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Abstract
This paper provides some first steps in developing empirical process theory for functions taking
values in a vector space. Our main results provide bounds on the entropy of classes of smooth
functions taking values in a Hilbert space, by leveraging theory from differential calculus of vector-
valued functions and fractal dimension theory of metric spaces. We demonstrate how these entropy
bounds can be used to show the uniform law of large numbers and asymptotic equicontinuity of the
function classes, and also apply it to statistical learning theory in which the output space is a Hilbert
space. We conclude with a discussion on the extension of Rademacher complexities to vector-valued
function classes.
Keywords: Empirical Processes, Vector-Valued Functions, Metric Entropy, Upper Box-Counting
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1. Introduction

Empirical process theory is an important branch of probability theory that deals with the empirical
measure Pn = 1

n

∑n
i=1 δXi based on random independent and identically distributed (i.i.d.) copies

X1, ..., Xn of a random variableX on a domain X , and stochastic processes of the form {Pnf−Pf :

f ∈ F}, where F is a class of functions X → R. Due to its very nature, the theory has found a
wealth of applications in statistics (van der Vaart and Wellner, 1996; van de Geer, 2000; Kosorok,
2008; Shorack and Wellner, 2009; Dudley, 2014). In particular, it has been the major tool in analysing
properties of estimators in supervised learning, both in regression and classification (Györfi et al.,
2006; Steinwart and Christmann, 2008; Shalev-Shwartz and Ben-David, 2014).

In the traditional (and still dominant) supervised learning setting, the output space is (a subset of)
R, but there is a rapidly growing literature in machine learning and statistics on learning vector-valued
functions (Micchelli and Pontil, 2005; Álvarez et al., 2012), and efforts are already under way to
explore ways to make them faster and more robust (Laforgue et al., 2020; Lambert et al., 2022;
Ahmad et al., 2022). This occurs, for example, in multi-task or multi-output learning (Evgeniou et al.,
2005; Yousefi et al., 2018; Xu et al., 2019; Reeve and Kaban, 2020), functional response models
(Morris, 2015; Kadri et al., 2016; Brault, 2017; Saha and Palaniappan, 2020), kernel conditional
mean embeddings (Grünewälder et al., 2012; Park and Muandet, 2020a) or structured prediction
(Ciliberto et al., 2020; Laforgue et al., 2020), among others. Very recently, there is even an interest
in the more general setting of learning mappings between two metric spaces (Hanneke et al., 2020;
Cohen and Kontorovich, 2022).

There are valuable works analysing the properties of vector-valued regressors with specific
algorithms, notably integral operator techniques in vector-valued reproducing kernel Hilbert space
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regression (Caponnetto and De Vito, 2006; Kadri et al., 2016; Singh et al., 2019; Park and Muandet,
2020b; Cabannes et al., 2021), and in the form of (local) Rademacher complexities, empirical process
theoretic techniques have been applied to cases where the output space is finite dimensional (Yousefi
et al., 2018; Li et al., 2019; Reeve and Kaban, 2020; Wu et al., 2021). However, as general empirical
process theory is developed, to the best of our knowledge, exclusively for classes of real-valued
functions, the powerful armoury of empirical process theory has not been utilised fully to analyse
vector-valued learning problems. The aim of this paper is to provide some first steps towards
developing a theory of empirical processes with vector-valued functions.

An indispensable object in empirical process theory is metric entropy of function classes1, and
one of the most frequently used function classes is that of smooth functions. In our main results
in Section 3, we investigate how we can bound the entropy of classes of smooth vector-valued
functions. When the output space is infinite-dimensional, bounding the entropy becomes far less
trivial, compared to the case of real-valued function classes. For example, seemingly benign function
classes such as the classes of constant functions onto the unit ball clearly has infinite entropy with
respect to any reasonable metric, since the unit ball in an infinite-dimensional Hilbert space is not
totally bounded (Bollobás, 1999, p.62, Corollary 6).

This requires us to look for other ways to restrict the functions than in the norm sense. Our
contributions are as follows.

• In the main results of this paper in Section 3, we propose considering subsets of the output
space with specific geometric features. We leverage notions from dimension theory of metric
spaces (Heinonen et al., 2001; Robinson, 2010; Fraser, 2020). We investigate how restricting
our function classes to subsets of the output space in three different ways, to have (i) finite
Assouad dimension, (ii) finite upper box-counting dimension and (iii) at most exponentially
growing entropy, can help us bound the entropies of the function classes (Theorems 4, 5 and 6
respectively).

• We use these entropy bounds to show uniform law of large numbers and asymptotic equiconti-
nuity of the corresponding function classes (Corollaries 7 and 8).

• In Section 4, we demonstrate applications in statistical learning theory, and discuss the
generalisation of the popular Rademacher complexity to the vector-valued setting.

1.1. Mathematical Preliminaries & Notations

Let Y be a separable Hilbert space over R, with its inner product and norm denoted by ⟨·, ·⟩Y and
∥·∥Y respectively. We denote by Y the Borel σ-algebra of Y , i.e. the σ-algebra generated by the
open subsets of Y . Let (X ,X ) be a measurable set, and Q a probability measure on it.

1. In the usual theory of empirical processes with real-valued functions, there are two major tools. The first is to consider
the entropy with respect to the empirical measure Pn. One usually requires this entropy to be uniformly bounded
over all realisations of the samples X1, ..., Xn, and the most widely-used example of function classes that satisfy this
property are the celebrated Vapnik-Chervonenkis (VC) subgraph classes. The second tool is what is known as entropy
with bracketing with respect to the underlying measure P (see, for example, van de Geer (2000, p.122, Theorem 2.4.1
and p.129, Section 2.5.2), van de Geer (2000, Sections 3.1 and 5.5) and Dudley (2014, Chapter 7)). However, both VC
subgraph classes and entropy with bracketing make explicit use of the fact that the output space R is totally-ordered,
and makes use of objects such as {x ∈ X : x ≤ g(x0)} and {x ∈ X : g1(x0) ≤ x ≤ g2(x0)}, where g, g1, g2 ∈ G
and x0 ∈ X . A direct extension is clearly not possible when our output space Y has any dimension greater than 1, and
an attempt at an extension is even more difficult when Y is infinite-dimensional. In this paper, we do not investigate
whether it is possible to obtain meaningful results by extending these ideas, and leave it for future work.
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Bochner Integration A function g : X → Y is said to be Bochner-integrable with respect to
Q if g is strongly measurable and if ∥g∥Y is Q-integrable (Dinculeanu, 2000, p.15, Definition 35),
and denote its Bochner integral by

∫
gdQ ∈ Y . We denote the space of Bochner Q-integrable

functions by L1(X , Q;Y). Further, for 1 ≤ p < ∞, we denote by Lp(X , Q;Y) the space of
functions g : X → Y such that

∫
∥g∥pYdQ < ∞, and denote the corresponding seminorm by

∥g∥pp,Q =
∫
∥g∥pYdQ. The case p = 2 is a special case, where L2(X , Q;Y) can be equipped with

a semi-inner product ⟨g1, g2⟩2,Q =
∫
⟨g1, g2⟩YdQ. Finally, we denote by L∞(X ;Y) the space of

functions g : X → Y such that the uniform norm ∥g∥∞ = supx∈X
∥∥g(x)∥∥Y is bounded. Following

van de Geer (2000, p.16), we do not consider the essential supremum (which depends on the measure
Q), but the supremum over all x ∈ X , so that the uniform norm does not depend on any measure.

Taylor’s Theorem for Vector-Valued Functions The notions of (partial) differentiation and
smoothness for Y-valued functions are central in our bounds for entropy of smooth functions (see
Appendix B for more details, and Cartan (1967); Coleman (2012) for full expositions). Suppose that
U is an open subset of Rd, and denote the Euclidean norm in Rd by ∥·∥. For m ∈ N and an m-times
differentiable function g : U → Y , we write g(m) for the mth derivative of g, an m-linear operator
from Rd into Y (see Appendix B). We state the extension of Taylor’s theorem to functions with
values in Y , with Lagrange’s form of the remainder. To this end, for a, b ∈ Rd, define the segment
joining a and b as the set [a, b] = {x ∈ Rd : x = va+ (1− v)b, v ∈ [0, 1]} (Coleman, 2012, p.51).

Theorem 1 (Cartan (1967, p.77, Théorème 5.6.2)) Suppose that g : U → Y is (m + 1)-times
differentiable, that the segment [a, a + h] is contained in U and that, for some K > 0, we have
∥g(m+1)(x)∥op ≤ K for all x ∈ U . Then∥∥∥∥∥g(a+ h)−

m∑
k=0

1

k!
g(k)(a)((h)k)

∥∥∥∥∥
Y

≤ K
∥h∥m+1

(m+ 1)!
,

where we wrote (h)k = (h, ..., h) ∈ (Rd)k for k = 1, ...,m.

Write N0 = {0, 1, 2, ...}, and for p = (p1, ..., pd) ∈ Nd
0, write [p] := p1 + ...+ pd. Then we denote

the pth partial derivative ∂p11 ...∂
pd
d g(a) of g at a ∈ U as Dpg(a) ∈ Y . For each k = 1, ...,m + 1,

g(k)(a)((h)k) =
∑d

l1,...,lk=1 hl1 ...hlk∂l1 ...∂lkg(a) =
∑

[p]=k
k!hp

p! D
pg(a), where we wrote hp as a

shorthand for hp11 ...h
pd
d and p! for p1!...pd!. Hence, using partial derivatives, we can express Taylor’s

theorem above as ∥∥∥∥∥g(a+ h)−
∑
[p]≤m

hp

p!
Dpg(a)

∥∥∥∥∥
Y

≤ K
∥h∥m+1

(m+ 1)!
.

Metric Spaces, Covering Numbers and Dimensions Finally, we introduce some notions from the
theory of metric spaces. In particular, covering numbers play a central role in entropy discussions,
and different notions of dimensions based on covering numbers will be used to restrict the range of
partial derivatives of functions, leading up to entropy bounds in our main results (Section 3).

Suppose (Z, ρ) is a metric space. For r > 0 and z0 ∈ Z , the ball of radius r centred at z0 is
B(z0, r) = {z ∈ Z : ρ(z, z0) ≤ r}. For any δ > 0, the δ-covering number of (Z, ρ), denoted by
N(δ,Z, ρ), is the minimum number of balls of radius δ with centres in Z required to cover Z , i.e.
the minimal N such that there exists a set {z1, ..., zN} ⊂ Z such that for all z ∈ Z , there exists a
j = j(z) ∈ {1, ..., N} with ρ(z, zj) ≤ δ (we take N(δ,Z, ρ) = ∞ if no finite covering by closed
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balls with radius δ exists). We say that Z is totally bounded if N(δ,Z, ρ) < ∞ for all δ > 0. We
define the δ-entropy as H(δ,Z, ρ) = logN(δ,Z, ρ).

Let E be a subset of (Z, ρ). The upper box-counting dimension of E is

τbox(E) := lim sup
δ→0

H(δ, E, ρ)

− log δ

(Robinson, 2010, p.32, Definition 3.1). It is immediate from the definition (Robinson, 2010, p.32,
(3.3)) that if τ > τbox(E), then there exists δ0 > 0 such that for all δ < δ0,

N(δ, E, ρ) < δ−τ . (box)

A subset E of (Z, ρ) is said to be (M, τ)-homogeneous (or simply homogeneous) if the intersection

of E with any closed ball of radius R can be covered by at most M
(
R
r

)τ
closed balls of smaller

radius r, i.e. N(r,B(z,R) ∩ E, ρ) ≤ M
(
R
r

)τ
for all z ∈ E and R > r (Robinson, 2010, p.83,

Definition 9.1). The Assouad dimension (Robinson, 2010, p.85, Definition 9.5), sometimes also
known as the doubling dimension, of E is

τasd(E) := inf{τ : E is (M, τ)-homogeneous for some M ≥ 1}.

2. Empirical Process Theory for Functions Taking Values in a Hilbert Space

Take (Ω,F ,P) as the underlying probability space. Let X : Ω → X be a random variable, and let
X1, X2, ... be i.i.d. copies of X . Denote by P its distribution, i.e. for A ∈ X , P (A) = P(X−1(A)),
and by Pn the empirical measure on X based on X1, ..., Xn, i.e.

Pn =
1

n

n∑
i=1

δXi , where, for A ∈ X , δXi(A) =

{
0 if Xi /∈ A

1 if Xi ∈ A
.

For a function g ∈ L1(X , Q;Y), we adopt the notation Qg =
∫
gdQ. Hence,

Pg =

∫
gdP and Png =

1

n

n∑
i=1

g(Xi).

Note that the integral Pg is a Bochner integral, and that we have Pg, Png ∈ Y . Now, for fixed g, the
law of large numbers in Hilbert (more generally, Banach) spaces (Mourier, 1953) tells us that Png
converges to Pg. One of the pillars of empirical process theory is to consider the convergence of
Png to Pg not for a fixed g, but uniformly over a class of functions. Let G ⊂ L1(X , P ;Y). For a
measure Q on X , we denote ∥Q∥G := supg∈G ∥Qg∥Y .

Definition 2 We say that the class G is a Glivenko Cantelli (GC) class, or that it satisfies the uniform
law of large numbers (with respect to the measure P ) if ∥Pn − P∥G = supg∈G ∥Png − Pg∥Y

P→ 0.

Definition 2 could have been defined in terms of the weak convergence in Hilbert spaces, i.e. yn → y0
if ⟨y, yn⟩Y → ⟨y, y0⟩Y for every y ∈ Y . In this paper, we only consider strong (norm) convergence.
Next, we define the empirical process and the asymptotic equicontinuity.
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Definition 3 We regard
{
νn(g) =

√
n (Pn − P ) g : g ∈ G

}
as a stochastic process with values in

Y indexed by G, and call it the empirical process.
We say that the empirical process

{
νn(g) : g ∈ G

}
is asymptotically equicontinuous at g0 ∈ G if,

for every sequence {ĝn} ⊂ G with ∥ĝn − g0∥2,P
P→ 0, we have

∥∥νn (ĝn)− νn (g0)
∥∥
Y

P→ 0.

Some of the first steps in empirical process theory are the symmetrisation and chaining techniques,
and using them to prove uniform law of large numbers and asymptotic equicontinuity for classes of
functions that satisfy certain entropy conditions. We provide the adaptation of some of these results
for vector-valued function classes but defer them to Appendix C, because, while strictly speaking
novel, the statements and proofs of these results carry over from the case of real-valued function
classes with only minor adjustments, in particular with concentration inequalities for vector-valued
random variables (Pinelis, 1992). A more challenging task, as mentioned in the Introduction, is to
bound entropies of vector-valued function classes, and the main results of this paper will focus on
this problem (Section 3).

