

T∑
t=1

(
1 ∧ w̃t

e∥yte∥2(V t
e )

−1

)
≤2de

T∑
t=1

ln
(
1 + w̃t

e∥yte∥2(V t
e )

−1

)
= 2de ln

(
det
(
V T
e

)
det (V 0

e )

)
≤ 2d̄ ln

(
det
(
V T
e

)
det (V 0

e )

)
,

where the second inequality follows by noting that 1 ∧ u ≤ 2 ln(1 + u) for any u ≥ 0 and the
equality follows due to Lemma 7 in the appendix. Next, from (11) we note that

R ≤ |E|KΞmax

√
8T d̄υmax

e βTẽ ln

(
det(V T

ẽ )

det(V 0
ẽ )

)
≤ |E|KΞmax

√
16T d̄υmax

e βTẽ ln

(
λe + Td3e

λe

)
where the last inequality follows by Lemma 8. Next, by choosing λe = 2d2e we have

R ≤ |E|KΞmax

√
96T d̄

√
d̄βTẽ ln

(
λe + Td3e

λe

)
≤ |E|KΞmax

√
96T d̄3/2βTẽ ln(Tdẽ)

where the first inequality is due to Lemma 4. Finally, noting that

√
βTe ≤

√
2 ln(T ) + 2 ln

(
λe + Td3e

λe

)
+
√
λe∥θe∥ ≤

√
4 ln(Tde) + 2de∥θ∥e

Thus, R ≤ 10|E|KΞmax(d̄)3/4
√
T
(
2 ln(T d̄) +

√
2d̄∥θ∥ ln(T d̄)

)
. □

5. Experimental Analysis in New York City

In this section we conduct an experimental analysis of our algorithm in the road network of New
York City. We partition the road network of New York City into 8 regions and in each round we
draw a random arrival rate for routing requests between each pair of regions. We model the requests
as originating and terminating in the middle points of the regions. The arrival rates are uniformly
drawn for each origin-destination pair, between 5 and 15 cars per time unit. We extract the road
network from OpenStreetMap (2017). The total number of edges is 344, 524 (Fig. 1).

The average travel time cost of each edge takes the functional form of the Bureau of Public
Roads (1964) with linear exponent. Specifically we set ℓe(we) = αtfewe/de + tfe , where tfe is the
time needed to cross the edge when the road is empty, i.e., the free-flow travel time, and de is the
capacity of the street, defined as the number of lanes multiplied by the free-flow speed. The value
of tfe and de is directly known from using the data set from Open Street Map. We calibrate the
parameter γ using the data of edge load and travel time from the online navigation systems. Thus,
for each e ∈ E, we obtain the true cost parameter θe,0 = tfe , and θe,1 = αtfe/de. The true parameter
is not known by the learning algorithm.

We implement Algorithm 1 for socially optimal routing (ξ = 1) and equilibrium routing (ξ = 0).
We initialize θ1e,0 = θ1e,1 = θ̃1e,0 = θ̃1e,1 = 0 for all edges e. In each round t = 1, 2, . . ., the

12
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Figure 1: The regions of NYC that we use in our experiments.

algorithm observes the realized travel demand and their origin destination pairs, Based on the up-
to-date optimistic parameter estimates (θ̃te)e∈E , the algorithm computes either (a) socially optimal
routing strategy or (b) the equilibrium routing strategy.10 Then, the algorithm collects the realized
cost of travelers on each taken edge, which equals to the value of the latency function ℓe(wt

e) plus
a random noise that is uniformly distributed in [−0.05ℓe(de) ,0.05ℓe(de)]. Given the collected cost
data, the algorithm updates θ̂t+1

e and θ̃t+1
e for edges that are taken.

By computing the equilibrium routing strategy and socially optimal routing strategy given the
true cost parameters, we can compute the regret of each stage. In Fig. 2, we demonstrate that
the regret in each stage decreases to zero for both the socially optimal routing and the equilibrium
routing. In Fig. 3, we demonstrate that the accumulated regret increases sub-linearly with respect
to t, and the regret of equilibrium routing is higher than that of socially optimal routing.

Figure 2: Stage regret of Algorithm 1 in NYC.

6. Concluding Remarks

In this article, we propose an online learning algorithm for a navigation platform to learn the un-
known cost function of congested road segments and route travelers. Depending on the platform’s

10. We compute a fractional routing strategy by solving the convex optimization program corresponding to the optimistic
parameter estimates. Then, we do randomized routing if needed.

