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Abstract
We consider the adversarial online multi-task reinforcement learning setting, where in each of K
episodes the learner is given an unknown task taken from a finite set of M unknown finite-horizon
MDP models. The learner’s objective is to minimize its regret with respect to the optimal policy
for each task. We assume the MDPs inM are well-separated under a notion of λ-separability, and
show that this notion generalizes many task-separability notions from previous works. We prove a
minimax lower bound of Ω(K

√
DSAH) on the regret of any learning algorithm and an instance-

specific lower bound of Ω(K
λ2 ) in sample complexity for a class of uniformly good cluster-then-

learn algorithms. We use a novel construction called 2-JAO MDP for proving the instance-specific
lower bound. The lower bounds are complemented with a polynomial time algorithm that obtains
Õ(K

λ2 ) sample complexity guarantee for the clustering phase and Õ(
√
MK) regret guarantee for

the learning phase, indicating that the dependency on K and 1
λ2 is tight.

Keywords: reinforcement learning, adversarial online multi-task learning, clustering

1. Introduction

The majority of theoretical works in online reinforcement learning (RL) have focused on single-task
settings in which the learner is given the same task in every episode. In practice, an autonomous
agent might face a sequence of different tasks. For example, an automatic medical diagnosis system
could be given an arbitrarily ordered sequence of patients who are suffering from an unknown set of
variants of a virus. In this example, the system needs to classify and learn the appropriate treatment
for each variant of the virus. This example is an instance of the adversarial online multi-task episodic
RL setting, an important learning setting for which the theoretical understanding is rather limited.

The framework commonly used in existing theoretical works is an episodic setting of K episodes;
in each episode an unknown Markov decision process (MDP) from a finite set M of size M is
given to the learner. When M = 1, the setting reduces to single-task episodic RL. Most existing
algorithms for single-task episodic RL are based on aggregating samples in all episodes to obtain
sub-linear bounds on various notions of regret (Azar et al., 2017; Jin et al., 2018; Simchowitz and
Jamieson, 2019) or finite (ϵ, δ)-PAC bounds on the sample complexity of exploration (Dann and
Brunskill, 2015). When M > 1, without any assumptions on the common structure of the tasks,
aggregating samples from different tasks could produce negative transfer (Brunskill and Li, 2013).
To avoid negative transfer, existing works (Brunskill and Li, 2013; Hallak et al., 2015; Kwon et al.,
2021) assumed that there exists some notion of task-separability that defines how different the tasks
in M are. Based on this notion of separability, most existing algorithms followed a two-phase
cluster-then-learn paradigm that first attempts to figure out which MDP is being given and then
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uses the samples from the previous episodes of the same MDP for learning. However, most exist-
ing works employ strong assumptions such that the tasks are given stochastically following a fixed
distribution (Azar et al., 2013; Brunskill and Li, 2013; Steimle et al., 2021; Kwon et al., 2021) or
the task-separability notion allows the MDPs to be distinguished in a small number of exploration
steps (Hallak et al., 2015; Kwon et al., 2021). These strong assumptions become the main theoretical
challenges towards understanding this setting.

Our goal in this work is to study the adversarial setting with a more general task-separability
notion, in which the aformentioned strong assumptions do not hold. Specifically, the learner makes
no statistical assumptions on the sequence of tasks; the task in each episode can be either the same
or different from the tasks in any other episodes. Moreover, the difference between the tasks in two
consecutive episodes can be large (linear in the length of the episodes) so that algorithms based on
a fixed budget for total variation such as RestartQ-UCB (Mao et al., 2021) cannot be applied. The
performance of the learner is measured by its regret with respect to an omniscient agent that knows
which tasks are coming in every episode and the optimal policies for these tasks. We consider the
same cluster-then-learn paradigm of the previous works and focus on the following two questions:

• Is there a task-separability notion that generalizes the notions from previous works while still
enabling tasks to be distinguished by a cluster-then-learn algorithm with polynomial time and
sample complexity? If so, what is the optimal sample complexity of clustering under this notion?

• Is there a polynomial time cluster-then-learn algorithm that simultaneously obtains near-optimal
sample complexity in the clustering phase and near-optimal regret guarantee for the learning
phase in the adversarial setting?

We answer both questions positively. For the first question, we introduce the notion of λ-
separability, a task-separability notion that generalizes the task-separability definitions in previous
works in the same setting (Brunskill and Li, 2013; Hallak et al., 2015; Kwon et al., 2021). Defini-
tion 1 formally defines λ-separability. A more informal version of λ-separability has appeared in
the discounted setting of Concurrent PAC RL (Guo and Brunskill, 2015) where multiple MDPs are
learned concurrently; however the implications on the episodic sequential setting and the tightness
of their results were lacking. In essence, λ-separability assumes that between every pair of MDPs
inM, there exists some state-action pair whose transition functions are well-separated in ℓ1-norm.
This setting is more challenging than the one considered by Hallak et al. (2015) where all state-
action pairs are well-separated. In Appendix B, we show that λ-separability is more general than
the entropy-based separability defined in Kwon et al. (2021) and thus requires novel approaches
to exploring and clustering samples from different episodes. Under this notion of λ-separability,
we show an instance-specific lower bound1 Ω(K

λ2 ) on both the sample complexity and regret of the
clustering phase for a class of cluster-then-learn algorithms that includes most of the existing works.

To answer the second question, we propose a new cluster-then-learn algorithm, AOMultiRL,
which obtains a regret upper bound of Õ

(
K
λ2 +

√
MK

)
(the Õ hides logarithmic terms). This

upper bound indicates that the linear dependency on K and λ2 in the lower bounds are tight. The
Õ(
√
MK) upper bound in the learning phase is near-optimal because if the identity of the model

is revealed to a learner at the beginning of every episode (so that no clustering is necessary), there

1. Here and throughout the introduction, we suppress factors related to the MDPs such that the number of states and
actions and the horizon length in all the bounds.
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exists a straightforward Ω(
√
MK) lower bound obtained by combining the lower bound for the

single-task episodic setting of Domingues et al. (2021) and Cauchy-Schwarz inequality. In the
stochastic setting, the L-UCRL algorithm (Kwon et al., 2021) obtains O(

√
MK) regret with respect

to the optimal policy of a partially observable MDP (POMDP) setting that does not know the identity
of the MDPs in each episode; thus their notion of regret is weaker than the one in our work.

Overview of Techniques

• In Section 3, we present two lower bounds. The first is a minimax lower bound Ω(K
√
SAH)

on the total regret of any algorithm. This result uses the construction of JAO MDPs in Jaksch
et al. (2010). The second is a Ω

(
K
λ2

)
instance-specific lower bound on the sample complexity

and regret of the clustering phase for a class of uniformly good cluster-then-learn algorithms
when both λ and M are sufficiently large. The instance-specific lower bound relies on the novel
construction of 2-JAO MDP, a hard instance combining two JAO MDPs in which one is the
minimax lower bound instance and the other satisfies λ-separability. We show that learning
2-JAO MDPs is fundamentally a two-dimensional extension of the problem of finding a biased
coin among a collection of fair coins (e.g. Tulsiani, 2014), for which information theoretic
techniques of the one-dimensional problem can be adapted.

• In Section 4, we show that AOMultiRL obtains a regret upper bound of Õ
(

K
λ2 +

√
MK

)
. The

main idea of AOMultiRL is based on the observation that a fixed horizon of order Θ( 1
λ2 ) with a

small constant factor is sufficient to obtain a λ-dependent coarse estimate of the transition func-
tions of all state-action pairs. In turn, this coarse estimate is sufficient to have high-probability
guarantees for the correctness of the clustering phase. This allows AOMultiRL to have a fixed
horizon for the learning phase and be able to apply single-task RL algorithms with theoretical
guarantees such as UCBVI-CH (Azar et al., 2017) in the learning phase.

Our paper is structured as follows: Section 2 formally sets up the problem. Section 3 presents
the lower bounds. AOMultiRL and its regret upper bound are shown in Section 4. The appendix
contains formal proofs of all results. We defer detailed discussion on related works to Appendix A.

2. Problem Setup

Our learning setting consists of K episodes. In episode k = 1, 2, . . . ,K, an adversary chooses an
unknown Markov decision process (MDP) mk from a set of finite-horizon tabular stationary MDP
modelsM = {(S,A, H, Pi, r) : i = 1, 2, . . . ,M} where r : S ×A 7→ [0, 1] is the shared reward
function, S is the set of states with size S, A is the set of actions with size A, H is the length of
each episode, and Pi : S ×A× S 7→ [0, 1] is the transition function where Pi(s

′|s, a) specifies the
probability of being in state s′ after taking action a at state s. The state space S and action space
A are known and shared between all models; however, the transition functions are distinct and
unknown. Following a common practice in single-task RL literature (Azar et al., 2017; Jin et al.,
2018), we assume that the reward function is known and deterministic, however our techniques and
results extend to the setting of unknown stochastic r. Furthermore, the MDPs are assumed to be
communicating with a finite diameter D (Jaksch et al., 2010). A justification for this assumption on
the diameter is provided in Section 2.1.
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The adversary also chooses the initial state sk1 . The policy πk of the learner in episode k is
a collection of H functions πk = {πk,h : S 7→ A}, which can be non-stationary and history-
dependent. The value function of πk starting in state s at step h is the expected rewards obtained
by following πk for H − h + 1 steps V πk

h (s) = E[
∑H

h′=h r(s
k
h′ , πk

h(s
k
h′)) | skh = s], where the

expectation is taken with respect to the stochasticity in mk and πk. Let V k,∗
1 denote the value

function of the optimal policy in episode k.
The performance of the learner is measured by its regret with respect to the optimal policies in

every episode:

Regret(K) =
K∑
k=1

[V k,∗
1 − V πk

1 ](sk1). (1)

Let [M ] = {1, 2, . . . ,M}. We assume that the MDPs inM are λ-separable:

Definition 1 (λ-separability) Let λ > 0 and consider set of MDP modelsM = {m1, . . . ,mM}
with M models. For all (i, j) ∈ [M ] × [M ] and i ̸= j, the λ-distinguishing set for two models
mi and mj is defined as the set of state-action pairs such that the ℓ1 distance between Pi(s, a) and
Pj(s, a) is larger than λ: Γλ

i,j = {(s, a) ∈ S ×A : ∥Pi(s, a)− Pj(s, a)∥ ≥ λ}, where ∥·∥ denotes
the ℓ1-norm and Pi(s, a) = Pi(· | s, a).

The setM is λ-separable if for every two models mi,mj inM, the set Γλ
i,j is non-empty:

∀i, j ∈ [M ], i ̸= j : Γλ
i,j ̸= ∅.

In addition, λ is called a separation level of M, and we say a state-action pair (s, a) is λ-
distinguishing for two models mi and mj if ∥Pi(s, a)− Pj(s, a)∥ > λ.

We use the following notion of a λ-distinguishing set for a collection of MDP modelsM:

Definition 2 (λ-distinguishing set) Given a λ-separable set of MDPs M, a λ-distinguishing set
of M is a set of state-action pairs Γλ ⊆ S × A such that for all i, j ∈ [M ],Γλ

i,j ∩ Γλ ̸= ∅. In
particular, the set Γ = ∪i,jΓλ

i,j is a λ-distinguishing set ofM.

By definition, a state-action pair can be λ-distinguishing for some pairs of models and not λ-
distinguishing for other pairs of models.

2.1. Assumption on the finite diameter of the MDPs

In this work, all MDPs are assumed to be communicating. We employ the following formal defini-
tion and assumption commonly used in literature (Jaksch et al., 2010; Brunskill and Li, 2013; Sun
and Huang, 2020; Tarbouriech et al., 2021):

Definition 3 ((Jaksch et al., 2010)) Given an ergodic Markov chain F , let TF
s,s′ = inf{t > 0 | st =

s′, s0 = s} be the first passage time for two states s, s′ on F . Then the hitting time of a unichain
MDP G is TG = maxs,s′∈S maxπ E[TFπ

s,s′ ], where Fπ is the Markov chain induced by π on G. In

addition, T ′
G = maxs,s′∈S minπ E[TFπ

s,s′ ] is the diameter of G.

Assumption 4 The diameter of all MDPs inM are bounded by a constant D.
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While this finite diameter assumption is common in undiscounted and discounted single-task
setting (Jaksch et al., 2010; Guo and Brunskill, 2015), it is not necessary in the episodic single-task
setting (Jin et al., 2018; Mao et al., 2021). Therefore, it is important to justify this assumption in the
episodic multi-task setting. In the episodic single-task setting, for any initial state s1, the average
time between any pair of states reachable from s1 is bounded 2H; hence, H plays the same role as
D (Domingues et al., 2021). This allows the learner to visit and gather state-transition samples in
each state multiple times and construct accurate estimates of the model.