We mention that in this work, we overlook the problem of measurability, which arise as we
take suprema over possibly uncountable sets. This is commonly done in works treating statistical
applications of empirical processes (see, e.g. van de Geer (2000, p.21, Section 2.5), Bartlett et al.
(2005, p.7, first paragraph of Section 2) and Yousefi et al. (2018, p.5, last paragraph of Section 1)).
We either assume that function classes and underlying distributions satisfy conditions that ensure
measurability, or that notions of outer probabilities and expectations are used instead, as in van der
Vaart and Wellner (1996) and Kosorok (2008).

3. Entropy of Classes of Smooth Vector-Valued Functions

In the usual empirical process theory with real-valued functions, classes of smooth functions on
compact domains are some of the most frequently used examples that satisfy good entropy conditions
(van de Geer, 2000, p.154, Example 9.3.2), (van der Vaart and Wellner, 1996, Section 2.7.1), (Dudley,
2014, Section 8.2). In this section, we give analogues of these results when the output space is the
(not necessarily finite-dimensional) Hilbert space Y .

Let m ∈ N; this will determine the smoothness of our function class. Let d ≥ 1, and take as our
input space the unit cube in Rd, X = {x ∈ Rd : 0 ≤ xj ≤ 1, j = 1, ..., d}; this is only to simplify
the exposition, and the subsequent results will clearly hold for any bounded convex subsets of Rd.

In order to bound the entropy of classes of smooth real-valued functions, one bounds the absolute
values of the range of the functions and their partial derivatives. When the output space is Y , in
particular, if Y has infinite dimensions, bounding the norm of the range is useless, because balls in
infinite-dimensional spaces are not totally bounded. Therefore, to have any hope, the very least we
need to do is to find a totally bounded subset B ⊂ Y , and restrict our range and partial derivatives
therein. As B is totally bounded, for some KB > 0, ∥y∥Y ≤ KB for all y ∈ B.

Denote by Gm
B the set of m-times differentiable functions g : X → Y whose partial derivatives

Dpg : X → Y of orders [p] ≤ m exist everywhere on the interior of X , and such that Dpg(x) ∈ B
for all x ∈ X and [p] ≤ m, where D0g = g. We present three results bounding H(δ,Gm

B , ∥·∥∞)
for δ > 0 sufficiently small, each with different assumptions on B. Theorem 4 assumes that B is
homogeneous, i.e. we impose local entropy conditions. In Theorems 5 and 6, we impose global
entropy conditions on B, the former with finite upper box-counting dimension, and the latter with
N(δ,B, ∥·∥Y) allowed to grow exponentially as δ decreases. Proofs are deferred to Section 3.2.
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Theorem 4 Let B ⊂ Y be totally bounded and (M, τasd)-homogeneous. Then for sufficiently small
δ > 0, there exists some constant K depending on KB , m, d, M and τasd such that

H
(
δ,Gm

B , ∥·∥∞
)
≤ Kδ−

d
m .

Theorem 4 gives the same rate for Gm
B as for smooth real-valued function classes (Dudley, 2014,

p.288, Theorem 8.4(a)), which is a special case of the set-up in Theorem 4, since any bounded
subset of R is a homogeneous subset (with Assouad dimension at most 1). In fact, Dudley (2014,
Theorem 8.4(a)) shows that this rate of δ−

d
m cannot be improved, so the rate given in Theorem 4 is

also optimal. We will later see from the proof that the dependence on τasd is linear.

Theorem 5 Let B be a subset of Y with finite upper box-counting dimension τbox. Then for
sufficiently small δ > 0, there exists some constant K depending on KB , m, d and τbox such that

H
(
δ,Gm

B , ∥·∥∞
)
≤ Kδ−

d
m log

(
1

δ

)
.

Theorem 6 Let B be a subset of Y with N(ϵ, B, ∥·∥Y) ≤ exp{Mϵ−τexp} for some M, τexp > 0.
Then for sufficiently small δ > 0, there is some constant K depending on KB , m, d, M and τexp
such that

H
(
δ,Gm

B , ∥·∥∞
)
≤ Kδ−(

d
m
+τexp).

We can use results stated and proved in Appendix C to show that we have uniform law of large
numbers over Gm

B , where B satisfies the conditions in any one of Theorems 4, 5 or 6.

Corollary 7 The function class Gm
B , where B is either homogeneous, has finite upper box-counting

dimension or satisfies N(ϵ, B, ∥·∥Y) ≤ exp{Mϵ−τexp} for some τexp > 0, is Glivenko-Cantelli.

Further, the empirical process defined by Gm
B (c.f. Definition 3) is asymptotically equicontinuous.

Corollary 8 Suppose that B is either homogeneous, has finite upper box-counting dimension or
satisfies N(ϵ, B, ∥·∥Y) ≤ exp{Mϵ−τexp} for some τexp > 0. Then the empirical process {νn(g) =√
n(Pn − P )g : g ∈ Gm

B } defined by Gm
B is asymptotically equicontinuous.

3.1. Examples

With these results in hand, it is now of interest to investigate which interesting examples of output
space Y and subsets B satisfy the conditions of Theorems 4, 5 and 6.

Example 1 Suppose that Y is a finite-dimensional Hilbert space, say with dimension dY . Then
balls are totally bounded, so we can let B be of the form B = {y ∈ Y : ∥y∥Y ≤ K} for any K > 0.
Moreover, subsets of finite-dimensional spaces are homogeneous with Assouad dimension at most
dY (Robinson, 2010, p.85, Lemma 9.6(iii)), and so we can apply Theorem 4. The case Y = R
corresponds to the usual regression with real-valued output. If Y = RdY , it corresponds to the
multi-task learning setting (Evgeniou et al., 2005; Yousefi et al., 2018; Xu et al., 2019).

A prominent application of vector-valued output spaces will be when we have functional responses;
example data sets include speech, diffusion tensor imaging, mass spectrometry and glaucoma
(see Morris (2015); Kadri et al. (2016) and references therein). Let X ′ be a domain, and Y =
L2(X ′, P ′;R) the space of real-valued functions that are square-integrable with respect to some
distribution P ′ on X ′. By considering interesting subsets of Y , we can derive bounds on the entropy
H(δ,Gm

B , ∥·∥∞) using Theorems 4, 5 and 6. The next 4 examples are considered in this set-up.
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Example 2 Suppose that ψ1, ..., ψr ∈ Y , and letB = {f = θ1ψ1+ ...+θrψr : θ = (θ1, ..., θr)
T ∈

Rr, ∥f∥2,P ′ ≤ R} Then van de Geer (2000, p.20, Lemma 2.5) tells us that B is homogeneous, and so
Theorem 4 applies. This corresponds to the case where the responses are finite-dimensional functions,
or adopting the nomenclature of van de Geer (2000, p.152, Example 9.3.1), “linear regressors”.

Example 3 More generally, function classes with finite Assouad dimensions have been considered
in classification problems, and their generalisation properties analysed (Li and Long, 2007; Bshouty
et al., 2009). If these functions form the responses of a regression problem, then Theorem 4 can
again be applied. Examples of such function classes include halfspaces with respect to the uniform
distribution (i.e. where P ′ is the uniform distribution) (Bshouty et al., 2009, Proposition 6).

Example 4 Let X ′ be compact in Rd′ (in general, d ̸= d′), and suppose that B ⊂ Y consists of
smooth functions. More specifically, for some m′ ∈ N and M > 0, let B be the set of all m′-times
differentiable functions f : X ′ → R whose partial derivatives Dqf : X ′ → R of orders [q] ≤ m′

exist everywhere on the interior of X ′, and such that |Dqf(x′)| ≤M for all x′ ∈ X ′ and [q] ≤ m′.
Then applying the result for real-valued function classes (Dudley, 2014, p.288, Theorem 8.4) (or

Theorem 4 with Y = R andB being the ball of radiusM ), we haveN(δ,B, ∥·∥∞) ≤ exp{K ′δ−
d′
m′ }

for some constant K ′ > 0. This in turn allows us to apply Theorem 6 to bound the entropy of Gm
B as

H(δ,Gm
B , ∥·∥∞) ≤ Kδ

−
(

d
m
+ d′

m′

)

for some constant K > 0. So when the output space is itself a class of smooth (real-valued) functions,
the smoothness of the two function classes simply add in the negative exponent of δ in the entropy.

Example 5 Let B be a ball in a reproducing kernel Hilbert space (RKHS) with a C∞ Mercer kernel
(see Cucker and Smale (2002) for details), then Cucker and Smale (2002, Theorem D) tells us that
for some constant K ′, we have N(δ,B, ∥·∥∞) ≤ exp{K ′δ−

2d
h } for any h > d. Then we can again

apply Theorem 6 to bound H(δ,Gm
B , ∥·∥∞) by Kδ−( d

m
+ 2d

h
) for some constant K and any h > d.

3.2. Proofs of the Main Results

We now prove Theorems 4, 5 and 6. The idea is to approximate smooth functions by piecewise
polynomials (Kolmogorov, 1955). We start with some development shared by the three Theorems.

Let g ∈ Gm
B , x, x+ h ∈ X and p ∈ Nd

0 with [p] ≤ m− 1. Then Dpg is (m− [p])-times differen-
tiable, and ∥(Dpg)(m−[p])(x)∥op = ∥

∑
[q]≤m−[p]

(m−[p])!
q! Dp+qg(x)∥Y ≤ KB

∑
[q]≤m−[p]

(m−[p])!
q! .

Hence,

Dpg(x+ h) =
∑

[q]≤m−1−[p]

hq

q!
Dp+qg(x) +Rp(g, x, h) (*)

by Taylor’s Theorem (Theorem 1), where ∥Rp(g, x, h)∥Y ≤ KB
∥h∥m−[p]

(m−[p])!

∑
[q]≤m−[p]

(m−[p])!
q! . So

there is a constant K1 = K1(KB,m, d) ≥ 1 such that, for all g ∈ Gm
B , x ∈ X , x + h ∈ X and

p ∈ Nd
0 with [p] ≤ m− 1, ∥∥Rp(g, x, h)

∥∥
Y ≤ K1 ∥h∥m−[p] . (**)

7
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Let ∆ := ( δ
4K1

)
1
m , and x(1), ..., x(L) a ∆

2 -net in X , i.e. supx∈X {inf1≤l≤L∥x − x(l)∥} ≤ ∆
2 . By

decomposing X into cubes of side
⌈
d1/2

∆

⌉−1
and taking the x(l) as the centres thereof, we can take

L ≤ K2δ
− d

m (†)

for some constant K2 = K2(d,K1). Now, for each k = 0, 1, ...,m − 1, define δk = δ
2∆ked

. We
construct a cover of B as follows. First, to ease the notation, write Nk = N(12δk, B, ∥·∥Y), and find
a set {akj , j = 1, ..., Nk} ⊂ B such that B(akj , 12δk) cover B. Then define

Ak
1 = B(ak1,

1

2
δk), A

k
2 = B(ak2,

1

2
δk)\B(ak1,

1

2
δk), ..., A

k
Nk

= B(akNk
,
1

2
δk)\ ∪Nk−1

j=1 B(akj ,
1

2
δk).

Then Ak := {Ak
j , j = 1, ..., Nk} is a cover of B of cardinality Nk, whose sets Ak

j have diameter at
most δk and are disjoint. For each l = 1, ..., L, g ∈ Gm

B and p ∈ Nd
0 with [p] ≤ m− 1, define Al,p(g)

as the unique set in A[p] such that Dpg(x(l)) ∈ Al,p(g), and al,p(g) as the centre of the ball from
which Al,p(g) was created, so that ∥al,p(g) −Dpg(x(l))∥Y ≤ 1

2δ[p]. Then if g1, g2 ∈ Gm
B are such

that Al,p(g1) = Al,p(g2) for all l = 1, ..., L and all p ∈ Nd
0 with [p] ≤ m− 1, then

∥Dp(g1 − g2)(x(l))∥Y ≤ δ[p], (***)

since the diameter of Al,p(g1) = Al,p(g2) is at most δ[p]. For each x ∈ X , take x(l) such that
∥x− x(l)∥ ≤ ∆

2 . Then we have, by putting p = 0 into (*),∥∥(g1 − g2)(x)
∥∥
Y

=

∥∥∥∥∥∥R0(g1, x(l), x− x(l))−R0(g2, x(l), x− x(l)) +
∑

[p]≤m−1

(x− x(l))
p

p!
Dp(g1 − g2)(x(l))

∥∥∥∥∥∥
Y

≤ 2K1∥x− x(l)∥m +
∑

[p]≤m−1

δ[p]
∥x− x(l)∥[p]

p!
by (**) with p = 0 and (***)

≤ 2K1∆
m +

m−1∑
k=0

δk∆
k

∑
[p]=k

1

p!

 ≤ δ

2
+

(
max

k≤m−1
δk∆

k

)m−1∑
k=0

dk

k!
≤ δ

2
+

δ

2ed
ed = δ.

It follows that the δ-covering numberN(δ,Gm
B , ∥·∥∞) with respect to the supremum norm is bounded

by the number of distinct possibilities for {Al,p(g) : l = 1, ..., L, g ∈ Gm
B , p ∈ Nd

0, [p] ≤ m− 1}.
Proof of Theorem 4 Let x(l) be ordered so that for 1 < l ≤ L, ∥x(l′) − x(l)∥ ≤ ∆ for some l′ < l.
For each l = 1, ..., L and p ∈ Nd

0 with [p] ≤ m − 1, we write Al,p for the number of possibilities
of Al,p(g) for g ∈ Gm

B , and for each l = 1, ..., L, we write Al for the number of possibilities of
Al,p(g) as p ∈ Nd

0 varies with [p] ≤ m − 1. For l = 1, we have Dpg(x(1)) ∈ B for each p ∈ Nd
0

with [p] ≤ m− 1. So

A1,p ≤ N[p] = N

(
1

4ed
δ

m−[p]
m (4K1)

[p]
m , B, ∥·∥Y

)
≤ N

(
δ

4ed
, B, ∥·∥Y

)
,

where the last upper bound follows sinceN(·, B, ∥·∥Y) is a decreasing function, and we haveK1 ≥ 1
and 0 < δ < 1. This upper bound has no dependence on p. The number of different p ∈ Nd

0 with

8



EMPIRICAL PROCESS THEORY FOR VECTOR-VALUED FUNCTIONS

[p] ≤ m− 1 is equal to
(
m+d−1

d

)
, which is bounded above by md, and so A1 ≤ N( δ

4ed
, B, ∥·∥Y)m

d
.

Since B = B ∩ B(0,KB) is (M, τasd)-homogeneous, N( δ
4ed
, B, ∥·∥Y) ≤M(4e

dKB
δ )τasd , and so

A1 ≤Mmd

(
4edKB

δ

)τasdm
d

. (††)

Now, for 1 < l ≤ L, suppose that Al′,q(g) is given for all l′ < l and all q ∈ Nd
0 with [q] ≤ m − 1.