13
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Figure 3: Accumulated regret of Algorithm 1 in NYC.

trade-off between efficiency and fairness, the routing strategy in the algorithm can be a socially op-
timal strategy, or an equilibrium strategy, or a combination of the two. Our regret analysis demon-
strates that the accumulated regret upper bound of the proposed algorithm is sublinear in the number
of time steps, and linear in the number of edges. We also show that the regret bound is linear in the
inverse of the number of travelers, which implies that the platform with larger user size learns faster.
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Appendix A. Proof of Lemmas

Proof of Lemma 2. We note that the optimization problem for computing the regularized least square
estimate is strongly convex in θe. Therefore, the regularized OLS estimate θ̂te satisfies the following
first order condition:

∑
j∈{[t−1]|wj

e>0}

[
1 1 · · · 1

wj
e wj

e · · · wj
e

]
︸ ︷︷ ︸

wj
e columns

·


1 wj

e

1 wj
e

...
...

1 wj
e

 ·
[
θ̂te,0
θ̂te,1

]
=

∑
j∈{[t−1]|wj

e>0}

[
1 1 · · · 1

wj
e wj

e · · · wj
e

]
·


cje,1
cje,2

...
cj
e,wj

e


⇒

[ ∑
j∈{[t−1]|wj

e>0}w
j
e

∑
j∈{[t−1]|wj

e>0}(w
j
e)2∑

j∈{[t−1]|wj
e>0}(w

j
e)2

∑
j∈{[t−1]|wj

e>0}(w
j
e)3

][
θ̂te,0
θ̂te,1

]
=

 ∑
j∈{[t−1]|wj

e>0}
∑wj

e
k=1 c

j
e,k∑

j∈{[t−1]|wj
e>0}w

j
e(
∑wj

e
k=1 c

j
e,k)


⇒ V t

e ·

[
θ̂te,0
θ̂te,1

]
= Qt

e

⇒

[
θ̂te,0
θ̂te,1

]
= (V t

e )
−1Qt

e

That is, the parameter estimate θ̂t computed in Algorithm 1 is the regularized OLS estimate. □

Since Lemma 3 builds on Lemma 4, we first proof Lemma 4.
Proof of Lemma 4. We first define the following half spaces:

L1 =

{
(θe,0, θe,1) ∈ R2

∣∣∣∣∣θe,1 ≤ θ̂te,1 +
√

4νteβ
t
e

4νteη
t
e − (κte)

2

}
,

L2 =

{
(θe,0, θe,1) ∈ R2

∣∣∣∣∣θe,1 ≥ θ̂te,1 −
√

4νteβ
t
e

4νteη
t
e − (κte)

2

}
,

L3 =

{
(θe,0, θe,1) ∈ R2

∣∣∣∣∣θe,0 ≤ θ̂te,0 +
√

4ηteβ
t
e

4νteη
t
e − (κte)

2

}
,

L4 =

{
(θe,0, θe,1) ∈ R2

∣∣∣∣∣θe,0 ≥ θ̂te,0 −
√

4ηteβ
t
e

4νteη
t
e − (κte)

2

}
where νte, κ

t
e, η

t
e and βte are given by (7). Thus, RCte = L1 ∩ L2 ∩ L3 ∩ L4. We next re-write the

characterization of set Ct defined in the lemma.

Cte = {(θe,0, θe,1)
∣∣∣νte(θ̂te,0 − θe,0)2 + κte(θ̂

t
e,0 − θe,0)(θ̂te,1 − θe,1) + ηte(θ̂

t
e,1 − θe,1)2 ≤ βte } (14)

17
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To show Cte ⊂ RCte, it is sufficient to show that Cte ⊂ Li for all i ∈ {1, 2, 3, 4}. For the sake
of concise presentation, we only check the condition Cte ⊂ L1. To see this, we show that for any

θe ̸∈ L1 it holds that θe ̸∈ Cte. Note that for any θe ̸∈ L1 it holds that θe,1 > θ̂te,1 +
√

4νteβ
t
e

4νteη
t
e−(κt

e)
2 .