However, in the multi-task setting, the same initial state s1 in one episode might belong to a
different MDP than the state s1 in the previous episodes. Therefore, the set of reachable states
and their state-transition distributions could change drastically. Hence, it is important that the
λ-distinguishing state-action pairs be reachable from any initial state s1 for the learner to rec-
ognize which MDP it is in and use the samples appropriately. Otherwise, combining samples
from different MDPs could lead to negative transfer. Conversely, if the MDPs are allowed to be
non-communicating, the component that makes them λ-separable might be unreachable from other
components. In this case, the adversary can pick the initial states in these components and block
the learner from accessing the λ-distinguishing state-actions. A construction that formalizes this
argument is shown at the end of Section 3.

3. Minimax and Instance-Dependent Lower Bounds

We first show that if λ is sufficiently small and M = Θ(SA), then the setting is uninteresting in the
sense that one cannot do much better than learning every episode individually without any transfer,
leading to an expected regret that grows linearly in the number of episodes K.

Lemma 5 (Minimax Lower Bound) Suppose S,A ≥ 10, D ≥ 20 logA(S) and H ≥ DSA are

given. Let λ = Θ(
√

SA
HD ). There exists a set of λ-separable MDPsM of size M = SA

4 , each with
S states, A actions, diameter at most D and horizon H such that if the tasks are chosen uniformly
at random fromM, the expected regret of any sequence of policies (πk)k=1,...,K over K episodes is

E[Regret(K)] ≥ Ω
(
K
√
DSAH

)
.

Proof (Sketch) We constructM so that each MDP inM is a JAO MDP (Jaksch et al., 2010) of two
states {0, 1}, SA

4 actions and diameter D
4 . Figure 1 (left) illustrates the structure of a JAO MDP.

State 0 has no reward, while state 1 has reward +1. Each model has a unique best action a∗ that
starts from 0 and goes to 1. The pair (0, a∗) is a λ-distinguishing state-action pair.

A JAO MDP can be converted to an MDP with S states, A actions and diameter D, and this
type of MDP gives the minimax lower bound proof in the undiscounted setting (Jaksch et al., 2010).
The adversary selects a model fromM uniformly at random, and so previous episodes provide no
useful information for the current episode; hence, the regret of any learner is equal to the sum of
its K one-episode learning regrets. The one-episode learning regret for JAO MDPs is known to be
Ω(
√
DSAH) when comparing against the optimal infinite-horizon average reward. For JAO MDPs,

the optimal infinite horizon policy is also optimal for finite horizon; so, we can use a geometric
convergence result from Markov chain theory (Levin et al., 2008) to convert this lower bound to a
lower bound of the standard finite-horizon regret of the same order, giving the result.
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Figure 1: A JAO MDP (left) and a 2-JAO MDP (right). Only state 1 has reward +1. The dashed
arrows indicate the best actions.

Using the same technique in the proof of Lemma 5, we can show that applying UCRL2 (Jaksch
et al., 2010) in every episode individually leads to a regret upper bound of O

(
KDS

√
AH lnH

)
.

This implies that learning every episode individually already gives a near-optimal regret guarantee.

Remark 6 Our proof for Lemma 5 contains a simple yet rigorous proof for the mixing-time argu-
ment used in Mao et al. (2021); Jin et al. (2018). This argument claims that for JAO MDPs, when
the diameter is sufficiently small compared to the horizon, the optimal H-step value function V ∗

1 in
the regret of the episodic setting can be replaced by the optimal average reward ρ∗H in the undis-
counted setting without changing the order of the lower bound. To the best of our knowledge, our
proof is the first rigorous proof for this argument that applies for any number of episodes including
K = 1. Domingues et al. (2021) provide an alternative proof; however the results therein hold in a
different setting where K is sufficiently large and the horizon H can be much smaller than D.

We emphasize that the lower bound in Lemma 5 holds for any learning algorithms. This re-
sult motivates the more interesting setting in which λ is a fixed and large constant independent of
H . In this case, we are interested in an instance-specific lower bound. For multi-armed bandits,
instance-specific lower bounds are constructed with respect to a class of uniformly good learning
algorithms (Lai and Robbins, 1985). In our setting, we focus on defining a class of uniformly
good algorithms that include the cluster-then-learn algorithms in the previous works for multi-task
PAC RL settings such as Finite-Model-RL (Brunskill and Li, 2013) and PAC-EXPLORE (Guo and
Brunskill, 2015). We consider a class of MDPs and a cluster-then-learn algorithm uniformly good
if they satisfy an intuitive property: for any MDP in that class, the algorithm should be able to cor-
rectly classify whether a cluster of samples is from that MDP or not with an arbitrarily low (but not
zero) failure probability, provided that the horizon H is sufficiently long for the algorithm to collect
enough samples. The following definition formalizes this idea.

Definition 7 (PAC identifiability of MDPs) A set of models M of size M is PAC identifiable if
there exists a function f : (0, 1) 7→ N, a sample collection policy π and a classification algorithm C
with the following property: for every p ∈ (0, 1), for each model 1 ≤ m ≤M inM, if π is run for
f(p) steps and the state-transition samples are given to C, then the algorithm C returns the correct
identity of m with probability at least 1−p, where the probability is taken over all possible sequence
of f(p) samples collected by running π on m for f(p) steps. The smallest choice of function f(p)
among all possible choices is called the sample complexity of model identification ofM.
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The clustering algorithm in a cluster-then-learn framework solves a problem different from clas-
sification: they only need to tell whether a cluster of samples belong to the same or different dis-
tribution than another cluster of samples, not the identity of the distribution. We can reduce one
problem to the other by the following construction: consider the adversary that gives all M models
in the first M episodes. After the first M episodes, there are M clusters of samples, each cor-
responding to one model in M. Once the learner has constructed M different clusters, from the
episode M + 1, the clustering problem is as hard as classification since identifying the right cluster
immediately implies the identity of the MDP where the samples come from, and vice versa. Hence,
we can apply the sample complexity of classification to that of clustering.

Next, we show the lower bound on the sample complexity of model identification for the class
of λ-separable communicating MDPs.

Lemma 8 For any S,A ≥ 20, D ≥ 16 and λ ∈ (0, 12 ], there exists a PAC identifiable λ-separable
set of MDPsM of size SA

12 , each with at most S states, A actions and diameter D such that for any
classification algorithm C, if the number of state-transition samples given to C is less than SA

180λ2

then for at least one MDP inM, algorithm C fails to identify that MDP with probability at least 1
2 .

Proof (Sketch) The setM is a set of 2-JAO MDPs, shown in Figure 1 (right). Each 2-JAO MDP
combines two JAO MDPs with the same number of actions and with diameter in the range [D2 , D];
one is λ-separable and one is the hard instance for the minimax lower bound of Jaksch et al. (2010).
Rewards exist only in the part containing the hard instance. If a learner completely ignores the
λ-separable part, by Lemma 5 the learner cannot do much better than just learning every episode
individually. On the other hand, with enough samples from the λ-separable part, the learner can
identify the MDP and use the samples collected in the previous episodes of the same MDP to accel-
erate learning the hard instance part. However, the λ-separable part is also a JAO MDP, for which
no useful information from previous episodes can help identify the MDP in the current episode.

Only the actions at state 0 are λ-distinguishing and can be used to identify the MDPs. Taking an
action in state 0 can be seen as flipping a coin: heads for transitioning to another state and tails for
staying in state 0. Identifying a 2-JAO MDP reduces to the problem of using at most H coin flips to
identify, in a Q× 2 matrix of coins, a row j that has coins that are slightly different from the others.
The first column has fair coins except in row j, where the success probability is 1

2 + λ. The second
column coins with success probability of δ ≤ 1

4 except in row j, where the coin is upwardly biased

by ∆ ≤ λ. Lemma 23 and Corollary 24 in the appendix show a Ω
(

Q
λ2

)
lower bound on the number

of coin flips on the first column (the left part of the 2-JAO MDP), implying the desired result.

Lemma 8 imply that for 2-JAO MDPs, any uniformly good model identification algorithm needs
to collect at least Ω

(
SA
λ2

)
samples from state 0 on the left part. Whenever an action towards state

2 is taken from state 0, the learner may end up in state 2. Once in state 2, the learner needs to get
back to state 0 to obtain the next useful sample. The expected number of actions needed to get back
to state 0 from state 2 is 1

δ = D
4 . This implies the following two lower bounds on the horizon of the

clustering phase and the total regret of any cluster-then-learn algorithms.

Corollary 9 For any S,A ≥ 20, D ≥ 16 and λ ∈ (0, 1], there exists a PAC identifiable λ-
separable set of MDPs M of size M = SA

12 , each with S states, A actions and diameter D such
that for any uniformly good cluster-then-learn algorithm, to find the correct cluster with probability

7
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of at least 1
2 , the expected number of exploration steps needed in the clustering phase is Ω(DSA

λ2 ).
Furthermore, the expected regret over K episodes of the same algorithm is

E[Regret(K)] ≥ Ω

(
KDSA

λ2

)
.

Proof (Sketch) In the lower bound construction, the learner is assumed to know everything about
the set of models, including their optimal policies. Hence, after having identified the model in the
clustering phase, the learner can follow the optimal policy in the learning phase and incur a small
regret of at most D

2 in this phase. Therefore, the regret is dominated by the regret in the clustering
phase, which is of order DSA

λ2 .

Remark 10 The lower bound in Corollary 9 holds for a particular class of uniformly good cluster-
then-learn algorithms under an adaptive adversary. It remains an open question whether this lower
bound holds for any algorithms, not just cluster-then-learn.

Remark 11 Corollary 9 implies that, without further assumptions, it is not possible to improve the
1
λ2 dependency on λ. At the first glance this seems to contradict the existing results in bandits and
online learning literature, where the regret bound depends on 1

gap where gap is the the difference in
expected reward between the best arm and the sub-optimal arms. However, λ does not play the same
role as the gaps in bandits. Observe that on the 2-JAO MDPs, the set of arms with positive reward is
only in the right JAO MDP. The lower-bound learner knows this, but chooses to pull the arms on the
left JAO MDP (with zero-reward) to collect side information that helps learn the right part faster. In
this analogy, λ does not play the same role as the gaps in bandits, since the learner already knows
the arms on the left JAO MDP are suboptimal. The role of λ is in model identification, for which
similar 1

λ2 lower bounds are known (e.g. Tulsiani, 2014).

Finally, we construct a non-communicating variant of the 2-JAO MDP to show that the finite
diameter assumption is necessary. Figure 3 in Appendix C illustrates this construction. On this
variant, all the transitions from state 0 to state 2 are reversed. In addition, no actions take state 0
to state 2, making this MDP non-communicating. A set of these non-communicating MDPs is still
λ-separable due to the state-action pairs that start at state 2. However, by setting the initial state to
0, the adversary can force the learner to operate only on the right part, regardless of how large λ is.

4. Non-Asymptotic Upper Bounds

We propose and analyze AOMultiRL, a polynomial time cluster-then-learn algorithm that obtains a
high-probability regret bound of Õ(KDSA

λ2 + H3/2
√
MSAK). In each episode, the learner starts

with the clustering phase to identify the cluster of samples generated in previous episodes that has
the same task. Once the right cluster is identified, the learner can use the samples from previous
episodes in the learning phase.

A fundamental difference between the undiscounted infinite horizon setting considered in previ-
ous works (Guo and Brunskill, 2015; Brunskill and Li, 2013) and the episodic finite horizon in our
work is the horizon of the two phases. In previous works, different episodes might have different
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horizons for the clustering phase depending on whether the learner decides to start exploration at
all (Brunskill and Li, 2015) or which state-action pairs are to be explored (Brunskill and Li, 2013).
This poses a challenge for the episodic finite-horizon setting, because a varying horizon for the clus-
tering phase leads to a varying horizon for the learning phase. Thus, standard single-task algorithms
that rely on a fixed horizon such as UCBVI (Azar et al., 2017) and StrongEuler (Simchowitz and
Jamieson, 2019) cannot be applied directly. From an algorithmic standpoint, for a fixed horizon
H , a non-asymptotic bound on the horizon of the clustering phase is necessary so that the learner
knows exactly whether H is large enough and when to stop collecting samples.

AOMultiRL alleviates this issue by setting a fixed horizon for the clustering phase, which re-
duces the learning phase to standard single-task episodic RL. First, we state an assumption on the
ergodicity of the MDPs.

Assumption 12 The hitting times of all MDPs inM are bounded by a known constant D̃.