Choose l′ < l such that ∥x(l′)−x(l)∥ ≤ ∆, and write yl,p(g) :=
∑

[q]≤m−1−[p]

(x(l′)−x(l))
q

q! al′,p+q(g).
Then for any p ∈ Nd

0 with [p] ≤ m− 1, (*) tells us that∥∥∥Dpg(x(l))− yl,p(g)
∥∥∥
Y

=
∥∥∥Rp(g, x(l′), x(l) − x(l′))

∥∥∥
Y
+

∑
[q]≤m−1−[p]

∥x(l′) − x(l)∥[q]

q!

∥∥∥Dp+qg(x(l′))− al′,p+q(g)
∥∥∥
Y

≤ K1∆
m−[p] +

∑
[q]≤m−1−[p]

δ[p+q]
∆q

q!
= K1

∆m

∆[p]
+ δ[p]

m−1−[p]∑
k=0

δk∆
k

∑
[q]=k

1

q!

 ≤ ed + 1

2
δ[p].

As al′,p+q(g) is given for all [q] ≤ m − 1 − [p], yl,p(g) is a fixed point in Y . So Al,p is bounded

by the number of sets in A[p] that intersect with Bl,p(g) := B ∩ B
(
yl,p(g),

ed+1
2 δ[p]

)
. Define

Al,p(g) := {A ∈ A[p] : A ∩ Bl,p(g) = ∅} and A ′
l,p(g) := {A ∈ A[p] : A ∩ Bl,p(g) ̸= ∅}, so

that A[p] = Al,p(g) ∪ A ′
l,p(g), N[p] = |A[p]| = |Al,p(g)| + |A ′

l,p(g)| and Al,p ≤ |A ′
l,p(g)|. Now,

write B+
l,p(g) := B ∩ B(yl,p(g), e

d+3
2 δ[p]). Then we have A ⊂ B+

l,p(g) for all A ∈ A ′
l,p(g). Let

A +
l,p(g) be a 1

2δ[p]-cover of B+
l,p(g) with minimal cardinality N(12δ[p], B

+
l,p(g), ∥·∥Y). Since B is

(M, τasd)-homogeneous, N(12δ[p], B
+
l,p(g), ∥·∥Y) ≤ M(ed + 3)τasd . By taking the union A +

l,p(g)

with Al,p(g), we have a 1
2δ[p]-cover of B with cardinality at most |Al,p(g)|+M(ed + 3)τasd . So if

|A ′
l,p(g)| > M(ed + 3)τasd , then we have found a 1

2δ[p]-cover of B with cardinality strictly less than
N[p], contradicting its minimality. Hence, we must have Al,p ≤ |A ′

l,p(g)| ≤M(ed + 3)τasd . But the
latter quantity is a constant that does not depend on δ or p. Thus

Al ≤
∏

[p]≤m−1

Al,p ≤Mmd
(
ed + 3

)τasdm
d

. († † †)

Putting together (†), (††) and († † †), we arrive at

N
(
δ,Gm

B , ∥·∥∞
)
≤

L∏
l=1

Al ≤Mmd

(
4edKB

δ

)τasdm
d

MmdK2δ
− d

m
(
ed + 3

)τasdm
dK2δ

− d
m

,

and so

H
(
δ,Gm

B , ∥·∥∞
)
≤ δ−

d
m log

(
MmdK2

(
ed + 3

)τasdm
dK2

)
+md log

M (
4edKB

δ

)τasd


9
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≤ Kδ−
d
m ,

where K is a constant depending on M,m, d,K2, τasd and KB . With the second term, we bounded
log
(
1
δ

)
by a constant times δ−

d
m .

Proof of Theorem 5 Suppose g ∈ Gm
B . With notation as in the proof of Theorem 4, for each

l = 1, ..., L and each p ∈ Nd
0 with [p] ≤ m− 1, we have

Al,p ≤ N[p] = N

(
δ

2∆[p]ed
, B, ∥·∥Y

)
≤ N

(
δ

2ed
, B, ∥·∥Y

)
≤
(

δ

2ed

)−(τbox+1)

,

where the second last upper bound follows since N(·, B, ∥·∥Y) is a decreasing function, and we have
K1 ≥ 1 and 0 < δ < 1, and the last upper bound follows from Equation (box) in Section 1.1. This

upper bound has no dependence on l or p. So for each l = 1, ..., L, Al ≤
(
2ed

δ

)(τbox+1)md

. Putting
this together with (†), we arrive at

N
(
δ,Gm

B , ∥·∥∞
)
≤

L∏
l=1

Al ≤

(
2ed

δ

)(τbox+1)mdK2δ
− d

m

,

and so

H
(
δ,Gm

B , ∥·∥∞
)
≤ (τbox + 1)mdK2δ

− d
m log

(
2ed

δ

)
≤ Kδ−

d
m log

(
1

δ

)
,

where K is a constant depending on m, d,K2 and τbox.

Proof of Theorem 6 Suppose g ∈ Gm
B . With notation as in the proof of Theorem 4, for each

l = 1, ..., L and each p ∈ Nd
0 with [p] ≤ m− 1, we have

Al,p ≤ N[p] = N

(
δ

2∆[p]ed
, B, ∥·∥Y

)
≤ N

(
δ

2ed
, B, ∥·∥Y

)
≤ exp

{
M

(
δ

2ed

)−τexp
}
,

where the second last upper bound follows since N(·, B, ∥·∥Y) is a decreasing function, and we have
K1 ≥ 1 and 0 < δ < 1. This upper bound has no dependence on l or p. So for each l = 1, ..., L,

Al ≤ exp

{
M

(
δ

2ed

)−τexp

md

}
.

Putting this together with (†), we arrive at

N
(
δ,Gm

B , ∥·∥∞
)
≤

L∏
l=1

Al ≤ exp

{
M

(
δ

2ed

)−τexp

mdK2δ
− d

m

}
,

and so

H
(
δ,Gm

B , ∥·∥∞
)
≤M

(
1

2ed

)−τexp

mdK2δ
− d

m
−τexp ≤ Kδ−(

d
m
+τexp),

where K is a constant depending on m, d,M,K2 and τexp.

10



EMPIRICAL PROCESS THEORY FOR VECTOR-VALUED FUNCTIONS

4. Applications to Statistical Learning Theory

In this Section, we discuss the application of the above main results to statistical learning theory.

4.1. Least-Squares Regression with Fixed Design

We first consider problem of least squares regression with fixed design, whereby the covariates
x1, ..., xn ∈ X are considered fixed. Let Y1, ..., Yn be random variables taking values in Y satisfying

Yi = g0(xi) + εi, i = 1, ..., n,

where εi are independent (Hilbert space) Gaussian noise terms with zero mean and covariance with
trace 1 (see Section A.2 for details), and g0 is the unknown regression function in a given class G of
functions X → Y . We assume that the following least squares estimator exists:

ĝn := argmin
g∈G

1

n

n∑
i=1

∥∥Yi − g(xi)
∥∥2
Y ,

and we are interested in the convergence of ∥ĝn − g0∥2,Pn to 0. Theorem 27 in Appendix C.4, whose
proof is based on the “peeling device” (van de Geer, 2000) and concentration of Gaussian measures
in Hilbert spaces as discussed in Section A, tells us that ∥ĝn − g0∥2,Pn = OP (δn), with δn satisfying

√
nδ2n ≥ 8

(
J(δn) + 4δn

√
1 + t+ δn

√
8t/3

)
,

where J(δ) := 4
∫ δ
0

√
2H(u,B2,Pn(δ), ∥·∥2,Pn)du and B2,Pn(δ) := {g ∈ G : ∥g∥2,Pn

≤ δ}.
As an example, let us return to the setting of Example 4, where Y = L2(X ′, P ′;R), and B ⊂ Y

is a class of m′-times differentiable functions. We saw that H(δ,Gm
B , ∥·∥∞) ≤ Kδ−( d

m
+ d′

m′ ) by

Theorem 6. Thus, for another constant K ′ > 0, J(δ) ≤ K ′δ1−
1
2
( d
m
+ d′

m′ ), and it can be shown that

∥ĝn − g0∥2,Pn
= OP (n

−1/(2+ d
m
+ d′

m′ )).

For smooth real-valued function classes, the rate is n−1/(2+ d
m
) (Tsybakov, 2008, p.40, Theorem 1.6),

so we can see that the terms d
m and d′

m′ that correspond to the smoothness of Gm
B and B simply add

up in the exponent. Note that as m→ ∞ and m′ → ∞, we have ∥ĝn − g0∥2,Pn
= OP (n

− 1
2 ).

4.2. Empirical Risk Minimisation with Bounded Lipschitz Loss with Random Design

We discuss the random design setting with L-bounded c-Lipschitz loss L : Y × Y → R. The
population and empirical risks for g ∈ G are given by R(g) = E[L(Y, g(X))] and R̂n(g) =
1
n

∑n
i=1 L(Yi, g(Xi)) respectively. We assume that the minimiser ĝn = argming∈G R̂n(g) exists,

and are interested in the convergence of R(ĝn) to R(g∗). Writing J (1) := 4
∫ 1
0

√
2H(u)du, where

H(u) is a function such that, for all u > 0 and any probability distribution Q with finite support,
H(uL,L ◦ G, ∥·∥2,Q) ≤ H(u), Theorem 28 and Hoeffding’s inequality (Prop. 10) give:

P

(
R(ĝn)−R(g∗) >

4
√
2LJ (1)√
n

+ 24L

√
1 + t

n
+

L√
n
+ L

√
2t

n

)
≤ 3e−t.

11
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Returning to the setting of Example 4, the entropy contraction property (Lemma 33) gives

H(δ,L ◦ Gm
B , ∥·∥2,Pn) ≤ H(δ,L ◦ Gm

B , ∥·∥∞) ≤ H(
1

c
δ,Gm

B , ∥·∥∞) ≤ Kδ
−
(

d
m
+ d′

m′

)

for some constant K, and so as long as d
m + d′

m′ < 2, we do indeed have J (1) <∞.

4.3. Discussion on Rademacher Complexity for Vector-Valued Function Classes

As well as metric entropy, another common measure of complexity of function classes is the
Rademacher complexity, the empirical version of which, for real-valued function classes F , is
R̂n(F) = E[supf∈F | 1n

∑n
i=1 σif(Xi)| | X1, ..., Xn], where σi are independent Rademacher vari-

ables (Bartlett and Mendelson, 2002, Definition 2). In this Section, we briefly discuss Rademacher
complexities for vector-valued function classes, and due to space constraints, defer a fuller discussion
to Appendix C.6. Define the “Rademacher complexity” of a class G of vector-valued functions as

R̂n(G) = E

[
sup
g∈G

∥∥∥ 1
n

n∑
i=1

σig(Xi)
∥∥∥
Y
| X1, ..., Xn

]
.

Indeed, in Section C.1, we use the symmetrised empirical measure 1
n

∑n
i=1 σiδXi , which suggests

the use of the above definition. However, there is a critical issue with this definition. Rademacher
complexities are almost always used in conjunction with a loss function, i.e. what we end up using is
the Rademacher complexity of the class L◦G (c.f. Section 4.2). With real-valued function classes F ,
Ledoux and Talagrand (1991, p.112, Theorem 4.12) shows that for bounded Lipschitz losses L, we
have R̂n(L ◦ F) ≤ KR̂n(F) for a constant K, so it is meaningful to work with R̂n(F). However,
the proof makes use of the fact that the output space is R, and Maurer (2016, Section 6) shows via a
counterexample that contraction no longer holds for the above definition of R̂n(G). Maurer (2016)
in fact shows a contraction result for what we call the coordinate-wise Rademacher complexity:

R̂coord
n (G) = E

[
sup
g∈G

n∑
i=1

∑
k

σki gk(Xi) | X1, ..., Xn

]
,

where a particular basis of Y is fixed, k is the index on the coordinates of Y with respect to this basis
and gk are real-valued functions that map to each coordinate of g. Notice that in this case, we need a
separate Rademacher variable for each coordinate, as well as for each sample. This has been used for
finite-dimensional multi-task learning (Yousefi et al., 2018; Li et al., 2019). While we recognise its
usefulness, the coordinate-wise Rademacher complexity, by definition, relies on a choice of basis of
Y , and we show in Appendix C.6 that R̂coord

n is actually not independent of the choice of basis. We
regard this as a critical issue in using R̂coord

n as a “complexity measure of a function class”, since it is
intuitively clear that the complexity should not depend on the choice of basis of the output space.

A common way to bound the Rademacher complexity is to use Dudley’s chaining and uniform
entropy condition, in precisely the same manner as in Section C.3. In this case, we propose a
workaround that avoids using either R̂n(G) or R̂coord

n (G). For a bounded Lipschitz loss function L,
R̂n(L ◦ G) can be bounded by an expression involving the integral (with respect to δ) of the entropy
H(δ,L ◦ G, ∥·∥2,Pn) (this is a standard result; see, for example, Shalev-Shwartz and Ben-David
(2014, p.338, Lemma 27.4); we show a vector-valued analogue for R̂n(G) in Theorem 31, using

12
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vector-valued Hoeffding-type inequality). But as discussed in Section 4.2, the entropies satisfy a
simple contraction property given in Lemma 33. So applying the same argument, we can bound
R̂n(L ◦ G) by an expression involving H(δ,G, ∥·∥∞), which has been the main topic of this paper.
This does not contradict the counterexample of Maurer (2016, Section 6), since the latter is the space
of linear operators between infinite-dimensional Hilbert spaces, and hence has infinite entropy.

5. Discussion & Future Directions

To summarize, we took some first steps towards establishing a theory of empirical processes for vector-
valued functions. In particular, we investigated the metric entropy of smooth functions, by restricting
the partial derivatives to take values in totally bounded subsets with specific properties, leveraging
theory from fractal geometry, and demonstrated its application in empirical risk minimisation.

There is a plethora of possible future research directions. Considering other classes of functions
than those of smooth functions is a natural next step. Also, we let Y be a Hilbert space, primarily
because some simplifications occur for Hoeffding’s inequality and Gaussian measures (Appendix A),
but extensions to Banach spaces should be possible. Moreover, we used compact subsets of Rd as
our input space due to the ease in considering partial derivatives, but interesting applications exist
for which the input space X is a subset of an infinite-dimensional space (Li et al., 2020; Nelsen and
Stuart, 2021; Lu et al., 2021). On the more theoretical side, measurability questions for empirical
processes and uniform central limit theorems involving Gaussian elements in vector spaces are
interesting questions. Also, obtaining complementary lower bounds, so that our upper bounds are
minimax optimal, is an interesting problem. With empirical risk minimisation, extensions to more
general noise with vector-valued Bernstein’s inequality or misspecified models are important.
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The appendix is structured as follows. In empirical process theory, concentration inequalities are
an essential tool, and in Appendix A, we state and prove concentration inequalities in Hilbert spaces,
in particular, the extensions of Hoeffding’s inequality and Gaussian measures to Hilbert spaces. In
Appendix B, we develop the theory of differential calculus between Banach spaces, which plays
a vital role in our paper in considering smooth functions. In Appendix C, we develop the theory
of empirical process theory for vector-valued functions, briefly introduced in Section 2, in more
detail. In particular, we develop the symmetrisation technique (Appendix C.1); we establish the
uniform law of large numbers for vector-valued function classes with bounded entropy (Appendix
C.2); we develop the chaining technique for vector-valued functions and use it to establish asymptotic
equicontinuity of empirical processes satisfying uniform entropy condition (Appendix C.3); we use
the chaining technique in tandem with the peeling device for least-squares regression, as briefly
discussed in Section 4.1 (Appendix C.4); and finally, we discuss in full connections with the popular
Rademacher complexity, as briefly touched upon in Section 4.3 (Appendix C.6).

