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Abstract
This paper discusses the adversarial and stochastic K-armed bandit problems. In the adversarial
setting, the best possible regret is known to be O(

√
KT ) for time horizon T . This bound can be

achieved by several policies but they require to explicitly compute the arm-selection probabilities
by solving optimization problems at each round, which becomes problematic in some settings. One
promising candidate to avoid this issue is the Follow-The-Perturbed-Leader (FTPL) policy, which
simply chooses the arm with the minimum cumulative estimated loss with a random perturbation.
In particular, it has been conjectured that O(

√
KT ) regret might be achieved by FTPL with a

Fréchet-type perturbation. This paper affirmatively resolves this conjecture by showing that Fréchet
perturbation indeed achieves this bound. We also show that FTPL achieves a logarithmic regret for
the stochastic setting, meaning that FTPL achieves best-of-both-worlds regret bounds. The key to
these bounds is the novel technique to evaluate the stability of the policy and to express the regret
at each round in multiple forms depending on the estimated losses.
Keywords: multi-armed bandit, adversarial bandit, stochastic bandit, best-of-both-worlds, follow-
the-perturbed-leader, Fréchet distribution

1. Introduction

The multi-armed bandit (MAB) is a model of a gampler playing slot machines and is one of the most
fundamental problems of decision making under uncertainty. In this problem, there are K arms of
slot machines and the player chooses one arm It based on his/her past observation at each round
t ∈ [T ] = {1, 2, . . . , T} for time horizon T . The loss vector `t = (`t,1, `t,2 . . . , `t,K)> ∈ [0, 1]K is
determined by the environment and the player can only observe the loss `t,It of the pulled arm It.

The performance of the player is often measured by the pseudo-regret defined as Regret(T ) =
E
[∑T

t=1 `t,It
]
−mini∈[K] E

[∑T
t=1 `t,i

]
, which is the gap of the expected cumulative loss between

the policy and the best fixed arm. There are mainly two settings on the formulation of the envi-
ronment to determine the loss vectors: the stochastic setting (Lai and Robbins, 1985; Auer et al.,
2002a) and the adversarial setting (Auer et al., 2002b).

In the stochastic setting, we assume that loss vectors `t for t ∈ [T ] are i.i.d. from an unknown
but fixed distribution D over [0, 1]K . The difficulty of this problem is usually measured by the
suboptimality gap ∆i = µi − µi∗ for µi = E`∼D[`i] and i∗ ∈ argmini∈[K]{µi}, that is, ∆i is the
gap between the arm i and the best arm i∗. The optimal (problem-dependent) regret bound given the
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suboptimality gap is expressed as Regret(T ) =
∑

i:∆i>0O( log T
∆i

) for fixed ∆i with T →∞, which
is called a problem-dependent regret bound. This bound can be achieved by several policies such
as UCB (Auer et al., 2002a; Cappé et al., 2013) and Thompson sampling (Kaufmann et al., 2012;
Agrawal and Goyal, 2013; Riou and Honda, 2020), some of which further improves the performance
by considering dependence not only on {∆i} but also on D itself.

In the adversarial setting, no specific distribution of the loss is assumed and the environment
may adversarially choose loss vectors `t depending on the history of the decisions {Is}t−1

s=1. For this
setting, a family of policies called the Follow-The-Regularized-Leader (FTRL) with appropriate
regularization functions achieves O(

√
KT ) regret bounds (Audibert and Bubeck, 2009; Zimmert

and Lattimore, 2019). In particular, the Tsallis-INF policy (Zimmert and Seldin, 2021) with adaptive
learning rate has a special strength in its O(

∑
i 6=i∗

log T
∆i

) regret bound for the stochastic setting,
though the leading factor of the O(log T ) term is slightly worse than those purely for the stochastic
setting and we need the assumption of the unique optimal arm.

In practice, it is difficult to know whether the environment is stochastic or adversarial (or in
between), and it is desirable that the used policy has regret guarantees for both settings. This kind
of guarantees is called Best-Of-Both-Worlds (BOBW, Bubeck and Slivkins, 2012), and Tsallis-INF
(or other FTRL policies) is one of the most promising frameworks for BOBW policies for further
complex settings such as partial monitoring and combinatorial-semi bandits (Zimmert et al., 2019).

1.1. Follow-The-Perturbed-Leader

A limitation of most existing BOBW policies is that we need to explicitly compute the list of arm-
selection probabilities of arms. Though the computational complexity is usually O(K) in most
cases, it might become problematic when more complex settings are considered, such as the com-
binatorial bandits where the number of actions is exponential in K.

The Follow-The-Perturbed-Leader (FTPL) policy has been researched as a promising candi-
date to circumvent this limitation. This policy greedily selects the arm with the least estimated
cumulative loss with a random perturbation at each round. To be more specific, FTPL chooses arm
argmini∈[K]{L̂t,i − rt,i/ηt}, where rt,i is the random perturbation drawn from some distribution,
ηt is a parameter corresponding to learning rate and L̂t,i is an estimation of the cumulative loss
Lt,i =

∑t−1
s=1 `s,i. It was suggested in Kim and Tewari (2019) that the perturbation distribution to

achieve O(
√
KT ) adversarial regret (if exists) would have a Fréchet-type tail distribution. Never-

theless, this achievability has still been an open question, seemingly due to the following difficulties.
In the analysis of FTRL and FTPL, the key to the optimal adversarial regret bound is to eval-

uate how stably the arm-selection probability wt,i = φi(ηtL̂t) behaves against the change of the
estimated loss vector L̂t, where the function φi takes different forms depending on the policy. For
this quantity, existing approaches try to uniformly bound φ′i(ηtL̂t)/wt,i (Abernethy et al., 2015) or
φ′i(ηtL̂t)/w

3/2
t,i (Bubeck, 2019) by a constant, where φ′i(λ) = dφi(λ)/dλi. However, due to the

complicated expression of φi(·) of FTPL it is very difficult to obtain such a bound.

1.2. Contribution of the Paper

In this paper, we show that FTPL with Fréchet perturbation achieves O(
√
KT ) adversarial regret

and
∑

i 6=i∗ O( log T
∆i

) stochastic regret. In this analysis we derive a bound on φ′i(ηtL̂t)/wt,i depending
on L̂t,i rather than a uniform bound, which results in a tighter bound when its summation over arms

2



FTPL ACHIEVES BOBW FOR BANDIT PROBLEMS

is taken. To be more specific, we show φ′i(ηtL̂t)/wt,i = O(1/
√
σi) when the estimated cumulative

loss L̂t,i of arm i is the σi-th smallest among K arms.
We use the self-bounding technique (Zimmert and Seldin, 2021) to derive the stochastic regret

bound, which is a typical tool for showing BOBW property of FTRL. However, in the case of FTPL
the regret has a complicated dependency on L̂t and the analysis for the adversarial setting does not
immediately lead to bounds where the self-bounding technique is applicable. To solve this difficulty,
we evaluate the regret depending on whether the estimated best arm is well-concentrated or not.

1.3. Related Work

After Hannan (1957) proposed FTPL in the context of game theory, Kalai and Vempala (2005)
presented an analysis of FTPL as adversarial online linear optimization algorithms. Since then,
FTPL has attracted much attention for its computational efficiency, and has been extended to a
variety of settings of online learning and bandit problems, including adversarial MAB problems
(Abernethy et al., 2015), linear bandits (McMahan and Blum, 2004), combinatorial semi-bandits
(Neu, 2015; Neu and Bartók, 2016), online contextual learning problems (Syrgkanis et al., 2016),
online learning with non-linear losses (Dudı́k et al., 2020) and MDP bandits (Dai et al., 2022). Most
of the analysis in these studies is based on the approach of interpreting an FTPL policy as an FTRL
policy with a regularizer function associated with the perturbation distribution (Abernethy et al.,
2014, 2016). In particular, Abernethy et al. (2015) applied this approach to MAB problems to show
that FTPL with a certain perturbation achieves regret bound of O(

√
KT logK). However, finding

a perturbation distribution that achieves an optimal regret bound of O(
√
KT ) has been an open

problem (Kim and Tewari, 2019), while FTRL with Tsallis-entropy regularization achieves optimal
O(
√
KT )-bound (Audibert and Bubeck, 2009; Abernethy et al., 2015; Zimmert and Seldin, 2021).

A natural approach is to construct a perturbation distribution that induces the Tsallis entropy, but
Kim and Tewari (2019) showed that no such distribution exists. This paper affirmatively resolves
this open problem by showing that FTPL with Fréchet distributions achieves O(

√
KT ) regret.

