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Abstract
We present an online algorithm for learning a binary relation, or equivalently the components of
a binary-valued matrix. We derive mistake bounds for this algorithm that are based on a novel
complexity measure called the perceptronic complexity. Informally, if we consider each row of
the matrix as a separate learning task, then the perceptronic complexity is the Novikoff perceptron
bound for learning the whole matrix when given the optimal kernel over the columns of the matrix.
Our mistake bound is equal, up to a logarithmic factor, to the perceptronic complexity of the matrix
plus the perceptronic complexity of its transpose. We show how this mistake bound asymptotically
outperforms those of previous algorithms for the same problem, and give examples of our bound on
natural families of matrices.
Keywords: Online Learning, Matrix Completion, Multitask Learning

1. Introduction and Related Work

Binary matrix completion is a learning task with numerous real world applications. In this task we
have an unknown binary relationship ∼ between two sets enumerated as [m] and [n]. The aim is to
predict, when given (i, j) ∈ [m]× [n] , whether i ∼ j or not. In this paper we consider the online
protocol in which learning proceeds in trials. On each trial t we are given a pair (it, jt) ∈ [m]× [n]
and have to predict whether it ∼ jt or not, after which we learn whether we were right or wrong.
The aim is to minimise the number of mistakes. For a detailed overview of the online protocol and
online algorithms see Cesa-Bianchi and Lugosi (2006) and Shalev-Shwartz (2012).

In this paper we represent the binary relationship ∼ by an m× n dimensional matrix U where
ui,j := 1 if i ∼ j and ui,j := 0 otherwise. We define a new notion of complexity of a binary matrix,
which we call the ‘perceptronic complexity’. Informally, given that each row of a binary matrix is
considered as a different learning task, then the perceptronic complexity of that matrix is the Novikoff
perceptron bound (Rosenblatt (1958), Novikoff (1963)) for learning the entire matrix when given the
optimal kernel over the columns. We present an algorithm for the above learning problem in which
the number of mistakes is bounded above, up to a factor logarithmic in m+ n , by the perceptronic
complexity of U or that of its transpose.

The general problem of matrix completion has been studied extensively in the batch statistical
i.i.d. setting, see for example Srebro and Shraibman (2005), Candès and Tao (2010), Pontil and
Maurer (2013) and references therein. We note that standard online-to-batch conversion techniques
allow the online algorithm presented in this paper to be applied to the batch setting also. Algorithms
for the online setting were first given in Goldman et al. (1989) and Goldman and Warmuth (1993)
but worked with a limited relation/matrix model. Less limited algorithms were then given in Hazan
et al. (2012) and Herbster et al. (2016). We show that our bound improves over the bounds of these
algorithms, in doing so implying that we inherit bounds (via Foygel (2012)) based on the max norm
and trace norm defined in Srebro and Shraibman (2005), which are commonly used measures of
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matrix complexity used in matrix completion algorithms. Our algorithm utilises the algorithm of
Herbster et al. (2020), which was itself based on Warmuth (2007), as a subroutine. It should be noted
that Moridomi et al. (2018) managed to remove (by modifying the algorithm) a logarithmic factor
appearing in the bound of Hazan et al. (2012) - it is an open problem as to whether the same can be
done to our work.

We give two examples of relationship/matrix model along with derived bounds specific to them.
These are a latent factor model, which generalises the biclustering model of Herbster et al. (2016),
and a similarity model, which was essentially given in Herbster et al. (2016). Our bounds for these
models significantly improve on those given in Herbster et al. (2016). The analysis of our similarity
model is based on work in Herbster et al. (2008) and Herbster and Pontil (2006). We give real world
examples of the models: medical diagnosis, recommender systems, and online dating.

Our paper is structured as follows. In Section 2 we give the definitions of the notation that we
use throughout the paper. In Section 3 we define the perceptronic complexity of a matrix and give an
equivalent formulation. In Section 4 we define the learning problem and give our mistake bound.
In Section 5 we compare our result to those of Herbster et al. (2016) and Hazan et al. (2012). In
Section 6 we give our example matrix models along with bounds on their perceptronic complexities.
In Section 7 we define and describe our algorithm. Finally, in Appendix A we prove all the theorems
in the paper, in order of appearance.