Appendix A. Concentration Inequalities in Hilbert Spaces

First, we state Markov’s inequality, on which all subsequent results are based.

Proposition 9 (Markov’s inequality) For any non-negative real random variable Z and a > 0,
P (Z ≥ a) ≤ E[Z]

a .

A.1. Hoeffding’s inequality

Hoeffding’s inequality is a concentration result for sums of bounded random variables. We first state
the real version, due to Hoeffding (1963).

Proposition 10 (Hoeffding’s inequality) Let Z1, ..., Zn be independent real random variables
such that for all i, E[Zi] = 0 and |Zi| ≤ ci almost surely for some constants ci > 0. Then writing
Sn =

∑n
i=1 Zi and b2 =

∑n
i=1 c

2
i ,

P (Sn ≥ a) ≤ e−
a2

2b2

for any a > 0, or reformulated, for any t > 0,

P
(
Sn ≥ b

√
2t
)
≤ e−t.

In Pinelis (1992), Hoeffding’s inequality was extended to martingales in Banach spaces with certain
smoothness properties (see also Rosasco et al. (2010, Eqn. (3)) and Steinwart and Christmann (2008,
p.217, Corollary 6.15)). As we only require the result for sums of independent random variables
taking values in a separable Hilbert space Y , we give the corresponding simplified statement First,
we state its expectation form, then the probability inequality is stated separately.

Proposition 11 Let Y1, ..., Yn be independent random variables in Y , such that for all i, E[Yi] = 0
and ∥Yi∥Y ≤ ci almost surely for some constants ci > 0. Then writing Sn =

∑n
i=1 Yi, for any

λ > 0, we have

E
[
cosh

(
λ ∥Sn∥Y

)]
≤

n∏
i=1

eλ
2c2i .
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Proposition 12 (Hoeffding’s inequality in Hilbert spaces) Let Y1, ..., Yn be independent random
variables in Y , such that for all i, E[Yi] = 0 and ∥Yi∥Y ≤ ci almost surely for some constants ci > 0.
Then writing Sn =

∑n
i=1 Yi and b2 =

∑n
i=1 c

2
i ,

P
(
∥Sn∥Y ≥ a

)
≤ 2e−

a2

4b2

for any a > 0, or reformulated, for any t > 0,

P
(
∥Sn∥Y ≥ 2b

√
t
)
≤ 2e−t.

A.2. Gaussian Measures in Hilbert Spaces

Next, we consider concentration of the Gaussian measure. In the real case, the Gaussian measure
with mean µ and variance q is defined as the measure that is absolutely continuous with respect to
the Lebesgue measure and has density 1√

2πq
e
− 1

2q
(x−µ)2 . The Gaussian measure with mean 0 and

variance 1 is called the standard Gaussian measure. For a real variable with the standard Gaussian
distribution, the following concentration inequality can easily be derived.

Lemma 13 Let Z have the standard Gaussian distribution. Then for any a > 0, P(Z ≥ a) ≤ e−
1
2
a2 .

The definition of Gaussian measures can be extended to the separable Hilbert space Y .

Definition 14 Da Prato and Zabczyk (2014, pp.46-47)] A random variable Y in Y is Gaussian if,
for any y ∈ Y , ⟨Y, y⟩Y is a real Gaussian random variable (with some mean and variance).

The next two lemmas are concerned with the mean and covariance operator of a Y-valued Gaussian
random variable. The proofs are given in Da Prato and Zabczyk (2014, Section 2.3).

Lemma 15 If Y is a Gaussian random variable in Y , then E[∥Y ∥2Y ] <∞. As a consequence, Y is
Bochner integrable, and we call µ = E [Y ] ∈ Y the mean of Y .

Denote by L (Y) the Banach space of continuous linear operators from Y into itself, with the
operator norm.

Lemma 16 For a Y-valued Gaussian variable Y with mean µ, the random operator (Y − µ) ⊗
(Y − µ) : Y → Y defined by (Y − µ) ⊗ (Y − µ) (y) = ⟨Y − µ, y⟩Y (Y − µ) is continuous and
linear, and as a random variable taking values in L (Y), is Bochner integrable. We call Φ =
E
[
(Y − µ)⊗ (Y − µ)

]
∈ L (Y) the covariance operator of Y . The covariance operator Φ is

self-adjoint and trace-class.

Some authors (e.g. Bharucha-Reid (1972, p.24)) refer to the quantity

TrΦ = E
[∥∥(Y − µ)⊗ (Y − µ)

∥∥
op

]
= E

[
∥Y − µ∥2Y

]
as the “variance” of Y .

For a random variable Y on Y , its characteristic function is defined as the functional φY : Y → C
defined by φY (y) = E

[
ei⟨Y,y⟩Y

]
(Da Prato and Zabczyk, 2014, pp.34-35). As for real variables, the

characteristic function uniquely determines the distribution of the random variable (Da Prato and
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Zabczyk, 2014, p.35, Proposition 2.5(i)). Clearly, the characteristic function of a Gaussian variable
Y with mean µ and covariance operator Φ is given by

φY (y) = ei⟨µ,y⟩Y− 1
2
⟨Φy,y⟩Y , y ∈ Y,

so a Gaussian distribution is uniquely determined by its mean and covariance operator.
The next result gives a concentration result for Gaussian random variables in separable Hilbert

spaces. The proof can again be found in Da Prato and Zabczyk (2014, Section 2.3).

Proposition 17 Suppose that Y is a Gaussian random variable in Y with mean 0 and covariance
operator Φ. Then for any 0 < λ < 1

2TrΦ ,

E
[
eλ∥Y ∥2Y

]
≤ 1√

1− 2λTrΦ

and consequently,

P
(
∥Y ∥Y ≥ a

)
≤ 2e−

3a2

8TrΦ .

Appendix B. Differential Calculus

Recall that Y is a Hilbert space. Suppose that U is an open subset of Rd, and denote the Euclidean
norm in Rd by ∥·∥. We say that f1, f2 : U → Y are tangent at a point a ∈ U (Cartan, 1967, p.28) if
the quantity

m(r) = sup
∥x−a∥≤r

∥∥f1(x)− f2(x)
∥∥
Y ,

which is defined for r > 0 small enough (since U is open), satisfies the condition

lim
r→0

m(r)

r
= 0, which we also write as m(r) = o(r).

We say that the map g : U → Y is differentiable at a ∈ U if g is continuous at a and there exists a
linear map g′(a) : Rd → Y such that the maps x 7→ g(x)− g(a) and x 7→ g′(a)(x− a) are tangent
at a (Cartan, 1967, p.29). This condition is also written as∥∥g(x)− g(a)− g′(a)(x− a)

∥∥
Y = o(∥x− a∥).

This immediately implies that g′(a) is continuous, so g′(a) belongs to L (Rd,Y), the space of
continuous linear operators from Rd into Y . We call g′(a) ∈ L (Rd,Y) the derivative of g at
a. We say that g is differentiable on U if g is differentiable at every point in U , and the map
g′ : U → L (Rd,Y) is called the derivative map of g. We say that g is continuously differentiable, or
of class C1, if g is differentiable at every point of U and the map g′ : U → L (Rd,Y) is continuous
(Cartan, 1967, p.30).

Let g : U → Y be a continuous map. For each a = (a1, ..., ad) ∈ U and each l = 1, ..., d,
consider the inclusion λl : R → Rd defined by

λl(xl) = (a1, ..., al−1, xl, al+1, ..., ad).

The composition g ◦ λl is defined on an open subset λ−1
l (X ) ⊂ R, which contains al. If g is

differentiable at a, then for each l = 1, ..., d, the map g ◦ λl is differentiable at al (Cartan, 1967,
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p.38, Proposition 2.6.1). The derivative of g ◦ λl at a is called the partial derivative of g, denoted by
∂lg(a), and lives in L (R,Y). But L (R,Y) is isometrically isomorphic to Y (Cartan, 1967, p.20,
Exemple 1), so we can view ∂lg(a) as an element of Y . Moreover,

g′(a)(h) = g′(a)(h1, ..., hd) =
d∑

l=1

hl∂lg(a), for h = (h1, ..., hd) ∈ Rd.

Cartan (1967, p.40, Proposition 2.6.2) tells us that g is of class C1 if and only if ∂lg : U → Y is
continuous for each l = 1, ..., d.

Next, we consider higher-order derivatives. For an integer m, a map F : (Rd)m → Y is
m-linear if, for each k = 1, ...,m and any a(1), ..., a(k−1), a(k+1), ..., a(m) ∈ Rd, the map x 7→
F (a(1), ..., a(k−1), x, a(k+1), ..., a(m)) is linear from Rd into Y (Cartan, 1967, p.24). We say that F
is an m-linear map from Rd into Y , and denote by Lm(Rd;Y) the space of all continuous m-linear
maps from Rd into Y2. The space Lm(Rd;Y) can then be equipped with a natural operator norm
defined by

∥F∥op = sup
∥x(1)∥≤1,...,∥x(m)∥≤1

∥∥∥F (x(1), ..., x(m))
∥∥∥
Y
.

For any integer m, Coleman (2012, p.88, Theorem 4.4) tells us that Ψm : L (Rd,Lm−1(Rd;Y)) →
Lm(Rd;Y) defined by Ψm(F )(x(1), x(2), ..., x(m)) = F (x(1))(x(2), ..., x(m)) is an isometric iso-
morphism.

We say that g : U → Y is twice differentiable at a ∈ U if the derivative map g′ : U → L (Rd,Y)
is differentiable at a. We denote by g′′(a) = g(2)(a) ∈ L (Rd,L (Rd,Y)) ≃ L2(Rd;Y ) the second
derivative of g at a. We say that g is twice differentiable on U if it is twice differentiable at all
points in U . Then we have a map g(2) : U → L2(Rd,Y). We say that g is twice continuously
differentiable on U , or of class C2 on U , if g is twice differentiable and if the map g(2) is continuous
(Cartan, 1967, p.64). By continuing in this way, we say that g is m-times differentiable at a ∈ U if
g(m−1) : U → Lm−1(Rd;Y) is differentiable at a, define the mth derivative g(m)(a) ∈ Lm(Rd;Y)
of g at a as the derivative of g(m−1) at a, and say that g is m-times differentiable on U if it is m-times
differentiable at all points in U . We say that g is of class Cm on U if g is m-times differentiable at
all points in U and the map g(m) : U → Lm(Rd;Y) is continuous; we say that g is of class C∞ if it
is of class Cm for all m ∈ N (Cartan, 1967, pp.69–70).

Similarly, for l1 ∈ {1, ..., d}, if the partial derivative ∂l1g : U → Y is defined in some neigh-
bourhood of x ∈ U and is differentiable, then for l2 ∈ {1, ..., d} (which may or may not be distinct
from l1), we may define the second partial derivative ∂l1∂l2g(a) ∈ Y . If l1 = l2 = l, then we write
∂l∂lg = ∂2l g. Analogously to the first partial derivative, we have a formula that expresses the second
derivative as a sum of second partial derivatives:

g′′(a)((h
(1)
1 , ..., h

(1)
d ), (h

(2)
1 , ..., h

(2)
d )) =

d∑
l1,l2=1

h
(1)
l1
h
(2)
l2
∂l1∂l2g(a),

where h(1) = (h
(1)
1 , ..., h

(1)
d ), h(2) = (h

(2)
1 , ..., h

(2)
d ) ∈ Rd (Cartan, 1967, p.68, (5.2.5)). Continuing

in the same way, we can define the mth partial derivative ∂l1 ...∂lmg(a) ∈ Y . Then writing h =

2. Beware that Lm(Rd;Y), the space of continuous m-linear maps from Rd into Y , is different to L ((Rd)m,Y), the
space of continuous linear maps from (Rd)m into Y .
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(h(1), ..., h(m)) ∈ (Rd)m, we have

g(m)(a)(h) =
d∑

l1,...,lm=1

h
(1)
l1
...h

(m)
lm

∂l1 ...∂lmg(a).

Finally, we state the extension of Taylor’s theorem to functions with values in Y , with Lagrange’s
form of the remainder. To this end, for a, b ∈ Rd, define the segment joining a and b as the set
(Coleman, 2012, p.51).

[a, b] = {x ∈ Rd : x = va+ (1− v)b, v ∈ [0, 1]}.

Theorem 18 (Cartan (1967, p.77, Théorème 5.6.2)) Suppose that g : U → Y is (m + 1)-times
differentiable, that the segment [a, a+ h] is contained in U and that, for some K > 0, we have∥∥∥g(m+1)(x)

∥∥∥
op

≤ K for all x ∈ U.

Then ∥∥∥∥∥∥g(a+ h)−
m∑
k=0

1

k!
g(k)(a)((h)k)

∥∥∥∥∥∥
Y

≤ K
∥h∥m+1

(m+ 1)!
,

where we wrote (h)k = (h, ..., h) ∈ (Rd)k for k = 1, ...,m.

Write N0 = {0, 1, 2, ...}, and for p = (p1, ..., pd) ∈ Nd
0, write [p] := p1 + ...+ pd. Then we denote

the pth partial derivative ∂p11 ...∂
pd
d g(a) of g at a ∈ U as Dpg(a) ∈ Y . This is possible since the order

of partial differentiation is immaterial by repeated application of Cartan (1967, p.69, Proposition
5.2.2). Hence, for each k = 1, ...,m+ 1, we have

g(k)(a)((h)k) =
d∑

l1,...,lk=1

hl1 ...hlk∂l1 ...∂lkg(a) =
∑
[p]=k

k!hp

p!
Dpg(a),

where we wrote hp as a shorthand for hp11 ...h
pd
d and p! for p1!...pd!. Hence, using partial derivatives,

we can express Taylor’s theorem above as∥∥∥∥∥∥g(a+ h)−
∑
[p]≤m

hp

p!
Dpg(a)

∥∥∥∥∥∥
Y

≤ K
∥h∥m+1

(m+ 1)!
.

Appendix C. Empirical Process Theory with Vector-Valued Functions

In this Section, we state and prove some basic empirical process-theoretic results, adapted to our
setting of vector-valued functions. Although technically new, the ideas and proofs carry over from
the real case with ease, by applying vector-valued concentration inequalities from Section A.
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C.1. Symmetrisation

Symmetrisation is an indispensable technique in empirical process theory. Let X ′
1, ..., X

′
n be another

set of independent copies of X , independent of X1, ..., Xn. Denote by P ′
n the empirical measure on

X ′
1, ..., X

′
n, i.e. P ′

n = 1
n

∑n
i=1 δX′

i
.

