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Abstract
Dictionary learning, the problem of recovering a sparsely used matrix D ∈ RM×K and N independent
K×1 s-sparse vectors X ∈ RK×N from samples of the form Y = DX, is of increasing importance
to applications in signal processing and data science. Early papers on provable dictionary learning
identified that one can detect whether two samples yi,yj share a common dictionary element by
testing if their inner product (correlation) exceeds a certain threshold: | ⟨yi,yj⟩ | > τ. These
correlation-based methods work well when sparsity is small, but suffer from declining performance
when sparsity grows faster than

√
M ; as a result, such methods were abandoned in the search for

dictionary learning algorithms when sparsity is nearly linear in M .
In this paper, we revisit correlation-based dictionary learning. Instead of seeking to recover

individual dictionary atoms, we employ a spectral method to recover the subspace spanned by the
dictionary atoms in the support of each sample. This approach circumvents the primary challenge
encountered by previous correlation methods, namely that when sharing information between two
samples it is difficult to tell which dictionary element the two samples share. We prove that under a
suitable random model the resulting algorithm recovers dictionaries in polynomial time for sparsity
linear in M up to log factors. Our results improve on the best known methods by achieving a
decaying error bound in dimension M ; the best previously known results for the overcomplete
(K > M ) setting achieve polynomial time in the linear regime only for constant error bounds.
Numerical simulations confirm our results.
Keywords: Compressed Sensing, Dictionary Learning, Sparsity, Sparse Coding

1. Introduction

The problem of finding sparse representations for large datasets is of tremendous importance in
data science and machine learning applications. Sparse representations have obvious advantages for
data storage and processing, while offering insight into a dataset’s intrinsic structure. This sparse
recovery problem can often be formulated as that of how to recover a sparse vector x ∈ RK from a
dense sample of the form y = Dx for some known sparsely-used matrix D called the “dictionary.”
Depending on applications, this dictionary can be known from physics or hand-designed, such as
the wavelet bases used in image processing (e.g., Vetterli and Kovačevic, 1995). Beyond numerous
further applications in signal and image processing (see Elad (2010) for a summary of developments),
sparse representations have been fruitfully applied in areas including computational neuroscience
(Olshausen and Field, 1996b,a, 1997) and machine learning (Argyriou et al., 2006; Ranzato et al.,
2007).

Yet as the tasks of understanding and compressing data become increasingly central to the needs
of modern technology, there is a corresponding interest in methods which learn from data not only
the underlying sparse codes but also the dictionary itself. This is the dictionary learning problem.
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Specifically, we aim to recover a sparsely used matrix D ∈ RM×K from N measurements of the
form y = Dx, where x ∈ RK is sufficiently sparse (that is, x has significantly fewer than K
nonzero entries). Written in matrix form, we seek to recover D from a matrix Y = DX ∈ RM×N

with the prior knowledge that rows of X are sparse. In most applications, practitioners are interested
in recovering overcomplete dictionaries which satisfy K > M , as these allow for greater flexibility
in basis selection and for sparser representation (e.g. Chen et al., 1998; Donoho et al., 2006).

1.1. Prior Work

Dictionary learning is typically formulated as a nonconvex optimization problem of finding the
dictionary D and matrix with sparse columns X such that X is as sparse as possible:

Find D,X minimizing ∥X∥0 subject to Y = DX.

As a nonconvex optimization, finding solutions to this problem is computationally challenging.
The most popular heuristic for solving the dictionary learning problem is alternating minimization.
Alternating minimization algorithms rely on the fact that when D or X is known, the other can be
solved using known methods, most frequently based on ℓ1 relaxations that make the problem convex
(Candés et al., 2006). Alternating minimization techniques thus alternate between a “sparse coding”
step in which a guess for D is fixed and the algorithm solves for X, and a “dictionary update” step
in which X is fixed and the dictionary is updated. This process is repeated until a convergence
criterion is met. These algorithms often lack theoretical guarantees, though some recent work has
found conditions under which particular alternating minimzation algorithms converge to a global
minimum in the dictionary learning setting (Chatterji and Bartlett, 2017; Agarwal et al., 2016).

In this paper, we are interested in dictionary learning algorithms with provable guarantees.
Initial theoretical study of provable dictionary learning focused on the case when s is no greater
than
√
M ; this is a well-known recovery boundary even when the dictionary D is known. Spielman

et al. (2012) developed an algorithm that accurately recovers the dictionary in this sparsity regime,
but their algorithm does not generalize to recovery of overcomplete dictionaries. Arora et al. (2013)
and Agarwal et al. (2017) then independently introduced similar correlation and clustering methods,
which enjoy similar theoretical guarantees for the s ∼

√
M regime.

Candés et al. (2006) showed that when the dictionary D is known and satisfies certain properties
such as the restricted isometry property (Candes and Tao, 2005), it is possible to recover xi from
yi = Dxi when xi has linearly-many nonzeros in M . Accordingly, there was tremendous interest
in determining whether recovery in this scaling regime remained possible when D is unknown. In
(Arora et al., 2014), the authors develop provable methods for recovering dictionaries with sparsity
s = O (M) up to logarithmic factors, but their method requires quasipolynomial running time. In a
pair of papers, Sun, Qu, and Wright develop a polynomial-time method which can provably recover
invertible dictionaries with s = O (M) (Sun et al., 2017a,b). However, this algorithm depends
intimately on properties of orthogonal and invertible matrices and thus is limited to the case of
complete dictionaries (M = K); moreover, their theoretical guarantees demand a high sample
complexity of K ≫M8.

More recently, Zhai et al. (2020b) introduced a method based on ℓ4 norm optimization. Despite
many nice properties of this approach further elaborated by Zhai et al. (2020a), it remains limited to
the complete case and the authors prove only the accuracy of a global optimum with no guarantee
of convergence in arbitrary dimension.

2



DICTIONARY LEARNING FOR THE ALMOST-LINEAR SPARSITY REGIME

For the overcomplete setting, Barak et al. (2015) developed a tensor decomposition method
based on the sum-of-squares hierarchy that can recover overcomplete dictionaries with sparsity up
to s = O

(
M1−δ

)
for any δ > 0 in polynomial time, but this time tends to super-polynomial as

δ → 0 and requires a constant error as M → ∞. This and related methods have generally enjoyed
the best theoretical guarantees for efficient dictionary learning in the overcomplete linear sparsity
regime due to their impressive generality, especially after their runtime was improved to polynomial
time by Ma et al. (2016) provided that the target error remains constant. Yet the requirement of
constant error is strict—with these methods, even in sublinear sparsity regimes such as s ∼ M0.99,
an inverse logarithmic decay in error requires superpolynomial time.

1.2. Intuition and Our Contribution

The correlation-based clustering method of Arora et al. (2014) offers an appealing intuition in the
s ∼
√
M regime: that pairs of elements which “look similar” in the sense of being highly correlated

are likely to share support. If the dictionary D is incoherent (that is, | ⟨dk1 ,dk2⟩ | ≤ c/
√
M for

k1 ̸= k2) and the coefficients xi,xj are symmetric, then if s ≪
√
M then as M → ∞, the

correlation1 ⟨yi,yj⟩will concentrate near zero if yi and yj share no support, but concentrate around
±1 if they do. As a result, thresholding | ⟨yi,yj⟩ | becomes a reliable indicator of whether yi and yj

share a common dictionary element in their support. By constructing a graph with an edge between
i and j whenever | ⟨yi,yj⟩ | ≥ τ for some threshold τ (say 1/2), one can determine which groups of
yi’s share the same common support element by applying overlapping clustering methods. One can
then recover the individual dictionary vectors by a spectral method on each of the resulting clusters.

Yet correlation-based clustering cannot be performed with accuracy once sparsity exceeds
√
M ,

as above this threshold correlation no longer reliably indicates whether two samples share a common
dictionary element. As a result, methods based on the correlation ⟨yi,yj⟩ have not been widely
employed in subsequent attempts to solve dictionary learning in the linear (s ∼M ) sparsity regime,
with practitioners instead turning to more technical machinery such as the sum-of-squares hierarchy
(Barak et al., 2015) or Riemannian trust-regions (Sun et al., 2017a,b).

In our present work, we revisit correlation-based dictionary learning methods. By adopting a
different approach which sidesteps the key challenges of previous correlation thresholding methods,
we are able to apply these methods successfully even in the linear sparsity regime. In this paper, we
introduce the Spectral Subspace Dictionary Learning (SSDL) algorithm for solving the overcomplete
dictionary learning problem in the linear sparsity regime up to logarithmic factors. We show that for
a suitable probabilistic model, the algorithm runs in polynomial time and results in an error which
decays in M . In other words, our algorithm actively performs better in high dimensions compared
to alternatives: the previous best known methods for the overcomplete linear regime, that is, those of
(Ma et al., 2016), require super-polynomial (quasi-polynomial) runtime to achieve errors with even
an inverse-logarithmic decay in M . This holds true even in our proposed “almost-linear” regime
where sparsity differs from linear in dimension by only a logarithmic factor.

Our method is a natural adaptation of the correlation-based approach of Arora et al. (2013) to
the linear sparsity regime. Instead of immediately attempting to recover dictionary elements, we
first pursue an intermediate step of recovering spanning subspaces, the subspaces Si spanned by
the supporting dictionary elements of each sample yi. Once these subspaces are recovered, the
individual dictionary elements can be recovered through pairwise comparison of subspaces to find

1. We note this is a slight abuse of notation as the vectors yi,yj may not be unit vectors.
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their intersection. This can be interpreted as reversing the order of the algorithm of Arora et al.
(2013): whereas those authors proceeded by first detecting support information about X then using
this to extract geometric information about D, we propose first to recover information about the
geometry of D in the form of spanning subspaces, then to use this subspace information to find
shared support among columns of X.

The primary advantage of this approach is that the subspace recovery step effectively recovers
geometric information from all of yi’s supporting dictionary elements at once. In particular, if yi

and yj are highly correlated, we no longer need to concern ourselves with which particular element
they share in their support. Accordingly, this approach does not require the cumbersome clustering
method used in previous correlation-based methods.

To recover these subspaces, we employ a spectral method based on extracting the eigenvectors of
a modified covariance matrix of the samples Y. Specifically, for each j we examine the correlation-
weighted covariance matrix Σ̂j , defined as the sample covariance of the correlation-weighted samples
⟨yi,yj⟩yi. By design, these reweighted samples will have greater variance in the directions of the
support elements of yj , meaning Σ̂j will have a rank-s “spike” in the directions spanned by support
elements of yj , while a random-matrix assumption on D guarantees that, with high probability,
there will be no comparable spikes in other directions. As a result, the s leading eigenvectors of Σ̂j

(that is, the s eigenvectors corresponding to the s largest eigenvalues) will reliably span a subspace
close to that spanned by the support elements of yj . We provide theoretical guarantees that this
method accurately recovers spanning subspaces with sparsity s ∼M log−(6+η)(M) for any η > 0,
which allows for recovery of the individual dictionary elements by a further subspace intersection
process (see Algorithm 2).

The rigorous proof of this result follows three broad steps. First, using concentration inequalities
from high-dimensional probability, we prove that with high probability, the dictionary D and samples
satisfy certain geometric properties needed for recovery. These properties are all aspects of the fact
that a random dictionary in high dimensions will have fairly uniform behavior with no spikes in
any particular direction. From this, for fixed j we can prove that the expectation of the correlation-
weighted covariance Σ̂j essentially consists of a multiple of the unweighted covariance plus a rank-
s spike in the direction of the spanning subspace of yi. We conclude by proving that the sample
version of the correlation-weighted covariance converges to this expectation, giving a matrix whose
top s eigenvectors approximately span the spanning subspace of yi. The result follows for all j by
a union bound.

The resulting algorithm is conceptually simple, easy to implement, and its iterative nature
makes it highly parallelizable. Moreover, proving its performance guarantees requires only standard
techniques from high-dimensional probability. We emphasize that, unlike many algorithms for
dictionary learning with theoretical guarantees, SSDL requires no initialization; accordingly, it is an
ideal candidate for use as an initializer for a subsequent refinement by an iterative method.

The sample complexity required for SSDL to recover subspaces accurately depends on the
particular sparsity regime. In the most challenging linear-sparsity regime that is our main focus,
up to log factors subspace recovery requires a sample complexity of at most M4, but in the ”easier”
regime s ≪

√
M , the required sample complexity eases to N ∼ M (see Theorem 4.2). In the

linear-sparsity case, the bottleneck is caused by approximation of a covariance matrix in Frobenius
norm, which is known to require a factor of M additional samples than does estimation in the
operator norm. We believe that in future work this step can be replaced by an approach requiring

4



DICTIONARY LEARNING FOR THE ALMOST-LINEAR SPARSITY REGIME

approximation only in the ℓ2 operator norm, in which case the sample complexity would be lowered
to M3 in the linear-sparsity case.

1.3. Structure of Paper

In section 2, we technically specify the problem to be solved and introduce our notations, parameter
scaling, and probabilistic model. In section 3, we motivate and detail the SSDL algorithm. Section
4 contains an overview of our main theoretical results, while section 5 sketches their proof, though
we defer detailed proofs of most technical lemmas to the appendix. Lastly, section 6 contains the
results of numerical experiments validating our results.