2. Definitions

Given k ∈ N define [k] := {1, 2, · · · , k}. Given a predicate p we define JpK := 1 if p is true
and JpK := 0 otherwise. Scalars and sets will be denoted by non-bold lower and upper case
letters respectively. Vectors and matrices will be denoted by bold lower and upper case latin letters
respectively. Given a matrix denoted by some bold upper case letter, its i-th row vector will be
denoted by the equivalent bold lower case letter with subscript i. e.g. if a matrix is denoted byX ,
its i-th row vector is denoted by xi and its (i, j)-th component is denoted xi,j . Given a vector x
we define ‖x‖ to be its L2 norm. Given a matrix X we denote its transpose by X> and let x∗ be
the minimiser of |xi,j | across all rows i and columns j. Given some l ∈ N we let P l be the set of
all positive semidefinite l × l dimensional matrices. Given l, k ∈ N and a matrixX ∈ Rl×k (which
could be a vector (k = 1) or scalar (l, k = 1)) we define sign(X) to be the matrix X ′ ∈ Rl×k
such that x′i,j = Jxi,j ≥ 0K − Jxi,j < 0K for all (i, j) ∈ [l] × [k]. Given matrices X ∈ Rp×l and
X ′ ∈ Rq×l (which are vectors if l = 1) for some p, q, l ∈ N we define [X,X ′] to be equal to the
matrix X ′′ ∈ R(p+q)×l such that x′′i = xi and x′′p+j = x′j for all (i, j) ∈ [p]× [q] . Given k, l ∈ N
let 0k,l be the k × l-dimensional matrix in which every component is equal to 0. Given k, l ∈ N let
Rk,l be the set of allX ∈ Rk×l with ‖xi‖ = 1 for all i ∈ [k]. Given a set S let 2S be the set of all
subsets of S.

3. Perceptronic Complexity

In this section we define and analyse our measure of complexity of a binary matrix: the perceptronic
complexity. Viewing each row of a matrix as a seperate learning task, the perceptronic complexity of
that matrix is the Novikoff bound of the perceptron algorithm for learning the matrix components,
given the optimal kernel over the columns. We now formally define this quantity. To do this we first
introduce some common notions in machine learning.
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Given some l ∈ N and a positive semidefinite matrixK ∈ P l (a.k.a. ‘kernel matrix’) we define
the radius ofK as:

ρ(K) := max
i∈[l]

√
ki,i .

Given, in addition, a vector u ∈ {−1, 1}l we define the set of (normalised) linear separators of
(K,u) as:

Λ(K,u) := {w ∈ Rl | sign(Kw) = u ; w>Kw = 1}

and define the margin of (K,u) as

δ(K,u) := max
w∈Λ(K,u)

min
i∈[n]
|w · ki|

where the maximum of the empty set is 0. We note that ρ(K)2/δ(K,u)2 is the Novikoff bound of
the perceptron algorithm when learning the vector u given kernelK.

As their names imply, the radius and margin have a geometric meaning. Every kernelK ∈ P l
can be represented (non-uniquely) by a set of l points in a real vector space, where ki,j is the
inner product between points i and j. Inversely, every set of l points in a real vector space can be
represented by an unique kernel. Given such a set of points (and hence a kernelK), the radius of the
kernel is the minimum radius of a ball, centred at the origin, that contains all the points. Given a
vector u ∈ {−1, 1}l which labels each point i with ui, the margin of (K,u) is defined as half the
maximum distance between two parallel hyperplanes, equidistant from the origin, such that no points
lie between the hyperplanes, and the set of points lying on the far side of a hyperplane are either the
set of points labelled 1 or the set of points labelled −1.

Given a matrix U ∈ {−1, 1}m×n for some m,n ∈ N we define its perceptronic complexity as:

τ(U) := min
K∈Pn

∑
i∈[m]

ρ(K)2

δ(K,ui)2

which is the sum of Novikoff bounds of each row of U when given the optimal kernel over the
columns of U .