Lemma 19 We have
E
[
∥Pn − P∥G

]
≤ E

[∥∥Pn − P ′
n

∥∥
G

]
.

Proof Denote by Fn the σ-algebra generated by X1, ..., Xn. Then for each g ∈ G, we have

E
[
Png | Fn

]
= Png and E

[
P ′
ng | Fn

]
= Pg,

and so
(Pn − P )g = E

[(
Pn − P ′

n

)
g | Fn

]
.

Now see that

∥Pn − P∥G = sup
g∈G

∥∥∥∥E [(Pn − P ′
n

)
g | Fn

]∥∥∥∥
Y

≤ sup
g∈G

E
[∥∥∥(Pn − P ′

n

)
g
∥∥∥
Y
| Fn

]
by Jensen’s inequality

≤ E

[
sup
g∈G

∥∥∥(Pn − P ′
n

)
g
∥∥∥
Y
| Fn

]
.

Now take expectations on both sides and apply the law of iterated expectations arrive at the result.

We let {σi}ni=1 be a Rademacher sequence, i.e. a sequence of independent random variables σi with

P (σi = 1) = P (σi = −1) =
1

2
, for all i = 1, ..., n.

We define the symmetrised empirical measures P σ
n = 1

n

∑n
i=1 σiδXi and P ′σ

n = 1
n

∑n
i=1 σiδX′

i
, and

denote

P σ
n g =

1

n

n∑
i=1

σig(Xi) and P ′σ
n g =

1

n

n∑
i=1

σig(X
′
i).

Lemma 20 (Symmetrisation with means) We have

E
[
∥Pn − P∥G

]
≤ 2E

[
∥P σ

n ∥G
]

Proof Note that
∥∥Pn − P ′

n

∥∥
G has the same distribution as

∥∥P σ
n − P ′σ

n

∥∥
G , since, for each i = 1, ..., n

and g ∈ G. g(Xi)− g(X ′
i) and σi

(
g(Xi)− g(X ′

i)
)

have the same distribution. Hence, the triangle
inequality gives us

E
[∥∥Pn − P ′

n

∥∥
G

]
= E

[∥∥P σ
n − P ′σ

n

∥∥
G

]
≤ E

[
∥P σ

n ∥G +
∥∥P ′σ

n

∥∥
G

]
= 2E

[
∥P σ

n ∥G
]
.

Now apply Lemma 19.
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Lemma 21 (Symmetrisation with probabilities) Let a > 0. Suppose that for all g ∈ G,

P
(∥∥(Pn − P ) g

∥∥
Y >

a

2

)
≤ 1

2
.

Then

P
(
∥Pn − P∥G > a

)
≤ 4P

(
∥P σ

n ∥G >
a

4

)
.

Proof Denote again by Fn the σ-algebra generated by X1, ..., Xn. If ∥Pn − P∥G > a, then we
know that for some random function g∗ depending on X1, ..., Xn,

∥∥(Pn − P ) g∗
∥∥
Y > a. Because

X ′
1, ..., X

′
n are independent of Fn,

P
(∥∥∥(P ′

n − P
)
g∗

∥∥∥
Y
>
a

2
| Fn

)
= P

(∥∥(Pn − P ) g∗
∥∥
Y >

a

2

)
≤ 1

2
. (*)

Then see that,

P
(
∥Pn − P∥G > a

)
≤ P

(∥∥(Pn − P ) g∗
∥∥
Y > a

)
= E

[
1
{∥∥(Pn − P ) g∗

∥∥
Y > a

}]
≤ 2E

[
P
(∥∥∥(P ′

n − P
)
g∗

∥∥∥
Y
≤ a

2
| Fn

)
1
{∥∥(Pn − P ) g∗

∥∥
Y > a

}]
by (*)

= 2E

[
P
(∥∥∥(P ′

n − P
)
g∗

∥∥∥
Y
≤ a

2
and

∥∥(Pn − P ) g∗
∥∥
Y > a | Fn

)]

= 2P
(∥∥∥(P ′

n − P
)
g∗

∥∥∥
Y
≤ a

2
and

∥∥(Pn − P ) g∗
∥∥
Y > a

)
.

But if the two inequalities in the probability on the last line hold, then the reverse triangle inequality
gives us

a

2
<
∥∥(Pn − P ) g∗

∥∥
Y −

∥∥∥(P ′
n − P

)
g∗

∥∥∥
Y
≤
∥∥∥(Pn − P ′

n

)
g∗

∥∥∥
Y
,

so

P
(
∥Pn − P∥G > a

)
≤ 2P

(∥∥∥(Pn − P ′
n

)
g∗

∥∥∥
Y
>
a

2

)
≤ 2P

(∥∥Pn − P ′
n

∥∥
G >

a

2

)
= 2P

(∥∥P σ
n − P ′σ

n

∥∥
G >

a

2

)
≤ 2P

(
∥P σ

n ∥G >
a

4
or
∥∥P ′σ

n

∥∥
G >

a

4

)
≤ 4P

(
∥P σ

n ∥G >
a

4

)
.

A simple application of the above symmetrisation argument and Hoeffding’s inequality in Hilbert
spaces (Proposition 12) shows that finite function classes are Glivenko-Cantelli.
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Lemma 22 Let G = {g1, ..., gN} ∈ L1(X , P ;Y) be a finite class of functions with cardinality
N > 1. Then we have

∥Pn − P∥G → 0.

Proof Take any K > 0. Define the function G : X → R by G(x) = max1≤j≤N

∥∥gj(x)∥∥Y . Since
each

∥∥gj∥∥Y is integrable, and we have a finite collection, G is also integrable. Then, for each
j = 1, ..., N , define the function g̃j : X → Y by g̃j = gj1 {G ≤ K}. Then for all i = 1, ..., n,
letting σi be independent Rademacher variables again, we have

E
[
σig̃j(Xi)

]
= 0 and

∥∥σig̃j(Xi)
∥∥
Y ≤ K almost surely.

Hence, for each j = 1, ..., N , by Hoeffding’s inequality (Proposition 12), for any t > 0, we have

P

(∥∥P σ
n g̃j
∥∥
Y ≥ 2K

√
t

n

)
= P


∥∥∥∥∥∥

n∑
i=1

σig̃j(Xi)

∥∥∥∥∥∥
Y

≥ 2K
√
nt

 ≤ 2e−t.

By the union bound, for any t > 0, we have

P

(
max

1≤j≤N

∥∥P σ
n g̃j
∥∥
Y ≥ 2K

√
t+ logN

n

)
≤ N max

1≤j≤N
P

(∥∥P σ
n g̃j
∥∥
Y ≥ 2K

√
t+ logN

n

)
≤ 2e−t.

Now see that, for each j = 1, ..., N , Chebyshev’s inequality gives

P

(∥∥(Pn − P ) g̃j
∥∥
Y > 4K

√
t+ logN

n

)
≤
nE
[∥∥(Pn − P ) g̃j

∥∥2
Y

]
16K2 (t+ logN)

≤ 1

16 (t+ logN)
≤ 1

2
,

where the last inequality follows since 8t+ 8 logN ≥ 8 log 2 ≥ 1. Now apply Lemma 21 to see that

P

(
max

1≤j≤N

∥∥(Pn − P ) g̃j
∥∥
Y > 8K

√
t+ logN

n

)
≤ 4P

(
max

1≤j≤N

∥∥P σ
n g̃j
∥∥
Y > 2K

√
t+ logN

n

)
≤ 8e−t.

This tells us that
max

1≤j≤N

∥∥(Pn − P ) g̃j
∥∥
Y

P→ 0.

Finally, see that

∥Pn − P∥G ≤ max
1≤j≤N

∥∥(Pn − P ) g̃j
∥∥
Y + max

1≤j≤N

∥∥(Pn − P ) gj1 {G > K}
∥∥
Y .

Here, the first term converges to 0 in probability for any K > 0, as shown above, and the second
term decomposes as

max
1≤j≤N

∥∥(Pn − P ) gj1 {G > K}
∥∥
Y ≤ (Pn + P )G1 {G > K}

= (Pn − P )G1 {G > K}+ 2PG1 {G > K}
≤ (Pn − P )G+ 2PG1 {G > K} .

Here, the first term converges to 0 in probability by the weak law of large numbers, and the second
term converges to 0 as K → ∞, by Çınlar (2011, p.71, Lemma 3.10).
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C.2. Uniform law of large numbers

We start with a definition.

Definition 23 (Adapted from van de Geer (2000, p.26, Definition 3.1)) The function G : X →
R defined by G(·) = supg∈G

∥∥g(·)∥∥Y is called the envelope of G.

The following is a uniform law of large numbers based on conditions on the entropy H(δ,G, ∥·∥1,Pn)
and the envelope G.

Theorem 24 Suppose that

G ∈ L1(X , P ;R) and
1

n
H(δ,G, ∥·∥1,Pn)

P→ 0 for each δ > 0.

Then G is a Glivenko Cantelli class, i.e. ∥Pn − P∥G
P→ 0.

Proof Take any K > 0 and δ > 0. Denote again by Fn the σ-algebra generated by X1, ..., Xn,
and define GK = {g1{G ≤ K} : g ∈ G}. Let g1, ..., gN , with N = N(δ,G, ∥·∥1,Pn), be a minimal
δ-covering of G. Then N is a random variable, that is measurable with respect to Fn. Moreover,
writing g̃j = gj1{G ≤ K} for each j = 1, ..., N , g̃1, ..., g̃N form a δ-covering of GK , since, for
any g̃ = g1{G ≤ K} ∈ GK for g ∈ G, there exists j ∈ {1, ..., N} with ∥g − gj∥1,Pn ≤ δ, so
∥g̃ − g̃j∥1,Pn ≤ ∥g − gj∥1,Pn ≤ δ.

Note that, when
∥∥g̃ − g̃j

∥∥
1,Pn

= Pn

∥∥g̃ − g̃j
∥∥
Y ≤ δ, we have

∥P σ
n g̃∥Y ≤

∥∥P σ
n g̃j
∥∥
Y +

∥∥P σ
n g̃ − P σ

n g̃j
∥∥
Y ≤

∥∥P σ
n g̃j
∥∥
Y + Pn

∥∥g̃ − g̃j
∥∥
Y ≤

∥∥P σ
n g̃j
∥∥
Y + δ.

So for any g̃ ∈ GK ,
∥P σ

n g̃∥Y ≤ max
1≤j≤N

∥∥P σ
n g̃j
∥∥
Y + δ. (*)

By Hoeffding’s inequality and union bound (as in the proof of Lemma 22, since N is measurable
with respect to Fn), for any t > 0, we have

P

(
max

1≤j≤N

∥∥P σ
n g̃j
∥∥
Y ≥ 2K

√
t+ logN

n
| Fn

)
≤ 2e−t.

We then apply (*) and integrate both sides (to remove the conditioning on Fn) to see that, for any
t > 0,

P

(
∥P σ

n ∥GK
≥ δ + 2K

√
t+ logN

n

)
≤ 2e−t.

Then see that, using the elementary inequality
√
a+

√
b ≥

√
a+ b,

P

(
∥P σ

n ∥GK
≥ 2δ + 2K

√
t

n

)

≤ P

(
∥P σ

n ∥GK
≥ δ + 2K

√
t

n
+ 2K

√
logN

n

)
+ P

(
2K

√
logN

n
≥ δ

)
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≤ P

(
∥P σ

n ∥GK
≥ δ + 2K

√
t+ logN

n

)
+ P

(
2K

√
1

n
H(δ,G, ∥·∥1,Pn) ≥ δ

)

≤ 2e−t + P

(
2K

√
1

n
H(δ,G, ∥·∥1,Pn) ≥ δ

)
.

Also, by Chebyshev’s inequality, for each g̃ ∈ GK , we have, for any t ≥ 1
8

P

(∥∥(Pn − P ) g̃
∥∥
Y > 4δ + 4K

√
t

n

)
≤ P

(∥∥(Pn − P ) g̃
∥∥
Y > 4K

√
t

n

)

≤
nE
[∥∥(Pn − P ) g̃

∥∥2
Y

]
16K2t

≤ 1

16t

≤ 1

2
.

Hence, we can apply symmetrisation with probabilities again (Lemma 21) to see that, for any t ≥ 1
8 ,

P

(
∥Pn − P∥GK

≥ 8δ + 8K

√
t

n

)
≤ 4P

(
∥P σ

n ∥GK
≥ 2δ + 2K

√
t

n

)

≤ 2−t + P

(
2K

√
1

n
H(δ,G, ∥·∥1,Pn) ≥ δ

)
.

Here, since δ > 0 was arbitrary and 1
nH(δ,G, ∥·∥1,Pn)

P→ 0 by hypothesis, we have that GK is
Glivenko Cantelli.

Finally, see that

∥Pn − P∥G ≤ sup
g̃∈GK

∥∥(Pn − P ) g̃
∥∥
Y + sup

g∈G

∥∥(Pn − P ) g1 {G > K}
∥∥
Y .

Here, the first term converges to 0 in probability for any K > 0, as shown above, and the second
term decomposes as

sup
g∈G

∥∥(Pn − P ) g1 {G > K}
∥∥
Y ≤ (Pn + P )G1 {G > K}

= (Pn − P )G1 {G > K}+ 2PG1 {G > K}
≤ (Pn − P )G+ 2PG1 {G > K} .

Here, the first term converges to 0 in probability by the weak law of large numbers, and the second
term converges to 0 as K → ∞, by Çınlar (2011, p.71, Lemma 3.10), since G is integrable by
hypothesis.
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C.3. Chaining and asymptotic equicontinuity with empirical entropy

In this subsection we show that, with additional conditions on the entropy of G (which we assume to
be totally bounded with respect to the appropriate metric) and a technique called “chaining”, we can
derive explicit finite-sample bounds, and show the asymptotic continuity of the empirical process
indexed by G (see Definition 3). As before, we work conditionally on the samples, and denote the
σ-algebra generated by X1, ..., Xn as Fn.

Suppose that G has an envelope G ∈ L2(X , P ;R) (see Definition 23). Then the quantity
R = supg∈G ∥g∥2,P is finite, since

R2 = sup
g∈G

E
[∥∥g(X)

∥∥2
Y

]
≤ E

[
sup
g∈G

∥∥g(X)
∥∥2
Y

]
= E

[
G2
]
<∞.

Similarly, the quantityRn = supg∈G ∥g∥2,Pn
is almost surely finite. We callR andRn the theoretical

radius and empirical radius of G, respectively. Note that Rn is a random quantity, measurable with
respect to Fn.