Consequently, it holds that

(θe,1 − θ̂e,1)2 >
4νteβ

t
e

4νteη
t
e − (κte)

2
. (15)

Define a quadratic function f(z) = νtez
2 + κte(θ̂e,1 − θe,1)z + ηte(θ̂e,1 − θe,1)2 − βte. To show that

θe ̸∈ Cte, it is enough to show that f(z) > 0 for all z. To establish this we first note that f(0) > 0.
Second, we see that the discriminant of f(·), denoted as ∆, is negative. That is,

∆ = (κte)
2(θ̂e,1 − θe,1)2 − 4νte

(
ηte(θ̂e,1 − θe,1)2 − βte

)
= 4ηteβ

t
e − (4ηteν

t
e − (κte)

2)(θ̂e,1 − θe,1)2 < 0,

where the last inequality holds due to (15). Therefore, f(z) > 0 for all z which implies that θe ̸∈ Cte.
Next we show that RCte ⊂ C̃te. Since the set C̃te is an ellipsoid and therefore a convex set, it

suffices to check that the corners of the rectangle RCte lie inside C̃te. The corners of the rectange
RCte are

P1 =

(
θ̂te,0 +

√
4ηteβ

t
e

(4νteη
t
e − (κte)

2)
, θ̂te,1 +

√
4νteβ

t
e

4νteη
t
e − (κte)

2

)
,

P2 =

(
θ̂te,0 +

√
4ηteβ

t
e

(4νteη
t
e − (κte)

2)
, θ̂te,1 −

√
4νteβ

t
e

4νteη
t
e − (κte)

2

)
,

P3 =

(
θ̂te,0 −

√
4ηteβ

t
e

(4νteη
t
e − (κte)

2)
, θ̂te,1 +

√
4νteβ

t
e

4νteη
t
e − (κte)

2

)
,

P4 =

(
θ̂te,0 −

√
4ηteβ

t
e

(4νteη
t
e − (κte)

2)
, θ̂te,1 −

√
4νteβ

t
e

4νteη
t
e − (κte)

2

)
.

One can check that P1, P4 lie on the boundary of C̃te while P2, P3 lie strictly inside C̃te.
Given any e ∈ E and t ∈ [T ], since 0 ≤ wt

e ≤ de, we have

λet ≤νte ≤ λet+ det, 0 ≤ κte ≤ 2(de)
2t, λet ≤ ηte ≤ λet+ t(de)

3

Using the preceding inequalities, we have

λet ≤
√
νteη

t
e ≤ t

√
(λe + de)(λ+ (de)3), −2t(de)2 ≤ −(κte)

Thus, we have

υte =
4
√
νteη

t
e

2
√
νteη

t
e − κte

≤
2
√
(λe + de)(λe + (de)3)

λe − (de)2

18
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Since de ≥ 1, by choosing λe = 2d2e, we have

υte ≤ 2

√
(3(de)2)(3(de)3)

(de)2
≤ 6
√
de.

□

We are now ready to prove Lemma 3.
Proof of Lemma 3. The proof of this result is based on establishing the following two claims:

(a) For every e ∈ E , t ∈ [T ] the following inclusion holds

{θ ∈ R2 : ∥θ − θ̂te∥2V t
e
≤ βte} =: Cte ⊂ RCte

(b) For every edge e ∈ E , with probability 1− 1/T the unknown edge latency parameter θe ∈ Cte
for all t ∈ [T ].

Note that (a) is satisfied due to Lemma 4. To establish (b), we note that at every time t ∈
[T ], edge e ∈ E, traveler k ∈ [wt

e] in the network communicates actual delay experienced to the
platform which is cte,k = ce(w

t
e)+ ϵ

t
e,k where ϵte,k is a 1−sub-Gaussian random variable. We denote

St
e =

∑t
j=1 y

j
e
∑wj

e
k=1 ϵ

j
e,k, where yje =

[
1

wj
e

]
. We also denote that W t

e = V t
e −

[
λe 0
0 λe

]
=

∑
j∈{[t−1]|wj

e>0}

[
wj
e (wj

e)2

(wj
e)2 (wj

e)3

]
. Next, we note that

∥θ̂te − θe∥V t
e
= ∥(V t

e )
−1St

e + ((V t
e )

−1W t
e − I)θe∥V t

e

≤ ∥(V t
e )

−1St
e∥V t

e
+ ∥((V t

e )
−1W t

e − I)θe∥V t
e

= ∥(V t
e )

−1St
e∥V t

e
+
√
θ⊤e ((V

t
e )

−1W t
e − I)⊤V t

e ((V
t
e )

−1W t
e − I)θe

= ∥(V t
e )

−1St
e∥V t

e
+
√
λe∥θe∥2 − λeθ⊤e W t

e
⊤(V t

e )
−1θe

≤ ∥St
e∥(V t

e )
−1 +

√
λe∥θe∥ (16)

where the first equality is due to Lemma 2, the second inequality is by noting that θ⊤e W
t
e
⊤(V t

e )
−1θe ≥

0. Next we claim that with probability atleast 1− 1/T the following holds

∥St
e∥(V t

e )
−1 ≤

√
2 log (T ) + log

(
det(Vt)