We described above how a kernel can be represented by a set of points in a real vector space.
This representation leads to the following way of quantifying the perceptronic complexity. First
define, for all U ∈ {−1, 1}m×n, the set:

N (U) := {(P ,Q) | ∃ l ∈ N : (P ,Q) ∈ Rm,l ×Rn,l ; ∀(i, j) ∈ [m]× [n], sign(pi · qj) = ui,j}

which is the set of all possible row-normalised factorisations of matrices that have the same sign
pattern as U . We then have the following equality:

Theorem 1 Given U ∈ {−1, 1}m×n we have:

τ(U) = min
(P ,Q)∈N (U)

∑
i∈[m]

max
j∈[n]

(
1

pi · qj

)2

.
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4. Online Matrix Completion

In this paper we solve the following learning problem. We have an unknown matrixU ∈ {−1, 1}m×n.
Learning proceeds in trials t = 1, 2, 3, · · · , T . On trial t:

1. Some (it, jt) ∈ [m]× [n] is revealed.

2. We select ŷt ∈ {−1, 1}.

3. yt := uit,jt is revealed.

The aim is to minimise the total number of mistakes:

M :=
∑
t∈[T ]

Jŷt 6= ytK .

We will give, in Section 7, an algorithm PCMC (Perceptronic Complexity Matrix Completion), with
running time O(m3 + n3) per trial, whose mistakes are bounded as follows:

Theorem 2 The number of mistakesM incurred by PCMC is bounded above by:

M∈ O
(

(τ(U) + τ(U>)) ln(m+ n)
)
.

5. Analysing the Improvement

For our problem Herbster et al. (2016) gave a mistake bound of:

M∈ O

(
ln(m+ n)(m+ n) min

(P ,Q)∈N (U)
max

(i,j)∈[m]×[n]

(
1

pi · qj

)2
)

Since an average is no greater than a maximum, Theorem 1 shows that our bound in Theorem 2
is never outperformed by this bound and is often significantly better.

We now compare our mistake bound to that of Hazan et al. (2012) on the same problem. In
order to do this we make the following definitions. For any matrix U ∈ {−1, 1}m×n we define its
sign-consistent set as:

S(U) := {Ũ ∈ Rm×n | sign(Ũ) = U} .

For any matrix Ũ ∈ Rm×n, we define its symmetrisation sym(Ũ) ∈ R(m+n)×(m+n) as:

sym(Ũ) :=

[[
0m,m, Ũ

>]>
,
[
Ũ ,0n,n

]>]
and its semi-definite decomposition set as:

D(Ũ) := {(A,B) |A,B ∈ P(m+n) ; A−B = sym(Ũ)} .

GivenA,B ∈ P(m+n) we define:

β̃(A,B) := max

{
max

i∈[m+n]
ai,i , max

i∈[m+n]
bi,i

}
; τ̃(A,B) :=

∑
i∈[m+n]

ai,i +
∑

i∈[m+n]

bi,i .
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The algorithm of Hazan et al. (2012) solves a more general problem than ours. Specifically,
instead of choosing ŷt ∈ {−1, 1} on each trial t we now choose some wt ∈ [−1, 1] and then receive
a convex g-Lipschitz loss function `t : [−1, 1] → R instead of yt ∈ {−1, 1}. Given that we only
choose to update on a subset of trials Z ⊆ [T ], the bound given in Hazan et al. (2012) is then, for any
Ũ ∈ [−1, 1]m×n, given by:∑

t∈Z
`t(wt) ≤

∑
t∈Z

`t(ũit,jt) + 2g min
(A,B)∈D(Ũ)

√
τ̃(A,B)β̃(A,B) ln(2(m+ n))|Z| . (1)

This bound leads to the following theorem.