Let us fix S ∈ N. To ease the notation, for s = 0, 1, ..., S, write Ns = N(2−sRn,G, ∥·∥2,Pn)
for the 2−sRn-covering number of G with respect to the ∥·∥2,Pn-metric, which we assume to be
finite. Let {gsj}

Ns
j=1 ⊂ G be a 2−sRn-covering set of G with respect to the ∥·∥2,Pn-metric. Note

that {g0} = {0} is an Rn-covering set of G, since, for any g ∈ G, ∥g∥2,Pn
≤ Rn. Similarly, write

Hs = logNs for each s = 0, 1, ..., S, for the corresponding entropy. Note that the quantities Ns and
Hs, as well as the covering set {gsj}

Ns
j=1, are random quantities that are measurable with respect to

Fn.
Now fix g ∈ G. Then define

gS+1 := argmin
{gS+1

j }
NS+1
j=1

{∥∥∥g − gS+1
j

∥∥∥
2,Pn

}

gS := argmin
{gSj }

NS
j=1

{∥∥∥gS+1 − gSj

∥∥∥
2,Pn

}
...

...

gs := argmin
{gsj}

Ns
j=1

{∥∥∥gs+1 − gsj

∥∥∥
2,Pn

}
...

...

g0 := 0.

Proposition 25 (Chaining) We fix S ∈ N. Define

Jn :=
S∑

s=0

2−sRn

√
2Hs+1.
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(i) For all t > 0,

P

sup
g∈G

∥∥∥∥∥∥
S∑

s=0

P σ
n

(
gs+1 − gs

)∥∥∥∥∥∥
Y

≥
√
2Jn√
n

+ 6Rn

√
1 + t

n
| Fn

 ≤ 2e−t.

(ii) Suppose that ε1, ..., εn are i.i.d. Gaussian random variables in Y with mean 0 and covariance
operator Q. Without loss of generality (by rescaling if necessary), assume TrQ = 1. For each
g ∈ G, we can consider the following inner product:

⟨ε, g⟩2,Pn
=

1

n

n∑
i=1

〈
εi, g(Xi)

〉
Y .

Then for all t > 0,

P

sup
g∈G

S∑
s=0

〈
ε, gs+1 − gs

〉
2,Pn

≥ Jn√
n
+ 4Rn

√
1 + t

n
| Fn

 ≤ e−t.

Proof

(i) Fix s ∈ {0, 1, ..., S} and k ∈ {1, ..., Ns+1}. Denote

gs+1,s
k = argmin

{gsj}
Ns
j=1

{∥∥∥gs+1
k − gsj

∥∥∥
2,Pn

}
.

Then ∥∥∥∥P σ
n

(
gs+1
k − gs+1,s

k

)∥∥∥∥
Y
≤ 1

n

n∑
i=1

∥∥∥gs+1
k (Xi)− gs+1,s

k (Xi)
∥∥∥
Y
,

where √√√√ n∑
i=1

∥∥∥gs+1
k (Xi)− gs+1,s

k (Xi)
∥∥∥2
Y
=

√
n
∥∥∥gs+1

k − gs+1,s
k

∥∥∥
2,Pn

≤
√
n2−sRn,

since the {gsj}
Ns
j=1 form a 2−sRn-covering of (G, ∥·∥2,Pn). Hence, noting thatRn is measurable

with respect to Fn, Hoeffding’s inequality (Proposition 12) gives, for any t > 0,

P

(∥∥∥∥P σ
n

(
gs+1
k − gs+1,s

k

)∥∥∥∥
Y
≥ 2−(s−1)Rn

√
t

n
| Fn

)
≤ 2e−t.

Therefore (by the union bound), for each s = 0, 1, ..., S and all t > 0,

P

(
max

k∈{1,...,Ns+1}

∥∥∥∥P σ
n

(
gs+1
k − gs+1,s

k

)∥∥∥∥
Y
≥ 2−(s−1)Rn

√
Hs+1 + t

n
| Fn

)
≤ 2e−t.
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Fix t and for s = 0, 1, ..., S, let

αs : = 2−(s−1)Rn

(√
Hs+1 +

√
(1 + s)(1 + t)

)
≥ 2−(s−1)Rn

(√
Hs+1 + (1 + s)(1 + t)

)
,

using
√
a+

√
b ≥

√
a+ b. Then using

∑S
s=0 2

−(s−1)
√
1 + s ≤ 6,

S∑
s=0

αs =
√
2Jn +

S∑
s=0

2−(s−1)Rn

√
(1 + s)(1 + t)

≤
√
2Jn + 6Rn

√
1 + t.

Therefore

P

sup
g∈G

∥∥∥∥∥∥
S∑

s=0

P σ
n

(
gs+1 − gs

)∥∥∥∥∥∥
Y

≥
√
2Jn√
n

+ 6Rn

√
1 + t

n
| Fn


≤ P

sup
g∈G

∥∥∥∥∥∥
S∑

s=0

P σ
n

(
gs+1 − gs

)∥∥∥∥∥∥
Y

≥ 1√
n

S∑
s=0

αs | Fn


≤ P

 S∑
s=0

sup
g∈G

∥∥∥∥P σ
n

(
gs+1 − gs

)∥∥∥∥
Y
≥ 1√

n

S∑
s=0

αs | Fn


≤

S∑
s=0

P

(
sup
g∈G

∥∥∥∥P σ
n

(
gs+1 − gs

)∥∥∥∥
Y
≥ 1√

n
αs | Fn

)

=

S∑
s=0

P

(
max

k=1,...,Ns+1

∥∥∥∥P σ
n

(
gs+1
k − gs+1,s

k

)∥∥∥∥
Y
≥ 1√

n
αs | Fn

)

≤ 2

S∑
s=0

e−(1+s)(1+t)

≤ 2e−t.

(ii) Fix s ∈ {0, 1, ..., S} and k ∈ {1, ..., Ns+1}. Denote

gs+1,s
k = argmin

{gsj}
Ns
j=1

{∥∥∥gs+1
k − gsj

∥∥∥
2,Pn

}
.

Let λ > 0 be arbitrary. Then Markov’s inequality gives us, for any t > 0,

P

(〈
ε, gs+1

k − gs+1,s
k

〉
2,Pn

≥ 2−sRn

√
2t

n
| Fn

)

≤ e
−λ2−sRn

√
2t
n E

[
e

λ
n

∑n
i=1

〈
εi,g

s+1
k (Xi)−gs+1,s

k (Xi)
〉
Y | Fn

]
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= e
−λ2−sRn

√
2t
n

n∏
i=1

E

[
e

λ
n

〈
εi,g

s+1
k (Xi)−gs+1,s

k (Xi)
〉
Y | Fn

]
.

Here, since εi is a Y-valued Gaussian random variable with mean 0 and covariance operator
Q for each i = 1, ..., n, the distribution of the real variable λ

n

〈
εi, g

s+1
k (Xi)− gs+1,s

k (Xi)
〉
Y

conditioned on Fn is real Gaussian with mean 0 and variance

λ2

n2
E
[〈
gs+1
k (Xi)− gs+1,s

k (Xi), εi

〉2
Y
| Fn

]
≤ λ2

n2

∥∥∥gs+1
k (Xi)− gs+1,s

k (Xi)
∥∥∥2
Y
,

which follows from the Cauchy-Schwarz inequality and the fact that E
[
∥εi∥2Y

]
= TrQ = 1.

Hence,

P

(〈
ε, gs+1

k − gs+1,s
k

〉
2,Pn

≥ 2−sRn

√
2t

n
| Fn

)

≤ e
−λ2−sRn

√
2t
n

n∏
i=1

e
λ2

2n2

∥∥∥gs+1
k (Xi)−gs+1,s

k (Xi)
∥∥∥2
Y

= e
−λ2−sRn

√
2t
n e

λ2

2n2

∑n
i=1

∥∥∥gs+1
k (Xi)−gs+1,s

k (Xi)
∥∥∥2
Y

= e
−λ2−sRn

√
2t
n e

λ2

2n

∥∥∥gs+1
k −gs+1,s

k

∥∥∥2
2,Pn

≤ e
−λ2−sRn

√
2t
n e

λ2

2n (2
−sRn)

2

.

Now let λ =
√
2nt

2−sRn
to see that

P

(〈
ε, gs+1

k − gs+1,s
k

〉
2,Pn

≥ 2−sRn

√
2t

n
| Fn

)
≤ e−t.

Therefore, by the union bound, for each s = 0, 1, ..., S and all t > 0,

P

(
max

k∈{1,...,Ns+1}

〈
ε, gs+1

k − gs+1,s
k

〉
2,Pn

≥ 2−sRn

√
2(t+Hs+1)

n
| Fn

)
≤ e−t.

Fix t and for s = 0, 1, ..., S, let

αs := 2−sRn

(√
2Hs+1 +

√
2(1 + s)(1 + t)

)
≥ 2−sRn

√
2
(
Hs+1 + (1 + s)(1 + t)

)
using

√
a+

√
b ≥

√
a+ b. Then using

∑∞
s=0 2

−s
√

2(1 + s) ≤ 4,

∞∑
s=0

αs = Jn +

∞∑
s=0

2−sRn

√
2(1 + s)(1 + t) ≤ Jn + 4Rn

√
1 + t.

Then

P

sup
g∈G

S∑
s=0

〈
ε, gs+1 − gs

〉
2,Pn

≥ Jn√
n
+ 4Rn

√
1 + t

n
| Fn


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≤ P

 S∑
s=0

sup
g∈G

〈
ε, gs+1 − gs

〉
2,Pn

≥ 1√
n

S∑
s=0

αs | Fn


≤

S∑
s=0

P

(
sup
g∈G

〈
ε, gs+1 − gs

〉
2,Pn

≥ 1√
n
αs | Fn

)

=

S∑
s=0

P

(
max

k=1,...,Ns+1

〈
ε, gs+1

k − gs+1,s
k

〉
2,Pn

≥ 1√
n
αs | Fn

)

≤
S∑

s=0

e−(1+s)(1+t)

≤ e−t.

Recall from Definition 3 the empirical process,
{
νn(g) =

√
n (Pn − P ) g : g ∈ G

}
. Under addi-

tional conditions, we can use the previous lemma to show its asymptotic equicontinuity. We continue
to assume that the envelope G = supg∈G ∥g∥Y satisfies G ∈ L2(X , P ;R).

Theorem 26 Suppose that G satisfies the “uniform entropy condition”, i.e. there exists a decreasing
function H : R → R satisfying ∫ 1

0

√
H(u)du <∞

such that, for all u > 0 and any probability distribution Q with finite support,

H(u ∥G∥2,Q ,G, ∥·∥2,Q) ≤ H(u).

Then the empirical process νn is asymptotically equicontinuous.

Proof Take any arbitrary g0 ∈ G. We will show that νn is asymptotically equicontinuous at g0. Take
arbitrary ϵ1, ϵ2 > 0, and fix S ∈ N. Define, for δ > 0, the closed δ-ball around the origin:

B(δ) :=
{
g ∈ G : ∥g∥2,P ≤ δ

}
.

Then clearly, the theoretical radius of B(δ) is supg∈B(δ) ∥g∥2,P = δ. Denote the empirical radius of
B(δ) by Rn,δ = supg∈B(δ) ∥g∥2,Pn

, and analogously to the proof of Proposition 25, define

Jn,δ :=

S∑
s=0

2−sRn,δ

√
2H
(
2−(s+1)Rn,δ,B(δ), ∥·∥2,Pn

)
.

Also define
J (ρ) := 8

∫ ρ

0

√
2H(u)du, ρ > 0,

which is bounded for any finite ρ > 0, by the uniform entropy condition.
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Define A ∈ F as the event on which Rn,δ ≤ 2δ and ∥G∥2,Pn
≤ 2 ∥G∥2,P . Then on this event,

we have

Jn,δ =

S∑
s=0

2−sRn,δ

√
2H
(
2−(s+1)Rn,δ,B(δ), ∥·∥2,Pn

)
≤ 4

∫ Rn,δ

0

√
2H(u,B(δ), ∥·∥2,Pn)du

≤ 4

∫ 2δ

0

√
2H
(
u,G, ∥·∥2,Pn

)
du since Rn,δ ≤ 2δ on A and B(δ) ⊆ G

≤ 4

∫ 2δ

0

√√√√2H

(
u

∥G∥2,Pn

)
du by the uniform entropy condition

≤ 4

∫ 2δ

0

√√√√2H

(
u

2 ∥G∥2,P

)
du since ∥G∥2,Pn

≤ 2 ∥G∥2,P on A and H is decreasing.

= 8 ∥G∥2,P
∫ δ

∥G∥2,P

0

√
2H(u)du by substitution

= ∥G∥2,P J

(
δ

∥G∥2,P

)
.

On A, we also have

sup
g∈B(δ)

∥∥∥∥P σ
n

(
g − gS+1

)∥∥∥∥
Y
≤ sup

g∈B(δ)

∥∥∥g − gS+1
∥∥∥
1,Pn

≤ sup
g∈B(δ)

∥∥∥g − gS+1
∥∥∥
2,Pn

≤ 2−(S+1)Rn,δ

≤ 2−Sδ. (*)

So on A, noting that

∥P σ
n ∥B(δ) = sup

g∈B(δ)

∥∥∥∥∥∥P σ
n

(
g − gS+1

)
+

S∑
s=0

P σ
n

(
gs+1 − gs

)∥∥∥∥∥∥
Y

≤ sup
g∈B(δ)

∥∥∥∥P σ
n

(
g − gS+1

)∥∥∥∥
Y
+ sup

g∈B(δ)

∥∥∥∥∥∥
S∑

s=0

P σ
n

(
gs+1 − gs

)∥∥∥∥∥∥
Y

,

we have, for all t > 0,

P

∥P σ
n ∥B(δ) ≥

√
2 ∥G∥2,P J

(
δ

∥G∥2,P

)
√
n

+ 12δ

√
1 + t

n
+ 2−Sδ | Fn


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= P

 sup
g∈B(δ)

∥∥∥∥P σ
n

(
g − gS+1

)∥∥∥∥
Y
+ sup

g∈B(δ)

∥∥∥∥∥∥
S∑

s=0

P σ
n

(
gs+1 − gs

)∥∥∥∥∥∥
Y

≥
√
2Jn,δ
n

+ 6Rn,δ

√
1 + t

n
+ 2−Sδ | Fn

)

≤ P

 sup
g∈B(δ)

∥∥∥∥∥∥
S∑

s=0

P σ
n

(
gs+1 − gs

)∥∥∥∥∥∥
Y

≥
√
2Jn,δ√
n

+ 6Rn,δ

√
1 + t

n
| Fn


≤ 2e−t,

where the term P

(
supg∈B(δ)

∥∥∥∥P σ
n

(
g − gS+1

)∥∥∥∥
Y
≥ 2−Sδ | Fn

)
vanishes by (*) and the last in-

equality follows Proposition 25(i). Then we can de-symmetrise using Lemma 21:

P

∥Pn − P∥B(δ) ≥
4
√
2 ∥G∥2,P J

(
δ

∥G∥2,P

)
√
n

+ 48δ

√
1 + t

n
+ 2−(S−2)δ



≤ 4P

∥P σ
n ∥B(δ) ≥

√
2 ∥G∥2,P J

(
δ

∥G∥2,P

)
√
n

+ 12δ

√
1 + t

n
+ 2−Sδ


≤ 8e−t + 4P

(
Rn,δ > 2δ or ∥G∥2,Pn

> 2 ∥G∥2,P
)

= 8e−t + 4P

(
sup

g∈B(δ)∪{G}
∥g∥22,Pn

> 4 sup
g∈B(δ)∪{G}

∥g∥22,P

)
.