BOBW polices have been proposed for various online learning problems, such as MAB prob-
lems (Bubeck and Slivkins, 2012; Zimmert and Seldin, 2021), the problem of prediction with ex-
pert advice (De Rooij et al., 2014; Gaillard et al., 2014; Luo and Schapire, 2015), combinatorial
semi-bandits (Zimmert et al., 2019; Ito, 2021a), online linear optimization (Huang et al., 2016),
linear bandits (Lee et al., 2021), online learning with feedback graphs (Erez and Koren, 2021), and
episodic Markov decision processes (Jin and Luo, 2020; Jin et al., 2021). Some of them are designed
based on the FTRL framework. For such policies, stochastic regret bounds (e.g., of O(log T )) are
proved by combining regret upper bounds and lower bounds depending on arm-selection probabili-
ties. This approach is called a self-bounding technique. This study differs from these existing studies
in that the self-bounding technique is applied to FTPL rather than FTRL. It should be emphasized
that this study provides the first BOBW bandit policy based of FTPL.

2. Problem Setup

In this section, we formulate the problem and explain the policy to analyze. At each round t ∈ [T ],
the environment determines a loss vector `t = (`t,1, `t,2, . . . , `t,K)> ∈ [0, 1]K and the player pulls
an arm It ∈ [K]. The player then observes the incurred loss `t,It of the pulled arm.

In the adversarial setting, we do not assume any model for the loss vector `t, which may
depend on the history of loss vectors and chosen arms {(`s, Is)}t−1

s=1. In the stochastic setting,
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Algorithm 1: FTPL with geometric resampling.

1 L̂1 := 0.
2 for t = 1, 2, . . . , T do
3 Sample rt = (rt,1, rt,2, . . . , rt,K) i.i.d. from F2.
4 Pull arm It = argmini∈[K]{L̂t,i − rt,i/ηt} and observe `t,It .
5 Set m := 0.
6 repeat
7 m := m+ 1.
8 Sample r′t,1, r

′
t,2, . . . , r

′
t,K i.i.d. from F2.

9 until It = argmini∈[K]{L̂t,i − r′t,i/ηt}

10 Set ŵ−1
t,It

:= m and L̂t+1 := L̂t + `t,Itŵ
−1
t,It
eIt .

`1, `2, . . . , `T ∈ [0, 1]K are i.i.d. from an unknown but fixed distribution D. The expected reward
of arm i is denoted by µi = E`∼D[`i] ∈ [0, 1]. The suboptimality gap of arm i is expressed by
∆i = µi − µi∗ . Then an optimal arm is expressed by i∗ ∈ argmini∈[K] µi.

The performance of the player is evaluated in terms of the pseudo-regret Regret(T ) defined as

Regret(T ) = E

[
T∑
t=1

(`t,It − `t,i∗)

]
, i∗ ∈ argmin

i∈[K]
E

[
T∑
t=1

`t,i

]
.

Note that the notion called regret instead of the pseudo-regret is sometimes considered in the adver-
sarial setting. See Appendix A for the relation between them.

We consider the Follow-The-Perturbed-Leader (FTPL) policy given in Algorithm 1. This policy
maintains the estimated cumulative loss L̂t and pulls the arm minimizing the loss with a random
perturbation rt/ηt. Here ηt = O(t−1/2) is the exploration parameter or the learning rate. The
elements of rt = (rt,1, rt,2, . . . , rt,K) are i.i.d. from Fréchet distribution F2 with shape parameter
α = 2, whose density function f(x) and cumulative distribution function F (x) are expressed by

f(x) = 2x−3e−1/x2 , F (x) = e−1/x2 , x ≥ 0,

respectively. In the following, “Fréchet distribution” always refers to the distribution of this pa-
rameter. The probability of pulling arm i given L̂t is expressed as wt,i = φi(ηtL̂t) where, for
λ ∈ [0,∞)K ,

φi(λ) := Pr∼F2

[
i = argmin

j∈[K]
{λj − rj}

]
=

∫ ∞
−minj∈[K] λj

2

(z + λi)3
exp

(
−
∑
i′

1

(z + λi′)2

)
dz.

(1)

In general, FTRL and FTPL policies use an estimator ˆ̀
t of the loss vector `t. Their cumulative

versions are denoted by Lt =
∑t−1

s=1 `s and L̂t =
∑t−1

s=1
ˆ̀
s. The gap of the loss from its minimum

is expressed by underlines, e.g., L̂t = L̂t − 1mini L̂t,i ∈ [0,∞)K , where 1 is the all-one vector.
In FTRL we often use an unbiased estimator ˆ̀

t = (`t,It/wt,It)eIt of `t, which is called Impor-
tance Weighted (IW) estimator. Here ei is the unit vector whose i-th element is one and the others
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are zero. On the other hand in FTPL, we do not explicitly compute wt,i and we instead use an

estimator ŵ−1
t,i of w−1

t,i by the technique called geometric resampling (Neu and Bartók, 2016).
Let us consider repeating resampling of r′t from the same distribution until argmini∈[K]{L̂t,i −

r′t,i/ηt} coincides with It = argmaxi∈[K]{L̂t,i − rt,i/ηt}, and let ŵ−1
t,It

be the number of this re-

sampling. Then its expectation is expressed as 1/wt,It , meaning that ŵ−1
t,It

is an unbiased estimator

of 1/wt,It . Based on this estimator we define the loss estimator by ˆ̀
t = (`t,Itŵ

−1
t,It

)eIt , which
corresponds to Lines 5–10 of Algorithm 1. The expected number of resampling at each round is∑

i∈[K]wt,i ·1/wt,i = K, which is independent of wt. See Neu and Bartók (2016) for the technique
to deterministically bound the number of resampling.

3. Regret Bounds

In this section, we summarize the regret bounds of FTPL and outline the evaluation of the regret.

3.1. Main Results

Theorem 1 In the adversarial setting, FTPL with learning rate ηt = c/
√
t for c > 0 satisfies

Regret(T ) ≤
(

12c
√
π +

3.7

c

)√
KT + 10c+

√
πK

c
,

whose dominant term is optimized as Regret(T ) ≤ 17.8
√
KT +O(

√
K) when c = 0.42.

This result shows that FTPL achieves the optimal worst-case regret and affirmatively resolves the
open question given in Kim and Tewari (2019).

We can also show that FTPL achieves logarithmic regret in the stochastic setting.

Theorem 2 Assume that i∗ = argmini µi is unique and let ∆ = mini 6=i∗ ∆i. Then, FTPL with
learning rate ηt = c/

√
t for c > 0 satisfies

Regret(T ) ≤
∑
i 6=i∗

(25c+ c−1)2 log T

0.075∆i
+

(121c+ 12c−1)2K

∆
,

whose dominant term is optimized as 1400
∑

i 6=i∗
log T
∆i

+ o(log T ) when c = 0.2.

Whereas these regret bounds suggest parameters c = 0.42 or c = 0.2, such choice is too small
and not recommended in practice as we can see from the empirical results in Section 7. The reason
can be explained as follows. The current evaluation is somewhat loose for the component of the
regret called stability term, which corresponds to how stable the policy is against the change of the
estimated loss. As a result, the parameter optimizing the current bound makes the policy too stable
and harms the adaptivity (called the penalty term) of the policy.

In particular, the stochastic regret bound in Theorem 2 is about 3000 times worse than the
optimal bound

∑
i 6=i∗

log T
2∆i

+o(log T ) (seen from Lai and Robbins, 1985). Though the upper bound

can be improved to 16
∑

i 6=i∗
log T
∆i

+ o(log T ) at the cost of larger o(log T ) term (see Remark 12
in Appendix D.3), it is still true that the current analysis suffers a large constant factor. How to
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improve this evaluation is an important future work, which would fill the gap between theoretically
and empirically good learning rates (see also simulation results in Section 7).

There are also studies to discuss the intermediate settings between stochastic and adversarial
ones, many of which are captured by the adversarial setting with self-bounding constraint. We can
also generalize the results to this setting but we do not give explicit bounds for simplicity since they
require some additional arguments. See Appendix E for the outline of the generalization.

3.2. Regret Decomposition

Now we explain how to evaluate the regret of FTPL. First of all, the regret is expressed by

Regret(T ) =
T∑
t=1

E [〈`t, wt − ei∗〉] =
T∑
t=1

E
[〈

ˆ̀
t, wt − ei∗

〉]
.

This can be decomposed in the following way, whose proof is given in Appendix C.

Lemma 3

Regret(T ) ≤
T∑
t=1

E
[〈

ˆ̀
t, wt − wt+1

〉]
+

T∑
t=1

(
1

ηt+1
− 1

ηt

)
E
[
rt+1,It+1 − rt+1,i∗

]
+

√
πK

η1
. (2)

This decomposition is essentially similar to that based on the reduction to FTRL (Lattimore and
Szepesvári, 2020, Exercise 28.12) but is slightly simpler. We refer to the first and second terms of
(2) as stability term and penalty term, respectively. Here note that

wt − wt+1 = φ(ηtL̂t)− φ(ηt+1(L̂t + ˆ̀
t))

= (φ(ηtL̂t)− φ(ηt(L̂t + ˆ̀
t))) + (φ(ηt(L̂t + ˆ̀

t))− φ(ηt+1(L̂t + ˆ̀
t))). (3)

We can show that the second term of (3) is not dominant and the stability term is bounded as follows.