2. Parameter Scaling, Data Model, and Conventions

We begin by stating the sparse dictionary learning problem explicitly:

Definition 1 (Sparse Dictionary Learning) Let D =
(
d1 d2 . . . dK

)
be an (unknown) M ×

K matrix with unit vector columns, called the dictionary. Let x be an s-sparse random vector, and
define the random vector y = Dx. The sparse dictionary learning problem is:

Given Y = DX where X is a K ×N matrix with columns {xi}Ni=1 i.i.d. copies of x, recover D.

It is clear from the definition that D can only be recovered up to sign and permutation. Accordingly,
we employ the following definition for comparing two dictionaries, due to Arora et al. (2013): we
say that two dictionaries are column-wise ε-close if their columns are close in Euclidean norm after
an appropriate permutation and change of sign. In detail:

Definition 2 (Column-wise ε-close (Arora et al., 2013)) Two dictionaries D =
(
d1 d2 . . . dK

)
and D′ =

(
d′
1 d′

2 . . . d′
K′
)

are column-wise ε-close if they have the same dimensions M ×K
and there exists a permutation π of {1, . . . ,K} and a K-element sequence θk ∈ {−1, 1} such that
for all k = 1, . . . ,K:

∥dk − θkd
′
π(k)∥2 ≤ ε

2.1. Parameter Scaling

We denote the following parameters and their scaling:

Definition 3 (Parameters and scaling) We define M to be the dimension of the samples yj , s
the sparsity level, K the dictionary size, N the number of samples, J the number of recovered
subspaces, and ℓ the maximum intersection size. We assume the following parameter scaling (all
parameters are assumed to grow at most polynomially in M ):

• 0 < γ < η constant in M

• s = M log−(4+η)(M)

• K = M log2+γ(M)

• N ≫ max
{

s10 log12 M
M6 , K

2s4 log10 M
M3

}
= max{M4 log−32−10η(M),M3 log(−12+2γ−4η)(M)}
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• J = K log3K

• ℓ =
⌈

log(2K)
log(K/s)

⌉
, the smallest integer such that (s/K)ℓ ≤ 1

2K .

Throughout the text, we will often encounter the terms s/M and K/M . One should think of
s/M as a “slightly less than 1” term decaying slowly, and of K/M as a “slightly more than 1” term
that grows slowly.

2.2. Data Model

We begin by defining the following distributions for our dictionary D and sparsity pattern X:

Definition 4 (U distribution) A random matrix D ∈ RM×K follows the U distribution if its columns
{dk}Kk=1 are K independent and uniformly distributed unit vectors in RM .

Definition 5 (X (W ) distribution) Let W be a symmetric random variable satisfying |W | ∈ [c, C]
almost surely for 0 < c ≤ C. A random vector X ∈ RK×N follows a X (W ) distribution if:

• The supports Ωi = supp (xi) of each column xi of X are independent, uniformly random
s-element subsets of {1, . . . ,K}.

• Nonzero entries of X are i.i.d. copies of W .

This definition implies columns of X are independent when distributed according to a X (W )
distribution. In our theoretical results, we assume that D ∼ U and X ∼ X (W ). As the extension
to bounded symmetric random variables is trivial, we assume W = ±1 with equal probability.
This choice of particular distribution for X is made for theoretical convenience and significantly
simplifies the analysis, but we expect our results to hold with minimal modifications for the more
commonly used Bernoulli-Gaussian model used by Spielman et al. (2012) and others.

Our result differs from many other provable results on dictionary learning in that we assume
the dictionary D to be a random matrix. The specific geometric properties required to recover D,
which are reliably satisfied by a U-distributed random matrix, are outlined in Definition 10. Our
treatment is similar to that of the well-known restricted isometry property (Candes and Tao, 2005),
a deterministic property often assumed in recovery guarantees for compressed sensing (that is, when
the dictionary is known); indeed, we believe that many of the geometric properties we will prove
individually may be consequences of the stronger RIP property. The restricted isometry property
is known to hold for many types of random matrices, but no families of deterministic matrices
for which it holds are yet known (e.g., Bandeira et al., 2013). Accordingly, such recovery results
implicitly make a random-matrix assumption for D, as we do here explicitly.

2.3. Notation and conventions

Vectors are represented by boldface lowercase letters, while matrices will be written as boldface
uppercase letters. Roman letters (both upper- and lowercase) will be used for both scalars and
random variables depending on context. We will use the notation |A| for the number of elements in
a finite set A, and Ac for its complement.

We use two matrix norms at different points in the text. The standard l2 operator norm will be
denoted by ∥ • ∥2 while the Frobenius norm will be denoted ∥ • ∥F . Vector norms always refer to
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the standard l2 (Euclidean) norm, and will be denoted ∥•∥2. We will use the notation a≪ b, where
both a and b are scalars depending on M , to mean limM→∞ |a|/|b| = 0, where the norm in question
may depend on context.

The index-free notation y = Dx will refer to a generic independent copy drawn from the
sampling distribution, used for index-independent properties of this distribution such as expectation,
while we reserve the indexed notation yi to refer to a particular random vector in the sample Y.
Given a sample yi, its support, denoted Ωi, is defined as the set of indices of the dictionary vectors
in its construction with nonzero coefficients:

Ωi := supp (xi) = {k ∈ {1, . . . ,K} : xik ̸= 0}

The “support vectors” of yi refer to the dictionary elements indexed by Ωi, the set {dk}k∈Ωi
. We

use the notationA−B for the relative complement of set B in setA: A−B = {x : x ∈ A, x /∈ B}.
We denote the dimension of a vector subspace S with the shorthand dim(S). We reserve δ for the
Dirac delta function: δk∈Ωi

equals one for k ∈ Ωi and zero otherwise.
Throughout this text, “with high probability” means that an event occurs with probability converging

to 1 faster than any polynomial in M ; often these will be bounds with the approximate form
M− logM :

Definition 6 (High Probability) A sequence of events ωM is said to occur with high probability in
M provided that for any constant α > 0,

lim
M→∞

Mα(1− P (ωM )) = 0.

We will frequently make use of the fact that under this definition, the union of polynomially-
many events occurring with high probability also occurs with high probability. As our results
are asymptotic in nature, we implicitly assume without statement that, where necessary, M is
sufficiently large for our results to hold. Lastly, constants c and C are used to represent “some
sufficiently large constant” and may change between lines.

3. Algorithm

In this section, we outline the key elements of the spectral subspace dictionary learning algorithm
(SSDL). SSDL consists of two main steps: subspace recovery, wherein we aim to recover the
subspaces spanned by the support vectors of each sample yi, and subspace intersection, which
combines the information from subsets of the recovered subspaces to recover individual dictionary
elements.

3.1. History and Motivation

The key concept underlying SSDL and its proof is the idea that for a dictionary with approximately
orthogonal columns (typically | ⟨dk,dm⟩ | ≤ C/

√
M for k ̸= m), given two different samples yi

and yj , the absolute inner product | ⟨yi,yj⟩ | should be larger when they share an element in their
support. This idea was used by Arora et al. (2013) for the case s ≪

√
M . Indeed, since dictionary

vectors are unit vectors, we have:

⟨yi,yj⟩ =
∑
k∈Ωi

∑
m∈Ωj

xikxjm ⟨dk,dm⟩ =
∑

k∈Ωi∩Ωj

xikxjk +
∑

k∈Ωi−Ωj

∑
m∈Ωj−Ωi

xikxjm ⟨dk,dm⟩

7



NOVIKOV WHITE

For a random dictionary, the inner product ⟨dk,dm⟩will be of order approximately 1/
√
M with

high probability. Thus if nonzero coefficients xik are bounded below, each term in the sum over the
intersection Ωi ∩ Ωj is much larger than the terms in the second sum. In many cases, particularly
when s ≪

√
M , the intersection Ωi ∩ Ωj will contain at most one element, in which case the first

sum is either 0 or±1. On the other hand, the second term will be a sum of approximately s2 random
variables of magnitude 1/

√
M . In particular, if nonzero entries of xi are sub-Gaussian and have

mean zero, the Hanson-Wright inequality (Hanson and Wright, 1971) guarantees that with high
probability (up to possible log factors):∣∣∣∣∣∣

∑
k∈Ωi−Ωj

∑
m∈Ωj−Ωi

xikxjm ⟨dk,dm⟩

∣∣∣∣∣∣ ≤
√
|Ωi − Ωj |

√
|Ωj − Ωi|√

M
≈ s√

M

From this one can consider the following heuristic normal approximation:

⟨yi,yj⟩ ∼

{
N(0, C2s2/M), |Ωi ∩ Ωj | = 0

N(±1, C2s2/M), |Ωi ∩ Ωj | = 1
(1)

When s ≪
√
M , the absolute inner product | ⟨yi,yj⟩ | behaves close to an indicator function for

whether yi and yj share support (the case |Ωi ∩ Ωj | ≥ 2 occurs with negligible probability for
s≪

√
M and K ≥M ).

Arora et al. (2013) used these inner products to construct a graph where i and j shared an
edge if | ⟨yi,yj⟩ | exceeded some threshold τ. Overlapping clustering methods were then used
to recover overlapping communities Ck each corresponding to a dictionary element, after which
the dictionary elements could be recovered by averaging or by taking the top eigenvalue of the
community covariance 1

N

∑
i∈Ck yiy

T
i .

However, when s ≫
√
M , this approach breaks down, as the variance of the terms in 1

dominates the mean term, meaning | ⟨yi,yj⟩ | can no longer be used as a reliable indicator of shared
support. Indeed, in this case for any fixed threshold τ, P (⟨yi,yj⟩ ≥ τ) will tend to 1, making
reliable community detection nearly impossible. This was perceived as a fundamental roadblock to
generalizing the correlation-based techniques of Arora et al. (2013) beyond the s ∼

√
M barrier;

accordingly, subsequent research on dictionary learning with theoretical guarantees used entirely
different techniques.

In this work, our primary observation is that even in the s ≫
√
M regime, correlations still

contain sufficient information on shared support for the dictionary to be recovered. Even though, in
this regime, ⟨yi,yj⟩ is dominated by terms originating from non-shared support elements, there is
still a small bias in favor of shared support: | ⟨yi,yj⟩ |will, on average, be larger when |Ωi∩Ωj | > 0.

As already noted, in this regime the correlations are not strong enough to directly infer the
sparsity pattern as in (Arora et al., 2013). Therefore in this work we propose an intermediate step:
before attempting to recover the dictionary elements, for each sample yi we recover its spanning
subspace Si:

Definition 7 (Spanning Subspace) Given a sample yi = Dxi, the spanning subspace of sample i
is the subspace Si defined as Si = span{dk : k ∈ supp (xi)}.

First recovering the spanning subspaces obviates any need to perform community detection on
an unreliable connection graph, which was the immediate point of failure for the correlation-based
method of Arora et al. (2013) in the s≫

√
M setting.

8



DICTIONARY LEARNING FOR THE ALMOST-LINEAR SPARSITY REGIME

3.2. Subspace Recovery

At a high level, given a sample yj the subspace recovery step is a spectral method that constructs a
matrix which, with high probability, will have lead s eigenvectors spanning a subspace close to the
true spanning subspace Sj . To estimate Sj , we consider a statistic based on the classical estimator
for the covariance of y, the sample covariance matrix Σ̂:

Σ̂ =
1

N
YYT =

1

N

N∑
i=1

yiy
T
i

As long as Ey = 0, it is easy to see that Σ̂ is an unbiased estimator (that is, EΣ̂ = EyyT ); by the
law of large numbers, then, Σ̂→ EyyT in N almost surely (later we will use quantitative versions
of this result; see, for instance, Vershynin (2018), theorems 4.7.1 and 5.6.1).

To find the subspace Sj , though, we need an estimator which is biased towards those directions
spanned by the support elements of yj . Our goal is to weight the sample covariance matrix in such
a way that a sample yi is given more weight the larger the shared support between yi and yj . At
first, we employed a method based on the thresholding scheme of Arora et al. (2013):

Σ̂τ
j :=

1

N

∑
i ̸=j

1{|⟨yj ,yi⟩|≥τ}yiy
T
i

where τ was a fixed threshold parameter. Our idea was that, although the bias would be small,
P (⟨yj ,yi⟩ | ≥ τ) would nonetheless be greater when yi shares support with yj even when s ≫√
M . This worked well in numerical simulations, but proved intractable for theoretical work.

Noting that the above is the sample covariance matrix for the random vector 1{|⟨yj ,y⟩|≥τ}y, we
replaced this nonlinear thresholding function 1{|⟨yj ,y⟩|≥τ} with the quadratic weight ⟨yj ,y⟩2. This
change allowed for much cleaner computations by the linearity of expectations. Accordingly, we
now introduce the key statistic of the subspace recovery step, the correlation-weighted covariance
Σj :

Σj := E[⟨yj ,y⟩2 yyT ]

and its sample version Σ̂j :

Σ̂j :=
1

N

N∑
i ̸=j

⟨yj ,yi⟩2 yiy
T
i

We point out that Σj and Σ̂j are the covariance and the sample covariance estimator, respectively,
for the random vector ⟨yj ,y⟩y. Not only is this a more theoretically tractable object, but it also
resulted in a an immediate improvement in the accuracy of our empirical simulations. As before,
the idea is that samples yi which share support elements with yj will have a higher correlation
and therefore the covariance will be “stretched” in favor of the directions spanned by the support
elements of yj .