Now let t = log
(

8
ϵ2

)
and S large enough such that 2−(S−2) ≤ 1√

n
, and δ small enough such that

4
√
2 ∥G∥2,P J

(
δ

∥G∥2,P

)
+ 48δ

√
1 + log

(
8

ϵ2

)
+ δ ≤ ϵ1.

Then

P
(√

n ∥Pn − P∥B(δ) > ϵ1

)
≤ ϵ2 + 4P

(
sup

g∈B(δ)∪{G}
∥g∥22,Pn

> 4 sup
g∈B(δ)∪{G}

∥g∥22,P

)
.

Hence, for any g ∈ G such that ∥g − g0∥2,P ≤ δ,

P
(∥∥νn(g)− νn(g0)

∥∥
Y > ϵ1

)
= P

(√
n
∥∥(Pn − P ) (g − g0)

∥∥
Y > ϵ1

)
≤ P

(√
n ∥Pn − P∥B(δ) > ϵ1

)
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≤ ϵ2 + 4P

(
sup

g∈B(δ)∪{G}
∥g∥22,Pn

> 4 sup
g∈B(δ)∪{G}

∥g∥22,P

)
.

Here, by the uniform law of large numbers on B(δ) ∩ {G} (Theorem 24), the second term converges
to 0 as n→ ∞. Hence, as ϵ1 and ϵ2 were arbitrary, we have asymptotic equicontinuity.

C.4. Peeling and Least-Squares Regression with Fixed Design and Gaussian Noise

Theorem 27 Suppose that ε1, ..., εn are i.i.d. with Gaussian distribution with mean 0 and covari-
ance operator Q (c.f. Definition 14 and Lemmas 15 and 16), and that TrQ = 1. Further, suppose
that

J(δ) := 4

∫ δ

0

√
2H(u,B2,Pn(δ), ∥·∥2,Pn)du <∞, for each δ > 0, and

J(δ)

δ2
is decreasing in δ,

where B2,Pn(δ) := {g ∈ G : ∥g∥2,Pn
≤ δ}. Then for all t ≥ 3

8 and all δn satisfying

√
nδ2n ≥ 8

(
J(δn) + 4δn

√
1 + t+ δn

√
8

3
t

)
,

we have

P
(
∥ĝn − g0∥2,Pn

> δn

)
≤
(
1 +

2

e− 1

)
e−t.

Proof First, recall the notation

⟨ε, g⟩2,Pn
=

1

n

n∑
i=1

〈
εi, g(Xi)

〉
Y

from Proposition 25(ii), and note that we have the following basic inequality

∥ĝn − g0∥22,Pn
≤ 2 ⟨ε, ĝn − g0⟩2,Pn

, (*)

which follows from the fact that ĝn minimises
∥∥Yi − g(Xi)

∥∥2
2,Pn

over g ∈ G, giving∥∥εi − (g0 − ĝn)
∥∥2
2,Pn

=
∥∥Yi − ĝn(Xi)

∥∥2
2,Pn

≤
∥∥Yi − g0(Xi)

∥∥2
2,Pn

= ∥εi∥22,Pn
.

We use a technique called the “peeling device”, first introduced by van de Geer (2000). See that

P
(
∥ĝn − g0∥2,Pn

> δn

)
= P

 ∞⋃
j=1

{
2j−1δn < ∥ĝn − g0∥2,Pn

≤ 2jδn

}
≤

∞∑
j=1

P
(
2j−1δn < ∥ĝn − g0∥2,Pn

≤ 2jδn

)
by the union bound

=

∞∑
j=1

P
({

2j−1δn < ∥ĝn − g0∥2,Pn

}⋂{
ĝn − g0 ∈ Bn(2

jδn)
})
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≤
∞∑
j=1

P

({(
2j−1δn

)2
< 2 ⟨ε, ĝn − g0⟩2,Pn

}⋂{
ĝn − g0 ∈ Bn(2

jδn)
})

by (*)

≤
∞∑
j=1

P

(
sup

g∈Bn(2jδn)

2 ⟨ε, g⟩2,Pn
>
(
2j−1δn

)2)

=

∞∑
j=1

P

(
sup

g∈Bn(2jδn)

⟨ε, g⟩2,Pn
>

1

8

(
2jδn

)2)
.

Now, applying the hypothesis on δn, we see that, for each j,

1

8

(
2jδn

)2
≥ (2j)2J(δn)√

n
+ 4(2j)2δn

√
1 + t

n
+

√
8
3 t(2

j)2δn
√
n

≥ J(2jδn)√
n

+ 4(2jδn)

√
1 + t+ j

n
+

√
8
3 t(2

j)2δn
√
n

≥ Jn√
n
+ 4(2jδn)

√
1 + t+ j

n
+

√
8
3 t(2

j)2δn
√
n

where we used the fact that J(δ)
δ2

is decreasing in δ and
√
1 + t+ j ≤ 2j

√
1 + t, and Jn is defined

as in Proposition 25 with G = Bn(2
jδn) and Rn = 2jδn. On the other hand, we can write, for any

S ∈ N,

⟨ε, g⟩2,Pn
=
〈
ε, g − gS+1

〉
2,Pn

+
S∑

s=0

〈
ε, gs+1 − gs

〉
2,Pn

,

using the chaining notation in Section C.3. Hence,

P
(
∥ĝn − g0∥2,Pn

> δn

)
≤

∞∑
j=1

P

 sup
g∈Bn(2jδn)

〈
ε, g − gS+1

〉
2,Pn

>

√
8
3 t(2

j)2δn
√
n


+

∞∑
j=1

P

 sup
g∈Bn(2jδn)

S∑
s=0

〈
ε, gs+1 − gs

〉
2,Pn

>
Jn√
n
+ 4(2jδn)

√
1 + t+ j

n


≤

∞∑
j=1

P

 2j

2S+1
δn ∥ε∥2,Pn

>

√
8
3 t2

2jδn
√
n

+
∞∑
j=1

e−(t+j) by Proposition 25(ii)

=
∞∑
j=1

P

(
∥ε∥2,Pn

> 2j
√

8

3
t

)
+

1

e− 1
e−t letting S such that

√
n ≤ 2S+1

≤
∞∑
j=1

P

(
∥ε∥2,Pn

> 2j +

√
8

3
t

)
+

1

e− 1
e−t since t ≥ 3

8

36



EMPIRICAL PROCESS THEORY FOR VECTOR-VALUED FUNCTIONS

≤
∞∑
j=1

P

 1

n

n∑
i=1

∥εi∥2Y > 22j +
8

3
t

+
1

e− 1
e−t

≤
∞∑
j=1

e−
3
8
22j−tE

[
e

3
8

1
n

∑n
i=1∥εi∥

2
Y
]
+

1

e− 1
e−t by Markov’s inequality

≤
∞∑
j=1

e−
3
8
22j−t

n∏
i=1

E
[
e

3
8

1
n
∥εi∥2Y

]
+

1

e− 1
e−t by independence

≤
∞∑
j=1

e−
3
8
22j−tE

[
e

3
8
∥ε1∥2Y

]
+

1

e− 1
e−t by Jensen’s inequality

≤
∞∑
j=1

e−
3
8
22j−t +

1

e− 1
e−t by Proposition 17

≤ e−t

e− 3
4 − e−1 +

∞∑
j=1

e−j +
1

e− 1


≤ e−t

(
1 +

2

e− 1

)
.

C.5. Empirical Risk Minimisation with Lipschitz Loss and Random Design

In this Section, we discuss the setting where we have an L-bounded, c-Lipschitz loss function
L : Y × Y → R. Suppose we have a given class G of functions X → Y . Then given samples
(X1, Y1), ..., (Xn, Yn), the empirical risk minimiser, which we assume exists, is given by

ĝn = argmin
g∈G

R̂n(g), R̂n(g) =
1

n

n∑
i=1

L(Yi, g(Xi)).

We are interested in the convergence of ĝn to the population risk minimiser,

g∗ = argmin
g∈G

R(g), R(g) = E[L(Y, g(X))],

in terms of the population risk R. First, see that

R(ĝn)−R(g∗) = R(ĝn)− R̂(ĝn) + R̂(ĝn)− R̂(g∗) + R̂(g∗)−R(g∗)

≤ sup
g∈G

∣∣∣R(g)− R̂(g)
∣∣∣+ R̂(g∗)−R(g∗),

where, going from the first line to the second, the first two terms on the right-hand side were bounded
by the supremum over the whole function class G (since, although ĝn varies as the samples and the
size n of the dataset vary, it always lives in G), the middle two terms were bounded above by 0 since
the empirical risk minimiser ĝn minimises R̂, and the last two terms remain unchanged.
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Theorem 28 Suppose the following uniform entropy condition is satisfied: there exists some function
H : R → R satisfying

J (1) := 4

∫ 1

0

√
2H(u)du <∞,

such that, for all u > 0 and any probability distribution Q with finite support,

H(uL,L ◦ G, ∥·∥2,Q) ≤ H(u).

Then

P

(
sup
g∈G

∣∣∣R(g)− R̂(g)
∣∣∣ > 4

√
2LJ (1)√
n

+ 24L

√
1 + t

n
+

L√
n

)
≤ 2e−t.

Proof First, denote by L ◦ G the class of functions X × Y → R given by (x, y) 7→ L(y, g(x))
for g ∈ G. Also, by an abuse of notation, for each g ∈ G, denote by L ◦ g the function (x, y) 7→
L(y, g(x)). Then we have

PL ◦ g = R(g), PnL ◦ g = R̂(g).

Since the loss L is bounded above by L, the empirical radius and the theoretical radius of L ◦ G are
both bounded above by L. In the chaining notation of Section C.3, define

Jn =
S∑

s=0

2−sL
√
2H(2−(s+1)L,L ◦ G, ∥·∥2,Pn).

Then from the very definition of the chains, we have

sup
g∈G

∣∣∣∣P σ
n

(
L ◦ g − L ◦ gS+1

)∣∣∣∣ ≤ sup
g∈G

∥∥∥L ◦ g − L ◦ gS+1
∥∥∥
1,Pn

≤ sup
g∈G

∥∥∥L ◦ g − L ◦ gS+1
∥∥∥
2,Pn

≤ 2−(S+1)L. (*)

First, see that

Jn =

S∑
s=0

2−sL
√
2H(2−(s+1)L,L ◦ G, ∥·∥2,Pn)

≤ 4

∫ L

0

√
2H(u,L ◦ G, ∥·∥2,Pn)du

≤ 4

∫ L

0

√
2H

(
u

L

)
du by the uniform entropy condition

= 4L

∫ 1

0

√
2H(u)du by substitution

= LJ (1). (**)
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Then, by the symmetrisation lemma (Lemma 21) followed by chaining (Proposition 25), we have

P

(
sup
g∈G

∣∣∣R(g)− R̂(g)
∣∣∣ > 4

√
2LJ (1)√
n

+ 24L

√
1 + t

n
+ 2−(S−1)L

)

= P

(
∥P − Pn∥L◦G >

4
√
2Jn√
n

+ 24L

√
1 + t

n
+ 2−(S−1)L

)
by (**)

≤ 4P

(
∥P σ

n ∥L◦G >
√
2Jn√
n

+ 6L

√
1 + t

n
+ 2−(S+1)L

)
by symmetrisation (Lemma 21)

≤ 4P

sup
g∈G

∣∣∣∣P σ
n

(
L ◦ g − L ◦ gS+1

)∣∣∣∣+ sup
g∈G

∣∣∣∣∣∣
S∑

s=0

P σ
n

(
L ◦ gs+1 − L ◦ gs

)∣∣∣∣∣∣
>

√
2Jn√
n

+ 6L

√
1 + t

n
+ 2−(S+1)L

)

≤ 4P

sup
g∈G

∣∣∣∣∣∣
S∑

s=0

P σ
n

(
L ◦ gs+1 − L ◦ gs

)∣∣∣∣∣∣ >
√
2Jn√
n

+ 6L

√
1 + t

n


+ 4P

(
sup
g∈G

∣∣∣∣P σ
n

(
L ◦ g − L ◦ gS+1

)∣∣∣∣ > 2−(S+1)L

)
by the union bound

≤ 2e−t,

where the second term disappears by (*) and the first term is bounded by Proposition 25(i). Now
letting S be large enough such that

√
n ≤ 2S+1,

P

(
sup
g∈G

∣∣∣R(g)− R̂(g)
∣∣∣ > 4

√
2LJ (1)√
n

+ 24L

√
1 + t

n
+

L√
n

)
≤ 2e−t.

C.6. Rademacher Complexities

In this Section, we discuss the extension of the concept of Rademacher complexities to classes of
vector-valued functions in more depth (c.f. Section 4.3). We first give the definition of Rademacher
complexities of classes of real-valued functions.

Definition 29 (Bartlett and Mendelson (2002, Definition 2)) Suppose G is a class of real-valued
functions X → R. Then the empirical (or conditional) Rademacher complexity of G is defined as

R̂n(G) = E

sup
g∈G

∣∣∣∣∣∣ 1n
n∑

i=1

σig(Xi)

∣∣∣∣∣∣ | X1, ..., Xn

 ,
where the expectation is taken with respect to the Rademacher variables {σi}ni=1. The Rademacher
complexity of G is defined as

Rn(G) = E
[
R̂n(G)

]
.
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Since this seminal definition, it was realised that the absolute value around 1
n

∑n
i=1 σig(Xi) was

unnecessary (see, for example, Meir and Zhang (2003, paragraph between Corollary 4 and Lemma
5) or Maurer (2016, last paragraph of Section 1)). However, in order to facilitate the following direct
extension to classes of vector-valued functions, we retain the absolute value sign.

Definition 30 Suppose G is a class of X → Y functions. Then the empirical (or conditional)
Rademacher complexity of G is defined as

R̂n(G) = E

sup
g∈G

∥∥∥∥∥∥ 1n
n∑

i=1

σig(Xi)

∥∥∥∥∥∥
Y

| X1, ..., Xn

 = E
[
∥P σ

n g∥G | X1, ..., Xn

]
,

using the notation from Section 2. The Rademacher complexity of G is defined as

Rn(G) = E
[
R̂n(G)

]
.