Lemma 4
T∑
t=1

E
[〈

ˆ̀
t, wt − wt+1

〉]
≤

T∑
t=1

E
[〈

ˆ̀
t, φ(ηtL̂t)− φ(ηt(L̂t + ˆ̀

t))
〉]

+ 10η1. (4)

The proof of this lemma is also given in Appendix C. In Sections 4 and 5 we bound (2) and (4) for
the adversarial setting, which completes the proof of Theorem 1. We will also outline the analysis
for the stochastic setting in Section 6, whose full proof is given in Appendix D.

4. Stability of Arm-selection Probability

In the analysis of FTPL and FTRL, it is known that the relation between the arm-selection proba-
bility function φ(λ) and its derivatives plays the central role in the regret analysis (Abernethy et al.,
2015; Bubeck, 2019). To this end, this section derives properties of φ(·) defined by (1) in our setting,
which becomes the main difficulty of the analysis of FTPL. We can rewrite this function by

φi(λ) = 2

∫ ∞
0

1

(z + λi)
3

exp

(
−
∑
i′

1

(z + λi′)
2

)
dz, (5)
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where λ = λ− 1mini∈[K] λi ∈ [0,∞)K . Define

φ′i(λ) =
∂φi
∂λi

(λ), Ii,n(λ) =

∫ ∞
0

1

(z + λi)n
exp

(
−
∑
i′

1

(z + λi′)2

)
dz > 0. (6)

Here note that we used λ rather than λ in the RHS of (6) since we will sometimes consider Ii,n(λ)
for λ not in the form of λ. By taking the derivative of (5) we immediately have

φi(λ) = 2Ii,3(λ), φ′i(λ) = −6Ii,4(λ) + 4Ii,6(λ). (7)

One might think that (7) is not straightforward from (5) when i ∈ argminj∈[K] λj , because {λj}j 6=i
rather than λi might change with λi. Nevertheless, by separately evaluating the derivative from each
direction we can confirm that (7) eventually holds for all i ∈ [K] (see Appendix F.1 for details).

Note that we have φ′i(λ) ≤ 0, that is, φi(λ) is nonincreasing in λi thouth it is seemingly unclear
from (7). This is because φi(λ) is the probability of λi − ri < mini 6=j{λj − rj} when each ri
follows the Fréchet distribution, which is clearly nonincreasing in λi. By the same reason, φi(λ) is
nondecreasing in λj for j 6= i. We can also see that Ii,4(λ) is nonincreasing in λi and nondecreasing
in λj for j 6= i. This is because 4√

π
Ii,4(λ) is the probability of {λi − ri < mini 6=j{λj − rj} ∧ 0}

when rj with j 6= i follow the Fréchet distribution and ri follows distribution with density

g(x) =
x−4e−1/x2∫∞

0 z−4e−1/z2dz
=

4x−4e−1/x2

√
π

.

The main result of this section and the key to the main theorems are the following lemma.

Lemma 5 If λi is the σi-th smallest among λ1, λ2, . . . , λK (ties are broken arbitrarily) then

Ii,4(λ)

Ii,3(λ)
≤ 2

3λi
∧
√
π/σi
2

. (8)

As we can see from (6) and (7), the LHS of (8) is an upper bound of −φ′i(λ)/3φi(λ). On the other
hand, the RHS is roughly related to

√
φi(λ), which will be seen from, e.g., (11). Therefore this

bound plays (though not in the strict sense) a role similar to showing φ′i(λ)/(φi(λ))3/2 = O(1),
which is the desired scenario for the optimal adversarial regret (Bubeck, 2019).

In the rest of this section we always assume λ1 ≤ λ2 ≤ · · · ≤ λK so that σi = i for notational
simplicity. The following lemma is the key property for the proof of Lemma 5.

Lemma 6 Ii,4(λ)/Ii,3(λ) is monotonically increasing in λj for any j 6= i.

Proof Define

Ii,j,n(λ) =

∫ ∞
0

1

(z + λi)n
1

(z + λj)3
exp

(
−
∑
i′

1

(z + λi′)2

)
dz.

The derivative of Ii,4(λ)/Ii,3(λ) is expressed as

d

dλj
Ii,4(λ)/Ii,3(λ) =

2Ii,j,4(λ)Ii,3(λ)− 2Ii,4(λ)Ii,j,3(λ)

I2
i,3(λ)

. (9)

7
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By letting f(z) = (z + λi)
−3e
−

∑
i′

1
(z+λi′ )

2
> 0, each term of the numerator of (9) is expressed as

Ii,j,4(λ)Ii,3(λ) =

∫∫
z,w≥0

f(z)f(w)

(z + λi)(z + λj)3
dzdw

=
1

2

∫∫
z,w≥0

f(z)f(w)

(
1

(z + λi)(z + λj)3
+

1

(w + λi)(w + λj)3

)
dzdw,

Ii,4(λ)Ii,j,3(λ) =

∫∫
z,w≥0

f(z)f(w)

(z + λi)(w + λj)3
dzdw

=
1

2

∫∫
z,w≥0

f(z)f(w)

(
1

(z + λi)(w + λj)3
+

1

(w + λi)(z + λj)3

)
dzdw.

Here, by an elementary calculation we can see

1

(z + λi)(z + λj)3
+

1

(w + λi)(w + λj)3
− 1

(z + λi)(w + λj)3
− 1

(w + λi)(z + λj)3

=
(w + λi)(w + λj)

3 + (z + λi)(z + λj)
3 − (w + λi)(z + λj)

3 − (z + λi)(w + λj)
3

(z + λi)(w + λi)(z + λj)3(w + λj)3

= (w − z)2 (w + λj)
2 + (w + λj)(z + λj) + (z + λj)

2

(z + λi)(w + λi)(z + λj)3(w + λj)3
> 0,

which means that Ii,j,4(λ)Ii,3(λ) − Ii,4(λ)Ii,j,3(λ) can be expressed as an integral of a positive
function, implying that Ii,4(λ)/Ii,3(λ) is increasing in λj .

Proof of Lemma 5 By the monotonicity of Ii,4(λ)/Ii,3(λ) in Lemma 6, we have

Ii,4(λ)/Ii,3(λ) ≤ Ii,4(λ∗)/Ii,3(λ∗), where λ∗j =

{
λi j ≤ i,
∞ j > i.

(10)

The RHS of (10) is expressed by incomplete gamma function γ(k, x) =
∫ x

0 e−ttk−1dt as

Ii,n(λ∗) =

∫ ∞
0

1

(z + λi)
n

e−i/(z+λi)
2
dz

= i−(n−1)/2

∫ i/λ2i

0
u(n−3)/2e−udu

= i−(n−1)/2γ((n− 1)/2, i/λ2
i ). (11)

We can see that γ(3/2, x)/γ(1, x) ≤ 2
√
x/3 ∧

√
π/2 for x > 0 by an elementary calculation (see

Appendix F.2). Then we have

Ii,4(λ)

Ii,3(λ)
≤ i−1/2γ(3/2, i/λ2

i )

γ(1, i/λ2
i )
≤ i−1/2

(
2
√
i

3λi
∧
√
π

2

)
=

2

3λi
∧
√
π/i

2
.

5. Optimal Adversarial Bound

In this section we complete the proof of Theorem 1.

8
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5.1. Stability Term

By using the result of the last section, we can express the stability term as follows.

Lemma 7 For any i ∈ [K], if L̂t,i is the σt,i-th smallest among {L̂t,j} then

E
[

ˆ̀
t,i

(
φi(ηtL̂t)− φi(ηt(L̂t + ˆ̀

t))
)∣∣∣ L̂t] ≤ 4

L̂t,i
∧ 3ηt

√
π/σt,i.

As can be seen from the proof of this lemma, this bound is two times larger than the one for the case

where 1/wt,i is exactly computed instead of ŵ−1
t,i , which is the cost for easier computation.