A major challenge is that when s ≫
√
M this bias remains small, with the result that Σ̂k will

be close to the unweighted covariance matrix of y, with only a small perturbation in the directions
Sj . However, this covariance can be accurately estimated by the sample covariance Σ̂ = 1

NYYT .
With this estimate in hand, we remove the DDT component by “covariance projection:” taking
the orthogonal complement of Σ̂j (in the Frobenius sense) with respect to the unweighted sample
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covariance matrix Σ̂ = 1
N

∑N
i=1 yiy

T
i = 1

NYYT , with the goal of leaving only the bias component.
Thus for our spectral method, we ultimately look at the span of the eigenvectors corresponding to
the s largest eigenvalues of the matrix

Σ̂
proj
j := Σ̂j −

〈
Σ̂j , Σ̂

〉
F

∥Σ̂∥2F
Σ̂

As sample covariance matrices, Σ̂0 and Σ̂ can be made arbitrarily close to their expectations with
sufficiently large sample size, so this statistic will have spectral properties close to the bias matrix∑

k∈Ωj
dkd

T
k . We detail the precise process in Algorithm 1.

Algorithm 1: SSR: Single Subspace Recovery
Input: index j, M×N data matrix Y =

(
y1 y2 . . . yN

)
, est. covariance matrix Σ̂ = 1

NYYT

Output: s-dimensional subspace Ŝj
Correlation-Weighted Covariance: Compute Σ̂j =

1
N

∑N
i=1 ⟨yj ,yi⟩2 yiy

T
i

Covariance Projection: Compute Σ̂
proj
j = Σ̂j − proj

Σ̂
(Σ̂j)

Spectral Recovery: Compute the leading s eigenvectors of Σ̂j and set Ŝj equal to their span.
return Ŝj

Naturally, the subspace Ŝj recovered by Algorithm 1 will only approximately match the true
subspace Sj . For this reason we introduce the following metric on subspaces of the same dimension:

Definition 8 (Subspace Distance) For two s-dimensional subspaces S1, S2 of RM , let E1 be an
orthonormal basis of S1 and let F2 be an orthonormal basis of S⊥2 , the orthogonal complement of
S2. We define the subspace distance D between S1 and S2 as:

D(S1,S2) = sup
z∈S,∥z∥2=1

∥z−projS2
(z)∥2 = sup

z∈S,∥z∥2=1
∥projS⊥

2
(z)∥2 =

∥∥F2F
T
2 E1

∥∥
2
= ∥FT

2 E1∥2

In section 4.1, we demonstrate that the recovered Ŝj is close to the true Sj for each j simultaneously
with high probability. We also show in Theorem 4.4 that with high probability, up to logarithmic
factors only the first O (K) subspaces are required to find every dictionary vector via subspace
intersection.

3.3. Subspace Intersection

Since the eigenvectors returned by this spectral method are orthonormal, they do not correspond to
dictionary elements directly, but instead form a basis for a subspace Ŝi close to the true subspace
Si. Thus an additional subspace intersection step is needed to recover actual dictionary elements
from the estimated subspaces.

To motivate our subspace intersection algorithm, we note that if the subspaces Si were known
exactly, there is a particularly simple algorithm to find a dictionary element when subspaces Si are
known exactly. Since Si = span{dk}k∈Ωi

, Si ∩ Sj = span{dk}k∈Ωi∩Ωj
(almost surely). It

follows that if dim(Si ∩ Sj) = 1 exactly, then Si ∩ Sj = span{dk} where k is the unique element
in Ωi ∩ Ωj .

10
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Letting Fi and Fj be orthonormal basis matrices for Si and Sj , respectively, we can write an
element in Si as Fiv for v ∈ Rs. Since the matrix for projection onto subspace Sj is FjF

T
j , it

follows that dim(Si ∩ Sj) = dim(ker(Fi − FjF
T
j Fi)); denote this matrix Pij . Then any v in the

kernel of Pij corresponds to a vector Fiv in Si ∩ Sj . Then if dim(ker(Pij)) = 1, we can easily
recover a basis for the intersection Si ∩ Sj .

As long as s2/K is small, |Si ∩ Sj | will typically have either 0 or 1 element, so an intersection
between two subspaces will rarely have dimension above one. When s2/K ≫ 1—typically the case
in our setting—we will instead need to perform subspace intersection on more than two subspaces.
It is easy to see that:

E|Ω1 ∩ Ω2 ∩ . . .Ωℓ| =
sℓ+1

Kℓ

Therefore, for ℓ ≥ log s
logK/s , we have E|Ω0∩Ω2∩. . .Ωℓ] ≤ 1 (this bound is made precise in Theorem

4.4 with a slightly larger ℓ).
In the case when we only know approximate subspaces Ŝi, Pij will almost surely have trivial

kernel, so we relax the condition dim(ker(Pij)) = 1 to the condition that, given some small
threshold τ, Pij has exactly one singular value σ ≤ τ. This works under the assumption that
dictionary elements are nearly orthogonal, which holds when columns of D are i.i.d. random vectors
for a broad class of random vectors (Vershynin, 2018, e.g.,). In practice, τ should not need to be very
small; τ = 1/2 was adequate in numerical experiments. We thus define the approximate subspace
intersection of two subspaces Si, Sj as follows:

Definition 9 (Approximate Subspace Intersection) Let Si and Sj be subspaces of RM with respective
orthonormal basis matrices Fi,Fj . Denote by Pij = (I − FjF

T
j )Fi the projection matrix of Si

onto S⊥j . The approximate subspace intersection of Si onto Sj with threshold τ is the subspace
Aτ(Si,Sj) of RM defined as the span of all right singular vectors of Pij corresponding to sufficiently
small singular values:

Aτ(Si,Sj) = span{v : v is a right singular vector of Pij corresponding to a singular value σv ≤ τ}

with the convention that span(∅) = {0}.

We note that this definition ensures Aτ(Si,Sj) is a subspace of Si.
In Algorithm 2, we detail the approximate subspace intersection algorithm for a fixed list of ℓ

subspaces Si1 , . . . ,Siℓ . In Theorem 4.4, we show that with high probability that to recover all K
dictionary elements it suffices to consider only the non-overlapping intersections

⋂ℓ
p=1 Sℓ(j−1)+p for

j = 1, . . . ,K log3K)/ℓ. To recover an entire dictionary, then, we first employ subspace recovery
to learn the subspaces {Ŝ1, . . . , ŜJ} for the first J = K log3K samples, then take the intersection
of each consecutive set of ℓ subspaces. (Duplicates, those estimated dictionary elements which are
close to one another based on absolute inner product, can be handled by rejecting duplicates or
averaging them together.)

3.4. Time Complexity

To compute the correlation-weighted covariance Σ̂j for a single j, the single subspace recovery
algorithm adds N matrices of the form ⟨yj ,yi⟩2 yiy

T
i , each of which can be computed in O

(
M2
)

11
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Algorithm 2: SSI, Approximate Subspace ℓ-fold Intersection
Input: List of subspaces S1, . . . ,Sℓ, threshold τ < 1
Output: Estimated dictionary element, or False if no element is found.
S ← S1
for i ∈ {2, . . . , ℓ} do
A = Aτ(S, Ŝi)
if dim(A) = 0 then

return False
else if dim(A) = 1 then

Set d̂ a basis of A
return d̂

else if dim(A) ≥ 2 then
S = A

return False
end

time, meaning Σ̂j can be computed in timeO
(
NM2

)
. Finding the top s eigenvalues and eigenvectors

then takes an additionalO
(
sM2

)
operations, meaning the entire subspace recovery step for a single

sample yi can be completed in O
(
NM2

)
time. As only the first K log3K subspaces are required

to find every dictionary vector via subspace intersection, computing all subspaces will take time
O
(
NKM2

)
(again, up to log factors).

The runtime of the each subspace intersection step is dominated by matrix multiplication and
finding eigenvectors, which both have order O

(
M3
)
. Under the assumption that the support of

each sample is uniformly distributed among s-element subsets of {1, . . . ,K}, we show in Theorem
4.4 that with high probability, one only needs to check fewer than O

(
K log3K

)
intersections

in order to recover each dictionary element. Accordingly, with high probability the subspace
intersection step to take O

(
ℓKM3

)
time, so we conclude that the entire SSDL process takes

O
(
NKM2 +KM3

)
with high probability, up to log factors.

4. Main Results

We are now ready to present our main result, which states that most dictionaries D ∼ U can be
recovered with sparsity linear in M up to a logarithmic factor:

Theorem 4.1 Fix parameters 0 < γ < η and set s = M log−(4+η)(M), K = M log2+γ(M),
ℓ =

⌈
log(2K)
log(K/s)

⌉
, and N ≫ max

{
s10 log12 M

M6 , K
2s4 log10 M

M3

}
as in 3. Suppose that Y = DX with

D ∼ U and X ∼ X (W ). Then for M large enough and

ε =

√
M√
K

+
Ks log2M

M2
+

Ks2 log4M

M3/2
√
N

+
s5 log5M

M3
√
N

sufficiently small, SSDL recovers a dictionary D̂ that is column-wise (Cℓε)-close to D with high
probability: D̂ and D are the same size and there exists a sequence of signs θ, and a permutation π
of {1, . . . ,K} such that for all k = 1, . . . ,K:

∥dk − θkd̂π(k)∥2 ≤ Cℓε ≤ Cε logM

12
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for an absolute constant C.

Under the scaling in 3, ε ≪ 1/ logM and therefore the recovered dictionary converges to the
true dictionary column-wise. We note that this theorem can be adapted to the case where s = M1−2η

and K = M1+γ for some 0 < γ < η; we restrict our proof to the case that s and K are linear up to
logarithmic factors, as this is the most challenging regime for the dictionary learning problem. That
said, our later results will suggest that the sample complexity required by SSDL is lower in these
easier sparsity regimes.

4.1. Guarantees for Subspace Recovery

Theorem 4.1 is based on separate guarantees for the subspace recovery and subspace intersection
steps, which we review individually, beginning with an overview of our guarantees for the subspace
recovery step. We have the following result, which states that the subspaces recovered by SSDL are
close to the true spanning subspaces:

Theorem 4.2 (Subspace Recovery) Fix parameters 0 < γ < η and set s = M log−(4+η)(M),
K = M log2+γ(M), and N ≫ max

{
s10 log12 M

M6 , K
2s4 log10 M

M3

}
as in 3. Suppose that Y = DX

with D ∼ U and X ∼ X (W ). Let Sj be the spanning subspace of sample yj , while Ŝj is the
subspace recovered by Algorithm 1. As long as

ε =

√
M√
K

+
Ks log2M

M2
+

Ks2 log4M

M3/2
√
N

+
s5 log5M

M3
√
N

,

is sufficiently small, then with high probability

D
(
Sj , Ŝj

)
≤ Cε.

for all j ∈ {1, . . . , N}. It follows that as M →∞, Ŝj → Sj for all j with high probability.

Details of the proof follow in Section 5, but the key ingredients are these: by a union bound, it
suffices to prove that the desired bound holds with high probability for a single j. Using concentration
of measure results, we show that Σ̂j converges to its expectation, which will be close to a rank-
s matrix with eigenvectors spanning Sj . We then apply Weyl’s Theorem and the Davis-Kahan
Theorem on continuity of eigenvalues and invariant subspaces, respectively, of symmetric matrices
under perturbation (Weyl, 1912; Davis and Kahan, 1970), allowing us to bound the distance between
the recovered subspace Ŝj and true subspace Sj .

4.1.1. SAMPLE COMPLEXITY

Since the sample covariance matrix is an unbiased estimator of the true covariance matrix, the law of
large numbers will guarantee that for fixed dictionary D, Σ̂j → E[Σ̂j |D] almost surely with enough
samples N . We claim that the empirically observed matrix Σ̂0 will have the same spectral properties
as its expectation with high probability as long as N is larger than max

{
s10 log10M/M6,K2s4 log8M/M3

}
.

The additional two factors of logM in 3 reflect the fact that up to ℓ ≤ C logM intersections will be
taken during the subspace intersection step, allowing for the error to potentially magnify by a factor
of logM by the triangle inequality. Overall, this translates to a worst-case sample complexity of
order M4 up to log factors. See Lemma 5.5 for details.

13
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4.2. Subspace Intersection

In this section, we present guarantees stating that that with high probability, the subspace intersection
step rejects groups of subspaces which do not contain a unique dictionary element in their intersection.
If they do intersect, then subspace intersection returns a vector close to the true vector. Specifically:

Theorem 4.3 (Subspace Intersection) Fix parameters 0 < γ < η and set s = M log−(4+η)(M),
K = M log2+γ(M), ℓ =

⌈
log(2K)
log(K/s)

⌉
, and N ≫ max

{
s10 log12 M

M6 , K
2s4 log10 M

M3

}
as in 3. Let J be

a collection of at most polynomially-many ℓ-element subsets of {1, . . . , N}. With high probability
as M →∞, the following holds for every I ∈ J :

If
⋂

i∈I Si = span(dk), then d̂ will be returned by Algorithm 2 with τ = 1/2 and will satisfy

min
t∈{−1,1}

{∥d̂− tdk∥2} ≤ Cℓε ≤ Cε logM

for ε as in Theorem 4.2. Moreover, if dim
(⋂

i∈I Si
)
̸= 1, the algorithm returns False.