The main purpose of Assumption 12 is simplifying the computation of a non-asymptotic upper
bound for the clustering phase in order to focus the exposition on the main ideas. We discuss a
method for removing this assumption in Appendix G.

Algorithm 1 outlines the main steps of our approach. Given a set Γα of α-distinguishing state-
action pairs, in the clustering phase the learner employs a history-dependent policy specified by
Algorithm 2, ExploreID, to collect at least N samples for each state-action pair in Γα, where
N will be determined later. Once all (s, a) in Γα have been visited at least N times, Algorithm 3,
IdentifyCluster, computes the empirical means of the transition function of these (s, a) and
then compares them with those in each cluster to determine which cluster contains the samples from
the same task (or none do, in which case a new cluster is created). For the rest of the episode, the
learner uses the UCBVI-CH algorithm (Azar et al., 2017) to learn the optimal policy.

The algorithms and results up to Theorem 16 are presented for a general set Γα. Since Γα is
generally unknown, Corollary 17 shows the result for α = λ and Γα = S ×A.

4.1. The Exploration Algorithm

Given a collection B of tuples (s, a, s′), the empirical transition functions estimated by B are

P̂B(s
′ | s, a) =

{
NB(s,a,s

′)
NB(s,a)

if NB(s, a) > 0

0 otherwise,

where NB(s, a, s
′) =

∑
(x,y,z)∈B

I{x = s, y = a, z = s′}, NB(s, a) =
∑
s′∈S

NB(s, a, s
′)

are the number of instances of (s, a, s′) and (s, a) in B, respectively.
For each episode k, let P k denote the transition function of the task mk and Bk denote the

collection of samples (sh, ah, sh+1) collected during the learning phase. The empirical means P̂ k

estimated using samples in Bk are P̂ k = P̂Bk
. The value of N can be chosen so that for all

(s, a) ∈ Γα, with high probability P̂ k(s, a) is close to P k(s, a). Specifically, we find that if N is
large enough so that P̂ k(s, a) is within λ/8 in ℓ1 norm of the true function P k(s, a), then the right
cluster can be identified in every episode. The exact value of N is given in the following lemma.
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Algorithm 1: Adversarial online multi-task RL
Input: Number of models M , number of

episodes K, MDPs parameters
S,A, H, D̃, λ, probability p, separation
level α and an α-distinguishing set Γα.

Compute
p1 = p/3, N = 256

λ2 max{S, ln(K|Γα|
p1

)}, δ =

α− λ/4, H0 = 12D|Γα|N
Initialize C ← ∅
for k = 1, . . . ,K do

Initialize Bk ← ∅
The environment chooses a task mk

Observe the initial state s1
for h = 1, . . . ,H0 do

ah = ExploreID(sh,Γ
α)

Observe sh+1 and rh+1

Add (sh, ah, sh+1) to Bk
id← IdentifyCluster(Bk,Γα, C, δ)
if id ≥ 1 then Cmodel

id = Cmodel
id ∪ Bk

else
id← |C|+ 1

Cmodel
id = Bk, Cregretid = ∅
C ← C ∪ Cid

πk = UCBVI-CH(Cregretid )
for h = H0 + 1, . . . ,H do

ah = πk(h, sh)
Observe sh+1 and rh+1

Cregretid = Cregretid ∪ (sh, ah, sh+1)

Algorithm 2: ExploreID
Input: Episode k, state s, set Γα and

number N
Set G(s) ={

a ∈ A :
(s, a) ∈ Γα, NBk

(s, a) < N

}
if G(s) ̸= ∅ then

return argmaxa∈G(s)NBk
(s, a)

else
return argmaxa∈A

∑S
s′=1 P̂

k(s′ |
s, a)I{G(s′) ̸= ∅}

Algorithm 3: Identify Cluster
Input: Episode k, set Γα, clusters C,

and threshold δ
for c = 1, . . . , ∥C∥ do

Initialize id← c
for (s, a) ∈ Γ do

if
∥∥∥[P̂c − P̂ k](s, a)

∥∥∥ > δ then
id← 0
break;

if id == c then
return id;

return 0;

Lemma 13 Suppose the learner is given a constant p1 ∈ (0, 1) and a α-distinguishing set Γα ⊆
S ×A. If each state-action pair in Γα is visited at least N = 256

λ2 max{S, ln(K|Γα|
p1

)} times during
the clustering phase of each episode k = 1, 2, . . . ,K, then with probability at least 1−p1, the event

EΓα

k =

{
∀(s, a) ∈ Γα,

∥∥∥P k(s, a)− P̂ k(s, a)
∥∥∥ ≤ λ

8

}
holds for all k ∈ [K].

The exploration in AOMultiRL is modelled as an instance of the active model estimation prob-
lem (Tarbouriech et al., 2020). Given the current state s, if there exists an action a such that
(s, a) ∈ Γα and (s, a) has not been visited at least N times, this action will be chosen (with ties
broken by selecting the most chosen action). Otherwise, the algorithm chooses an action that has the
highest estimated probability of leading to an under-sampled state-action pair in Γα. The following
lemma computes the number of steps H0 in the clustering phase.

10
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Lemma 14 Consider p1 and N defined in Lemma 13. By setting

H0 = 12D̃|Γα|N =
3072D̃|Γα|

λ2
max{S, ln(K|Γ

α|
p1

)},

with probability at least 1 − p1, Algorithm 2 visits each state-action pair in Γα at least N times
during the clustering phase in each of the K episodes.

4.2. The Clustering Algorithm

Denote by C the set of clusters, C = |C| the number of clusters and Ci the i th cluster. Each Ci
is a collection of two multisets Cmodel

i , Cregreti ⊂ S ×A× S which contain the (s, a, s′) samples
collected during the clustering and learning phases, respectively. Formally, up to episode k we have

Cmodel
i = ∪k−1

k′=1{(s
k′
h , a

k′
h , s

k′
h+1) : h ≤ H0, id

k′ = i},

Cregreti = ∪k−1
k′=1{(s

k′
h , a

k′
h , s

k′
h+1) : h > H0, id

k′ = i},

where skh and akh are the state and action at time step h of episode k, respectively and idk
′

is the
cluster index returned by Algorithm 3 in episode k′.

Let P̂i = P̂Cmodel
i

denote the empirical means estimated using samples in Cmodel
i . For each

episode k, from Lemma 14 with high probability after the first H0 steps each state-action pair
(s, a) ∈ Γα has been visited at least N times. Algorithm 3 determines the right cluster for a task
by computing the ℓ1 distance between P̂ k and the empirical transition function P̂i for each cluster
i = 1, 2, . . . , C. If there exists an (s, a) ∈ Γα such that the distance is larger than a certain threshold
δ, i.e.,

∥∥∥[P̂i − P̂ k](s, a)
∥∥∥ > δ, then the algorithm concludes that the task belongs to another cluster.

Otherwise, the task is considered to belong to cluster i. We set δ = α− λ/4. The following lemma
shows that with this choice of δ, the right cluster is identified by Algorithm 3 in all episodes.

Lemma 15 Consider a λ-separable set of MDPs M and an α-distinguishing set Γα where α ≥
λ/2. If the events EΓα

k defined in Lemma 13 hold for all k ∈ [K], then with the distance threshold
δ = α− λ/4 Algorithm 3 always produces a correct output in each episode: the trajectories of the
same model in two different episodes are clustered together and no two trajectories of two different
models are in the same cluster.

Once the clustering phase finishes, the learner enters the learning phase and uses the UCBVI-
CH algorithm (Azar et al., 2017) to learn the optimal policy for this phase. In principle, almost all
standard single-task RL algorithms with a near-optimal regret guarantee can be used for this phase.
We chose UCBVI-CH to simplify the analysis and make the exposition clear.

To simulate the standard single-task episodic learning setting, the learner only uses the samples
in Cregreti for regret minimization. Theorem 16 states a regret bound for Algorithm 1.

Theorem 16 For any failure probability p ∈ (0, 1), with probability at least 1 − p the regret of
Algorithm 1 is bounded as

Regret(K) ≤ 2KH0 + 67H
3/2
1 L
√
MSAK + 15MS2AH2

1L
2,

where H0 = 12D̃|Γα|N , N = 256
λ2 max{S, ln(3K|Γα|

p )}, H1 = H−H0, and L = ln(15SAKHM/p).
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For K > MS3AH , the first two terms are the most significant. The 2KH0 term accounts for
the clustering phase and the fact that the exploration policy might lead the learner to an undesirable
state after H0 steps. The Õ(

√
K) term comes from the fact that the learning phase is equivalent

to episodic single-task learning with horizon H1. When H ≫ H0, the sub-linear bound on the
learning phase is a major improvement compared to the O(K

√
HSA) bound of the strategy that

learns each episode individually.
By setting Γα = S ×A and α = λ, we obtain

Corollary 17 For any failure probability p ∈ (0, 1), with probability at least 1 − p, by setting
Γα = S ×A with α = λ, the regret of Algorithm 1 is

Regret(K) ≤ O

(
KD̃SA

λ2
ln

(
KSA

p

)
+H3/2L

√
MSAK

)
. (2)

where L = ln(15SAKH1M/p).

Time Complexity The clustering algorithm runs once in each episode, which leads to time
complexity of O(MSA + H). When H ≫ H0, the overall time complexity is dominated by the
learning phase, which is O(HSA) for UCBVI-CH.

Remark 18 Instead of clustering, a different paradigm involves actively merging samples from
different MDPs to learn a model that is an averaged estimate of the MDPs inM. The best regret
guarantee in this paradigm, to the best of our knowledge, is Õ(S1/3A1/3B1/3H5/3K2/3), where
B is a variation budget, achieved by RestartQ-UCB (Mao et al., 2021, Theorem 3). In our setting,
if the adversary frequently alternates between tasks then B = Ω(KHλ) and therefore this bound
becomes Õ(λ1/3S1/3A1/3H2K), which is larger than the trivial bound KH and worse than the
bound in Corollary 17. If the adversary selects tasks so that B is small i.e. B = o(K) then the bound
offered by RestartQ-UCB is better since it is sub-linear in K. Note that this does not contradict the
lower bound result in Section 3, since the lower bound is constructed with an adversary that selects
tasks uniformly at random, and hence B is linear in K.

4.3. Learning a distinguishing set when M is small

As pointed out by Brunskill and Li (2013), for all α > 0, the size of the smallest α-distinguishing set
ofM is at most

(
M
2

)
. If M2 ≪ SA and such a set is known to the learner, then the clustering phase

only need collect samples from this set instead of the full S ×A set of state-action pairs. However,
in general this set is not known. We show that if the adversary is weaker so that all models are
guaranteed to appear at least once early on, the learner will be able to discover a λ

2 -distinguishing
set Γ̂ of size at most

(
M
2

)
. Specifically, we employ the following assumption:

Assumption 19 There exists an unknown constant K1 ≥M satisfying K1SA < K such that after
at most K1 episodes, each model inM has been given to the learner at least once.

In order to discover Γ̂, the learner uses Algorithm 4, which consists of two stages:

• Stage 1: the learner starts by running Algorithm 1 with the λ-distinguishing set candidate S ×A
until the number of clusters is M . With high probability, each cluster corresponds to a model.
At the end of stage 1, the learner uses the empirical estimates in all clusters P̂i for i ∈ [M ] to
construct a λ/2-distinguishing set Γ̂ forM.

12
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Algorithm 4: AOMultiRL with all models being given at least once

Input: Number of models M , number of episodes K, MDPs parameters S,A, H, D̃, λ,
probability p

Stage 1: Run Algorithm 1 with the distinguishing set Γα = S ×A and α = λ until the number
of clusters is M ;

for i, j ∈ [M ]× [M ], i ̸= j do
Γ̂i,j = ∅;
for (s, a) ∈ S ×A do

if
∥∥∥P̂i(s, a)− P̂j(s, a)

∥∥∥ > 3λ/4 then
Γ̂i,j = Γ̂i,j ∪ (s, a);
break

Γ̂ = ∪i,jΓ̂i,j ;
Stage 2: Run Algorithm 1 with distinguishing set Γ̂ and α = λ/2 for K2 = K −K1 episodes.

• Stage 2: the learner runs Algorithm 1 with the distinguishing set Γ̂ as an input.

Extracting λ/2-distinguishing pairs: After K1 episodes, with high probability there are M
clusters corresponding to M models. For two clusters i and j, the set Γ̂i,j contains the first state-

action pair (s, a) that satisfies
∥∥∥P̂i(s, a)− P̂j(s, a)

∥∥∥ > 3λ/4. With high probability, every (s, a) ∈
Γi,j satisfies this condition, hence Γ̂i,j ̸= ∅.