Theorem 3 Given m,n ∈ N , U ∈ {−1, 1}m×n, Ũ ∈ S(U) and {(it, jt) | t ∈ [T ]} let g := 1/ũ∗
and for all t ∈ [T ] let yt := uit,jt and `t(x) := max{0,−gytx+ 1} . Then given Z and {wt | t ∈
[T ]} ⊆ [−1, 1] are such that Z = {t ∈ [T ] | yt 6= sign(wt)} and Equation (1) is satisfied we have:

∑
t∈[T ]

Jyt 6= sign(wt)K ∈ O

(
ln(m+ n)

ũ2
∗

min
(A,B)∈D(Ũ)

τ̃(A,B)β̃(A,B)

)
.

Hence, the algorithm of Hazan et al. (2012) leads to an algorithm for our problem whose mistakes
are bounded by the right hand side of the inequality in Theorem 3. We now show that our bound is a
two-fold improvement over this. To do this we first define, for a matrix Ũ ∈ Rm×n, its factorisation
set as:

F(Ũ) := {(P ,Q) | ∃ l ∈ N : P ∈ Rm×l ; Q ∈ Rn×l ; PQ> = Ũ} .

We now rewrite the bound of Theorem 3 in terms of a factorisation.

Theorem 4 Given a matrix Ũ ∈ Rm×n we have:

min
(A,B)∈D(Ũ)

τ̃(A,B)β̃(A,B) ∈ Θ

 min
(P ,Q)∈F(Ũ)

∑
i∈[m]

‖pi‖2 max
j∈[n]
‖qj‖2 +

∑
j∈[n]

‖qj‖2 max
i∈[m]

‖pi‖2


Theorem 4 implies that the minimiser, over all Ũ ∈ S(U), of the bound in Theorem 3 is in
Θ(ln(m+ n)h(U)) , where:

h(U) := min
Ũ∈S(U)

min
(P ,Q)∈F(Ũ)

∑
i∈[m]

‖pi‖2 max
j∈[n]

‖qj‖2

ũ2
∗

+
∑
j∈[n]

‖qj‖2 max
i∈[m]

‖pi‖2

ũ2
∗

 .

So to compare our bound to that of Hazan et al. (2012) we must compare τ(U) + τ(U>) to h(U).
To do this we first define h′(U) by replacing each appearance of ũ∗ in h(U) with ũi,j , noting that
this can only decrease the quantity. i.e:

h′(U) := min
Ũ∈S(U)

min
(P ,Q)∈F(Ũ)

∑
i∈[m]

‖pi‖2 max
j∈[n]

(‖qj‖
ũi,j

)2

+
∑
j∈[n]

‖qj‖2 max
i∈[m]

(
‖pi‖
ũi,j

)2
 .

The next theorem shows that h′(U) can be a polynomial factor less than h(U):

5



PERCEPTRONIC COMPLEXITY AND ONLINE MATRIX COMPLETION

Theorem 5 For all k ∈ N there exists a matrix U ∈ {−1, 1}(k+k2)×(k+k2) with:

h(U) ∈ Ω(k5/2) and h′(U) ∈ O(k2) .

So there exists a family of matrices U with h′(U) ∈ O(h(U)4/5). We do not know if one can
improve on Theorem 5. i.e. it may be the case in which families of matrices U exist such that
h′(U) ∈ o(h(U)4/5). As far as we are aware, being able to boundM by O(h′(U) ln(m+ n)) is
itself a novel result. However, we further improve on this. To see this further improvement we first
rewrite h′(U) via the following theorem:

Theorem 6 For all U ∈ {−1, 1}m×n we have:

h′(U) = min
(P ,Q)∈N (U)

∑
i∈[m]

max
j∈[n]

(
1

pi · qj

)2

+
∑
j∈[n]

max
i∈[m]

(
1

pi · qj

)2
 .

By Theorem 1 we have:

τ(U) + τ(U>) = min
(P ,Q)∈N (U)

∑
i∈[m]

max
j∈[n]

(
1

pi · qj

)2

+ min
(P ,Q)∈N (U)

∑
j∈[n]

max
i∈[m]

(
1

pi · qj

)2

.

Note the difference between h′(U), as written in Theorem 6, and (τ(U) + τ(U>)) written as above
- in h′(U) we have a single pair (P ,Q) whilst in (τ(U) + τ(U>)) we use separate pairs for the two
summations, which can only decrease the quantity. It is an open problem to quantify just how much
smaller (τ(U) + τ(U>)) can be than h′(U).