Note that our definition is different to the “vector-valued Rademacher complexity” already in use
in the literature, mostly for Y being a finite-dimensional Euclidean space (Yousefi et al., 2018,
Definition 1; Li et al., 2019, Definition 3), but also for Y = l2, the space of square-summable
sequences (Maurer, 2016). These papers define the “Rademacher complexity” of vector-valued
function classes not as in Definition 30, where we have one Rademacher variable σi per sample
Xi, but introduce a Rademacher variable for every coordinate of Y . The resulting quantity looks
something like

E

sup
g∈G

1

n

n∑
i=1

∑
k

σki gk(Xi) | X1, ..., Xn

 ,
where gk is the kth coordinate of g with respect to a basis, and {σki }i,k are Rademacher random vari-
ables. For convenience, in what follows, we call this the “coordinate-wise Rademacher complexity”,
and denote it by R̂coord

n (G).
While we recognise the usefulness of this definition, especially thanks to the contraction result

shown in Maurer (2016), Cortes et al. (2016), Zatarain-Vera (2019) and Foster and Rakhlin (2019),
for several reasons, we insist on using Definition 30. Firstly, as it is clear from the definition, and
as admitted by Maurer (2016, paragraph just above Conjecture 2), Definition 30 is a more natural
definition in view of the real-valued Rademacher complexity. Moreover, our work in Section C.1
uses the empirical symmetrised measure 1

n

∑n
i=1 σiδXi to good effect and in a way that directly

generalises from the real-valued case, which suggests that Definition 30 is natural. Finally, and
perhaps most critically, the coordinate-wise Rademacher complexity is not independent of the choice
of the basis of Y . For a simple counterexample, let X = Y = R2, and G = {g1, g2}, where g1 is the
orthogonal projection onto the line y = x, and g2 is the orthogonal projection onto the line y = −x.

This means that, letting X1 =

(
1
0

)
and X2 =

(
0
1

)
, we have

g1(X1) =

(
1
2
1
2

)
, g1(X2) =

(
1
2
1
2

)
, g2(X1) =

(
1
2
−1

2

)
, g2(X2) =

(
−1

2
1
2

)
.
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Then the coordinate-wise Rademacher complexity of G with respect to the standard basis {X1, X2}
is

R̂coord
n (G) = E

sup
g∈G

2∑
i=1

2∑
k=1

σki gk(Xi)


= E

[
sup
g∈G

{
σ11
(
g(X1)

)
1
+ σ21

(
g(X1)

)
2
+ σ12

(
g(X2)

)
1
+ σ22

(
g(X2)

)
2

}]

= E

[
σ11
2

+
σ22
2

+ sup
g∈G

{
σ21
(
g(X1)

)
2
+ σ12

(
g(X2)

)
1

}]
= sup

g∈G

{(
g(X1)

)
2
+
(
g(X2)

)
1

}
+ sup

g∈G

{
−
(
g(X1)

)
2
+
(
g(X2)

)
1

}
+ sup

g∈G

{(
g(X1)

)
2
−
(
g(X2)

)
1

}
+ sup

g∈G

{
−
(
g(X1)

)
2
−
(
g(X2)

)
1

}
= 1 + 0 + 0 + 1

= 2.

But if we use the orthonormal basis


(

1√
2
1√
2

)
,

(
− 1√

2
1√
2

), then we have

(g1(X1))1 =
1√
2
, (g1(X1))2 = 0, (g1(X2))1 =

1√
2

(g1(X2))2 = 0

(g2(X1))1 = 0, (g2(X1))2 = − 1√
2
, (g2(X2))1 = 0, (g2(X2))2 =

1√
2
.

So the complexity with respect to the standard basis {X1, X2} is

E

sup
g∈G

2∑
i=1

2∑
k=1

σki gk(Xi)


= E

[
sup
g∈G

{
σ11
(
g(X1)

)
1
+ σ21

(
g(X1)

)
2
+ σ12

(
g(X2)

)
1
+ σ22

(
g(X2)

)
2

}]
= sup

g∈G

{(
g(X1)

)
1
+
(
g(X1)

)
2
+
(
g(X2)

)
1
+
(
g(X2)

)
2

}
+ sup

g∈G

{(
g(X1)

)
1
+
(
g(X1)

)
2
+
(
g(X2)

)
1
−
(
g(X2)

)
2

}
+ sup

g∈G

{(
g(X1)

)
1
+
(
g(X1)

)
2
−
(
g(X2)

)
1
+
(
g(X2)

)
2

}
+ sup

g∈G

{(
g(X1)

)
1
−
(
g(X1)

)
2
+
(
g(X2)

)
1
+
(
g(X2)

)
2

}
+ sup

g∈G

{
−
(
g(X1)

)
1
+
(
g(X1)

)
2
+
(
g(X2)

)
1
+
(
g(X2)

)
2

}
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+ sup
g∈G

{(
g(X1)

)
1
+
(
g(X1)

)
2
−
(
g(X2)

)
1
−
(
g(X2)

)
2

}
+ sup

g∈G

{(
g(X1)

)
1
−
(
g(X1)

)
2
+
(
g(X2)

)
1
−
(
g(X2)

)
2

}
+ sup

g∈G

{
−
(
g(X1)

)
1
+
(
g(X1)

)
2
+
(
g(X2)

)
1
−
(
g(X2)

)
2

}
+ sup

g∈G

{(
g(X1)

)
1
−
(
g(X1)

)
2
−
(
g(X2)

)
1
+
(
g(X2)

)
2

}
+ sup

g∈G

{
−
(
g(X1)

)
1
+
(
g(X1)

)
2
−
(
g(X2)

)
1
+
(
g(X2)

)
2

}
+ sup

g∈G

{
−
(
g(X1)

)
1
−
(
g(X1)

)
2
+
(
g(X2)

)
1
+
(
g(X2)

)
2

}
+ sup

g∈G

{(
g(X1)

)
1
−
(
g(X1)

)
2
−
(
g(X2)

)
1
−
(
g(X2)

)
2

}
+ sup

g∈G

{
−
(
g(X1)

)
1
+
(
g(X1)

)
2
−
(
g(X2)

)
1
−
(
g(X2)

)
2

}
+ sup

g∈G

{
−
(
g(X1)

)
1
−
(
g(X1)

)
2
+
(
g(X2)

)
1
−
(
g(X2)

)
2

}
+ sup

g∈G

{
−
(
g(X1)

)
1
−
(
g(X1)

)
2
−
(
g(X2)

)
1
+
(
g(X2)

)
2

}
+ sup

g∈G

{
−
(
g(X1)

)
1
−
(
g(X1)

)
2
−
(
g(X2)

)
1
−
(
g(X2)

)
2

}
=

√
2 +

√
2 + 0 +

√
2 + 0 + 0 +

√
2 + 0 +

√
2 + 0 +

√
2 + 0−

√
2 + 0 + 0 + 0

= 5
√
2.

Hence, we see that the coordinate-wise Rademacher complexity is not independent of the chosen
orthonormal basis. We deem this to be a critical issue with the coordinate-wise Rademacher
complexity, because it is intuitively clear that the “complexity” of a function class should not depend
on the choice of the basis of the output space. This is especially pertinent in our context, considering
that our interest is primarily in the case when the output space Y is infinite-dimensional in which
there may be no “standard basis”.

One of the main ways of bounding the Rademacher complexity of real-valued function classes is
to use the entropy. We show that the Rademacher complexity of vector-valued function classes G can
be bounded using the entropy, a vector-valued analogue of Shalev-Shwartz and Ben-David (2014,
p.338, Lemma 27.4). We use the chaining notation in Section C.3, and also use Proposition 11, the
expectation form of vector-valued Hoeffding’s inequality.

Theorem 31 Let S ∈ N be any (large) integer. The empirical Rademacher complexity is bounded
as

R̂n(G) ≤ 2−(S+1)Rn +
2√
n
Jn,

where we recall that Rn = supg∈G∥g∥2,Pn is the empirical radius and Jn =
∑S

s=0 2
−sRn

√
2Hs+1

is the uniform entropy bound.
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Proof See that

R̂n(G) = E

sup
g∈G

∥∥∥∥∥∥ 1n
n∑

i=1

σig(Xi)

∥∥∥∥∥∥
Y

| Fn


= E

[
sup
g∈G

∥P σ
n g∥Y | Fn

]

= E

sup
g∈G

∥∥∥∥∥∥P σ
n

(
g − gS+1

)
+

S∑
s=0

P σ
n

(
gs+1 − gs

)∥∥∥∥∥∥
Y

| Fn


≤ E

[
sup
g∈G

∥∥∥∥P σ
n

(
g − gS+1

)∥∥∥∥
Y
| Fn

]
+ E

sup
g∈G

∥∥∥∥∥∥
S∑

s=0

P σ
n

(
gs+1 − gs

)∥∥∥∥∥∥
Y

| Fn


≤ sup

g∈G

1

n

n∑
i=1

∥∥∥g(Xi)− gS+1(Xi)
∥∥∥
Y
+

S∑
s=0

E

[
sup
g∈G

∥∥∥∥P σ
n

(
gs+1 − gs

)∥∥∥∥
Y
| Fn

]

≤ sup
g∈G

∥∥∥g − gS+1
∥∥∥
2,Pn

+

S∑
s=0

E

[
max

k∈{1,...,Ns+1}

∥∥∥∥P σ
n

(
gs+1
k − gs+1,s

k

)∥∥∥∥
Y
| Fn

]

≤ 2−(S+1)Rn +

S∑
s=0

1

λs
log

E

Ns+1∑
k=1

e
λs

∥∥∥∥Pσ
n

(
gs+1
k −gs+1,s

k

)∥∥∥∥
Y | Fn


 (a)

≤ 2−(S+1)Rn +
S∑

s=0

1

λs
log

Ns+1∑
k=1

E

2 cosh(λs ∥∥∥∥P σ
n

(
gs+1
k − gs+1,s

k

)∥∥∥∥
Y

)
| Fn


 (b)

≤ 2−(S+1)Rn +
S∑

s=0

1

λs
log

2

Ns+1∑
k=1

e
λ2s
n
(2−sRn)2

 (c)

= 2−(S+1)Rn +
S∑

s=0

1

λs
log

(
2Ns+1e

λ2s
n
(2−sRn)2

)

= 2−(S+1)Rn +
S∑

s=0

1

λs
(Hs+1 + log 2) +

λs
n

S∑
s=0

(2−sRn)
2

≤ 2−(S+1)Rn +
S∑

s=0

1

λs
2Hs+1 +

λs
n

S∑
s=0

(2−sRn)
2 (d)

= 2−(S+1)Rn +
2√
n

S∑
s=0

2−sRn

√
2Hs+1 (e)

= 2−(S+1)Rn +
2√
n
Jn
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where, in (a), we used Jensen’s inequality and the fact that the sum of positive numbers is greater
than their maximum; in (b), we used the basic fact ex ≤ 2 coshx; in (c), we used Proposition 11; in
(d), we used the fact that Hs+1 ≥ log 2; and in (e), we let

λs =

√
2nHs+1

2−sRn
.

When the Rademacher complexity is used in empirical risk minimisation for real-valued function
classes F , what we end up using is not the Rademacher complexity Rn(F) of the function class
itself, but that of the composition of the loss with the function class. The same is true for vector-
valued empirical risk minimisation problems. More precisely, suppose we have a loss function
L : Y × Y → R, and we denote by ĝn the solution of the following empirical risk minimisation
problem:

ĝn = argmin
g∈G

1

n

n∑
i=1

L(Yi, g(Xi)) = argmin
g∈G

R̂n(g).

Denote by g∗ the minimiser of the population risk:

g∗ := argmin
g∈G

E
[
L(Y, g(X))

]
= argmin

g∈G
R(g).

We want to know how fast R(ĝn) converges to the minimal risk R(g∗) as the sample size n increases.
Here, actually, the standard result concerning Rademacher complexities applies directly – we will
quote the following result.

Theorem 32 (Shalev-Shwartz and Ben-David (2014, p.328, Theorem 26.5)) Assume that for all
(x, y) ∈ X ×Y and g ∈ G, we have |L(y, g(x))| ≤ c for some constant c > 0. Then with probability
at least 1− δ, we have

R(ĝn)−R(g∗) ≤ 2Rn(L ◦ G) + 5c

√√√√2 log
(
8
δ

)
n

where we used the notation L ◦ G for the class of functions X × Y → R defined as

L ◦ G :=
{
(x, y) 7→ L(y, g(x)) : g ∈ G

}
.

Now, the question is how to obtain a meaningful bound on the Rademacher complexity Rn(L◦G)
as n → ∞. When G is a class of real-valued functions, the Contraction Lemma (Shalev-Shwartz
and Ben-David, 2014, p.331, Lemma 26.9) tells us that if, for each Yi ∈ R, the map y 7→ L(Yi, y)
is c-Lipschitz, then Rn(L ◦ G) is bounded by cRn(G), so it is meaningful to work with Rn(G).
However, an analogue of this result when G is a class of Y-valued functions is shown to be impossible
via a counterexample, in Maurer (2016, Section 6).

As mentioned above, one of the main ways of bounding the Rademacher complexity is to use
entropy. As our end goal is to bound the Rademacher complexity of L ◦ G, there are two ways of
going about this task with entropy. For real-valued function classes F , what is commonly done
is to bound the Rademacher complexity of L ◦ F with the Rademacher complexity of F using
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contraction, then to bound the Rademacher complexity of F by an expression involving the entropy,
using chaining. As discussed before, contraction becomes difficult with vector-valued function
classes. But we propose a different way that avoids contraction of Rademacher complexities. We can
first bound the Rademacher complexity of L ◦ G with an expression involving the entropy of L ◦ G,
and use the following contraction result of entropies.

Lemma 33 Suppose that for each Y ∈ Y , the Y → R map y 7→ L(Y, y) is c-Lipschitz for some
constant c > 0, i.e. for y1, y2 ∈ Y , |L(Y, y1)− L(Y, y2)| ≤ c∥y1 − y2∥Y . Then for any δ > 0, we
have

H(cδ,L ◦ G, ∥·∥2,Pn) ≤ H(δ,G, ∥·∥2,Pn).

Proof To ease the notation, write N = N(δ,G, ∥·∥2,Pn), and let g1, ..., gN be a minimal δ-covering
of G. Then for any L ◦ g ∈ L ◦ G, there exists some gj , j ∈ {1, ..., N} with ∥g − gj∥2,Pn =
( 1n
∑n

i=1∥g(Xi)− gj(Xi)∥2Y)1/2 ≤ δ. Then by the Lipschitz condition on L,

∥∥L ◦ g − L ◦ gj
∥∥
2,Pn

=

 1

n

n∑
i=1

∣∣L(Yi, g(Xi))− L(Yi, gj(Xi))
∣∣2 1

2

≤

 1

n

n∑
i=1

c2
∥∥g(Xi)− gj(Xi)

∥∥2
Y

 1
2

= c
∥∥g − gj

∥∥
2,Pn

≤ cδ.

Hence L ◦ g1, ...,L ◦ gN is a cδ-covering of L ◦ G, i.e.

N(cδ,L ◦ G, ∥·∥2,Pn) ≤ N(δ,G, ∥·∥2,Pn).

Now finish the proof by taking logarithms of both sides.

So for empirical risk minimisation problems with appropriate loss functions, it does make sense
to consider the entropy of vector-valued function classes G, while it remains as future work to
investigate the use of the Rademacher complexity of G.
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