Let i⋆ ∈ [M ] denote the index of the MDP model corresponding to cluster i. For all (s, a) ∈
Γ̂i,j , by the triangle inequality, we have

∥Pi⋆ − Pj⋆∥ ≥
∥∥∥P̂i − P̂j

∥∥∥− ∥∥∥P̂i − Pi⋆ + Pj⋆ − P̂j

∥∥∥ > 3λ/4− (λ/8 + λ/8) = λ/2,

where (s, a) is omitted for brevity. It follows that the set Γ̂ = ∪i,jΓ̂i,j is λ/2-distinguishing and
|Γ̂| ≤

(
M
2

)
. Although λ/2 is smaller than the λ-separation level of Γ, it is sufficient for the condi-

tions in Lemma 15 to hold. Thus, with high probability the clustering algorithm in stage 2 works
correctly. The next theorem shows the regret guarantee of Algorithm 4.

Theorem 20 Under Assumption 19, With probability at least 1− p, the regret of Algorithm 4 is

Regret(K) = O
(
KD̃M2

λ2 ln KM2

p +H3/2L
√
MKSA

)
,

where H0,M = 3072D̃M2

λ2 max{S, ln(3KM2

p )} and L = ln(15SAKH1M/p).

Compared to Corollary 17, Theorem 20 improves the clustering phase’s dependency from SA
to M2. This implies that if the number of models is small and all models appear relatively early, we
can discover a λ/2-distinguishing set quickly without increasing the order of the total regret bound.

5. Conclusion

In this paper, we studied the adversarial online multi-task RL setting with the tasks belonging to
a finite set of well-separated models. We used a general notion of task-separability, which we
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call λ-separability. Under this notion, we proved a minimax regret lower bound that applies to all
algorithms and an instance-specific regret lower bound that applies to a class of uniformly good
cluster-then-learn algorithms. We further proposed AOMultiRL, a polynomial time cluster-then-
learn algorithm that obtains a nearly-optimal instance-specific regret upper bound. These results
addressed two fundamental aspects of online multi-task RL, namely learning an adversarial task
sequence and learning under a general task-separability notion. Adversarial online multi-task learn-
ing remains challenging when the diameter and the number of models are unknown; this is left for
future work.
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Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic mul-
tiarmed bandit problem. SIAM Journal on Computing, 32(1):48–77, 2002. doi: 10.1137/
S0097539701398375. URL https://doi.org/10.1137/S0097539701398375.

Mohammad Gheshlaghi Azar, Alessandro Lazaric, and Emma Brunskill. Sequential transfer in
multi-armed bandit with finite set of models. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahra-
mani, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems, vol-
ume 26. Curran Associates, Inc., 2013.
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Appendix A. Related Work

Stochastic Online Multi-task RL. The Finite-Model-RL algorithm (Brunskill and Li, 2013) con-
sidered the stochastic setting with infinite-horizon MDPs and focused on deriving a sample com-
plexity of exploration in a (ϵ, δ)-PAC setting. As shown by Dann et al. (2017), even an optimal
(ϵ, δ)-PAC bound can only guarantee a necessarily sub-optimal O(K

2/3
m ) regret bound for each task

m ∈ [M ] that appears in Km episodes, leading to an overall O(M1/3K2/3) regret bound for the
learning phase in the multi-task setting. The Contextual MDPs algorithm by Hallak et al. (2015) is
capable of obtaining a O(

√
K) regret bound in the learning phase after the right cluster has been

identified; however their clustering phase has exponential time complexity in K. The recent L-
UCRL algorithm (Kwon et al., 2021) considered the stochastic finite-horizon setting and reduced
the problem to learning the optimal policy of a POMDP. Under a set of assumptions that allow the
clusters to be discovered in O(polylog(MSA)), L-UCRL is able to obtain an overall O(

√
MK)

regret with respect to a POMDP planning oracle which aims to learn a policy that maximizes the
expected single-task return when a task is randomly drawn from a known distribution of tasks. In
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contrast, our work adopts a stronger notion of regret that encourages the learner to maximize its ex-
pected return for a sequence of tasks chosen by an adversary. When the models are bandits instead
of MDPs, Azar et al. (2013) use spectral learning to estimate the mean reward of the arms in all
models and obtains an upper bound linear in K.

Lifelong RL. Learning a sequence of related tasks is more well-studied in the lifelong learning
literature. Recent works in lifelong RL (Abel et al., 2018; Lecarpentier et al., 2021) often focus
on the setting where tasks are drawn from an unknown distribution of MDPs and there exists some
similarity measure between MDPs that support transfer learning. Our work instead focuses on
learning the dissimilarity between tasks for the clustering phase and avoiding negative transfer.

Active model estimation The exploration in AOMultiRL is modelled after the active model estima-
tion problem (Tarbouriech et al., 2020), which is often presented in PAC-RL setting. Several recent
works on active model estimation are PAC-Explore (Guo and Brunskill, 2015), FW-MODEST (Tar-
bouriech et al., 2020), β−curious walking (Sun and Huang, 2020), and GOSPRL (Tarbouriech et al.,
2021). The Θ(D̃|Γα|N) bound on the horizon of clustering in Lemma 14 has the same O(S2A)
dependency on the number of states and actions as the state-of-the-art bound by GOSPRL (Tar-
bouriech et al., 2021) for the active model estimation problem. The main drawback is that H0

depends linearly on the hitting time D̃ and not the diameter D of the MDPs. As the hitting time is
often strictly larger than the diameter (Jaksch et al., 2010; Tarbouriech et al., 2021), this dependency
on D̃ is sub-optimal. On the other hand, AOMultiRL is substantially less computationally expensive
than GOSPRL since there is no shortest-path policy computation involved.

Appendix B. The generality of λ-separability notion

In this section, we show that the general separation notion in Definition 1 defines a broader class of
online multi-task RL problems that extends the entropy-based separation assumption in the latent
MDPs setting (Kwon et al., 2021). We start by restating the entropy-based separation condition
of Kwon et al. (2021):

Definition 21 Let Π denote the class of all history-dependent and possibly non-Markovian policies,
and let τ ∼ (m,π) be a trajectory of length H sampled from MDP m by a policy π ∈ Π. The set
M is well-separated if the following condition holds:

∀m,m′ ∈M,m′ ̸= m,π ∈ Π, Pr
τ∼(m,π)

(
Prm′,π(τ)

Prm,π(τ)
> (ϵp/M)c1

)
< (ϵp/M)c2 , (3)

where ϵp ∈ (0, 1) is a target failure probability, c1 ≥ 4, c2 ≥ 4 are universal constants and
Prm,π(τ) is the probability that τ is realized when running policy π on model m.

The following lemma constructs a set M of just two models that satisfy the λ-separability
condition but not the entropy-based separation condition.

Lemma 22 Given any λ ∈ (0, 1), ϵp ∈ (0, 1), H > 0 and any constants c1, c2 ≥ 4, there exists a
set of MDPsM = {m1,m2} with horizon H that is λ-separable but is not well-separated in the
sense of Definition 21.
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Proof Consider the setM with M = 2,S = {s1, s2, s3},A = {a1, a2} in Figure 2. Both m1 and
m2 have the same transition functions in all state-action pairs except for (s1, a1):

P1(s
2 | s1, a1) = λ

P1(s
3 | s1, a1) = 1− λ

P2(s
2 | s1, a1) = λ/2

P2(s
3 | s1, a1) = 1− λ/2.

It follows that the ℓ1 distance between P1(s
1, a1) and P2(s

1, a1) is∥∥P1(s
1, a1)− P2(s

1, a1)
∥∥ =

∥∥P1(s
2 | s1, a1)− P2(s

2 | s1, a1)
∥∥+ ∥∥P1(s

3 | s1, a1)− P2(s
3 | s1, a1)

∥∥
= 2(λ− λ/2)

= λ.

As a result, this set M is λ-separable. However, any deterministic policy that takes action a2 in
s1 and an arbitrary action in s2 and s3 will induce the same Markov chain on two MDP models.
Thus, the entropy-based separation definition does not apply. An example of such a policy is shown
below.

Consider running the following deterministic policy on model m1:

π(s1) = a2

π(s2) = a1

π(s3) = a1.

1

2

λ

3

1− λ

1

2

λ/2

3

1− λ/2

Figure 2: An instance of λ-separable LMDPs where Definition 21 does not apply
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0 1

+1

2

δ +∆

δ

δ
1− δ

1/2 + λ
2

1/2

1/2

Figure 3: A non-communicating 2-JAO MDP. There are no rewards at states 0 and 2, while state 1

has reward +1. We set ∆ = Θ(
√

SA
HD ). The dashed arrows indicate the unique actions

with highest transition probabilities on the left and right parts of the MDP. No actions
take state 0 to state 2, making this MDP non-communicating.

Consider an arbitrary trajectory τ . The probability that this trajectory is realized with respect to
both models is

Pr
m1,π

(τ) =
H∏
t=1

P1(st+1 | st, at) (4)

=
H∏
t=1

P1(st+1 | st, π(st)) (5)

=
H∏
t=1

P2(st+1 | st, at) since (st, π(st)) ̸= (s1, a1) (6)

= Pr
m2,π

(τ). (7)

As a result, for all τ ,

Prm2,π(τ)

Prm1,π(τ)
= 1, (8)

which implies that

Pr
τ∼m1,π

(
Prm2,π(τ)

Prm1,π(τ)
> (ϵp/M)c1

)
= Pr

τ∼m1,π
(1 > (ϵp/M)c1) = 1, (9)

which is larger than (ϵp/M)c2 .

Appendix C. Proofs of the lower bounds

Lemma 5 (Minimax Lower Bound) Suppose S,A ≥ 10, D ≥ 20 logA(S) and H ≥ DSA are

given. Let λ = Θ(
√

SA
HD ). There exists a set of λ-separable MDPsM of size M = SA

4 , each with
S states, A actions, diameter at most D and horizon H such that if the tasks are chosen uniformly
at random fromM, the expected regret of any sequence of policies (πk)k=1,...,K over K episodes is

E[Regret(K)] ≥ Ω
(
K
√
DSAH

)
.
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Proof We constructM in the following way: each MDP inM is a JAO MDP (Jaksch et al., 2010)
of two states and SA actions and diameter D′ = D/4. The translation from this JAO MDP to an
MDP with S states, A actions and diameter D is straightforward (Jaksch et al., 2010). State 1 has
reward +1 while state 0 has no reward. In state 0, for all actions the probability of transitioning to
state 1 is δ except for one best action where this probability is δ + λ/2. Every MDP inM has a
unique best action: for i = 1, . . . , SA, the i th action is the best action in the MDP mi. The starting
state is always s1 = 0.

We consider a learner who knows all the parameters of models inM, except the identity of the
task mk given in episode k. We employ the following information-theoretic argument from Mao
et al. (2021): when the task mk in episode k is chosen uniformly at random from M, no useful
information from the previous episodes can help the learner identify the best action in mk. This
is true since all the information in the previous episodes is samples from the MDPs inM, which
provide no further information than the parameters of the models inM. SinceM = SA, all actions
(from state 0) are equally probable to be the best action in mk. Therefore, the learner is forced to
learn mk from scratch. It follows that the total regret of the learner is the sum of the one-episode-
learning regrets in every episode:

Regret(K) =
K∑
k=1

Rk,

where Rk = V ∗
1 (s1) − V πk

1 (s1) is the one-episode-learning regret in episode k. The one-episode-
learning is equivalent to the learning in the undiscounted setting with horizon H . Applying the
lower bound result for the undiscounted setting in Jaksch et al. (2010, Theorem 5) obtains that for
all πk,

ρ∗H − Emk∼MV πk
1 (s1) ≥ Ω(

√
DSAH),

where ρ∗ = δ+λ/2
2δ+λ/2 is the average reward of the optimal policy (Jaksch et al., 2010). Note since

only state 1 has reward +1, ρ∗ is also the stationary probability that the optimal learner is at state 1.
Next, we show that for all H ≥ 2 and mk ∈ M, it holds that |V ∗

1 − ρ∗H| ≤ D
2 . The optimal

policy on all mk induces a Markov chain between two states with transition matrix[
1− δ − λ/2 δ + λ/2

δ 1− δ

]
.