Proof First we have

φi(ηtL̂t)− φi(ηt(L̂t + (`t,iŵ
−1
t,i )ei)) =

∫ ηt`t,iŵ
−1
t,i

0
(−φ′i(ηtL̂t + xei))dx

≤ 6

∫ ηt`t,iŵ
−1
t,i

0
Ii,4(ηtL̂t + xei)dx (by (7))

≤ 6

∫ ηt`t,iŵ
−1
t,i

0
Ii,4(ηtL̂t)dx (12)

= 6ηt`t,iIi,4(ηtL̂t)ŵ
−1
t,i ,

where (12) follows from the monotonicity of Ii,4. Here note that ŵ−1
t,i follows the geometric distri-

bution with expectation 1/wt,i given L̂t and It, which satisfies

E
[
ŵ−1
t,It

2∣∣∣L̂t, It] =
2

w2
t,It

− 1

wt,It
≤ 2

w2
t,It

. (13)

Since ˆ̀
t = (`t,iŵ

−1
t,i )ei when It = i, we obtain

E
[

ˆ̀
t,i(φi(ηtL̂t)− φi(ηt(L̂t + ˆ̀

t)))
∣∣∣ L̂t] ≤ E

[
11 [I(t) = i] `t,iŵ

−1
t,i · 6ηt`t,iIi,4(ηtL̂t)ŵ

−1
t,i

∣∣∣ L̂t]
≤ 12ηtE

[
wt,i

`2t,iIi,4(ηtL̂t)

w2
t,i

∣∣∣∣∣ L̂t
]

≤ 6ηtE

[
Ii,4(ηtL̂t)

Ii,3(ηtL̂t)

∣∣∣∣∣ L̂t
] (

by wt,i = 2Ii,3(ηtL̂t)
)

≤ 4ηt

ηtL̂t,i
∧ 3ηt

√
π/σt,i (by Lemma 5) .

Lemma 7 immediately leads to the following bound, which is used for both the adversarial and
stochastic settings.

Lemma 8 For any L̂t,

E
[〈

ˆ̀
t, φ(ηtL̂t)− φ(ηt(L̂t + ˆ̀

t))
〉∣∣∣ L̂t] ≤ 6ηt

√
πK.

9
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Proof By Lemma 7,

E
[〈

ˆ̀
t, φ(ηtL̂t)− φ(ηt(L̂t + ˆ̀

t))
〉∣∣∣ L̂t] ≤ K∑

i=1

3ηt

√
π/σt,i

≤ 3ηt
√
π

(
1 +

∫ K

1
x−1/2dx

)
= 3ηt

√
π(1 + 2(

√
K − 1)) ≤ 6ηt

√
πK.

5.2. Penalty Term

For the penalty term we have the following bound.

Lemma 9

E
[
rt,I(t) − rt,i∗

∣∣∣L̂t] ≤ (2
∑
i 6=i∗

1

ηtL̂t,i

)
∧ 3.7

√
K.

Here we only use the bound 3.7
√
K for the adversarial setting, whereas we use both of the bounds

for the stochastic setting.
Proof By letting f(z) =

∑
i

1
(z+ηtL̂t,i)

2
∈
(
0, K

z2

]
we have

E[rt,I(t) − rt,i∗ |L̂t] ≤
∑
i 6=i∗

E[11 [I(t) = i] rt,i|L̂t]

= 2

∫ ∞
0

∑
i 6=i∗

1

(z + ηtL̂t,i)
2
e−f(z)dz (14)

≤ 2

∫ ∞
0

∑
i 6=i∗

1

(z + ηtL̂t,i)
2
dz = 2

∑
i 6=i∗

1

ηtL̂t,i
.

We can also bound (14) by

2

∫ ∞
0

∑
i 6=i∗

1

(z + ηL̂i)2
e−f(x)dz ≤ 2

∫ ∞
0

f(z)e−f(z)dz

= 2

∫ √K
0

f(z)e−f(z)dz + 2

∫ ∞
√
K
f(z)e−f(z)dz

≤ 2

∫ √K
0

e−1dz + 2

∫ ∞
√
K

K

z2
exp

(
−K
z2

)
dz (15)

= 2e−1
√
K +

√
K

∫ 1

0
w−1/2ewdw ≤ 3.7

√
K.

Here, for the first term of (15) we used the fact xe−x ≤ e−1. For the second term, we used the fact
that xe−x is increasing in x for x ≤ 1 and f(z) ≤ 1 holds for z ≥

√
K.

10
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5.3. Proof of Theorem 1

By combining Lemmas 3, 4, 8 and 9 with ηt = c/
√
t we have

Regret(T ) ≤ 6c
√
πK

T∑
t=1

1√
t

+
3.7
√
K

c

T∑
t=1

(√
t+ 1−

√
t
)

+ 10c+

√
πK

c

≤
(

12c
√
πT +

3.7(
√
T + 1− 1)

c

)√
K + 10c+

√
πK

c

≤
(

12c
√
π +

3.7

c

)√
KT + 10c+

√
πK

c
,

where the last inequality follows from
√
T + 1− 1 ≤

√
T . �

6. Outline for Stochastic Regret Bound

In this section we explain how to derive a logarithmic regret bound for the stochastic setting by the
self-bounding technique.

The regret in the stochastic setting is expressed as

Regret(T ) = E

 T∑
t=1

∑
i 6=i∗

wt,i∆i

 . (16)

A typical analysis of FTRL (see, e.g., Zimmert and Seldin, 2021) derives a bound of form Regret(T ) ≤
E
[∑

t∈[T ]

∑
i 6=i∗ O(

√
wt,i/t)

]
by excluding the regret associated to the optimal arm i∗ from the

adversarial bound. Subtracting (16)/2 from this bound, we obtain

Regret(T )

2
≤ E

 T∑
t=1

∑
i 6=i∗

O

(√
wt,i/t−

∆iwt,i
2

) .
This yields an upper bound

∑
i 6=i∗ O( log T

∆i
) when the worst case of wt,i is taken.

In the analysis of FTPL, it is difficult to exclude the regret from the optimal arm in the same way.
Still, we can derive a similar result when we consider t such that At = {

∑
i 6=i∗(ηtL̂t,i)

−2 ≤ 1},
which is the event that the estimated losses L̂t,i of the suboptimal arms i 6= i∗ are sufficiently
large compared with L̂t,i∗ . As we will see in Appendix D.2, we can bound the stability given L̂t
associated to the optimal arm by

∑
i 6=i∗ 1/L̂t,i when At holds. Combining this with Lemmas 7–9,

we can obtain

Regret(T ) ≤ E

 T∑
t=1

O

(
11 [At]

∑
i 6=i∗

1

L̂t,i
+ 11 [Act ]

√
K/t

) .
Similarly, by the analysis depending on At and Act , we can also obtain a regret lower bound of form

Regret(T ) ≥ E

 T∑
t=1

O

(
11 [At]

∑
i 6=i∗

t∆i

L̂
2
t,i

+ 11 [Act ] ∆

)
11
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Figure 1: Results for stochastic setting. Figure 2: Results for adversarial setting.

Figure 3: Results for stochastic setting. Figure 4: Results for adversarial setting.

as shown in Appendix D.1. By combining these bounds we obtain

Regret(T )

2
≤ E

 T∑
t=1

O

(
11 [At]

∑
i 6=i∗

(
1

L̂t,i
− t∆i

2L̂
2
t,i

)
+ 11 [Act ] (

√
K/t−∆/2)

) ,
which yields a logarithmic regret bound when the worst case of 11 [At] and L̂t is taken. By for-
malizing this discussion we prove Theorem 2 in Appendix D. See Appendix E for extension to the
adversarial setting with a self-bounding constraint.

7. Experiments

In this section we examine the empirical performance of FTPL and other policies. Following Zim-
mert and Seldin (2021), we consider the eight-armed bandit under the stochastic setting and the
stochastically constrained adversarial setting. See Appendix B for details of the settings as well as
the runtime for the experiments.

We compare FTPL with geometric resampling (FTPL GR) with Thomson sampling (TS) and
Tsallis-INF. For Tsallis-INF, there is also a loss estimator called Reduced-Variance (RV, Zimmert
and Seldin, 2021) estimator as well as the IW estimator considered in this paper. We write T-INF IW
and T-INF RV for Tsallis-INF with these estimators. Note that the RV estimator explicitly requires
the value of wt,i and is not applicable to FTPL. We also consider a stable variant of geometric
resampling (GR10), where resampling (Lines 6–9 in Algorithm 1) is repeated ten times and its

average is taken, which makes the variance of ŵ−1
t,i ten times smaller.

12
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Figures 1 and 2 are the results to compare FTPL with other policies. For T-INF, we used the
same learning rate as Zimmert and Seldin (2021) (ηt = c/

√
t with c = 2 for IW and c = 4 for

RV). For FTPL we used the same learning rate as that for T-INF IW, since FTPL with Fréchet
perturbation is designed to mimic it (see Kim and Tewari, 2019). As shown there, FTPL and T-INF
perform stably in both settings, while TS designed for the stochastic setting performs poorly in the
adversarial setting. We can also see that the behavior of FTPL GR10 is very similar to T-INF IW
and FTPL GR is a little worse, which seems to be due to the larger variance of the loss estimator
by GR. Since T-INF RV performed much better than T-INF IW, it is an important future work to
devise a counterpart of T-INF RV applicable to FTPL.