This result follows from the subspace recovery bound from Theorem 4.2 and the fact that two
random s-dimensional subspaces in RM will not be closer than any constant with high probability
(Lemma 5.10).

To complete the accuracy guarantees of Theorem 4.1, we conclude by showing that it is possible
to isolate each dictionary element by looking at only a polynomial number of ℓ-element intersections.
This ensures we can recover every column in the dictionary in polynomial time with high probability.
Specifically, for ℓ =

⌈
log 2K
logK/s

⌉
and J = K log3K, we claim that with high probability, choosing J

in Theorem 4.3 to be the first J/ℓ disjoint ℓ-element subsets is sufficient to recover every dictionary
element at least once.

Theorem 4.4 (Polynomially-Many Intersections Suffice) Let ℓ be the smallest integer such that
(s/K)ℓ < 1/2K, and assume Ωi, i = 1, . . . ,K are uniformly distributed among s-element subsets
of {1, . . . ,K}. For positive integer J and j ∈ {1, . . . , J/ℓ}, define the non-intersecting ℓ-fold
intersections Ωℓ

j as:

Ωℓ
j =

ℓ⋂
p=1

Ω(j−1)ℓ+p

Then as long as J ≥ K log3K, with high probability for every k ∈ {1, . . . ,K} there exists a
j ∈ {1, . . . , J/ℓ} such that Ωℓ

j = {k}.

Theorem 4.4 can be proven by fixing k and noting that since the sets Ωℓ
j do not overlap, they will

be independent, then calculating the probability that none of them contain k as a unique element of
intersection; a union bound completes the proof. Details are in the appendix.

Theorem 4.4 guarantees that subspace intersection will recover every dictionary element at
least once while requiring only K log3K intersections. Theorem 4.3 ensures subspace intersection
(Algorithm 2) will correctly detect overlapping support with high probability, and will recover the
associated dictionary element up to error ε by Theorem 4.2. Taken together, these results complete
the proof of Theorem 4.1.
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5. Proofs of Theoretical Guarantees

In this section, we provide sketches of the proof for the results outlined in the previous section.

5.1. Proofs for Subspace Recovery

The most involved of our theoretical guarantees is Theorem 4.2, which states that the subspaces
recovered by Algorithm 1 are close to the true spanning subspaces. It will suffice to prove the result
for a fixed index j, as the result will then follow by a union bound over {1, . . . , N}. In the proof,
we use j = 0 to indicate this fixed index; although this is a minor abuse of notation as j ranges
from 1 to N , this notation emphasizes the distinction between the sample y0 and the others, while
the change from N to N + 1 samples is negligible.

We begin with a broad overview of our approach and the steps involved:

1. The “Good Event.” We introduce the geometric properties of D required for proving our
result, which will occur with high probability.

2. Expectation computation. We compute the expectation E[Σ̂0|D] of the correlation-weighted
covariance.

3. Bounds on expectation error. We separate the computed expectations into “signal” and
“noise” terms and compute bounds on the noise terms. These bounds depend only on the
parameters M, s, and K and not on the number of samples N .

4. Bound on estimation error. We bound the probability that the sample Y produces a correlation-
weighted covariance that is far from its expectation. These bounds are controlled by the
number of samples N .

5. Subspace Comparison. We convert the stated bounds on the correlation-weighted covariance
to bounds on their s-leading subspaces.

5.1.1. THE GOOD EVENT

To prove our results, we define a “good event” G0 for fixed x0, which occurs with high probability.
G0 describes sufficient geometric properties of D for the dictionary to be recovered successfully.
This allows us to prove separately that G0 occurs with high probability, after which we can treat
these properties as deterministic while proving our main results.

Many of the following facts can be inferred heuristically using the standard approximation that
in high dimensions, uniformly distributed unit vectors are nearly distributed as N(0, 1

M I) random
vectors. Specifically, since the N(0, 1

M I) distribution is rotationally invariant, we can assume the
existence of a collection w1, . . . ,wK of independent N(0, I) random vectors such that dk = wk

∥wk∥2
for all k = 1, . . . ,K. It was shown by Stam (1982) that the N(0, 1

M I) and uniform distributions
converge in total variation; we will only use weaker properties that can be derived from standard
concentration of measure results.

We now define G0 rigorously:

Definition 10 (Good Event for x0) The good event for x0, denoted G0, is the event that the following
conditions hold simultaneously. We use c and C for small and large positive constants respectively;
constants vary between list items.
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G0.1
∥∥DDT − K

M I
∥∥
2
≤ C

√
K√
M

G0.2 cK√
M
≤
∥∥DDT

∥∥
F
≤ CK/

√
M .

G0.3 All eigenvalues of the matrix
∑

k∈Ω0
dkd

T
k lie in an interval (c, C) for constants 0 < c < C.

G0.4 supk ̸=m | ⟨dk,dm⟩ | ≤ C logM√
M

.

G0.5 Defining ỹk
0 = y0 − δk∈Ω0dk, we have supk |

〈
ỹk
0 ,dk

〉
| ≤ C

√
s logM√
M

for all k.

G0.6 Conditional on D and y0, ∥ ⟨y0,y⟩y∥2 ≤ Cs3/2 logM√
M

with high probability.

We refer to the event that the good events for all i ∈ {0, . . . , N} hold simultaneously simply as
the “good event” G = ∩Ni=0Gi. We have the following lemma, with proof in Appendix A.1:

Lemma 5.1 The good event G holds with high probability.

As N is at-most polynomial in M , to prove this lemma it suffices to prove that G0 holds with
high probability.

5.1.2. EXPECTATION COMPUTATION

We begin with the following result on the expectations of the correlation-weighted covariance:

Lemma 5.2 (Expectation Computation) Let v0 = DDTy0 and ỹk
0 = y0 − δk∈Ω0dk. We have

E[⟨y0,y⟩2 yyT |D] =
s

K

[
s− 1

K − 1
v0v

T
0 +

(
1− 2(s− 1)

K − 1

) ∑
k∈Ω0

dkd
T
k

]
+

+
s

K

[(
1− 2(s− 1)

K − 1

)2

K∑
k∈Ω0

〈
ỹk
0 ,dk

〉
dkd

T
k +

∑
k=1

〈
ỹk
0 ,dk

〉2

dkd
T
k

+

(
s− 1

K − 1

K∑
k=1

⟨y0,dk⟩2
)
DDT

]
.

(2)

Here the first row consists of signal terms, which form a matrix with s-leading eigenvalues
approximately spanning the subspace S0. By contrast, the second row consists of nuisance terms
which will ultimately not affect this subspace information: they either have small magnitude (the
third and fourth terms) or they will be removed by covariance projection (the fifth term). The proof
of this lemma is a computation and is deferred to Appendix A.2.

5.1.3. BOUNDING EXPECTATION ERROR

In this section we bound the difference between our desired biased covariance matrix and the actual
expectation of Σ̂0, resulting in error bounds intrinsic to the dimension M . Specifically, we prove
the following lemma:

Lemma 5.3 (Expectation Error Bound) With high probability,∥∥∥∥∥Ks E[Σ̂0|D]−

(
s− 1

K − 1
v0v

T
0 +

∑
k∈Ω0

dkd
T
k +

(
s− 1

K − 1

K∑
k=1

⟨y0,dk⟩2
)
DDT

)∥∥∥∥∥
2

≤ CKs log2 M

M2
(3)
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and ∥∥∥∥∥Ks (E[Σ̂0|D]− projDDT (E[Σ̂0|D])
)
−

(
s− 1

K − 1
v0v

T
0 +

∑
k∈Ω0

dkd
T
k

)∥∥∥∥∥
2

≤ CKs log2 M

M2
(4)

where v0 = DDTy0.

In other words, up to scaling, the expectation of Σ̂0 after covariance projection is approximately
equal to the low-rank matrix s−1

K−1v0v
T
0 +

∑
k∈Ω0

dkd
T
k . We begin by bounding the nuisance terms

from 2:

2
∑
k∈Ω0

〈
ỹk
0 ,dk

〉
dkd

T
k +

K∑
k=1

〈
ỹk
0 ,dk

〉2
dkd

T
k .

By G0.3 and G0.5, the first term is bounded by C
√
s logM/

√
M ; for the second term, we have from

G0.1, G0.5, and the triangle inequality that∥∥∥∥∥
K∑
k=1

〈
ỹk
0 ,dk

〉2
dkd

T
k

∥∥∥∥∥
2

≤ sup
k∈K

〈
ỹk
0 ,dk

〉2
∥DDT ∥2 ≤

CKs log2M

M2
.

This proves line 3 from Lemma 5.3.
We now incorporate the covariance projection step. We need to show that Frobenius projection

of E[Σ̂0] onto EyyT = s
KDDT removes the DDT term in equation 2 while contributing only a

negligible factor elsewhere. Since projection is scale-invariant, it suffices to prove this for projection
onto DDT in place of EyyT . We prove the following lemma:

Lemma 5.4 (Projection Error Bound) On G0,∥∥∥∥∥Ks projDDT (E[Σ̂0|D])−

(
s

K

K∑
k=1

⟨y0,dk⟩2
)
DDT

∥∥∥∥∥
2

≤ Cs log2M

M
+

CKs2

M3
.

This lemma follows from G, the triangle inequality, and the definition of Frobenius projection.
A detailed proof can be found in Appendix A.3. This lemma implies that the error in Lemma 5.3,
Equation 4 is dominated by the error from Equation 3, confirming Lemma 5.3.

5.2. Bounding Estimation Error

We now bound the resulting error from observing only the finite sample Y consisting of N random
vectors, which will result in the following lemma:

Lemma 5.5 (Estimation Error Bound) Recall that Σ̂proj
0 = Σ̂0 − proj

Σ̂
(Σ̂0). Then with high

probability∥∥∥∥∥∥Ks Σ̂proj
0 −

 s− 1

K − 1
v0v

T
0 +

∑
k∈Ω0

dkd
T
k

∥∥∥∥∥∥
2

≤ CKs log2M

M2
+

CKs2 log4M

M3/2
√
N

+
Cs5 log5M

M3
√
N

.

In particular, estimation error will be small so long as N ≫ max
{

s10 log10 M
M6 , K

2s4 log8 M
M3

}
.
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We will employ the following theorem (Vershynin (2018), theorem 5.6.1) on covariance estimation,
versions of which are well-known in the literature:

Theorem 5.1 (Vershynin (2018), Theorem 5.6.1, General Covariance Estimation (Tail Bound))
Let z be a random vector in RM . Assume that, for some κ ≥ 1,

∥z∥2 ≤ κ
√
E[∥z∥22]

almost surely. Then, for every positive integer N , {zi}Ni=1 i.i.d. copies of z, and t ≥ 0, we have:∥∥∥∥∥EzzT − 1

N

N∑
i=1

ziz
T
i

∥∥∥∥∥
2

≤ C∥EzzT ∥2

(√
κ2M(logM + t)

N
+

κ2M(logM + t)

N

)

with probability at least 1− 2 exp(−t).

We aim to apply this theorem to the correlation-weighted random vectors z = ⟨y0,y⟩y given
D, for which we will derive the following bounds on the expectation of ∥z∥2:

Lemma 5.6 Suppose that G0 holds. Then the following bounds hold:

E∥ ⟨y0,y⟩y|D∥22 ≤
Cs3

M

∥E ⟨y0,y⟩2 yyT |D∥2 = ∥E[Σ̂0|D]∥2 ≤
Cs3

M2
.

∥E ⟨y0,y⟩2 yyT |D∥F = ∥E[Σ̂0|D]∥F ≤
Cs3

M3/2
.

The result follows from G and similar computations to 5.2; details are in Appendix A.4.
With the use of a truncation trick, we can use these bounds to prove the following bound on the

deviation of Σ̂0 =
1
N

∑N
i=1 ⟨y0,yi⟩yiy

T
i from its expectation:

Lemma 5.7 (Correlation-Weighted Covariance Estimation Bound) Suppose that G0 holds. Then
with high probability:

∥Σ̂0 − E[Σ̂0|D]∥2 =

∥∥∥∥∥ 1

N

N∑
i=1

⟨y0,yi⟩2 yiy
T
i − E[Σ̂0|D]

∥∥∥∥∥
2

≤ Cs3 log2M

M3/2
√
N

This lemma follows by applying Theorem 5.1 to the truncated random vector z = 1ω ⟨y0,y⟩y
where ω is the event that ∥ ⟨y0,y⟩y∥2 ≤ Cs3/2 logM/

√
M ; details are in the appendix. We

immediately get the following bound for the Frobenius norm as a corollary:

Corollary 11 Suppose that G0 holds. Then with high probability,

∥Σ̂0 − E[Σ̂0|D]∥F ≤
Cs3 log2M

M
√
N

We can derive an analogous bound for the unweighted sample covariance:
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Corollary 12 Recall that Σ̂ = 1
NYYT = 1

N

∑N
i=1 yiy

T
i with E[Σ̂|D] = E[yyT |D] = s

KDDT .
Then with high probability:∥∥∥∥ 1

N
YYT − E[yyT |D]

∥∥∥∥
2

=
∥∥∥Σ̂− s

K
DDT

∥∥∥
2
≤ Cs logM√

M
√
N

and ∥∥∥∥ 1

N
YYT − E[yyT |D]

∥∥∥∥
F

=
∥∥∥Σ̂− s

K
DDT

∥∥∥
F
≤ Cs logM√

N

This can be proven with the same technique used to prove Lemma 5.7, so a detailed proof is omitted.
Having proven the above bounds, proving convergence of Σ̂proj

0 amounts to an extended computation
with the triangle inequality, which can be found in Appendix A.6. Combined with Lemma 5.3, these
computations complete the proof of Lemma 5.5.