Let Pmk(st = 1 | s1 = 0) be the probability that the Markov chain is in state 1 after t time
steps with the initial state s1 = 0. Let ∆t = Pmk(st = 1 | s1 = 0) − ρ∗. Obviously, ∆1 = −ρ∗.
By Levin et al. (2008, Equation 1.8), we have ∆t = (1 − 2δ − λ/2)t−1∆1. It follows that, for the
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optimal policy,

V ∗
1 (s1) =

H∑
t=1

Pmk(st = 1 | s1 = 0) (10)

=
H∑
t=1

(∆t + ρ∗) (11)

= ρ∗H +
H∑
t=1

∆t (12)

= ρ∗H +
H∑
t=1

(1− 2δ − λ/2)t−1∆1 (13)

= ρ∗H +∆1
1− (1− 2δ − λ/2)H

2δ + λ/2
. (14)

Hence,

|V ∗
1 (s1)− ρ∗H| =

∣∣∣∣∆1
1− (1− 2δ − λ/2)H

2δ + λ/2

∣∣∣∣ (15)

≤
∣∣∣∣ ∆1

2δ + λ/2

∣∣∣∣ (16)

=
ρ∗

2δ + λ/2
(17)

≤ 1

2δ + λ/2
(18)

≤ 1

2δ
(19)

=
D

2
, (20)

where the last equality follows from δ = D
4 .

For any H ≥ DSA and S,A ≥ 2, we have
√
HDSA ≥ DSA ≥ 4D, and hence

√
HDSA −

D
2 ≥

√
HDSA
2 . We conclude that

E[Regret(K)] =

K∑
k=1

E[Rk]

=
K∑
k=1

E[V ∗
1 − V πk

1 ](s1)

≥
K∑
k=1

(ρ∗H − D

2
− V πk

1 (s1))

= Ω(K
√
DHSA).
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The upper bound of UCRL2 can be proved similarly: Theorem 2 in Jaksch et al. (2010) states
that for any p ∈ (0, 1), by running UCRL2 with failure parameter p, we obtain that for any initial
state s1 and any H > 1, with probability at least 1− p,

ρ∗H −
H∑

h=1

rh ≤ O

(
DS

√
AH ln

H

p

)
. (21)

Setting p = 1
H and trivially bound the regret in the failure cases by H to obtain

ρ∗H − E[
H∑

h=1

rh] ≤ O
(
DS
√
AH lnH2

)
+

1

H
×H (22)

= O
(
DS
√
AH lnH

)
. (23)

This bound holds across all episodes, hence the total regret bound with respect to ρ∗H is
O
(
KDS

√
AH lnH

)
. Combining this with the fact that V ∗

1 (s1) ≤ ρ∗H + D
2 , we obtain the

upper bound.

Lemma 8 For any S,A ≥ 20, D ≥ 16 and λ ∈ (0, 12 ], there exists a PAC identifiable λ-separable
set of MDPsM of size SA

12 , each with at most S states, A actions and diameter D such that for any
classification algorithm C, if the number of state-transition samples given to C is less than SA

180λ2

then for at least one MDP inM, algorithm C fails to identify that MDP with probability at least 1
2 .

Before showing the proof of Lemma 8, we consider the following auxiliary problem: Suppose
we are given three constants δ, λ, ϵ ∈ (0, 14 ] and a set of 2Q coins. The coins are arranged into a
Q × 2 table of Q rows and 2 columns so that each cell contains exactly one coin. The rows are
indexed from 1 to Q and the columns are indexed from 1 to 2. In the first column, all coins are
fair except for one coin at row θ which is biased with probability of heads equal to 1

2 + λ. In the
second column, all coins have probability of heads equal to δ except for the coin at row θ which has
probability of heads δ + ϵ. In this setting, row θ is a special row that contains the most biased coins
in the two columns. The objective is to find this special row θ after at most H coin flips, where
H > 0 is a constant representing a fixed budget. Note that if we ignore the second column, then
this problem is reduced to the well-known problem of identifying one biased coin in a collection of
Q-coins (Tulsiani, 2014).

Let N1, N2 be the number of flips an algorithm performs on the first and second column, respec-
tively. For a fixed global budget H , after τ = N1+N2 ≤ H coin flips, the algorithm recommends θ̂
as its prediction for θ. Note that τ is a random stopping time which can depend on any information
the algorithm observes up to time τ . Let Xt be the random variable for the outcome of t th flip, and
Xτ

1 = (X1, X2, . . . , Xτ ) be the sequence of outcomes after τ flips. For j ∈ [Q], let Pj denote the
probability measure induced by Alg corresponding to the case when θ = j. We first show that if
the algorithm fails to flip the coins sufficiently many times in both columns, then for some θ the
probability of failure is at least 1

2 .

Lemma 23 Let Q ≥ 12, C1 = 40 and C2 = 64. For any algorithm Alg, if
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N1 ≤ T1 :=
Q

4C1λ2
and N2 ≤ T2 :=

Q(δ + ϵ)

4C2ϵ2
,

then there exists a set J ⊆ [Q] with |J | ≥ Q
6 such that

∀j ∈ J, Pj [θ̂ = j] ≤ 1

2
.

The proof uses a reasonably well-known reverse Pinsker inequality (Sason, 2015, Equation 10):

Let P and Q be probability measures over a common discrete set. Then

KL(P ∥ Q) ≤ 4 log2 e

minxQ(x)
·DTV (P ∥Q)2. (24)

where DTV is the total variation distance. In the particular case where P and Q are Bernoulli
distributions with success probabilities p and q ≤ 1

2 respectively, we get

KL(P ∥ Q) ≤ 4 log2 e

q
· (p− q)2. (25)

Proof (of Lemma 23) As reasoned in the proof for the lower bound of multi-armed bandits (Auer
et al., 2002), we can assume that Alg is deterministic2. Our proof closely follows the main steps in
the proof of Tulsiani (2014) for the setting where there is only one column. We will lower bound
the probability of mistake of Alg based on its behavior on a hypothetical instance where λ = ϵ = 0.

To account for algorithms which do not exhaust both budgets T1 and T2, we introduce two
“dummy coins” by adding a zero’th row with two identical coins, solely for the analysis. These two
coins have the same mean of 1 under all Q models and hence flipping either of them provides no
information. An algorithm which wishes to stop in a round τ < H will simply flip any dummy coin
in the remaining rounds τ + 1, τ + 2, . . . ,H . This way, we have the convenient option of always
working with a sequence of outcomes XH

1 in the analysis.
Let P0 and E0 denote the probability and expectation over XH

1 taken on the hypothetical in-
stance with λ = ϵ = 0, respectively. Let at = (at,0, at,1) ∈ {0, 1, . . . , Q} × {1, 2} be the coin
that the algorithm flips in step t. Let xt ∈ {0, 1} denote the outcome of at where 0 is tails and 1 is
heads.

The number of flips the coin in row i, column k is

Ni,k =

T∑
t=1

I{at = (i, k)}.

By the earlier definition of Nk for k ∈ {1, 2}, we have

N1 =

Q∑
i=1

Ni,1,

N2 =

Q∑
i=1

Ni,2.

2. Deterministic conditional on the random history
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We define

J1 :=

{
i ∈ [Q] :

(
E0[Ni,1] ≤

4T1

Q

)
∧
(
E0[Ni,2] ≤

4T2

Q

)}
.

Clearly, at most Q
4 rows i satisfy E0[Ni,1] >

4T1
Q and, similarly, at most Q

4 rows i satisfy E0[Ni,2] >
4T2
Q . Therefore, |J1| ≥ Q− 2 · Q4 = Q

2 .
We also define

J2 :=

{
i ∈ [Q] : P0(θ̂ = i) ≤ 3

Q

}
.

As at most Q
3 arms i can satisfy P0(θ̂ = i) > 3

Q , it holds that |J2| ≥ 2Q
3 .

Consequently, defining J := J1 ∩ J2, we have |J | ≥ Q
6 .

For any j ∈ J , we have

|Pj [c
∗ = j]− P0[c

∗ = j]| = |Ej [I{c∗ = j}]− E0[I{c∗ = j}]| (26)

≤ 1

2

∥∥P0(X
H
1 )− Pj(X

H
1 )
∥∥
1

(27)

≤ 1

2

√
2 ln 2KL(P0(XH

1 ) ∥ Pj(XH
1 )), (28)

where the first inequality follows from Auer et al. (2002, Equation 28) since the final output c∗ is a
function of the outcomes XH

1 , and the last inequality is Pinsker inequality.
Since Alg is deterministic, the flip at at step t is fully determined given the previous outcomes

xt−1
1 . Applying the chain rule for KL-divergences (Cover and Thomas, 2006, Theorem 2.5.3) we

obtain

KL(P0(X
H
1 ) ∥ Pj(X

H
1 )) =

H∑
t=1

∑
xt−1
1

P0[x1:t−1]KL(P0[xt] ∥ Pj [xt] | xt−1
1 ).

Note that xt is the result of a single coin flip. When at,0 ̸= j, the KL-divergence is zero since
the two instances have the identical coins on both columns. When at,0 = j, the KL-divergence is
either B1 = KL(12 ∥

1
2 + λ) or B2 = KL(δ ∥ δ + ϵ), depending on whether at,1 = 1 or at,1 = 2,

respectively. It follows that

KL(P0(X
H
1 ) ∥ Pj(X

H
1 )) =

H∑
t=1

∑
x1:t−1

P0[x1:t−1] (I{at = (j, 1)}B1 + I{at = (j, 2)}B2)

= E0[Nj,1]B1 + E0[Nj,2]B2

≤ 4T1

Q
B1 +

4T2

Q
B2

≤ B1

C1λ2
+

(δ + ϵ)B2

C2ϵ2

Since λ ≤ 1
4 and δ + ϵ ≤ 1

2 , we can bound B1 ≤ 5λ2

2 ln 2 (Tulsiani, 2014) and B2 ≤ 4 log2(e)ϵ
2

δ+ϵ .
Consequently,

KL(P0(X
H
1 ) ∥ Pj(X

H
1 )) ≤ 5

(2 ln 2)C1
+

4 log2(e)

C2
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Plugging this into Equation 28 and applying Q ≥ 12, we obtain

Pj [θ̂ = j] ≤ P0[θ̂ = j] +
1

2

√
2 ln 2

(
5

(2 ln 2)C1
+

4 log2(e)

C2

)
=

3

Q
+

1

2

√
5

C1
+

8

C2

≤ 3

12
+

1

2

√
5

40
+

8

64

=
1

2
.

The next result shows that if ϵ is sufficiently small, then any algorithm has to flip the coins in
the first column sufficiently many times; otherwise the probability of failure is at least 1

2 .

Corollary 24 Let Q,C1 and C2 be the constants defined in Lemma 23. Let H > 0 be the budget

for the number of flips on both columns. If ϵ = 1
20

√
Qδ
H , then for any algorithm Alg, if

N1 ≤
Q

4C1λ2
,

then there exists a set J ⊆ [Q] with |J | ≥ Q
6 such that

∀j ∈ J,Pj [θ̂ = j] ≤ 1

2
.

Proof We will show that when ϵ = 1
20

√
Qδ
H , the inequality N2 ≤ T2 = Q(δ+ϵ)

4C2ϵ2
holds trivially for

any N2 ≤ H (recall that H is the fixed budget for the total number of coin flips). The result then
follows directly from Lemma 23. We have

T2 =
Q(δ + ϵ)

4C2ϵ2
≥ Qδ

4C2ϵ2

=
Qδ

256ϵ2
since C2 = 64

=
400

256
H

> H

≥ N2,

which implies that N2 ≤ T2 always holds for any N2 ≤ H .

We are now ready to prove Lemma 8.
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Proof (of Lemma 8) We constructM as the set of SA
12 2-JAO MDPs in Figure 1 (right). Each MDP

has a left part and a right part, where each part is a JAO MDP. The left part of the MDP mi consists
of two states {0, 2} and SA

12 actions numbered from 1 to SA
12 , where all actions from state 0 transition

to state 2 with probability of 1
2 or stay at state 0 with probability 1

2 , except for the i th action that
transitions to state 2 with probability 1

2 + λ
2 and stays at state 0 with probability 1

2 −
λ
2 . The right

part of the i th MDP consists of two states {0, 1} and also SA
12 actions numbered from 1 to SA

12 , where
all actions from state 0 transition to state 1 with probability of δ = 4

D ≤
1
4 or stays at state 0 with

probability 1− δ, except for the i th action that transitions to state 2 with probability δ+∆ and stays

at state 0 with probability 1− δ−∆. We set ∆ = 1
20

(√
SA
3HD

)
. We will show the conversion from

these 2-JAO MDPs to MDPs with S states and A actions later.
Since each model inM has a distinct index for the actions on both parts that transitions from

0 to 1 and 2 with probability higher than any other actions, identifying a model inM is equivalent
to identifying this distinct action. Each action on both parts can be seen as a (possibly biased) coin,
where the probability of getting tails is equal to the probability of ending up in state 0 when the
action is taken. Thus, the problem of identifying this distinct action index reduces to the above
auxiliary problem of identifying the row of the most biased coins, where taking an action from state
0 is equivalent to flipping a coin, Q = SA

12 ≥ 12, ϵ = ∆ and λ is replaced by λ/2. Corollary 24
states that for every algorithm, if the number of coin flips on the first column is less than SA

480λ2 , then
there exists a set of size at least SA

72 positions of the row with the most biased coins such that the
algorithm fails to find the biased coin with probability at least 1

2 . Correspondingly, for any model
classification algorithm, if the number of state-transition samples from state 0 towards state 2 (i.e.
the first column) is less than SA

480λ2 then the algorithm fails to identify the model for at least SA
72

MDPs inM.
Finally, we show the conversion from the 2-JAO MDP to an MDP with S states and A actions.