Figures 3 and 4 are the results to check the effect of learning rate and the geometric resampling.
In this experiment, we considered FTPL with parameter c = 0.5, 1, 2. We can see from the figures
that the performance becomes better for larger c compared with theoretically suggested small ones
and the stable version improves the performance for each choice of c.

8. Conclusion

In this paper we tackled the open problem on the optimality of FTPL by Kim and Tewari (2019),
and affirmatively resolved it by showing that FTPL with Fréchet perturbation achieves O(

√
KT )

adversarial regret. We also derived O(
∑

i 6=i∗
log T
∆i

) stochastic regret bound, meaning that FTPL has
the BOBW property. Still, the constant factor of the bound is very large and we confirmed that there
are currently some gap between the bound-optimizing learning rate and empirically suggested one.

One of the most important future work is to extend this result to the setting with exponen-
tially many actions like the combinatorial bandits. As a first step, we expect that FTPL with Frechét
perturbation can be used form-sets semi-bandits to achieve

√
mKT optimal adversarial regret (Au-

dibert et al., 2014), where m arms are pulled at each round. Still, its analysis is currently open since
the arm-selection probability φi(·) becomes much more complicated than the non-combinatorial
setting, though we believe that the technique of this paper becomes a clue to the analysis.

Extension of the BOBW result is further nontrivial. This is because the existing BOBW policies
for the combinatorial semi-bandits use a hybrid regularization in addition to the Tsallis-entropy
(Zimmert et al., 2019). Since Fréchet distribution roughly (though not exactly) corresponds to
Tsallis-entropy regularization, it would be a very challenging task to realize the effect of hybrid
regularization by FTPL.

Related to the above point, another remaining open problem is to answer to the question raised
by Kim and Tewari (2019) in a more general form. Whereas this paper showed that the Fréchet
perturbation achieves O(

√
KT ) regret, the current analysis heavily depends on the specific form of

this distribution, and it is unclear how this result can be extended to general distributions (seemingly
with Frechét-type tails). Since many regularization functions have been considered in FTRL policies
with BOBW properties, revealing more general conditions for the optimal regret would be helpful
for construction of the counterparts of such FTRL policies.
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Appendix A. Relation between Pseudo-regret and Regret

In this paper we consider the pseudo-regret

E

[
T∑
t=1

(`t,It − `t,i∗)

]
, i∗ ∈ argmin

i∈[K]
E

[
T∑
t=1

`t,i

]
.

On the other hand, in the adversarial bandit the regret given by

E

[
T∑
t=1

(`t,It − `t,i?)

]
, i? ∈ argmin

i∈[K]

T∑
t=1

`t,i.

is also sometimes considered, where the best arm i? becomes a random variable. In BOBW litera-
ture, Zimmert and Seldin (2021) consider the pseudo-regret as in this paper, while Kim and Tewari
(2019) consider the regret. There is no essential difference between these styles; in these papers
and this paper, if we consider the regret rather than the pseudo-regret then we need to assume an
oblivious adversary, which determines all losses before the game begins. In this paper we consider
the pseudo-regret just for a unified discussion of the adversarial and stochastic settings.

Appendix B. Experiment Details

The empirical evaluation presented in Section 7 is performed in problem setups similar to those
by Zimmert and Seldin (2021). Bandit policies are evaluated in the stochastic setting as well as
the stochastically constrained adversarial setting (or adversarial setting in short). In both settings,
values of losses `t,i ∈ {0, 1} are generated independently from Bernoulli distributions for K = 8
arms including a single optimal arm. Difference between stochastic and adversarial settings is
summarized as follows:

Stochastic setting In the stochastic setting, the mean losses are chosen to be (1−∆)/2 for the op-
timal arm and (1 + ∆)/2 for the other suboptimal arms, where ∆ > 0 is a parameter corresponding
to the suboptimality gap.

Stochastically constrained adversarial setting In the stochastically constrained adversarial set-
ting, the mean losses for the optimal arm and the other suboptimal arms switch between (1−∆, 1)
and (0,∆). The time between alternations increases exponentially with factor 1.6 after each switch,
similarly to that in Zimmert and Seldin (2021).

Table 1: Runtime (sec) of policies for 10,000 rounds and different K.

K = 4 K = 8 K = 16 K = 32

Thompsom sampling 0.34 0.42 0.58 0.91
Tsallis-INF 2.16 2.29 2.45 2.68
FTPL 0.85 1.27 2.19 4.15
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In our experiments, the suboptimality gap parameter is chosen to be ∆ = 0.125 for both settings.
The time horizon is chosen to be 10,000. In all experiments, the pseudo-regret is estimated by
100 repetitions. We also compute standard deviations of these empirical pseudo-regret, which are
depicted by the shaded areas. For Tsallis-INF, wt is computed by Newton’s method. The runtime
for the algorithms is listed in Table 1.

Appendix C. Regret Decomposition

In this appendix we provide proofs of lemmas on the decomposition of the regret in Section 3.2.
Lemma 3 (restated)

Regret(T ) ≤
T∑
t=1

E
[〈

ˆ̀
t, wt − wt+1

〉]
+

T∑
t=1

(
1

ηt+1
− 1

ηt

)
E
[
rt+1,It+1 − rt+1,i∗

]
+

√
πK

η1
.

Proof of Lemma 3 Let us consider random variable r ∈ [0,∞)K that independently follows Fréche
distribution and is independent from the randomness {`t, rt}Tt=1 of the environment and the policy.

Define ut = argminw∈PK

〈
ηtL̂t − r, w

〉
, where PK = {p ∈ [0, 1]K :

∑
i∈[K] pi = 1} is the

(K − 1)-dimensional probability simplex. Then, since rt and r are identically distributed given L̂t,
we have

E[ut|L̂t] = wt, E[〈r, ut〉 |L̂t] = E[
〈
rt, eI(t)

〉
|L̂t] = E[rt,I(t)|L̂t]. (17)

Recalling L̂t =
∑t−1

s=1
ˆ̀
s we have

T∑
t=1

〈
ˆ̀
t, ei∗

〉
=
〈
L̂T+1, ei∗

〉
=

〈
L̂T+1 −

1

ηT+1
r, ei∗

〉
+

1

ηT+1
〈r, ei∗〉

≥
〈
L̂T+1 −

1

ηT+1
r, uT+1

〉
+

1

ηT+1
〈r, ei∗〉

=

〈
L̂T −

1

ηT
r, uT+1

〉
+
〈

ˆ̀
T , uT+1

〉
−
(

1

ηT+1
− 1

ηT

)
〈r, uT+1〉+

1

ηT+1
〈r, ei∗〉

≥
〈
L̂T −

1

ηT
r, uT

〉
+
〈

ˆ̀
T , uT+1

〉
−
(

1

ηT+1
− 1

ηT

)
〈r, uT+1〉+

1

ηT+1
〈r, ei∗〉

and recursively applying this relation we obtain

T∑
t=1

〈
ˆ̀
t, ei∗

〉
≥
〈
− 1

η1
r, u1

〉
+

T∑
t=1

(〈
ˆ̀
t, ut+1

〉
−
(

1

ηt+1
− 1

ηt

)
〈r, ut+1〉

)
+

1

ηT+1
〈r, ei∗〉

and therefore

T∑
t=1

〈
ˆ̀
t, ut − ei∗

〉
≤ 1

η1
〈r, u1 − ei∗〉+

T∑
t=1

(〈
ˆ̀
t, ut − ut+1

〉
+

(
1

ηt+1
− 1

ηt

)
〈r, ut+1 − ei∗〉

)
.

18
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By using (17) and taking the expectation with respect to r we obtain

T∑
t=1

〈
ˆ̀
t, wt − ei∗

〉
≤ 1

η1
Er∼F2 [〈r, u1 − ei∗〉] +

T∑
t=1

(〈
ˆ̀
t, wt − wt+1

〉
+

(
1

ηt+1
− 1

ηt

)
Er∼F2 [〈r, ut+1 − ei∗〉]

)

≤ 1

η1
Er1∼F2 [r1,I1 ] +

T∑
t=1

(〈
ˆ̀
t, wt − wt+1

〉
+

(
1

ηt+1
− 1

ηt

)
Ert+1∼F2

[
rt+1,It+1 − rt+1,i∗

∣∣∣L̂t+1

])
.

Note that r1,I1 = maxi∈[K] r1,i. Since its cumulative distribution function is given by e−K/z
2

with
density 2Kz−3e−K/z

2
, we have

1

η1
Er∼F2 [r1,I1 ] =

2K

η1

∫ ∞
0

1

z3
e−K/z

2
dz =

√
πK

η1
,

which completes the proof.