5.3. Bounding Subspace Error

It remains to demonstrate that the first s eigenvectors of Σ̂
proj
0 span a subspace close to S0 =

span{dk}k∈Ω0 . It is easy to see that this holds in an asymptotic sense: by G0.1, we know DDTy0/∥DDTy0∥2 →
y0/∥y0∥2, while

∑
k∈Ω0

dkd
T
k will be close to an identity matrix on the subspace S0. However,

acquiring quantitative bounds on the subspace distance is more challenging and requires some
technical machinery.

We begin by introducing the following notation: given a matrix A ∈ RM×M , let λ1(A), . . . , λM (A)
be the eigenvalues of A in descending order. Similarly, for m ∈ {1, . . . ,M} let Sm(A) denote the
subspace spanned by the eigenvectors of A corresponding to λ1(A), . . . , λm(A).

We will prove the following result:

Theorem 5.2 Let S0 = span{dk}k∈Ω0 . As long as

ε̃ =
Ks log2M

M2
+

Ks2 log4M

M3/2
√
N

+
s5 log5M

M3
√
N

,

is sufficiently small, then with high probability

D
(
S0,Ss

(
Σ̂proj
0

))
≤ C
√
M√
K

+ Cε̃.

We can recognize the ε̃ in this bound as the bound from Lemma 5.5, while the
√
M/
√
K term

arises from the deviation of v0 from a multiple of y0. To prove the theorem, we can write the result
of Lemma 5.5 as

Σ̂
proj
0 =

s

K

v0v
T
0 +

∑
k∈Ω0

dkd
T
k + E


where E is a symmetric matrix with norm bounded by Cε̃ by Lemma 5.5. We will subsequently
ignore the outer factor of s/K as this has no effect on the matrix’s invariant subspaces.

We claim that the spectral properties of s−1
K−1v0v

T
0 +

∑
k∈Ω0

dkd
T
k are essentially the same as

those of y0y
T
0 +
∑

k∈Ω0
dkd

T
k , which clearly has s-leading subspace S0. If this holds, it then follows

from a routine application of the Davis-Kahan theorem on E that Σ̂proj
0 have lead s eigenvectors

approximately spanning S0 with an additional error proportional to ε̃ as in the theorem. Therefore,
proving the theorem reduces to proving the following lemma:
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Lemma 5.8 Let
B =

s− 1

K − 1
v0v

T
0 +

∑
k∈Ω0

dkd
T
k

Then for all i ≤ s, λi(B) > c and for all i > s, λi(B) ≤ C
√
M/
√
K. Moreover, recalling that

Ss(B) is the subspace spanned by the leading s eigenvectors of B, we have

D(S0,Ss (B)) ≤ C
√
M√
K

.

The key ingredients in our proof are the following variants of Weyl’s and the Davis-Kahan
Theorems:

Theorem 5.3 (Weyl (1912)) Let A and E be symmetric M ×M matrices, and let λi(·) represent
the i-th eigenvalue in descending order. Then for all i = 1, . . . ,M :

λi(A) + λM (E) ≤ λi(A+ E) ≤ λi(A) + λ1(E).

It follows that
|λi(A)− λi(A+ E)| ≤ ∥E∥2.

Theorem 5.4 (Davis and Kahan (1970)) Let A = E0A0E
T
0 +E1A1E

T
1 and A+E = F0Λ0F

T
0 +

F1Λ1F
T
1 be symmetric matrices with [E0, E1] and [F0, F1] orthogonal. If the eigenvalues of A0 are

contained in an interval (a, b), and the eigenvalues of Λ1 are excluded from the interval (a−δ, b+δ)
for some δ > 0, then

∥F T
1 E0∥2 ≤

∥F T
1 EE0∥2
δ

≤ ∥E∥2
δ

for any unitarily invariant matrix norm ∥ · ∥.

Put in the language of subspace distances, this theorem immediately gives the following corollary:

Corollary 13 Let A = E0A0E
T
0 +E1A1E

T
1 , A+E = F0Λ0F

T
0 +F1Λ1F

T
1 , and δ be as in Theorem

5.4. If SA and SA+E are the subspaces spanned by columns of E0 and F0, respectively, then

D(SA,SA+E) ≤
∥E∥2
δ

.

We now apply Weyl’s theorem and the Davis-Kahan theorem to our particular situation via the
following lemmas. The constants we derive are likely suboptimal, but adequate for our purposes.
We have the following lemma:

Lemma 5.9 Let A be a rank-s symmetric positive-semidefinite matrix with nonzero eigenvalues
satisfying:

0 < α ≤ λ1(A), . . . , λs(A) ≤ β

for some constants α < β. Let v ∈ S and u ∈ S⊥ be vectors such that ∥v∥ = ∥u∥ and ∥v+εu∥2 =
1. For any ε ∈ (0, α/54) and Z > max{2β, 1}, define the matrix B as:

B = Z(v + εu)(v + εu)T +A

Then for all i > s, λi(B) ≤ 24ε and

D(S(A),S(B)) ≤ 78βε

α2
.
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This lemma is mainly a restatement of Weyl’s Theorem and the Davis-Kahan Theorem to a
specific situation; a proof is in Appendix A.7. We apply this lemma to prove Lemma 5.8:
Proof We now apply Lemma 5.9 to B = s−1

K−1v0v
T
0 +

∑
k∈Ω0

dkd
T
k . Since

∑
k∈Ω0

dkd
T
k is

symmetric, rank s, and symmetric positive-semidefinite with eigenvalues in [c, C] by G0.3, it is
a valid choice for A; it remains to designate v and u. To this end, we write:

v0 = z0 + u0

where z0 is the component of v lying in S0 and u0 is the component in its orthogonal complement.
Since v0 = DDTy0, we have

v0 =
K

M
y0 +

(
DDT − K

M
I

)
y0.

Thus, since y0 ∈ S0, applying G0.1 yields:

∥v0∥2 ≥ ∥z0∥2 ≥
cK

M
∥y0∥2 ≥

cK
√
s

M

and moreover that ∥u0∥2 ≤ C
√
Ks/
√
M . We can thus write

v0 = ∥v0∥2
(

z0
∥v0∥

+
u0

∥v0∥

)
= ∥v0∥2

(
z0
∥v0∥

+

(
∥u0∥2
∥z∥2

)
∥z0∥u0

∥v0∥2∥u0∥

)
.

We can now apply Lemma 5.9 with Z = s−1
K−1∥v0∥22, v = z0/∥v0∥2, u = ∥z∥2u0

∥v0∥2∥u0∥2 , and ε =
∥u0∥2
∥z0∥2 , which tells us that

D(S0,Ss(B)) ≤ C∥u0∥2
∥z0∥2

≤ C
√
M√
K

and that all eigenvalues past the s-th are bounded by C
√
M/
√
K, as desired.

This completes the proof of Theorem 4.2.

5.4. Guarantees for subspace intersection

We now prove Theorem 4.4, which states that the intersection step with close enough estimated
subspaces Ŝ1, . . . , Ŝℓ accurately approximates the intersection of true subspaces S1, . . . ,Sℓ. The
result follows from the following lemma:

Lemma 5.10 Suppose Ω1,Ω2 are at-most-s-element subsets of {1, 2, . . . ,K} such that Ω1∩Ω2 =
∅. Let S1 = span{dk}k∈Ω1 and Sj = span{dm}m∈Ω2 . Then with high probability,

D(S1,S2) ≥ 1− Cs

M

The proof of this lemma can be found in Appendix A.8, and is derived from the fact that the
vectors in a random U-distributed dictionary are nearly orthogonal.

It follows from Lemma 5.10 that for large enough M , two subspaces Si and Sj contain vectors
closer than a constant threshold if and only if they share support (|Ωi ∩ Ωj | ≥ 1). Since this result
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holds with high probability, this holds for all pairs i, j simultaneously. Since this holds for pairwise
intersections, the analogous result automatically holds for ℓ-wise intersections as well. Theorem
4.3 now follows almost immediately: by Theorem 4.2, |D(Ŝi, Ŝj) − D(Si,Sj)| ≤ Cε, meaning
D(Ŝi, Ŝj) well approximates D(Si,Sj). Therefore by Lemma 5.10 above, D(Ŝi, Ŝj) will be small
if and only if samples yi and yj share support. Theorem 4.2 then provides the quantitative bound
of order ε for a single intersection; since there are at most ℓ intersections, the triangle inequality
bounds the total error at Cℓε ≤ Cε logM . This completes the proof of Theorem 4.3.

6. Numerical Simulations

All code used in these simulations, including an open-source Python implementation of SSDL,
is publicly available at https://github.com/sew347/spectral_dict_learn. In this
section, we supplement our theoretical results with numerical simulations. We consider two metrics.
The first is convergence in angle: how close is

∣∣∣〈d̂,d〉∣∣∣ to 1. This measure can always be converted

to the error in L2 norm by the identity ∥d̂−d∥22 = 2−2
〈
d̂,d

〉
(up to possible differences in sign).

The second main metric is the proportion of false recoveries: a false recovery occurs when subspace
intersection either returns a vector when a dictionary element does not exist in the intersection of
true subspaces, or when subspace intersection fails to return a vector when one is in the intersection
of true subspaces.

To test our theoretical hypotheses, in Figure 1, we show the maximum sparsity that can be
tolerated by SDL while remaining above a certain accuracy threshold. Specifically, this figure
shows the highest sparsity for which our test returns average angular accuracy above 0.95 with
false recovery proportion below 0.08. Tests were run on the first 50 subspaces over 5 dictionaries
in each dimension. To ensure a nontrivial number of overlaps, the support of each of the first 50
samples was seeded so that 1 ∈ Ω1,Ω2, 2 ∈ Ω3,Ω4, . . . , 25 ∈ Ω49,Ω50. In this test K = 2M , and
N was pegged to N = 30000 for M = 500 then allowed to grow as different powers of M . The
results confirm the findings of Theorem 4.1: sparsity growth is linear when N ∼ M4, but slower
than linear when N ∼M3 or N ∼M2.

7. Conclusion

We introduced SSDL as an efficient method for recovering dictionaries from high-dimensional
samples even in the linear sparsity regime. In this regime, SSDL achieves decaying errors in M
in polynomial time, improving on the best-known provable alternatives. Reproducible numerical
simulations validate these results.

Our initial research on SSDL suggests several avenues for future research. First, we suspect it is
possible to reduce the sample complexity from approximately M4 to closer to M3 by replacing the
covariance projection step with a more sophisticated method for controlling the dominant term in
2. This is because the worst term in the error in Theorem 4.2 comes from estimating the covariance
matrix in the Frobenius rather than in the operator norm, which is known to have worse sample
complexity (N ∼ M2) than estimation in the operator norm (N ∼ M ). We are also interested in
investigating to what degree the uniformity assumption in the generation of support sets Ωj can be
relaxed, to allow for more general sampling distributions. As our method involves computation of a

22

https://github.com/sew347/spectral_dict_learn


DICTIONARY LEARNING FOR THE ALMOST-LINEAR SPARSITY REGIME

Figure 1: Maximum tolerated sparsity. As predicted by Theorem 4.1, N ∼ M4 allows for linear
sparsity growth in M , while fewer samples result in sublinear growth.

fourth-order statistic, it bears some similarity to the recently introduced ℓ4-based dictionary learning
methods; future work will seek to study these connections in greater detail.
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Appendix A. Technical Proofs

In this section, we include proofs of technical lemmas which we omitted from the main text.

A.1. Proof of Lemma 5.1

We begin with the proof of our main probability result, that G occurs with high probability.

Lemma 5.1 The good event G holds with high probability.

As noted in the main text, it suffices by a union bound to prove the result for G0. We prove each
item in Definition 10 as a separate lemma. In many of these we will make use of the relationship
dk = wk/∥wk∥2 where wk are i.i.d. random vectors with independent N(0, 1) entries. Expressed
in matrix form, we have D = WN where W is a matrix with columns wk and N is a diagonal
matrix with k-th diagonal entry 1/∥wk∥2. We will make use of the following lemma:

Lemma A.1 Let w be an N(0, I) random vector. Then with high probability,
√
M − logM ≤

∥w∥2 ≤
√
M + logM .