λ2e

)
+
√
λe∥θe∥ (17)

To see this we define M t
e(z) = exp(⟨z, St

e⟩ − 1
2∥z∥

2
V t
e
). Note that for z ∼ N (0, λeI), M̄ t

e =

Ez[M
t
e(z)] is a supermartingale adapted to filtration F t

e = σ(w1
e , c̃

1
e, ...., c̃

t−1
e , wt

e). Indeed, note
that for any fixed z

E[M t
e(z)|F t

e] =M t−1
e (z)E

exp
〈z, yte wt

e∑
k=1

ϵte,k

〉
− 1

2
∥z∥2wt

ey
t
ey

t
e
⊤

∣∣∣∣Ft


=M t−1

e (z)

wt
e∏

k=1

E[exp(ϵte,k⟨z, yte⟩ −
1

2
∥z∥2yteyte⊤)]

≤M t−1
e (z)
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where second equality is due to independence of noise. Meanwhile, the last inequality is due to
the 1-sub Gaussian nature of noise. Thus it follows that M̄ t

e is a super martingale as well where
z ∼ N (0, λeI). Since M̄ t

e is a supermartingale, it follows from (Lattimore and Szepesvári, 2020,
Theorem 20.4) that (17) holds with probability atleast 1 − 1/T . We conclude the lemma by com-
bining (16) and (17). □

Proof of Lemma 5. We first check that given any routing strategy qt, θ̃ minimizes the value of the
objective function because wt

e ≥ 0, i.e.

ξ
1

N t

(∑
e∈E

(θ̃te,0 + θ̃te,1w
t
e)w

t
e

)
+ (1− ξ)

∑
e∈E

wt
e∑

j=1

(θ̃te,0 + θ̃te,1j)


≤ξ 1

N t

(∑
e∈E

(θte,0 + θte,1w
t
e)w

t
e

)
+ (1− ξ)

∑
e∈E

wt
e∑

j=1

(θte,0 + θte,1j)

 , ∀θ ∈ RCt.

Additionally, since q̃t is the minimizer of the function Ψ̃t(ξ, qt) with respect to θ̃t, we conclude that
(θ̃t, q̃t) is the optimal solution of (8). □

Lemma 7 For any edge e ∈ E, it holds that

T∑
t=1

ln
(
1 + w̃t

e∥yte∥2(V t
e )

−1

)
= ln

(
detV T

e

detV 0
e

)
,

where yte =
[
1
w̃t
e

]
.

Proof of Lemma 7. We note that

V t
e = V t−1

e + w̃t
ey

t
ey

t⊤
e

=
(
V t−1
e

)1/2 (
I + w̃t

e

(
V t−1
e

)−1/2
ytey

t⊤
e

(
V t−1
e

)−1/2
) (
V t−1
e

)1/2
.

Taking determinant of matrices on both sides of previous equation we obtain

det
(
V t
e

)
= det

(
V t−1
e

)
det
(
I + w̃t

e

(
V t−1
e

)−1/2
ytey

t⊤
e

(
V t−1
e

)−1/2
)

= det
(
V t−1
e

) (
1 + w̃t

e∥yte∥2(V t−1
e )−1

)
.

Finally, det
(
V T
e

)
= det

(
V 0
e

)∏T
t=1

(
1 + w̃t

e∥yte∥2(V t
e )

−1

)
. □

Lemma 8 For any edge e ∈ E, det(V T
e ) ≤ (λe + Td3e)

2 and det(V 0
e ) = λ2e.

Proof of Lemma 8. Note that V 0
e = λeI where I is the identity matrix in R2. Thus, det(V 0

e ) = λ2e.
Next,

det(V T
e ) ≤

(
1

2
trace(V T

e )

)2

=

(
1

2
(2λe +

T∑
t=1

w̃t
ey

t
e
⊤yte)

)2

≤ 1

4

(
2λe + Tde(1 + d2e)

)2 ≤ (λe + Td3e)
2,
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where the first inequality follows by noting that determinant of a matrix is product of eigenvalues
and then bounding the product using the inequality of arithmetic and geometric means. The first
equality follows by noting that V T

e = λeI +
∑T

t=1 w̃
t
ey

t
ey

t
e
⊤. The second inequality follows by

noting that w̃t
e ≤ de. □
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