The conversion is almost identical to that of Jaksch et al. (2010), which starts with an atomic 2-JAO
MDP of three states and A′ = A

2 actions and builds an A′-ary tree from there. Assuming A′ is an
even positive number, each part of the atomic 2-JAO MDP has A′

2 actions. We make S
3 copies of

these atomic 2-JAO MDPs, where only one of them has the best action on the right part. Arranging S
3

copies of these atomic 2-JAO MDPs and connecting their states 0 by A−A′ connections, we obtain
an A′-ary tree which represents a composite MDP with at most S states, A actions and diameter
D. The transitions of the A − A′ actions on the tree are defined identically to that of Jaksch et al.
(2010): self-loops for states 1 and 2, deterministic connections to the state 0 of other nodes on the
tree for state 0. By having δ = 4

D in each atomic 2-JAO MDP, the diameter of this composite MDP
is at most 2

δ + logA′
S
3 ≤ D. This composite MDP is harder to explore and learn than the 2-JAO

MDP with three states and SA
6 actions, and hence all the lower bound results apply.

Corollary 9 For any S,A ≥ 20, D ≥ 16 and λ ∈ (0, 1], there exists a PAC identifiable λ-separable
set of MDPsM of size M = SA

12 , each with S states, A actions and diameter D such that for any
uniformly good cluster-then-learn algorithm, to find the correct cluster with probability of at least 1

2 ,
the expected number of exploration steps needed in the clustering phase is Ω(DSA

λ2 ). Furthermore,
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the expected regret over K episodes of the same algorithm is

E[Regret(K)] ≥ Ω

(
KDSA

λ2

)
.

Proof As argued in Section 3, we can apply the sample complexity of the classification algorithm
onto that of the clustering algorithm. Using the same set M of 2-JAO MDPs constructed in the
proof of Lemma 8, for any given MDPM, any PAC classification learner has to be in state 0 and
takes at least Z = Ω(SA

λ2 ) actions from state 0 to state 2. If the learner stays at state 0, then it can
take the next action from 0 to 2 in the next time step. However, if the learner transitions to state 2,
then it has to wait until it gets back to state 0 to take the next action. Let Z2 denote the number of
times the learner ends up in state 2 after taking Z actions on the left part from state 0. Since every
action from 0 to 2 has probability at least 1

2 of ending up in state 2, we have

E[Z2 | Z] ≥ Z

2
. (29)

Since every action from state 2 transitions to state 0 with the same probability of δ = Θ( 1
D ), every

time the learner is in state 2, the expected number of time steps it needs to get back to state 0 is
Θ(1δ ) = Θ(D). Hence, the expected number of time steps the learner needs to get back to state
0 after Z2 times being in state 2 is Θ(Z2D). We conclude that for any PAC learner, the expected
number of exploration steps needed to identify the model with probability of correct at least 1

2 is at
least

E[Z + Z2D] ≥ Ω(ZD) = Ω

(
DSA

λ2

)
. (30)

Next, we lower bound the expected regret of the same algorithm. Let H0 be the number of time
steps the algorithm spends on the left part and H1 on the right part of each model inM. Note that
H0 and H1 are random variables. Recall that the right part of each MDP inM resembles the JAO
MDP in the minimax lower bound proof in Lemma 5, hence we can apply the regret formula of the
JAO MDP for 2-JAO MDP and obtain that the regret in each episode is of the same order as

Regret = ρ∗H − E[
H∑

h=1

r(sh, ah)] (31)

= ρ∗E[H0 +H1]− E[E[
H0∑
h=1

r(sh, ah)] + E[
H∑

h=H0+1

r(sh, ah)] | H0, H1] (32)

= ρ∗E[H0 +H1]− E[E[
H∑

h=H0+1

r(sh, ah) | H0, H1]] (33)

= ρ∗E[H0] + E

ρ∗H1 − E[
H∑

h=H0+1

r(sh, ah)]

 | H1

 (34)

≥ Ω (ρ∗E[H0])−
D

2
(35)

= Ω

(
DSA

λ2

)
, (36)

where
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• the second equality follows from H = H0 +H1,

• the third equality follows from the fact that the H0 time steps spent on the left part of the
MDP returns no rewards,

• the fourth equality follows from the linearity of expectation,

• the inequality follows from H1 = H −H0 and equation 20,

• the last equality follows from ρ∗ = δ+∆
2δ+∆ ≥

1
2 for all δ,∆ > 0 and E[H0] ≥ Ω

(
DSA
λ2

)
.

We conclude that the expected regret over K episodes is at least

Ω(E[KH0]) = Ω

(
KDSA

λ2

)
.

Appendix D. Proofs of the upper bounds

First, we state the following concentration inequality for vector-valued random variables by Weiss-
man et al. (2003).

Lemma 25 (Weissman et al. (2003)) Let P be a probability distribution on the set S = {1, . . . , S}.
Let XN be a set of N i.i.d samples drawn from P . Then, for all ϵ > 0:

Pr(
∥∥∥P − P̂XN

∥∥∥ ≥ ϵ) ≤ (2S − 2)e−Nϵ2/2.

Using Lemma 25, we can show that N = O( S
λ2 ) samples are sufficient for each (s, a) ∈ Γ so that

with high probability, the empirical means of the transition function P̂B(· | s, a) are within λ/8 of
their true values, measured in ℓ1 distance.

Corollary 26 Denote p1 ∈ (0, 1). If a state-action pair (s, a) is visited at least

N =
256

λ2
max{S, ln(1/p1)} (37)

times, then with probability at least 1− p1,∥∥∥P (s, a)− P̂XN (s, a)
∥∥∥ ≤ λ/8.

Proof We simplify the bound in Lemma 25 as follows:

Pr(
∥∥∥P − P̂XN

∥∥∥ ≥ ϵ) ≤ (2S − 2)e−Nϵ2/2 ≤ eS−Nϵ2/2
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Next, we substitute ϵ = λ/8 into the right hand side and solve the following inequality for N :

eS−Nλ2/128 ≤ p1

to obtain N ≥ 128
λ2 (S + ln(1/p1)). Thus N = 256

λ2 max{S, ln(1/p1)} satisfies this condition.

Taking a union bound of the result in Corollary 26 over all state-action pairs in the set Γ of all
episodes from 1 to K, we obtain Lemma 13.

Next, we show the proof of Lemma 14. The proof strategy is similar to that of Auer and Ortner
(2007); Sun and Huang (2020).

Lemma 14 Consider p1 and N defined in Lemma 13. By setting

H0 = 12D̃|Γα|N =
3072D̃|Γα|

λ2
max{S, ln(K|Γ

α|
p1

)},

with probability at least 1 − p1, Algorithm 2 visits each state-action pair in Γα at least N times
during the clustering phase in each of the K episodes.

Proof The history-dependent exploration policy in Algorithm 2 visits an under-sampled state-action
pair in Γα whenever possible; otherwise it starts a sequence of steps that would lead to such a state-
action pair. In the latter case, denote the current state of the learner by s and the number of steps
needed to travel from s′ to an under-sampled state s by T (s′, s). By Assumption 4 and using Markov
inequality, we have

Pr(T (s′, s) > 2D̃) ≤ E[T (s′, s)]

2D̃
≤ D̃

2D̃
=

1

2
.

It follows that Pr(T (s′, s) > 2D̃) ≤ 1/2. In other words, in every interval of 2D̃ time steps,
the probability of visiting an under-sampled state-action pair in Γα is at least 1/2. Over such n
intervals, the expected number of such visits is lower bounded by n/2. Fix a (s, a) ∈ Γα. Let Vn

denote number of visits to (s, a) ∈ Γα after n intervals. Using a Chernoff bound for Poisson trials,
we have

Pr(Vn ≥ (1− ϵ)n/2) ≥ 1− e−ϵ2n/4

for any ϵ ∈ (0, 1). Setting ϵ = 1− 2N/m and solving

e−(1−2N/n)2n/4 ≤ p1

for n, we obtain

n ≥ 2(N + ln(1/p1)) + 2
√
2N ln(1/p1) + (ln(1/p1))2. (38)

By definition of N ,

2N ln(1/p1) + (ln(1/p1))
2 ≤ (1 +

512

λ2
)max{S, ln(1/p1)}2

≤
(
256

λ
max{S, ln(1/p1)}

)2

≤ N2.
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We also have N ≥ ln(1/p). Overall, n = 6N satisfies the condition in Equation 38. Taking a
union bound over all (s, a) ∈ Γα and noting that each interval has length 2D̃ steps, the total number
of identifying steps needed is H0 = 2D̃n|Γα| = 12D̃|Γα|N .

To prove Lemma 15, we state the following auxiliary proposition and its corollary.

Proposition 27 Suppose we are given a probability distribution P over S = 1, . . . , S, a constant
ϵ > 0 and two set of samples X = (X1, . . . , XNX ) and Y = (Y1, . . . , YNY ) drawn from P such

that
∥∥∥P − P̂X

∥∥∥ ≤ ϵ and
∥∥∥P − P̂Y

∥∥∥ ≤ ϵ. Then,∥∥∥P − P̂X∪Y

∥∥∥ ≤ ϵ.

Proof Let NX (s) and NY(s) denote the number of samples of s ∈ [S] in X and Y , respectively. We
have:∥∥∥P − P̂X∪Y

∥∥∥ =
S∑

s=1

|P (s)− NX (s) +NY(s)

NX +NY
| (39)

=
1

NX +NY

S∑
s=1

|NXP (s)−NX (s) +NYP (s)−NY(s)| (40)

≤ 1

NX +NY

S∑
s=1

(|NXP (s)−NX (s)|+ |NYP (s)−NY(s)|) (triangle inequality)

(41)

=
1

NX +NY

(
NX

S∑
s=1

|P (s)− NX (s)

NX
|

)
+

1

NX +NY

(
NY

S∑
s=1

|P (s)− NY(s)

NY
|

)
(42)

=
1

NX +NY
(NX

∥∥∥P − P̂X

∥∥∥
1
+NY

∥∥∥P − P̂Y

∥∥∥) (43)

≤ ϵ (44)

Corollary 28 Suppose we are given a probability distribution P over S = 1, . . . , S, a constant
ϵ > 0 and a finite number of set of samples X1,X2, . . . ,Xt such that

∥∥∥P − P̂Xi

∥∥∥ ≤ ϵ for all
i = 1, 2, . . . , t. Then, ∥∥∥P − P̂∪i=1,...,tXi

∥∥∥ ≤ ϵ. (45)

Proof (Of Lemma 15) The proof is by induction. The claim is trivially true for the first episode
(k = 1). For an episode k > 1, assume that the outputs of the Algorithm 3 are correct until the
beginning of this episode. We consider two cases:
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• When the task mk has never been given to the learner before episode k.

Consider an arbitrary existing cluster c. Denote by i ∈ [M ] the identity of the model to which
the samples in c belong, j ∈ [M ] the identity of the task mk, and (s, a) in Γα

i,j a state-action
pair that distinguishes these two models. Under the definition of Γα

i,j , the result in Lemma 13
and the result in Corollary 28, the following three inequalities hold true:

∥[Pi − Pj ](s, a)∥ > α∥∥∥[Pj − P̂Bk
](s, a)

∥∥∥ ≤ λ/8∥∥∥[Pi − P̂c](s, a)
∥∥∥ ≤ λ/8.

From here, we omit the (s, a) and write P for P (s, a) when no confusion is possible. Apply-
ing the triangle inequality twice, we obtain:∥∥∥P̂c − P̂Bk

∥∥∥ ≥ ∥Pi − Pj∥ − (
∥∥∥Pi − P̂c

∥∥∥+ ∥∥∥Pj − P̂Bk

∥∥∥)
> α− (λ/8 + λ/8)

= δ.

It follows that the break condition in Algorithm 3 is satisfied, and the correct value of 0 is
returned. A new cluster is created containing only the samples generated by the new task mk.

• When the task mk has been given to the learner before episode k.