Proof By definition, entries of w, denoted wm for m = 1, . . . ,M , are i.i.d. normal random variables
with variance 1. It follows that ∥w∥22 =

∑M
m=1w

2
m will be distributed as a chi-squared random

variable with M degrees of freedom. Such a variable obeys the following concentration inequalities
(Laurent and Massart, 2000):

P
(
∥w∥22 ≥M +

√
Mt+ 2t

)
≤ e−t

P
(
∥w∥22 ≤M −

√
Mt
)
≤ e−t

(5)

which for t ≤M yields the symmetric bound:

P
(∣∣∥w∥22 −M

∣∣ ≥ 3
√
Mt
)
≤ e−t (6)

To convert this to a bound on ∥w∥2, we use the fact that for any z, δ ≥ 0, |z − 1| ≥ δ implies
|z2 − 1| ≥ max{δ, δ2}. Accordingly,

P

(∣∣∣∣ 1√
M
∥w∥2 − 1

∣∣∣∣ ≥ δ

)
≤ P

(∣∣∣∣ 1M ∥w∥22 − 1

∣∣∣∣ ≥ max{δ, δ2}
)

Setting δ = logM/
√
M and applying 6 with t = (log2M)/9 ≤M , we have:

P
(
|∥w∥2 −

√
M | ≤ logM

)
≤ P

(
|∥w∥22 −M | ≤

√
M logM

)
≤ e−(log2 M)/9

which proves the result.
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Lemma A.2 (G0.1)
∥∥DDT − K

M I
∥∥
2
≤ C

√
K√
M

.

Proof We use the normal identity D = WN to write:∥∥∥∥DDT − K

M
I

∥∥∥∥
2

=

∥∥∥∥WN2WT − K

M
I

∥∥∥∥
2

.

By the triangle inequality,∥∥∥∥WN2WT − K

M
I

∥∥∥∥
2

≤
∥∥∥∥ 1

M
WWT − K

M
I

∥∥∥∥
2

+

∥∥∥∥WN2WT − 1

M
WWT

∥∥∥∥
2

(7)

By Lemma A.1, with high probability M −
√
M logM ≤ ∥wk∥22 ≤ M +

√
M logM for all k.

Therefore: ∥∥∥∥WN2WT − 1

M
WWT

∥∥∥∥
2

≤ ∥W∥22
∥∥∥∥N2 − 1

M
I

∥∥∥∥
2

≤ C∥W∥22
M3/2

We now bound
∥∥WWT −KI

∥∥
2
. We employ an ε-net argument (e.g. Vershynin, 2018). We letM

be a 1/4-net on the unit sphere; that is,M is a finite set such that every point on the unit sphere is
at most Euclidean distance 1/4 from a point inM. It is a fact of ε-nets that for ε = 1/4, we can
chooseM such that |M| ≤ 9M . Moreover:∥∥WWT −KI

∥∥
2
= sup

∥z∥=1
zT
(
WWT −KI

)
z ≤ 2max

z∈M
zT
(
WWT −KI

)
z

We now fix z ∈M. We have:

zT
(
WWT −KI

)
z =

K∑
k=1

⟨z,wk⟩2 −K.

By rotational invariance, ⟨z,wk⟩ ∼ N(0, 1), so we can concentrate this sum using the chi-squared
concentration inequalities 5. Choosing t = CM , we have:∣∣∣∣∣

(
K∑
k=1

⟨z,wk⟩2
)
−K

∣∣∣∣∣ ≤ √CKM + 2CM

with probability at least 1 − e−CM . UnfixingM by a union bound, this holds for all z ∈ M with
probability at least 1 − 9Me−CM , which represents high probability for sufficiently large C. Thus
with high probability, changing C if necessary,∥∥WWT −KI

∥∥
2
≤ C
√
KM

Plugging back into 7, noting that the above implies ∥W∥22 ≤ CK, we conclude:∥∥∥∥DDT − K

M
I

∥∥∥∥
2

≤ C
√
K√
M

+
CK

M3/2

with high probability. Since K/M3/2 ≪
√
K/
√
M , this completes the proof.
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Lemma A.3 (G0.2) cK√
M
≤
∥∥DDT

∥∥
F
≤ CK/

√
M .

Proof This follows immediately from G0.1 and the inequality ∥DDT ∥F ≤
√
M∥DDT ∥2.

Lemma A.4 (G0.3) All eigenvalues of the matrix
∑

k∈Ω0
dkd

T
k lie in an interval (c, C) for constants

0 < c < C.

Proof We can write
∑

k∈Ω0
dkd

T
k = DΩ0D

T
Ω0

where DΩ0 is the submatrix of D with columns
indexed by Ω0. Since the nonzero eigenvalues of DΩ0D

T
Ω0

are the same as those of DT
Ω0
DΩ0 , we

may prove the bound for the latter matrix. By Lemma A.1, it suffices to prove the result for the
matrix 1

MWT
Ω0
WΩ0 .

As in the proof of G0.1, we employ an ε-net argument. LetM be a 1/4-net of the unit sphere in
Rs, which can be chosen with at most 9s elements. For fixed z ∈M, we have:

zT
(

1

M
WT

Ω0
WΩ0 − I

)
z

Since W has i.i.d. N(0, 1) entries, zTWT
Ω0
WΩ0z will be distributed as a chi-squared random

variable with M degrees of freedom. Accordingly, by 5, we have that

|zTWT
Ω0
WΩ0z−M | ≤

√
CMs+ 2Cs

with probability at least 1 − e−Cs. Unfixing z by a union bound, this holds for all z ∈ M with
probability at least 1 − 9se−Cs, which is high probability for large enough C. We conclude that
with high probability, ∥∥∥∥ 1

M
WT

Ω0
WΩ0 − I

∥∥∥∥
2

≤ C
√
s√

M

which implies the result.

Lemma A.5 (G0.4) supk ̸=m | ⟨dk,dm⟩ | ≤ C logM√
M

.

Proof Since k ̸= m, dk and dm are independent. Then by rotational invariance, we can treat dm as
a fixed vector, say the first coordinate vector e1: ⟨dk,dm⟩ ∼ ⟨dk, e1⟩. Writing dk = wk/∥wk∥2 for
wk ∼ N(0, I), we have ⟨dk, e1⟩ = 1

∥w∥2 ⟨wk, e1⟩ ∼ 1
∥w∥2 ×N(0, 1). It is known (see (Vershynin,

2018), proposition 2.1.2) that a normally distributed random variable Zσ ∼ N(0, σ2) obeys the
concentration inequality:

P (Zσ ≥ t) ≤ σ√
2πt

exp

(
−t2

2σ2

)
(8)

Applying this to ⟨wk, e1⟩, we have |⟨wk, e1⟩| ≤ C logM with high probability. By Lemma A.1,
we know that ∥wk∥2 ≥ c/

√
M with high probability, so we conclude the result.

Lemma A.6 (G0.5) Defining ỹk
0 = y0 − δk∈Ω0dk, we have supk |

〈
ỹk
0 ,dk

〉
| ≤ C

√
s logM√
M

for all k.
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Proof By definition of wk, we know that:

∣∣∣〈ỹk
0 ,dk

〉∣∣∣ = ∣∣∣∣〈ỹk
0 ,

wk

∥wk∥2

〉∣∣∣∣ = ∥ỹk
0∥2

∥wk∥2

∣∣∣∣〈 ỹk
0

∥ỹk
0∥2

,wk

〉∣∣∣∣
We know from Lemma A.1 that ∥wk∥2 > 1/

√
2M for all k. By G0.3, ∥ỹk

0∥2 ≤ C
√
s. Thus,

|
〈
ỹk
0 ,dk

〉
| = ∥ỹ

k
0∥2

∥wk∥2

∣∣∣∣〈 ỹk
0

∥ỹk
0∥2

,wk

〉∣∣∣∣ ≤ C
√
s

∣∣∣∣〈 ỹk
0

∥ỹk
0∥2

,wk

〉∣∣∣∣
By definition, wk and ỹk

0 are independent. Therefore by rotational invariance of the normal distribution,

for each k,
〈

ỹk
0

∥ỹk
0∥2

,wk

〉
∼ N(0, 1). Applying the normal concentration inequality 8 to

〈
ỹk
0

∥ỹk
0∥2

,wk

〉
,

we have
∣∣∣〈 ỹk

0

∥ỹk
0∥2

,wk

〉∣∣∣ ≤ C logM with high probability; it follows that |
〈
ỹk
0 ,dk

〉
| ≤ C

√
s logM√
M

with high probability. The result then follows from a union bound over k.

Lemma A.7 (G0.6) Conditional on D and y0, ∥ ⟨y0,y⟩y∥2 ≤ Cs3/2 logM√
M

with high probability.

Proof By the same logic used to prove G0.3, we have ∥yi∥2 ≤ C
√
s with high probability. Therefore:

∥ ⟨y0,yi⟩yi∥2 ≤ | ⟨y0,yi⟩ |∥yi∥2 ≤ C| ⟨y0,yi⟩ |
√
s

We now control the term | ⟨y0,yi⟩ |:

⟨y0,yi⟩ =
∑
k∈Ωi

xik ⟨y0,dk⟩ =
∑

k∈Ω0−Ωi

xik +
∑
k∈Ωi

xik

〈
ỹk
0 ,dk

〉
The magnitude of the first term will depend on the size of the intersection Ω0 ∩ Ωi. It is easy to
see that E|Ω0 ∩ Ωi| = s2/K. Therefore, using a Chernoff bound2 (e.g., Vershynin, 2018, theorem
2.3.1) we see that |Ω0 ∩ Ωi| ≤ 2s2 logM/K with high probability. Then by G0.5 and Hoeffding’s
inequality, with high probability we have:

| ⟨y0,yi⟩ | ≤ C logM

(
s logM√

K
+

s√
M

)
≤ Cs logM√

M

completing the proof.

A.2. Proof of Lemma 5.2

We now prove Lemma 5.2:

2. Strictly speaking, as elements in Ωi are not chosen independently, a Chernoff bound cannot be applied directly.
However, the negative correlation of sampling with replacement guarantees better concentration properties than if
elements of Ωi were chosen independently with probability s/K; see Dubhashi and Ranjan (1996) for details.
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Lemma 5.2 (Expectation Computation) Let v0 = DDTy0 and ỹk
0 = y0 − δk∈Ω0dk. We have

E[⟨y0,y⟩2 yyT |D] =
s

K

[
s− 1

K − 1
v0v

T
0 +

(
1− 2(s− 1)

K − 1

) ∑
k∈Ω0

dkd
T
k

]
+

+
s

K

[(
1− 2(s− 1)

K − 1

)2

K∑
k∈Ω0

〈
ỹk
0 ,dk

〉
dkd

T
k +

∑
k=1

〈
ỹk
0 ,dk

〉2

dkd
T
k

+

(
s− 1

K − 1

K∑
k=1

⟨y0,dk⟩2
)
DDT

]
.

(2)

Proof As all expectations in this lemma are conditional on D and y0, we will not write this explicitly
in the proof. We can expand:

E ⟨y0,y⟩2 yyT = E
∑
k1∈Ω

∑
k2∈Ω

∑
k3∈Ω

∑
k4∈Ω

xk1xk2xk3xk4 ⟨y0,dk1⟩ ⟨y0,dk2⟩dk3d
T
k4

Since Exik = 0 for all i, k, terms in the above expectation will be nonzero only when the indices
are paired. Accordingly:

E ⟨y0,y⟩2 yyT = E
∑
k∈Ω

∑
m∈Ω

x2kx
2
m ⟨y0,dk⟩2 dmdT

m+E
∑
k∈Ω

∑
m∈Ω,m ̸=k

x2kx
2
m ⟨y0,dk⟩ ⟨y0,dm⟩dkd

T
m

= E
K∑
k=1

K∑
m=1

1{k,m}⊆Ω ⟨y0,dk⟩2 dmdT
m + E

K∑
k=1

K∑
m̸=k

1{k,m}⊆Ω ⟨y0,dk⟩ ⟨y0,dm⟩dkd
T
m

=

K∑
k=1

K∑
m=1

P ({k,m} ⊆ Ω) ⟨y0,dk⟩2 dmdT
m +

K∑
k=1

K∑
m̸=k

P ({k,m} ⊆ Ω) ⟨y0,dk⟩ ⟨y0,dm⟩dkd
T
m

=
s

K

K∑
k=1

⟨y0,dk⟩2 dkd
T
k+

s(s− 1)

K(K − 1)

K∑
k=1

K∑
m̸=k

⟨y0,dk⟩2 dmdT
m+

s(s− 1)

K(K − 1)

K∑
k=1

K∑
m̸=k

⟨y0,dk⟩ ⟨y0,dm⟩dkd
T
m

Next, we complete the square by transferring part of the first term into the other two:

E ⟨y0,y⟩2 yyT =

(
s

K
− 2s(s− 1)

K(K − 1)

)( K∑
k=1

⟨y0,dk⟩2 dkd
T
k

)
+

+
s(s− 1)

K(K − 1)

(
K∑
k=1

⟨y0,dk⟩2
)(

K∑
k=1

dkd
T
k

)
+

s(s− 1)

K(K − 1)

(
K∑
k=1

⟨y0,dk⟩dk

)(
K∑
k=1

⟨y0,dk⟩dk

)T

(9)

Lastly, we note that for k ∈ Ω0, ⟨y0,dk⟩ = 1 + ⟨y0 − dk,dk⟩ = 1 +
〈
ỹk
0 ,dk

〉
, while for k > s,

ỹk
0 = y0. Accordingly we can substitute:

K∑
k=1

⟨y0,dk⟩2 dkd
T
k =

∑
k∈Ω0

dkd
T
k + 2

∑
k∈Ω0

〈
ỹk
0 ,dk

〉
dkd

T
k +

K∑
k=1

〈
ỹk
0 ,dk

〉2
dkd

T
k

The result follows by making these substitutions in 9, factoring out s/K, and noting that
∑K

k=1 dkd
T
k =

DDT and v0 = DDTy0 =
∑K

k=1 ⟨y0,dk⟩dk by definition.
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A.3. Proof of Lemma 5.4

We now provide a detailed proof of Lemma 5.4:

Lemma 5.4 (Projection Error Bound) On G0,∥∥∥∥∥Ks projDDT (E[Σ̂0|D])−

(
s

K

K∑
k=1

⟨y0,dk⟩2
)
DDT

∥∥∥∥∥
2

≤ Cs log2M

M
+

CKs2

M3
.