Lemma 4 (restated)

T∑
t=1

E
[〈

ˆ̀
t, wt − wt+1

〉]
≤

T∑
t=1

E
[〈

ˆ̀
t, φ(ηtL̂t)− φ(ηt(L̂t + ˆ̀

t))
〉]

+ 10η1.

Proof of Lemma 4 By (3) we have

T∑
t=1

E
[〈

ˆ̀
t, wt − wt+1

〉]
=

T∑
t=1

E
[〈

ˆ̀
t, φ(ηtL̂t)− φ(ηt(L̂t + ˆ̀

t))
〉]

+
T∑
t=1

E
[〈

ˆ̀
t, φ(ηt(L̂t + ˆ̀

t))− φ(ηt+1(L̂t + ˆ̀
t))
〉]

(18)

and we bound the second term of (18) in the following. Each component of this term is expressed
as

E
[〈

ˆ̀
t, φ(ηt(L̂t + ˆ̀

t))− φ(ηt+1(L̂t + ˆ̀
t))
〉]

=
∑
i∈[K]

E
[
11 [It = i] δi

(
φi(ηt(L̂t + δiei))− φi(ηt+1(L̂t + δiei))

)]
, (19)

where we write δi = `t,iŵ
−1
t,i .

19
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On the other hand, for generic L ∈ RK we have

∂

∂η
φi(ηL) = 2

∫ ∞
0

(
1

(z + ηLi)
3

∑
i′

2Li′

(z + ηLi′)
3
− 3Li

(z + ηLi)
4

)
exp

(
−
∑
i′

1

(z + ηLi′)
2

)
dz

≤ 4

∫ ∞
0

1

(z + ηLi)
3

∑
i′

1

(z + ηLi′)
2

exp

(
−
∑
i′

1

(z + ηLi′)
2

)
dz (20)

≤ 4

∫ ∞
0

(∑
i′

1

(z + ηLi′)
3

)(∑
i′

1

(z + ηLi′)
2

)
exp

(
−
∑
i′

1

(z + ηLi′)
2

)
dz

≤ 2

∫ ∞
0

we−wdw = 2. (21)

Now consider the case where Li is not the unique minimizer of {Lj}. In this case, by (20) we have

∂

∂η
φi(η(L+ δiei)) ≤ 4

∫ ∞
0

1

(z + ηLi)
3

∑
i′

1

(z + ηLi′)
2

exp

−∑
i′ 6=i

1

(z + ηLi′)
2

 dz

≤ 4

∫ ∞
0

1

(z + ηLi)
3

∑
i′

1

(z + ηLi′)
2

exp

(
−
∑
i′

1

2(z + ηLi′)
2

)
dz, (22)

where the last inequality holds since there exists i′ 6= i such that Li′ = 0 when Li is not the unique
minimizer of {Lj}.

Now, let us write î∗t ∈ argmini L̂t,i for an arbitrarily broken tie and consider bounding ∂
∂ηφi(·)

by (21) if i is the unique minimizer of {Lj} and by (22) otherwise. Then (21) is applied at most
once and therefore (19) is bounded by

T∑
t=1

E
[〈

ˆ̀
t, φ(ηt(L̂t + ˆ̀

t))− φ(ηt+1(L̂t + ˆ̀
t))
〉]

≤ 2(ηt − ηt+1)E
[
11
[
It = î∗t

]
δî∗t

]
+ 4

∑
i∈[K]

E

[∫ ηt

ηt+1

11 [It = i] δi

∫ ∞
0

1

(z + ηLi)
3

∑
i′

1

(z + ηLi′)
2

exp

(
−
∑
i′

1

2(z + ηLi′)
2

)
dzdη

]

= 2(ηt − ηt+1)E
[
`t,̂i∗t

]
+ 4

∑
i∈[K]

E

[∫ ηt

ηt+1

`t,i

∫ ∞
0

1

(z + ηLi)
3

∑
i′

1

(z + ηLi′)
2

exp

(
−
∑
i′

1

2(z + ηLi′)
2

)
dzdη

]
≤ 2(ηt − ηt+1)

+ 4E

∫ ηt

ηt+1

∫ ∞
0

∑
i∈[K]

1

(z + ηLi)
3

∑
i′

1

(z + ηLi′)
2

exp

(
−
∑
i′

1

2(z + ηLi′)
2

)
dzdη


≤ 2(ηt − ηt+1) + 2

∫ ηt

ηt+1

∫ ∞
0

we−w/2dwdη

= 10(ηt − ηt+1),
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where we used the relation same as (21) in the last inequality. We obtain the lemma by taking its
summation over t ∈ [T ].

Appendix D. Regret Bound for Stochastic Setting

In this appendix we prove Theorem 2 on the logarithmic regret bound of FTPL for the stochastic
setting.

D.1. Regret Lower Bounds

In the regret analysis for the stochastic setting, we use the self-bounding technique (Zimmert and
Seldin, 2021), which requires a regret lower bound of the policy. In our analysis, a lower bound in
terms of wt is not useful and instead we use the following bound.

Lemma 10 (i) If
∑

i 6=i∗
1

(ηtL̂t,i)
2
≥ 1 then the instantaneous regret satisfies

∑
i 6=i∗ ∆iwt,i ≥

0.14∆. (ii) If
∑

i 6=i∗
1

(ηtL̂t,i)
2
≤ 1 then

∑
i 6=i∗ ∆iwt,i ≥ 0.075

∑
i 6=i∗

∆i

(ηtL̂t,i)
2

and wt,i∗ ≥ 1/e.

Proof of Lemma 10 Let L̂
′
= mini 6=i∗ L̂t,i. Then, for any a > 0 we have

∑
i 6=i∗

∆iwt,i = 2

∫ ∞
0

∑
i 6=i∗

∆i

(z + ηtL̂t,i)
3

 exp

(
−
∑
i

1

(z + ηtL̂t,i)
2

)
dz

≥ 2

∫ ∞
aηtL̂

′

∑
i 6=i∗

∆i

(z + ηtL̂t,i)
3

 exp

(
−
∑
i

1

(z + ηtL̂t,i)
2

)
dz.

(i) Consider the case
∑

i 6=i∗
1

(ηtL̂t,i)
2
≥ 1. It holds for any z ≥ aηtL̂

′
that

∑
i

1

(z + ηtL̂t,i)
2
≤
∑
i 6=i∗

1

(z + ηtL̂t,i)
2

+
1

z2

≤
∑
i 6=i∗

1

(z + ηtL̂t,i)
2

+
1

( z+aηtL̂
′

2 )2

≤
∑
i 6=i∗

1

(z + ηtL̂t,i)
2

+ 4
∑
i 6=i∗

1

(z + aηtL̂t,i)
2
.

Therefore, letting a = 1 we obtain

∑
i 6=i∗

∆iwt,i ≥ 2∆

∫ ∞
ηtL̂
′

∑
i 6=i∗

1

(z + ηtL̂t,i)
3

 exp

−5
∑
i 6=i∗

1

(z + ηtL̂t,i)
2

dz

=
∆

5

1− exp

−5
∑
i 6=i∗

1

(ηtL̂
′
+ ηtL̂t,i)

2
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≥ ∆

5

1− exp

−∑
i 6=i∗

5

4(ηtL̂t,i)
2


≥ ∆

5

(
1− e−5/4

)
≥ 0.14∆.

(ii) When
∑

i 6=i∗
1

(ηtL̂t,i)
2
≤ 1 we have

∑
i 6=i∗

∆iwt,i ≥ 2

∫ ∞
aηtL̂

′

∑
i 6=i∗

∆i

(z + ηtL̂t,i)
3

 exp

(
−
∑
i

1

(z + ηtL̂t,i)
2

)
dz

≥ 2

∫ ∞
aηtL̂

′

∑
i 6=i∗

∆i

(z + ηtL̂t,i)
3

 exp

− 1

(aηtL̂
′
)2
−
∑
i 6=i∗

1

(ηtL̂t,i)
2

dz

≥ 2

∫ ∞
aηtL̂

′

∑
i 6=i∗

∆i

(z + ηtL̂t,i)
3

 exp

−(1 +
1

a2

)∑
i 6=i∗

1

(ηtL̂t,i)
2

 dz

≥ 2

∫ ∞
aηtL̂

′

∑
i 6=i∗

∆i

(z + ηtL̂t,i)
3

exp

(
−
(

1 +
1

a2

))
dz

=
∑
i 6=i∗

∆i

(aηtL̂
′
+ ηtL̂t,i)

2
exp

(
−
(

1 +
1

a2

))

≥
∑
i 6=i∗

∆i

((1 + a)ηtL̂t,i)
2

exp

(
−
(

1 +
1

a2

))
. (23)

We obtain the desired bound by letting a = 1.3. Note that
∑

i 6=i∗
1

(ηtL̂t,i)
2
≤ 1 implies L̂t,i∗ = 0.