In this case, there exists a cluster c′ containing the samples generated from model j. Using
a similar argument in the previous part, we have that whenever the iteration in Algorithm 3
reaches a cluster c whose identity i ̸= j, the break condition is true for at least one (s, a) ∈
Γα, and the algorithm moves to the next cluster. When the iteration reaches cluster c′, for all
(s, a) ∈ Γ̃α, we have: ∥∥∥P̂Bk

− P̂c′

∥∥∥ ≤ ∥∥∥P̂Bk
− Pj

∥∥∥+ ∥∥∥Pj − P̂c′

∥∥∥
≤ λ/8 + λ/8 = λ/4

≤ δ.

Hence, the break condition is false for all (s, a) ∈ Γ, and thus the algorithm returns id = c′

as expected.

By induction, under event EΓ, Algorithm 3 always produces correct outputs throughout the K
episodes.

We can now state the regret bound of Algorithm 1 where the regret minimization algorithm
in every episode is UCBVI-CH (Azar et al., 2017). For each state-action pair (s, a) in episode k,
UCBVI-CH needs a bonus term defined as

bk(s, a) = 7H1Lk

√
1

N regret
k (s, a)

,
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where Lk = ln(5SAKmk
H1/p1), N

regret
k (s, a) is the total number of visits to (s, a) in the learning

phase before episode k, and Kmk is the total number of episodes in which the model mk is given
to the learner. However, Kmk is unknown to the learner. We instead upper bound Kmk by K and
modify the bonus term as

b′k(s, a) = 7H1L

√
1

N regret
k (s, a)

(46)

where L = ln(5SAKHM/p1). Since b′k ≥ bk, this algorithm still retain the optimism principle
needed for UCBVI-CH. The total regret of each model in M is bounded by the following result,
whose proof is in Appendix E.

Lemma 29 With probability at least 1− p1, applying UCBVI-CH with the bonus term b′k defined in
Equation 46, each task m inM has a total regret of

Regret(m,Km) ≤ Km(H0 +D) + 67H
3/2
1 L

√
SAKm + 15S2A2H2

1L
2

Theorem 16 For any failure probability p ∈ (0, 1), with probability at least 1 − p the regret of
Algorithm 1 is bounded as

Regret(K) ≤ 2KH0 + 67H
3/2
1 L
√
MSAK + 15MS2AH2

1L
2,

where H0 = 12D̃|Γα|N , N = 256
λ2 max{S, ln(3K|Γα|

p )}, H1 = H−H0, and L = ln(15SAKHM/p).

Proof Summing up the regret for all m ∈M and applying the Cauchy-Schwarz inequality, Lemma 29
together with Lemma 15 and Lemma 14 imply that with probability 1−p, the total regret is bounded
by

Regret(K) ≤ K(H0 +D) + 67H1L
√
MSAKH1 + 15MS2AH2

1L
2. (47)

Note that the bound in Equation 47 is tighter than the bound in Theorem 16. To obtain the bound
in Theorem 16, notice that D ≤ D̃ ≤ H0 and thus K(H0 +D) ≤ K(H0 +H0) = 2KH0.

Theorem 20 Under Assumption 19, With probability at least 1− p, the regret of Algorithm 4 is

Regret(K) = O
(
KD̃M2

λ2 ln KM2

p +H3/2L
√
MKSA

)
,

where H0,M = 3072D̃M2

λ2 max{S, ln(3KM2

p )} and L = ln(15SAKH1M/p).

Proof In stage 1, as the distinguishing set has size |Γ̃| = SA, the number of time steps needed in
the clustering phase is

H0,1 = 12D̃|Γ̃|N1 = 12DSAN1,

where N1 =
256
λ2 max{S, ln(3KSA

p )}.
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In stage 2, the length of the clustering phase is

H0,2 = 12D̃|Γ̂|N2,

where N2 =
256
λ2 max{S, ln(3K|Γ̂|

p )}.
Substituting H0,1 and H0,2 into Theorem 16, we obtain the regret bound of stage 1 and stage 2:

RegretStage1 ≤ 2K1H0,1 + 67(H1,1)
3/2L1

√
MSAK1 + 15MS2A(H1,1)

2L2
1,

where L1 = ln(
15MSAKH1,1

p ) and H1,1 = H −H0,1.

RegretStage2 ≤ 2K2H0,2 + 67H
3/2
1,2 L2

√
MSAK2 + 15MS2AH2

1,2L
2
2,

where L2 = ln(
15MSAKH1,2

p ) and H1,2 = H −H0,2.
Since H0,1 ≥ H0,2, we have H1,1 ≤ H1,2. Using the assumption that K1SA < K2 and the

Cauchy-Schwarz inequality for the sum
√
K1 +

√
K2, we obtain

Regret(K) = RegretStage1 + RegretStage2 (48)

≤ 4KH0,2 + 67H
3/2
1,2 L2

√
2MSAK + 30MS2AH2

1,2L
2
2. (49)

By having |Γ̂| ≤
(
M
2

)
≤M2, H1,2 ≤ H and max{L1, L2} ≤ L, we obtain

Regret(K) ≤ 4KH0,M + 67H3/2L
√
2MSAK + 30MS2AH2L2. (50)

where H0,M = 3072D̃M2

λ2 max{S, ln(3KM2

p )}.

Appendix E. Per-model Regret analysis

First, we prove the following lemma which upper bound the per-episode regret as a function of H0

and the regret of the clustering phase.

Lemma 30 The regret of Algorithm 1 in episode k is

∆k = [V k,∗
1 − V πk

1 ](sk1) ≤ H0 +D +max
s∈S

[V k,∗
H0+1 − V πk

H0+1](s).

Proof Denote by Pr(skh = s | s1, π) the probability of visiting state s at time h when the learner
follows a (possibly non-stationary) policy π in model mk starting from state s1. The regret of task
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m in a single episode k ∈ Km can be written as

∆k = [V k,∗
1 − V πk

1 ](sk1)

= E[
H∑

h=1

r(sh, ah) | s1 = sk1, ah = π∗
k(sh)]− E[

H∑
h=1

r(sh, ah) | s1 = sk1, ah = πk(sh)]

=

(
E[

H0∑
h=1

r(sh, ah) | s1 = sk1, ah = π∗
k(sh)] +

∑
s∈S

Prm(skH0+1 = s | sk1, π∗
k)V

k,∗
H0+1(s)

)

−

(
E[

H0∑
h=1

r(sh, ah) | s1 = sk1, ah = πk(sh)] +
∑
s∈S

Prm(skH0+1 = s | sk1, πk)V
πk
H0+1(s)

)
≤ H0 +

∑
s∈S

Prm(skH0+1 = s | sk1, π∗
k)V

k,∗
H0+1(s)−

∑
s∈S

Prm(skH0+1 = s | sk1, πk)V
πk
H0+1(s)

= H0 +

(∑
s∈S

Prm(skH0+1 = s | sk1, π∗
k)V

k,∗
H0+1(s)−

∑
s∈S

Prm(skH0+1 = s | sk1, πk)V
k,∗
H0+1(s)

)
+
∑
s∈S

Prm(skH0+1 = s | sk1, πk)[V
k,∗
H0+1 − V πk

H0+1](s)

≤ H0 +

(
max
s∈S

V k,∗
H0+1(s)−min

s∈S
V k,∗
H0+1(s)

)
︸ ︷︷ ︸

(♣)

+max
s∈S

[V k,∗
H0+1 − V πk

H0+1](s).

The first inequality follows from the assumption that r(s, a) ∈ [0, 1] for all (s, a). The second
inequality follows the fact that∑

s∈S
Prm(skH0+1 = s | sk1, π∗

k)V
k,∗
H0+1(s) ≤

∑
s∈S

Prm(skH0+1 = s | sk1, π∗
k)max

x∈S
V k,∗
H0+1(x)

=

(
max
x∈S

V k,∗
H0+1(x)

)∑
s∈S

Prm(skH0+1 = s | sk1, π∗
k)

= max
x∈S

V k,∗
H0+1(x),

and∑
s∈S

Prm(skH0+1 = s | sk1, πk)V
k,∗
H0+1(s) ≥

∑
s∈S

Prm(skH0+1 = s | sk1, πk)min
x∈S

V k,∗
H0+1(x)

=

(
min
x∈S

V k,∗
H0+1(x)

)∑
s∈S

Prm(skH0+1 = s | sk1, πk)

= min
x∈S

V k,∗
H0+1(x).
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Furthermore, since V k,∗
H0+1(s) ≥ V πk

H0+1(s) for all s ∈ S, we have∑
s∈S

Prm(skH0+1 = s | sk1, πk)[V
k,∗
H0+1 − V πk

H0+1](s) ≤
∑
s∈S

Prm(skH0+1 = s | sk1, πk)max
x∈S

[V k,∗
H0+1 − V πk

H0+1](x)

= max
x∈S

[V k,∗
H0+1 − V πk

H0+1](x)
∑
s∈S

Prm(skH0+1 = s | sk1, πk)

= max
x∈S

[V k,∗
H0+1 − V πk

H0+1](x).

For each state s, the value of V k,∗
h (s) is the expected total (H − h)-step reward of an optimal non-

stationary (H − h) step policy starting in state s on the MDP m. Thus, the term (♣) represents the
bounded span of the finite-step value function in MDP m. Applying equation 11 of Jaksch et al.
(2010), the span of the value function is bounded by the diameter of the MDP. We obtain for all h

max
s∈S

V k,∗
h (s)−min

s∈S
V k,∗
h (s) ≤ D.

It follows that
∆k ≤ H0 +D +max

s∈S
[V k,∗

H0+1 − V πk
H0+1](s).

Denote Km the set of episodes where the model m is given to the learner. The total regret of the
learner in episodes Km is

Regret(m,Km) =
∑

k∈Km

∆k

≤ Km(H0 +D) +
∑

k∈Km

max
s∈S

[V k,∗
H0+1 − V πk

H0+1](s)︸ ︷︷ ︸
(♡)

.

The policy πk from time step H0 + 1 to H is the UCBVI-CH algorithm (Azar et al., 2017).
Therefore, the term (♡) corresponds to the total regret of UCBVI-CH in an adversarial setting in
which the starting state sk1 in each episode is chosen by an adversary that maximizes the regret in
each episode. In Appendix F, we given a simplified analysis for UCBVI-CH and show that with
probability at least 1− p1/M ,

(♡) =
∑

k∈Km

max
s∈S

[V k,∗
H0+1 − V πk

H0+1](s) ≤ 67H
3/2
1 L

√
SAKm + 15S2A2H2

1L
2. (51)

The proof of Lemma 29 is completed by plugging the bound of (2) in Equation 51 to obtain

Regret(m,Km) =
∑

k∈Km

∆k

≤ Km(H0 +D) + 67H
3/2
1 L

√
SAKm + 15S2A2H2

1L
2.
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Algorithm 5: UCBVI
Input: Failure probability p
Initialize an empty collection B;
for episode k = 1, . . . ,K: do

Qk,h = UCB-Q-Values (B, p);
for h = 1, . . . ,H: do

Take action ak,h = argmaxaQk,h(s
k
h, a);

Add (skh, a
k
h, s

k
h+1) to B ;

Algorithm 6: UCB-Q-Values with Hoeffding bonus
Input: Collection B, probability p
Compute, for all (s, a, s′) ∈ S ×A× S
Nk(s, a, s

′) =
∑

(x,a′,y)∈B I(x = s, a′ = a, y = s′)

Nk(s, a) =
∑

s′∈S Nk(s, a, s
′);

For all (s, a) ∈ {(s, a) : Nk(s, a) > 0}, compute
P̂k(s

′ | s, a) = Nk(s,a,s
′)

Nk(s,a)

bk,h(s, a) = 7HL
√

1
Nk(s,a)

where L = ln(5SAKH/p);

Initialize Vk,H+1(s) = 0 for all x ∈ S;
for h = H,H − 1, . . . , 1: do

for (s, a) ∈ S ×A do
if Nk(s, a) > 0 then

Qk,h(s, a) = min{H, r(s, a) +
(∑

s′∈S P̂k(s
′ | s, a)Vk,h+1(s

′)
)
+ bk,h(s, a)}

else
Qk,h = H

Vk,h(s) = maxaQk,h(s, a)

Appendix F. A simplified analysis for UCBVI-CH

In section, we construct a simplified analysis for the UCBVI-CH algorithm in Azar et al. (2017).
The proof largely follows the existing constructions in Azar et al. (2017), with two differences:
the definition of “typical” episodes and the analysis are tailored specifically for the Chernoff-type
bonus of UCBVI-CH, without being complicated by handling of the variances for the Bernstein-
type bonus of UCBVI-BF in Azar et al. (2017). For completeness, the full UCBVI-CH algorithm
from Azar et al. (2017) is shown in Algorithms 5 and 6.