The proof will employ the following easily proven lemma, which states that Frobenius projection
with D will not increase the 2-norm of a matrix by more than a constant factor.

Lemma A.8 Supposes G0 holds. Then for any matrix A ∈ RM×M ,∥∥∥∥∥
〈
A,DDT

〉
F

∥DDT ∥2F
DDT

∥∥∥∥∥
2

≤ C∥A∥2.

Proof By the Cauchy-Schwarz inequality, G0.1, and G0.2∥∥∥∥∥
〈
A,DDT

〉
F

∥DDT ∥2F
DDT

∥∥∥∥∥
2

≤ ∥A∥F ∥DDT ∥2
∥DDT ∥F

≤ C∥A∥F√
M

.

The result follows from the fact that ∥A∥F ≤
√
M∥A∥2.

We now prove Lemma 5.4:
Proof [Proof of Lemma 5.4] From 2, we have:

K

s
E[⟨y0,y⟩2 yyT |D] =

s− 1

K − 1
v0v

T
0 +

(
1− 2(s− 1)

K − 1

) ∑
k∈Ω0

dkd
T
k+

+

(
1− 2(s− 1)

K − 1

)(
2
∑
k∈Ω0

〈
ỹk
0 ,dk

〉
dkd

T
k +

∑
k=1

〈
ỹk
0 ,dk

〉2
dkd

T
k

)
+

(
s− 1

K − 1

K∑
k=1

⟨y0,dk⟩2
)
DDT

(10)

The fifth term will be removed entirely by projection. Since the third and fourth terms are known to
be small from the main text, Lemma A.8 indicates we only need to bound the projection of the first
and second terms.

We first bound inner products
〈∑

k∈Ω0
dkd

T
k ,DDT

〉
F

and
〈
v0v

T
0 ,DDT

〉
F

. We consider each
term individually, beginning with the first. We write:〈∑

k∈Ω0

dkd
T
k ,DDT

〉
F

=
∑
k∈Ω0

K∑
m=1

⟨dk,dm⟩2 =
∑
k∈Ω0

1 +
∑
k∈Ω0

K∑
m ̸=k

⟨dk,dm⟩2

which by the triangle inequality and G0.4 will be bounded by∣∣∣∣∣∣
〈∑

k∈Ω0

dkd
T
k ,DDT

〉
F

∣∣∣∣∣∣ ≤ s+
CKs log2M

M
(11)
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Lastly, we bound
〈

s−1
K−1v0v

T
0 ,DDT

〉
F

. We have:

∣∣∣∣〈 s− 1

K − 1
v0v

T
0 ,DDT

〉
F

∣∣∣∣ ≤ s

K

∣∣∣∣∣
K∑
k=1

〈
v0v

T
0 ,dkd

T
k

〉
F

∣∣∣∣∣ = s

K

K∑
k=1

⟨v0,dk⟩2 .

Noting that v0 = DDTy0, we know that

s

K

K∑
k=1

⟨v0,dk⟩2 =
s

K
vT
0 (DDT )v0 =

s

K
yT
0 (DDT )3y0 ≤

s

K
∥DDT ∥32∥y0∥22 ≤

CK2s2

M3
(12)

by G0.1 and G0.3.
Further, by G0.1 and G0.2, we have:∥∥∥∥ DDT

∥DDT ∥2F

∥∥∥∥
2

≤ C

K

We combine this with 11 and 12 to conclude that∥∥∥∥∥∥
〈∑

k∈Ω0
dkd

T
k ,DDT

〉
F
+
〈

s−1
K−1v0v

T
0 ,DDT

〉
F

∥DDT ∥2F
DDT

∥∥∥∥∥∥
2

≤ Cs log2M

M
+

CKs2

M3

as desired.

A.4. Proof of Lemma 5.6

We now prove Lemma 5.6:

Lemma 5.6 Suppose that G0 holds. Then the following bounds hold:

E∥ ⟨y0,y⟩y|D∥22 ≤
Cs3

M

∥E ⟨y0,y⟩2 yyT |D∥2 = ∥E[Σ̂0|D]∥2 ≤
Cs3

M2
.

∥E ⟨y0,y⟩2 yyT |D∥F = ∥E[Σ̂0|D]∥F ≤
Cs3

M3/2
.

Proof We repeat the computations of Lemma 5.2, replacing outer products with inner products.
This yields:

E[∥ ⟨y0,y⟩y∥22|D] =

(
s

K
− 2s(s− 1)

K(K − 1)

) K∑
k=1

⟨y0,dk⟩2+
s(s− 1)

K(K − 1)

K

K∑
k=1

⟨y0,dk⟩2 +

∥∥∥∥∥
K∑

k=1

⟨y0,dk⟩dk

∥∥∥∥∥
2

2



=

(
s(s− 1)

(K − 1)
+

s

K
− 2s(s− 1)

K(K − 1)

) K∑
k=1

⟨y0,dk⟩2 +
s(s− 1)

K(K − 1)

∥∥DDTy0

∥∥2
2
.
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We know by G0.1 and G0.3 that

K∑
k=1

⟨y0,dk⟩2 = yT
0 DDTy0 ≤

CKs

M

and that ∥∥DDTy0

∥∥2
2
= yT

0 (DDT )2y0 ≤
CK2s

M2
.

We conclude that

E[∥ ⟨y0,y⟩y∥22|D] ≤ Cs3

M
.

We proceed to bound the covariance E ⟨y0,y⟩2 yyT = E[Σ̂0|D]. From Lemma 5.3, we can infer
that E ⟨y0,y⟩2 yyT satisfies:

E[Σ̂0|D] =
s

K

 s− 1

K − 1
v0v

T
0 +

∑
k∈Ω0

dkd
T
k +

(
s

K

K∑
k=1

⟨y0,dk⟩2
)
DDT + E


where E has negligible norm, as does

∑
k∈Ω0

dkd
T
k by G0.3. By G0.1 and G0.3, we know that

s

K

∥∥∥∥ s− 1

K − 1
v0v

T
0

∥∥∥∥
2

≤ s2

K2
∥v0∥22 =

s2

K2
× yT

0 (DDT )2y0 ≤
s2

K2
× CK2s

M2
=

Cs3

M2

and likewise that(
s2

K2

K∑
k=1

⟨y0,dk⟩2
)
DDT =

s2

K2
× yT

0 DDTy0 × ∥DD∥2 ≤
s2

K2
× CK2s

M2
=

Cs3

M2
.

This proves the bound on ∥E[Σ̂0|D]∥2; the bound on the Frobenius norm follows immediately from
the fact that ∥E[Σ̂0|D]∥F ≤

√
M∥E[Σ̂0|D]∥2.

A.5. Proof of Lemma 5.7

In this section, we detail the proof of Lemma 5.7:

Lemma 5.7 (Correlation-Weighted Covariance Estimation Bound) Suppose that G0 holds. Then
with high probability:

∥Σ̂0 − E[Σ̂0|D]∥2 =

∥∥∥∥∥ 1

N

N∑
i=1

⟨y0,yi⟩2 yiy
T
i − E[Σ̂0|D]

∥∥∥∥∥
2

≤ Cs3 log2M

M3/2
√
N

Proof In this lemma, the expectations conditioned on D are implied and we do not write them
explicitly. We are interested in estimating the true covariance matrix of the random vector ⟨y0,y⟩y
by its sample covariance 1

N

∑N
i=1 ⟨y0,yi⟩2 yiy

T
i . By G0.6, we know that with high probability,

∥ ⟨y0,yi⟩yi∥2 ≤ C logM
√
E[∥ ⟨y0,y⟩y∥22]
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We would like to apply Theorem 5.1 with κ = C logM , but since this is only with high probability,
not almost surely, we cannot apply it directly.

Instead, let ω be the event that ∥ ⟨y0,y⟩y∥22 ≤ Cs3/2 logM/
√
M and consider the truncated

random vector z = 1ω ⟨y0,y⟩y. By G0.6, ω occurs with high probability, and therefore z = y with
high probability. Since y0 and y are each sum of s unit vectors, it is easy to see that ∥ ⟨y0,y⟩y0∥22 ≤
s6. Therefore:

E∥ ⟨y0,y⟩y∥22 − (1− P (ω))s6 ≤ E∥z∥22 ≤ E∥ ⟨y0,y⟩y∥22

Since ω occurs with high probability, E∥z∥22 = E∥ ⟨y0,y⟩y∥22 up to a correction vanishing faster
than any polynomial in M . Therefore we may safely substitute E∥z∥22 = E∥ ⟨y0,y⟩y∥22 in the
following bounds. With this substitution, we have that almost surely, ∥z∥2 ≤ C logM

√
E∥z∥22.

We now consider the sample {yi}Ni=1 consisting of N i.i.d. copies of y, and define zi =
1ωi ⟨y0,yi⟩yi where ωi is the event that ∥ ⟨y0,yi⟩yi∥22 ≤ Cs3/2 logM/

√
M . The zi are i.i.d.

copies of z, so we can apply Theorem 5.1 to the sample covariance of the random vectors zi =
1ωi ⟨y0,y⟩y with κ = C logM , yielding:∥∥∥∥∥ 1

N

N∑
i=1

ziz
T
i − Eziz

T
i

∥∥∥∥∥
2

≤

√
CM(log3M + t log2M)

N
× ∥EΣ̂0∥2

with probability at least 1 − exp(−t). Choosing t = log2M and applying Lemma 5.6, we have
with high probability:∥∥∥∥∥ 1

N

N∑
i=1

ziz
T
i − Eziz

T
i

∥∥∥∥∥
2

≤

√
CM log4M

N
× s3 log4M

M2
≤ Cs3 log6M

M3/2
√
N

Yet we have already noted that with high probability, zi = ⟨y0,yi⟩yi for all i. Therefore, with high
probability, ∥∥∥∥∥ 1

N

N∑
i=1

⟨y0,yi⟩2 yiy
T
i − Eziz

T
i

∥∥∥∥∥
2

≤ Cs3 log2M

M3/2
√
N

(13)

Since we have already concluded that ∥EΣ̂0 − Eziz
T
i ∥2 is small, we conclude the result.

A.6. Proof of Lemma 5.5

In this section, we complete the proof of Lemma 5.5.

Lemma 5.5 (Estimation Error Bound) Recall that Σ̂proj
0 = Σ̂0 − proj

Σ̂
(Σ̂0). Then with high

probability∥∥∥∥∥∥Ks Σ̂proj
0 −

 s− 1

K − 1
v0v

T
0 +

∑
k∈Ω0

dkd
T
k

∥∥∥∥∥∥
2

≤ CKs log2M

M2
+

CKs2 log4M

M3/2
√
N

+
Cs5 log5M

M3
√
N

.

In particular, estimation error will be small so long as N ≫ max
{

s10 log10 M
M6 , K

2s4 log8 M
M3

}
.
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Proof All expectations in the following are implicitly conditioned on D. We aim to bound the
difference between the result of covariance projection with expected versus sample covariance
matrices:

∥Σ̂0 − proj
Σ̂
(Σ̂0)− (EΣ̂0 − projDDT (EΣ̂0))∥2.

By the triangle inequality this is bounded by:

∥Σ̂0 − EΣ̂0∥2 + ∥projDDT (EΣ̂0)− projDDT (Σ̂0)∥2 + ∥projDDT (Σ̂0)− proj
Σ̂
(Σ̂0)∥2 (14)

From Lemma 5.7, we know that ∥Σ̂0 − Σ∥2 ≤ Cs3 log2 M

M3/2
√
N

. We now expand the second term in 14:

∥projDDT (EΣ̂0)− projDDT (Σ̂0)∥2 = ∥projDDT (EΣ̂0 − Σ̂0)∥2 =

=

∣∣∣〈DDT , EΣ̂0 − Σ̂0

〉
F

∣∣∣
∥DDT ∥2F

∥DDT ∥2 ≤
∥EΣ̂0 − Σ̂0∥F
∥DDT ∥F

∥DDT ∥2

by the Cauchy-Schwarz inequality. By Lemma 5.7, G0.1, and G0.2:

∥EΣ̂0 − Σ̂0∥F
∥DDT ∥F

∥DDT ∥2 ≤
Cs3 log2M

M
√
N

× C
√
M

K
× CK

M
≤ Cs3 log2M

M3/2
√
N

We now turn to the final term in 14, which can be controlled as follows:

∥projDDT (Σ̂0)− proj
Σ̂
(Σ̂0)∥2 =

∥∥∥∥∥∥
〈
Σ̂0,DDT

〉
F

∥DDT ∥2F
−

〈
Σ̂0, Σ̂

〉
F

∥Σ̂∥2F

∥∥∥∥∥∥
2

∥Σ̂0∥2

=

∣∣∣∣∣
〈
Σ̂0,ΣD −

∥DDT ∥2F
∥Σ̂∥2F

Σ̂

〉
F

∣∣∣∣∣× ∥Σ̂0∥2
∥DDT ∥2F

≤

∥∥∥∥∥DDT −
∥DDT ∥2F
∥Σ̂∥2F

Σ̂

∥∥∥∥∥
2

× ∥Σ̂0∥F ∥Σ̂0∥2
∥DDT ∥2F

(15)

By Lemma 5.7, we can substitute ∥EΣ̂0∥2 and ∥EΣ̂0∥F for ∥Σ̂0∥2 and ∥Σ̂0∥F respectively, up to
a constant factor. We know from Lemma 5.6, ∥EΣ̂0∥F ≤ Cs3 log4 M

M3/2 while ∥EΣ̂0∥2 ≤ Cs3 log4 M
M2 .