Therefore in this case we also have

wt,i∗ = 2

∫ ∞
0

1

z3
exp

(
−
∑
i

1

(z + ηtL̂t,i)
2

)
dz

≥ 2

∫ ∞
0

1

z3
exp

− 1

z2
−
∑
i 6=i∗

1

(ηtL̂t,i)
2

dz

≥ 2e−1

∫ ∞
0

1

z3
exp

(
− 1

z2

)
dz = 1/e, (24)

which is the desired result.

D.2. Regret for Optimal Arm

When we apply the self-bounding technique, we need to express regret arising from the optimal arm
in terms of statstics of the other arms. For this purpose we use the following lemma.

22



FTPL ACHIEVES BOBW FOR BANDIT PROBLEMS

Lemma 11 Assume that L̂t satisfies
∑

i 6=i∗
1

(ηtL̂t,i)
2
≤ 1. Then, for any α ∈ (0, 1),

E
[

ˆ̀
t,i∗

(
φi∗(ηtL̂t)− φi∗(ηt(L̂t + ˆ̀

t))
)∣∣∣ L̂t] ≤ 4e

(1− α)3

∑
i 6=i∗

1

L̂t,i
+

(1− e−1)−α/ηt (α/ηt + e)

1− e−1
.

Proof
∑

i 6=i∗
1

(ηtL̂t,i)
2
≤ 1 implies that any i 6= i∗ satisfies

L̂t,i ≥ 1/ηt, (25)

which also implies that i∗ is the unique minimizer of {L̂t,j}. We separately consider the cases

ŵ−1
t,i∗ ≤ α/ηt and ŵ−1

t,i∗ > α/ηt.
Let us consider the former case. In this case, we also have ˆ̀

t,i∗ ≤ α/ηt. On the other hand, for
any x ≤ α/ηt and i 6= i∗ we have

d

dx
φi(ηt(L̂t + ei∗x))

= 4ηt

∫ ∞
0

1

z3

1

(z + ηt(L̂t,i − x))3
exp

− 1

z2
−
∑
i′ 6=i∗

1

(z + ηt(L̂t,i′ − x))2

 dz

≤ 4ηt
(1− α)3

∫ ∞
0

1

z3

1

(ηtL̂t,i)
3

exp

(
− 1

z2

)
dz

=
2ηt

(1− α)3(ηtL̂t,i)
3

≤ 2

(1− α)3L̂t,i
(by (25)) .

Combining this with the fact that
∑

i φi(λ) = 1 holds for any λ, we have

E
[

11
[
ˆ̀
t,i∗ ≤ α/ηt

]
ˆ̀
t,i∗

(
φi∗(ηtL̂t)− φi∗(ηt(L̂t + ˆ̀

t))
)∣∣∣ L̂t]

= E

11
[
ˆ̀
t,i∗ ≤ α/ηt

]
ˆ̀
t,i∗
∑
i 6=i∗

(
φi(ηt(L̂t + ˆ̀

t))− φi(ηtL̂t)
)∣∣∣∣∣∣ L̂t


≤ E

11
[
ˆ̀
t,i∗ ≤ α/ηt

]
ˆ̀2
t,i∗

∑
i 6=i∗

2

(1− α)3L̂t,i

∣∣∣∣∣∣ L̂t


≤ E

 ˆ̀2
t,i∗

∑
i 6=i∗

2

(1− α)3L̂t,i

∣∣∣∣∣∣ L̂t


≤ E

 2`2t,i∗

wt,i∗

∑
i 6=i∗

2

(1− α)3L̂t,i

∣∣∣∣∣∣ L̂t
 (by (13))

≤ 4e
∑
i 6=i∗

1

(1− α)3L̂t,i
, (26)
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where the last inequality follows from Lemma 10.
On the other hand we have

E
[

11
[
ˆ̀
t,i∗ > α/ηt

]
ˆ̀
t,i∗

(
φi∗(ηtL̂t)− φi∗(ηt(L̂t + ˆ̀

t))
)∣∣∣ L̂t]

≤ E
[

11
[
ˆ̀
t,i∗ > α/ηt

]
ˆ̀
t,i∗

∣∣∣ L̂t]
= E

[
11
[
It = i∗, ˆ̀

t,i∗ > α/ηt

]
ˆ̀
t,i∗

∣∣∣ L̂t]
≤ E

[
11
[
It = i∗, ŵ−1

t,i∗ > α/ηt

]
ŵ−1
t,i∗

∣∣∣ L̂t] (
by ˆ̀

t,i∗ = `t,iŵ
−1
t,i∗ ≤ ŵ

−1
t,i∗ when It = i∗

)
= E

wt,i∗ ∞∑
m=bα/ηtc+1

m(1− wt,i∗)m−1


= E

[
(1− wt,i∗)bα/ηtc

(
bα/ηtc+

1

wt,i∗

)]
≤ (1− e−1)bα/ηtc (bα/ηtc+ e)

≤ 1

1− e−1
(1− e−1)α/ηt (α/ηt + e) . (27)

We obtain the lemma by combining (26) and (27).

D.3. Proof of Theorem 2

Define event At = {
∑

i 6=i∗
1

(ηtL̂t,i)2
≤ 1}. By putting the results so far the regret is bounded from

above by

Regret(T )

≤
T∑
t=1

E
[〈

ˆ̀
t, φ(ηtL̂t)− φ(ηt(L̂t + ˆ̀

t))
〉]

+
T∑
t=1

(
1

ηt+1
− 1

ηt

)
E
[
rt+1,It+1 − rt+1,i∗

]
+ C1

(by Lemmas 3 and 4)

=
T∑
t=1

E
[
E
[〈

ˆ̀
t, φ(ηtL̂t)− φ(ηt(L̂t + ˆ̀

t))
〉

+

(
1

ηt+1
− 1

ηt

)
(rt+1,It+1 − rt+1,i∗)

∣∣∣∣ L̂t]]+ C1

≤
T∑
t=1

E
[
E
[〈

ˆ̀
t, φ(ηtL̂t)− φ(ηt(L̂t + ˆ̀

t))
〉

+
rt+1,It+1 − rt+1,i∗

2c
√
t

∣∣∣∣ L̂t]]+ C1 (28)

for C1 = 10η1 +
√
πK
η1

, where the last equality follows from

1

ηt+1
− 1

ηt
=

1

c
(
√
t+ 1−

√
t)

=

√
t

c
(
√

1 + 1/t− 1).

≤ 1

2c
√
t
.
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If L̂t satisfies At then the inner expectation is bounded by

E
[〈

ˆ̀
t, φ(ηtL̂t)− φ(ηt(L̂t + ˆ̀

t))
〉

+
rt+1,It+1 − rt+1,i∗

2c
√
t

∣∣∣∣ L̂t]
≤
∑
i 6=i∗

(
4

L̂t,i
+

4e

(1− α)3L̂t,i
+

1

c2L̂t,i

)
+ C2,t (by Lemmas 7, 9 and 11)

=
∑
i 6=i∗

25 + c−2

L̂t,i
+ C2,t, (29)

where C2,t = (1−e−1)α/ηt (α/ηt+e)
1−e−1 and we chose1 α = 1− (4e/21)1/3.

On the other hand, if L̂t does not satisfy At then it is bounded by

E
[〈

ˆ̀
t, φ(ηtL̂t)− φ(ηt(L̂t + ˆ̀

t))
〉

+
rt+1,It+1 − rt+1,i∗

2c
√
t

∣∣∣∣ L̂t]
≤ 6c

√
πK

t
+

3.7

2c

√
K

t
(by Lemmas 8 and 9)

≤ (11c+ 2/c)

√
K

t
. (30)

Combining (29) and (30) with (28) we obtain

Regret(T ) ≤
T∑
t=1

E

11 [At]
∑
i 6=i∗

25 + c−2

L̂t,i
+ 11 [Act ] (11c+ 2/c)

√
K/t

+ C1 + C2. (31)

Here we defined C2 =
∑∞

t=1C2,t, which satisfies

C2 =
∞∑
t=1

(1− e−1)α/ηt (α/ηt + e)

1− e−1

=
∞∑
t=1

e−ρα
√
t/c
(
α
√
t/c+ e

)
1− e−1

(
by letting ρ = − log(1− e−1) > 0

)
≤
∫ ∞

0

e−ρα
√
t/c
(
α(
√
t+ 1)/c+ e

)
1− e−1

dt

≤
∫ ∞

0

e−u (u/ρ+ α/c+ e)

1− e−1

2c2u

ρ2α2
du

(
by letting u = ρα

√
t/c
)

=
2/ρ+ α/c+ e

1− e−1

2c2

ρ2α2

≤ 2743c2 + 77c.