Notation. In this section, we consider the standard single-task episodic RL setting in Azar
et al. (2017) where the learner is given the same MDP (S,A, H, P, r) in K episodes. We assume
the reward function r : S ×A 7→ [0, 1] is deterministic and known. The state and action spaces S
and A are discrete spaces with size S and A, respectively. Denote by p the failure probability and
let L = ln(5SAKH/p). We assume the product SAKH is sufficiently large that L > 1.
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Let V ∗
1 denote the optimal value function and V πk

1 the value function of the policy πk of the
UCBVI-CH agent in episode k. The regret is defined as follows.

Regret(K) =

K∑
k=1

δk,1, (52)

where δk,h = [V ∗
h − V πk

h ](skh).
Denote by Nk(s, a) the number of visits to the state-action pair (s, a) up to the beginning of

episode k.
We call an episode k “typical” if all state-action pairs visited in episode k have been visited at

least H times at the beginning of episode k. The set of typical episodes is defined as follows.

[K]typ = {i ∈ [K] : ∀h ∈ [H], Ni(s
i
h, a

i
h) ≥ H}. (53)

Equation 52 can be written as

Regret(K) =
∑

k/∈[K]typ

δk,1 +
∑

k∈[K]typ

δk,1

≤
∑

k/∈[K]typ

H +
∑

k∈[K]typ

δk,1

≤ SAH2 +
∑

k∈[K]typ

δk,1.

(54)

The first inequality follows from the trivial upper bound of the regret in an episode δk,1 ≤ H .
The second inequality comes from the fact that each state-action pair can cause at most H episodes
to be non-typical; therefore there are at most SAH non-typical episodes.

Next, we have:

∑
k∈[K]typ

δk,1 =
K∑
k

δk,1I{k ∈ [K]typ}. (55)

From here we write Ik = I{k ∈ [K]typ} for brevity.
Lemma 3 in Azar et al. (2017) implies that, for all k ∈ [K],

δk,1 ≤ e
H∑

h=1

[
εk,h + 2

√
Lε̄k,h + c1,k,h + bk,h + c4,k,h

]
. (56)

where c4,k,h = 4SH2L
Nk(s

k
h,a

k
h)

, εk,h and ε̄k,h are martingale difference sequences which, by Lemma 5
in Azar et al. (2017), satisfy

K∑
k=1

H∑
h=1

εk,h ≤ H
√
KHL

K∑
k=1

H∑
h=1

ε̄k,h ≤
√
KH,

(57)
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and c1,k,h is a confidence interval to be defined later.
Plugging Equation 56 into Equation 55 and combining with Equation 57, we obtain:

∑
k∈[K]typ

δk,1 ≤ e
K∑
k=1

(
H∑

h=1

[
εk,h + 2

√
Lε̄k,h + c1,k,h + bk,h + c4,k,h

])
Ik

= e

[(
K∑
k=1

Ik
H∑

h=1

(εk,h + 2
√
Lε̄k,h)

)
+

(
K∑
k=1

Ik
H∑

h=1

(bk,h + c1,k,h + c4,k,h)

)]

≤ e

[(
K∑
k=1

H∑
h=1

(εk,h + 2
√
Lε̄k,h)

)
+

(
K∑
k=1

H∑
h=1

(bk,hIk + c1,k,hIk + c4,k,hIk)

)]

≤ e

[(
H
√
KHL+ 2

√
L
√
KH

)
+

(
K∑
k=1

H∑
h=1

(bk,hIk + c1,k,hIk + c4,k,hIk)

)]

= e

[(
(H + 2)

√
KHL

)
+

(
K∑
k=1

H∑
h=1

(bk,hIk + c1,k,hIk + c4,k,hIk)

)]

Note that the second inequality follows from the fact that Ik ≤ 1, and the last inequality follows
directly from Equation 57.

Let Ik,h = I{Nk(s
k
h, a

k
h) ≥ H}. By the definition of a “typical” episode, Ik = 1 implies that

Ik,h = 1 for all h. It follows that Ik ≤ Ik,h. Thus,

∑
k∈[K]typ

δk,1 ≤ e

(H + 2)
√
KHL+

K∑
i=1

H∑
j=1

(b′k,h + c′1,k,h + c′4,k,h)

 , (58)

where b′k,h = bk,hIk,h, c′1,k,h = c1,k,hIk,h and c′4,k,h = c4,k,hIk,h.
Next, we compute c1,k,h. In Equation (32) in Azar et al. (2017), c1,k,h corresponds to the

confidence interval of

(P̂ π
h − P π

h )V
∗
h+1(s

k
h) =

∑
s′∈S

[
P̂ (s′ | skh, akh)− Ph(s

′ | skh, akh)
]
V ∗
h+1(s

′).

Equation (9) in Azar et al. (2017) computes a confidence interval for this term using the Bernstein
inequality. Instead, we use the Hoeffding inequality and obtain

[(P̂ π
h − P π

h )V
∗
h+1] ≤ H

√
L

2Nk(s
k
h, a

k
h)

= c1,k,h. (59)

Combining Equations 59, 58 and 54, the total regret is bounded as

Regret ≤ SAH2 + e

(H + 2)
√
KHL+

K∑
k=1

H∑
h=1

(b′k,h + c′1,k,h + c′4,k,h)︸ ︷︷ ︸
(a)

 (60)
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where b′k,h =
7HLIk,h√
Nk(s

k
h,a

k
h)
, c′1,k,h =

H
√
LIk,h√

2Nk(s
k
h,a

k
h)

and c′4,k,h =
4SH2LIk,h
Nk(s

k
h,a

k
h)

.

We focus on the third and dominant term (a). As bk,h ≥ c1,k,h, this term can be upper bounded
by

(a) ≤
K∑
k=1

H∑
h=1

 8HLIk,h√
Nk(s

k
h, a

k
h)

+
4SH2LIk,h
Nk(s

k
h, a

k
h)

 (since L > 1)

= 8HL
K∑
i=1

H∑
j=1

Ik,h√
Nk(s

k
h, a

k
h)︸ ︷︷ ︸

(b)

+4SH2L
K∑
i=1

H∑
j=1

Ik,h
Nk(s

k
h, a

k
h)︸ ︷︷ ︸

(c)

.
(61)

We bound (b) and (c) separately.
First, we bound (b). We introduce the following lemma, which is an analogy to Lemma 19

in Jaksch et al. (2010) in the finite-horizon setting.

Lemma 31 Let H ≥ 1. For any sequence of numbers z1, . . . , zn with 0 ≤ zk ≤ H , consider the
sequence Z0, Z1, . . . Zn defined as

Z0 ≥ H

Zk = Zk−1 + zk for k ≥ 1.

Then, for all n ≥ 1,
n∑

k=1

zk√
Zk−1

≤ (
√
2 + 1)

√
Zn.

Using Lemma 31, we can bound (b) by Lemma 32.

Lemma 32 Denote vi(s, a) =
∑H

j=1 I(ai,j = a, si,j = s) the number of times the state-action
pair (s, a) is visited during episode i, and let τ(s, a) = argmink∈[K]{Nk(s, a) ≥ H} be the first
episode where the state-action pair (s, a) is visited at least H times. Then,

(b) ≤ (
√
2 + 1)

√
SAKH. (62)
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Proof By definition, Ni(s, a) =
∑i−1

k=1 vk(s, a). Regrouping the sum in (b) by (s, a), we have

(b) =
∑
s,a

K∑
i=1

vi(s, a)√
Ni(s, a)

I{Ni(s, a) ≥ H}

=
∑
s,a

τ(s,a)−1∑
i=1

vi(s, a)√
Ni(s, a)

I{Ni(s, a) ≥ H}+
K∑

i=τ(s,a)

vi(s, a)√
Ni(s, a)


=
∑
s,a

K∑
i=τ(s,a)

vi(s, a)√
Ni(s, a)

≤
∑
s,a

(
√
2 + 1)

√
NK(s, a) + vK(s, a)

≤ (
√
2 + 1)

√
SAKH.

where the last two inequalities follow from Lemma 31, the Cauchy-Schwarz inequality and the fact
that

∑
s,aNK(s, a) ≤ KH .

In order to bound the term (c) in Equation 61, we use the following lemma, which is a variant
of Lemma 31 and was stated in Azar et al. (2017) without proof.

Lemma 33 Let H ≥ 1. For any sequence of numbers z1, . . . , zn with 0 ≤ zk ≤ H , consider the
sequence Z0, Z1, . . . Zn defined as

Z0 ≥ H

Zk = Zk−1 + zk for k ≥ 1.

Then, for all n ≥ 1,

n∑
k=1

zk
Zk−1

≤
Zn−Z0∑
j=1

1

j
≤ ln(Zn − Z0) + 1.

Proof The second half follows immediately from existing results for the partial sum of the harmonic
series. We prove the first half of the inequality by induction. By definition of the two sequences,
Zk ≥ H ≥ 1 and zk ≤ H ≤ Zk−1 for all k. At n = 1, if z1 = 0 then the inequality trivially holds.
If z1 > 0, then Z1 − Z0 = z1 and

z1
Z0
≤ z1

H
=

 1

H
+ · · ·+ 1

H︸ ︷︷ ︸
z1 terms

 ≤ 1 +
1

2
+ · · ·+ 1

z1

since z1 ≤ H .
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For n > 1, by the induction hypothesis, we have

n∑
k=1

zk
Zk−1

=
n−1∑
k=1

zk
Zk−1

+
zn

Zn−1

≤

Zn−1−Z0∑
j=1

1

j

+
zn

Zn−1

=

Zn−1−Z0∑
j=1

1

j

+

 1

Zn−1
+ · · ·+ 1

Zn−1︸ ︷︷ ︸
znterms


≤

Zn−1−Z0∑
j=1

1

j

+

(
1

Zn−1 − Z0 + 1
+ · · ·+ 1

Zn−1 − Z0 + zn

)

=

Zn−Z0∑
j=1

1

j
,

where the last inequality follows from zn ≤ Z0. Therefore, the induction hypothesis holds for all
n ≥ 1.

Using Lemma 33, the term (c) can be bounded similarly to term (b) as follows:

Lemma 34 With vi(s, a) and τ(s, a) defined in Lemma 32, we have

(c) ≤ SAL+ SA.

Proof We write (c) as

(c) =
K∑
i=1

H∑
j=1

I{Ni(s, a) ≥ H}
Ni(si,j , ai,j)

=
∑
s,a

K∑
i=1

vi(s, a)

Ni(s, a)
I{Ni(s, a) ≥ H}

≤
∑
s,a

τ(s,a)−1∑
i=1

vi(s, a)

Ni(s, a)
I{Ni(s, a) ≥ H}+

K∑
i=τ(s,a)

vi(s, a)

Ni(s, a)


=
∑
s,a

K∑
i=τ(s,a)

vi(s, a)

Ni(s, a)

≤
∑
s,a

(
ln
(
NK(s, a) + vK(s, a)−Nτ(s,a)(s, a)

)
+ 1
)
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where the last inequality follows from Lemma 33. Trivially bounding the logarithm term by ln(KH),
we obtain

(c) ≤ SA ln(KH) + SA ≤ SAL+ SA.

Combining Lemma 32 and Lemma 34, we obtain

(a) ≤ 8HL((
√
2 + 1)

√
SAKH) + 4SH2L(SAL+ SA)

≤ 20HL
√
SAKH + 5S2AH2L2.

Substituting this into Equation 60, we obtain

Regret ≤ SAH2 + e(H + 2)
√
KHL+ e20HL

√
SAKH + e5S2AH2L2

≤ 67HL
√
SAKH + 15S2AH2L2.

Appendix G. Removing the assumption on the hitting time

GOSPRL (Tarbouriech et al., 2021, Lemma 3) guaranteed that in the undiscounted infinite horizon
setting, with H0 = O(DS2A

λ2 ), Lemma 14 holds with high probability. Thus, in the episodic finite
horizon setting, by setting H0 = cDS2A

λ2 for some appropriately large constant c > 0 and applying
GOSPRL in each episode we obtain a tight bound in the dependency of K and λ for communicating
MDPs. One difficulty in this approach is both c and D are unknown. One possible way to overcome
this is to apply the doubling-trick as following: at the beginning of episode k, we set H0 = ck

S2A
λ2 ,

where c1 = 1. If the learner successfully visits every state-action pair at least N times after H0

steps, we set ck+1 = ck. Otherwise, ck+1 = 2ck. There are at most log2 (cD) episodes with failed
exploration until ck is large enough so that with high probability, all the subsequent episodes will
have successful explorations. Moreover, the horizons of the clustering and learning phases change
at most log2(cD) times. The full analysis of this approach is not in the scope of this paper and is
left to future work.
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