Then by G0.2:

∥Σ̂0∥F ∥Σ̂0∥2
∥DDT ∥2F

≤ Cs3 log2M

M3/2
× Cs3 log2M

M2
× CM

K2
≤ Cs6 log4M

K2M5/2

To bound the first term in equation 15, we use the triangle inequality, which yields:∥∥∥∥∥DDT −
∥DDT ∥2F
∥Σ̂∥2F

Σ̂

∥∥∥∥∥
2

≤ K

s

(∥∥∥ s

K
DDT − Σ̂

∥∥∥
2
+

∣∣∣∣∣
∥∥ s
KDDT

∥∥2
F

∥Σ̂∥2F
− 1

∣∣∣∣∣ ∥Σ̂∥2
)

(16)

By corollary 12 and G0.1, we have ∥Σ̂∥2 ≤ s
K ×

CK
M = Cs

M . By the same corollary and G0.2, we
have ∥Σ̂∥2F ≥

s
K ×

cK2

M = cKs
M . Thus, noting that |∥a∥ − ∥b∥| ≤ ∥a− b∥ for any norm, we have:∣∣∣∣∣

∥∥ s
KDDT

∥∥2
F

∥Σ̂∥2F
− 1

∣∣∣∣∣ =
∣∣∣∥∥ s

KDDT
∥∥2
F
− ∥Σ̂∥2F

∣∣∣
∥Σ̂∥2F

≤
∥Σ̂− s

KDDT ∥F
∥Σ̂∥2F

≤ Cs logM√
N

×CM

Ks
≤ CM logM

K
√
N
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where in the second to last inequality we again used corollary 12. Combining the pieces in 16, we
have: ∥∥∥∥∥DDT −

∥DDT ∥2F
∥Σ̂∥2F

Σ̂

∥∥∥∥∥
2

≤ K

s

(
Cs logM√
M
√
N

+
CM logM

K
√
N

× Cs

M

)
≤ CK logM√

M
√
N

Plugging back into 15, we have:

∥projDDT (EΣ̂0)− projDDT (Σ̂0)∥2 ≤
CK logM√

M
√
N
× Cs6 log4M

K2M5/2
≤ Cs6 log5M

KM3
√
N

Combining our estimates for the three terms, we have:

∥Σ̂0 − proj
Σ̂
(Σ̂0)− (EΣ̂0 − projDDT (EΣ̂0))∥2 ≤

Cs3 log4M

M3/2
√
N

+
Cs6 log5M

KM3
√
N

Factoring out a factor of s
K and plugging in to Lemma 5.4 completes the proof.

A.7. Proof of Lemma 5.9

In this section, we prove Lemma 5.9:

Lemma 5.9 Let A be a rank-s symmetric positive-semidefinite matrix with nonzero eigenvalues
satisfying:

0 < α ≤ λ1(A), . . . , λs(A) ≤ β

for some constants α < β. Let v ∈ S and u ∈ S⊥ be vectors such that ∥v∥ = ∥u∥ and ∥v+εu∥2 =
1. For any ε ∈ (0, α/54) and Z > max{2β, 1}, define the matrix B as:

B = Z(v + εu)(v + εu)T +A

Then for all i > s, λi(B) ≤ 24ε and

D(S(A),S(B)) ≤ 78βε

α2
.

We will use the following lemma:

Lemma A.9 Let v and u be orthogonal unit vectors, and let ε ∈ (0, 1). Then there exist matrices
B1,B2 with orthonormal columns spanning the orthogonal complements of v and v+εu, respectively,
such that

∥B1 −B2∥2 ≤ 4ε

Proof Without loss of generality, we can assume that v = e1 and u = e2. We can choose B1

and B2 to be identically equal on the orthogonal complement of the span of e1, e2. Accordingly, it
suffices to prove the result for two-dimensional matrices. Let

B1 =

(
1 0
0 1

)
, B2 =

1√
1 + ε2

(
1 −ε
ε 1

)
.
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The result follows from taking the difference B1 −B2 and applying the inequality ∥B1 −B2∥2 ≤
∥B1 −B2∥F .

We now use this lemma to prove 5.9:
Proof [Proof of Lemma 5.9] Since B has rank at most s + 1, we may restrict consideration to the
s + 1-dimensional subspace given by the direct sum of S with the span of u. We note that Weyl’s
theorem ensures that the lead eigenvalue λ of B satisfies Z ≤ λ ≤ Z + β.

We first show that the lead eigenspaces of B differs from that of Z(v+εu)(v+εu)T by at most
ε/Z. We first prove this result in the case that A = Is, the first s columns of an identity matrix.
Consider the lead eigenvector B corresponding to lead eigenvalue λ. There exists w orthogonal to
v + εu such that

B(v + εu+w) = Z(v + εu) + v + Isw = λ(v + εu+w)

If w = 0, the result holds, so we assume ∥w∥2 > 0. Taking inner products of this equation with w,
we have:

⟨v,w⟩+ ⟨Isw,w⟩ = λ∥w∥22
Since 0 ≤ ⟨Isw,w⟩ ≤ ∥w∥22, we have further that

⟨v,w⟩ ≥ (λ− 1)∥w∥22.

Therefore, since ⟨v + εu,w⟩ = 0, we have ⟨v,w⟩ = −ε ⟨u,w⟩, so by the Cauchy-Schwarz
inequality,

ε∥u∥2∥w∥≥(λ− 1)∥w∥22 =⇒ ε∥u∥2 ≥ (λ− 1)∥w∥2

where division by ∥w∥2 is permissible as we assumed w ̸= 0. Since λ ≥ Z, we conclude that
∥w∥2 ≤ ε/(Z − 1) ≤ 2ε/Z.

We now extend this to the s-dimensional subspace S by studying the complement of the eigenvectors.
Let E be a matrix with columns forming and orthogonal basis of the orthogonal complement of
v + εu, and let Ew be the same for v + εu +w. By Lemma A.9, we can choose these such that
∥E1 −E2∥2 ≤ 8ε/Z. We consider the matrix:

ET
wBEw = ETBE+ (Ew −E)TBE+ETB(Ew −E) + (Ew −E)TB(Ew −E).

Since ∥E−Ew∥2 ≤ 8ε/Z, we have that

∥(Ew −E)TBE+ETB(Ew −E) + (Ew −E)TB(Ew −E)∥2 ≤ 27ε.

as each term is bounded individually by 9ε. Since E is a basis of the complement of v + εu,
ETBE = ETAE, which will have eigenvectors spanning the orthogonal complement of Ss(A)
with respect to v + εu. Since the above matrices are symmetric, Weyl’s Theorem tells us that any
eigenvalues of ETBE beyond the first (s-1) will be bounded by 24ε. Since ε < α/54, the first s−1
eigenvalues of ETAE are separated from zero by at least α/2; thus we can apply the Davis-Kahan
theorem to conclude that

D(Ss−1(E
TAE),Ss−1(E

T
wBEw) ≤ 54ε/α.
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We now repeat this application of Lemma A.9 with bases for the spans of v and v + εu. We
now use Ev as a basis for the orthogonal complement of v, chosen according the lemma, with E
representing a different basis if necessary. Since

ETAE = ET
vAEv(E−Ev)

TBE+ETB(E−Ev) + (E−Ev)
TB(E−Ev),

applying the lemma gives us that ETAE ≈ ET
vAEv up to a correction with norm at most 12ε. By

Weyl’s and the Davis-Kahan theorem, then,

D(Ss−1(E
TAE),Ss−1(E

T
vAEv) ≤ 24ε/α.

We conclude by the triangle inequality that the subspace spanned by eigenvectors 2 through s − 1
of B is distance at most 78ε/α from the orthogonal complement of v in Ss(A). Since we already
concluded that the leading eigenvector of B is close to v, the result for A = Is follows.

It remains to extend this result to all rank s positive-semidefinite matrices A. We consider
the matrix A which equals A on Ss(A) and is the identity on its complement. This matrix will
be positive-definite and therefore has a square-root-inverse A−1/2 with norm at most 1/

√
α. By

construction, then, A−1/2AA−1/2 = Is as before. We have:

B = A1/2
(
ZA−1/2(v + εu)(v + εu)A−1/2 + Is

)
A1/2

Since these matrices remain symmetric, we can then apply the previous result to the matrix
inside the parentheses with v → ∥v∥2

∥A−1/2v∥2
A−1/2v and Z → Z∥A−1/2v∥2 ≤ Z/α, giving an

subspace error of at most 78ε
α2 . Applying the copies of A1/2 outside the parentheses can magnify

this by at most a further factor of β, so we conclude that

D(Ss(B),Ss(A)) ≤ 78βε

α2

for generic A as desired.

A.8. Proof of Lemma 5.10

We now prove Lemma 5.10:

Lemma 5.10 Suppose Ω1,Ω2 are at-most-s-element subsets of {1, 2, . . . ,K} such that Ω1 ∩Ω2 =
∅. Let S1 = span{dk}k∈Ω1 and Sj = span{dm}m∈Ω2 . Then with high probability,

D(S1,S2) ≥ 1− Cs

M

Proof Without loss of generality, we may assume |Ω1| = |Ω2| = s. Let P1,P2 represent the
projection matrices onto S1 and S2 respectively. By rotation invariance, we may assume that S2 is
fixed while S1 remains random.

We apply an ε-net argument over the unit sphere of S2: letM2 be a 1/4-net of the unit sphere
in S2, chosen to have cardinality at most 9s. Now let z ∈ M2. Again applying rotation invariance,
we may assume that S1 is fixed while z is random. It can be shown that

P

(
∥P1z∥2 >

C
√
s√

M

)
≤ 10−s
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(say) for large enough C; see, for example, (Vershynin, 2018, Lemma 5.3.2) for details. Unfixing
z ∈M2 by a union bound, it follows that

P

(
sup
z∈S2

∥P1z∥2
∥z∥2

>
2C
√
s√

M

)
≤ P

(
max
z∈M2

∥P1z∥2 >
C
√
s√

M

)
≤ (9/10)s

This implies that, with high probability, for every unit vector z ∈ S, | ⟨P1z, z⟩ | ≤ C
√
s/
√
M .

Accordingly, by the Pythagorean theorem,

D(S1,S2) ≥
√

1− Cs/M.

substituting a new constant C if necessary. Applying the fact that
√
1− x ≥ 1 − x/4 for x near

zero, we conclude the result.

A.9. Proof of Theorem 4.4

Lastly, we prove Theorem 4.4:

Theorem 4.4 (Polynomially-Many Intersections Suffice) Let ℓ be the smallest integer such that
(s/K)ℓ < 1/2K, and assume Ωi, i = 1, . . . ,K are uniformly distributed among s-element subsets
of {1, . . . ,K}. For positive integer J and j ∈ {1, . . . , J/ℓ}, define the non-intersecting ℓ-fold
intersections Ωℓ

j as:

Ωℓ
j =

ℓ⋂
p=1

Ω(j−1)ℓ+p

Then as long as J ≥ K log3K, with high probability for every k ∈ {1, . . . ,K} there exists a
j ∈ {1, . . . , J/ℓ} such that Ωℓ

j = {k}.

Proof We begin by fixing k and then computing the probability that k is the unique element of
intersection for a fixed Ωℓ

j . We know that P
(
k ∈ Ωℓ

j

)
= (s/K)ℓ, while the probability that another

element is in the intersection is bounded by K(s/K)ℓ, so we have:

P

⋂
j∈Ii

Ωi = {k}

 ≥ ( s

K

)ℓ(
1−K

( s

K

)ℓ)
≥ 1

2

( s

K

)ℓ
We now unfix the set I as follows. We divide {1, 2, . . . , N} into disjoint ℓ-element subsets Ii. We
define the random variables Hi to be indicators for the events

{⋂
j∈Ii Ωi = {k}

}
. Since the sets

Ii do not overlap, these are J/ℓ independent Bernoulli random variables with success probability at
least (s/K)ℓ/2. Since (s/K)ℓ < 1/2K, it follows that:

P

 J/ℓ∑
i=1

Hi = 0

 ≤ (1− 1

2

( s

K

)ℓ)J/ℓ

≤
(
1− 1

4K

)J/ℓ

≤ exp

(
− J

4Kℓ

)

Since J ≥ K log3K and ℓ =
⌈

log(2K)
log(K/s)

⌉
, we conclude the above bound tends to zero faster than

any polynomial, which still holds when unfixing k by a union bound. This completes the proof.
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