On the other hand, by the lower bound in Lemma 10 we have

Regret(T ) ≥
T∑
t=1

E

11 [At] 0.075
∑
i 6=i∗

t∆i

c2L̂
2
t,i

+ 11 [Act ] 0.14∆

 . (32)

1. This choice is just for simpler main term and not essential.
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By considering (31)− (32)/2 we have

Regret(T )

2

≤
T∑
t=1

E

11 [At]
∑
i 6=i∗

(
15 + c−2

L̂t,i
− 0.075t∆i

2c2L̂2
t,i

)
+ 11 [Act ]

(
(11c+ 2/c)

√
K/t− 0.07∆

)+ C1 + C2

≤
T∑
t=1

E

11 [At]
∑
i 6=i∗

(15c+ c−1)2

0.15t∆i
+ 11 [Act ]

(
(11c+ 2/c)

√
K/t− 0.07∆

)+ C1 + C2(
by ax− bx2 ≤ a2/4b for b > 0

)
≤

T∑
t=1

∑
i 6=i∗

(15c+ c−1)2

0.15t∆i
+

T∑
t=1

max
{

(11c+ 2/c)
√
K/t− 0.07∆, 0

}
+ C1 + C2

≤
∑
i 6=i∗

(25c+ c−1)2(1 + log T )

0.15∆i
+

(11c+ 2/c)2K

0.07∆
+ C1 + C2

≤
∑
i 6=i∗

(25c+ c−1)2 log T

0.15∆i
+

(25c+ c−1)2K

0.15∆
+

(11c+ 2/c)2K

0.07∆
+

(2743c2 + 87c+

√
π/2

c )K

2∆

(33)

≤
∑
i 6=i∗

(25c+ c−1)2 log T

0.15∆i
+

(121c+ 12/c)2K

2∆
,

where (33) follows from K ≥ 2 and ∆ ∈ (0, 1], and the last inequality can be confirmed by
comparison of the coefficients of c2, c, 1, c−1, c−2. �

Remark 12 In this analysis, we separately considered cases
∑

i 6=i∗
1

(ηtL̂t,i)2
≤ h and

∑
i 6=i∗

1
(ηtL̂t,i)2

> h for h = 1. Here choice of the threshold h is not important and we can run the same argument
under any choice of h > 0. In particular, if we take h > 0 arbitrarily close to 0 then the coefficient
0.075 in Lemma 10 approaches 1 and the term corresponding to Lemma 11 becomes negligible. As
a result, we can see that the resulting regret bound approaches

Regret(T ) ≤
∑
i 6=i∗

(4c+ c−1)2 log T

∆i
+ o(log T )

with diverging o(log T ) term, which is optimized as
∑

i 6=i∗
16 log T

∆i
+ o(log T ) for c = 1/2.

Similarly, if we consider the version where wt,i is exactly computed instead of geometric re-
sampling then the bound becomes

Regret(T ) ≤
∑
i 6=i∗

(2c+ c−1)2 log T

∆i
+ o(log T ),

which is optimized as
∑

i 6=i∗
8 log T

∆i
+ o(log T ) for c =

√
2/2.
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Appendix E. Extension to Intermediate Settings

Several models have been proposed as intermediates between the stochastic and adversarial settings.
Most of them are expressed as the adversarial setting with a self-bounding constraint, which is
formulated as follows.

A setting is said to satisfy (∆, C, T ) self-bounding constraint for ∆ ∈ [0, 1]K and C ≥ 0 with
time horizon T if the regret satisfies

Regret(T ) ≥
T∑
t=1

∑
i

∆iP[It = i]− C.

For example, the corrupted stochastic setting (Lykouris et al., 2018; Ito, 2021b; Jin et al., 2021;
Ito, 2021a; Ito et al., 2022; Erez and Koren, 2021) and the stochastically constrained adversarial
setting (Zimmert and Seldin, 2021) as well as the stochastic setting (C = 0) are expressed within
this formulation. For this setting, the self-bounding technique can be applied in the following way.

Assume that the setting satisfies (∆, C, T ) self-bounding constraint for ∆ such that ∆i = 0
holds for unique i, denoted by i∗. Let ∆ = mini 6=i∗ ∆i > 0 and At = {

∑
i 6=i∗

1
(ηtL̂t,i)2

≤ 1}. As
explained in Section 6, the regret is bounded by

Regret(T ) ≤ O

E

 T∑
t=1

11 [At]
∑
i 6=i∗

1

L̂t,i
+ 11 [Act ]

√
K/t

 .

Here, it is implicitly proved in (23) that under At we have

wt,i ≥
1

((1 + a)ηtL̂t,i)
2

exp

(
−
(

1 +
1

a2

))
≥ 0.075

(ηtL̂t,i)
2

for any i 6= i∗, where we set a = 1.3. Therefore, we have

Regret(T ) ≤ O

E

 T∑
t=1

11 [At]
∑
i 6=i∗

ηt
√
wt,i√

0.075
+ 11 [Act ]

√
K/t


= O

E

 T∑
t=1

11 [At]
∑
i 6=i∗

√
wt,i/t+ 11 [Act ]

√
K/t

 . (34)

On the other hand, since P[It = i] = E [wt,i] we have

Regret(T ) ≥ E

∑
t=1

∑
i 6=i∗

∆iwt,i

− C
= E

 T∑
t=1

11 [At]
∑
i 6=i∗

∆iwt,i + 11 [Act ]
∑
i 6=i∗

∆iwt,i

− C
≥ E

 T∑
t=1

11 [At]
∑
i 6=i∗

∆iwt,i + 11 [Act ] ∆(1− wt,i∗)

− C.
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Here, by following the same discussion as (24), we can show that wt,i∗ ≤ e−1 under Act . Therefore
we have

Regret(T ) ≥ E

 T∑
t=1

11 [At]
∑
i 6=i∗

∆iwt,i + 11 [Act ] (1− e−1)∆

− C. (35)

By considering (34)− α× (35) for α ∈ (0, 1) we have

(1− α)Regret(T )

= O

E

 T∑
t=1

11 [At]
∑
i 6=i∗

(√
wt,i/t− α∆iwt,i

)
+ 11 [Act ]

(√
K/t− α(1− e−1)∆

)+ αC.

and taking the worst case of At and wt,i we obtain

(1− α)Regret(T ) = O

∑
i 6=i∗

log T

α∆i
+

K

α∆

+ αC.

By optimizing α ∈ (0, 1) we obtain

Regret(T ) = O


∑
i 6=i∗

log T

∆i
+
K

∆

+

√√√√√C

∑
i 6=i∗

log T

∆i
+
K

∆


 .

Appendix F. Miscellaneous Calculation

In this appendix we cover omitted elementary calculation for the results of this paper.

F.1. Derivation of (7)

When λi 6= minj λj , it holds from (1) that

φ′i(λ) = 2

∫ ∞
−minj∈[K] λj

(
2

(z + λi)6
− 3

(z + λi)4

)
exp

(
−
∑
i′

1

(z + λi)2

)
dz (36)

and (7) immediately follows.
When λi is the unique minimizer of {λj}, we have

φ′i(λ) = 2

∫ ∞
−minj∈[K] λj

(
2

(z + λi)6
− 3

(z + λi)4

)
exp

(
−
∑
i′

1

(z + λi)2

)
dz

+ 2 lim
z→−minj∈[K] λj

1

(z + λi)3
exp

(
−
∑
i′

1

(z + λi)2

)

= 2

∫ ∞
−minj∈[K] λj

(
2

(z + λi)6
− 3

(z + λi)4

)
exp

(
−
∑
i′

1

(z + λi)2

)
dz, (37)

which again recovers (7).
When λi is a non-unique minimizer of {λj}, the right and left derivatives of φi(λ) are expressed

by (36) and (37), respectively.
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F.2. Ratio of Incomplete Gamma Functions

In this appendix we show that it holds for x > 0 that

γ(3/2, x)

γ(1, x)
≤ 2
√
x

3
∧
√
π

2
,

which is, by γ(1, x) = 1− e−x, also expressed as

γ(3/2, x)− 2(1− e−x)
√
x/3 ≤ 0, (38)

γ(3/2, x)−
√
π(1− e−x)/2 ≤ 0. (39)

The derivative of the LHS of (38) is expressed as

e−x
√
x− 2e−x

√
x

3
− 1− e−x

3
√
x

=
1

3
√
x

(
xe−x + e−x − 1

)
≤ 0.

Therefore the LHS of (38) is decreasing and we obtain (38) since (38) holds with equality at x = 0.
Similarly, the derivative of the LHS of (39) is expressed as

e−x
√
x−
√
πe−x/2 = e−x(

√
x−
√
π/2),

which means that the LHS of (39) is maximized at x = 0 or x→∞. We obtain (39) since it holds
with equality at these x’s.
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