6. Examples

In this section we give bounds, for example families of matrices U ∈ Rm×n, of the main term of our
mistake bound: τ(U) + τ(U>). To aid us in doing this we make the following definition. For all
matrices U ∈ {−1, 1}m×n let:

E(U) :=

{
C ∈ Rm×n

∣∣∣ ∃(P ,Q) ∈ N (U) : ∀(i, j) ∈ [m]× [n] , ci,j ≥
(

1

pi · qj

)2
}
.

By Theorem 1 we have:

τ(U) + τ(U>) = min
C∈E(U)

∑
i∈[m]

max
j∈[n]

ci,j + min
D∈E(U)

∑
j∈[n]

max
i∈[m]

di,j (2)

so in this section we will give results about the existence of matrices C ∈ E(U) which have bounds
on ci,j for all (i, j) ∈ [m]× [n]. To start, the next two theorems show that, given one or two matrices
in E(U), there exists a matrix in E(U) which can lead to better asymptotic bounds.

Theorem 7 Given D,F ∈ E(U) there exists C ∈ E(U) such that for all (i, j) ∈ [m] × [n] we
have:

ci,j ∈ O(min{di,j , fi,j}) .
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Theorem 8 Given F ∈ E(U) there exists C,D ∈ E(U) such that for all i ∈ [m] we have:

max
j∈[n]

ci,j ∈ O
(

min
z∈{−1,1}

max
j∈[n]

Jui,j = zKfi,j
)

and for all j ∈ [n] we have:

max
i∈[m]

di,j ∈ O
(

min
z∈{−1,1}

max
i∈[m]

Jui,j = zKfi,j
)
.

Now that we have these theorems in hand we give existence results about matrices in E(U) for
two different models of matrix U . Combining these existence results with theorems 7 and 8 and
Equation (2) gives us a wide range of mistake bounds, significantly improving over those in Herbster
et al. (2016).

6.1. The Latent Factor Model

Our first example is for a latent factor model. In this model we have k latent factors. For each latent
factor l there is a set Al ⊆ [m] of objects ‘with’ the latent factor and a set Bl ⊆ [n] of ‘symptoms’ of
the latent factor. We then have ui,j = 1 if and only if object i displays symptom j. Although noise
can easily be incorporated into our bounds we here only consider, for simplicity, the noise-free case.

In addition to the obvious medical application (where the set of objects [m] are patients and the
latent factors are underlying illnesses) this model also has applications in recommender systems,
where each latent factor l is a genre of item, Al is the set of users that like that genre, and Bl is the
set of items in that genre.

Mistake bounds for the latent factor model can be derived from the following theorem and
Equation (2), possibly utilising theorems 7 and 8.

Theorem 9 Suppose we have some k,m, n ∈ N and collections of sets:

{Al | l ∈ [k]} ⊆ 2[m] and {Bl | l ∈ [k]} ⊆ 2[n] .

Define the matrix U ∈ Rm×n by:

∀(i, j) ∈ [m]× [n], ui,j := 2J∃ l ∈ [k] : (i, j) ∈ Al ×BlK− 1 .

Then there exists C,D ∈ E(U) with:

ci,j ∈ O

∑
l∈[k]

Ji ∈ AlK max
j′∈Bl

∑
l′∈[k]

Jj′ ∈ Bl′K

 and di,j ∈ O

∑
l∈[k]

Jj ∈ BlK max
i′∈Al

∑
l′∈[k]

Ji′ ∈ Al′K


for all (i, j) ∈ [m]× [n].

An elegant corollary of this is that, given each object i ∈ [m] has at most a latent factors and
each symptom j ∈ [n] is a symptom of at most b latent factors, we have that the number of mistakes
of PCMC is bounded by:

M∈ Õ

(m+ n) + b
∑
l∈[k]

|Al|+ a
∑
l∈[k]

|Bl|
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A special case of the latent factor model is that in which the (indices of the) rows of U are
partitioned into k clusters such that for each cluster all rows in that cluster are identical. By defining
{Al | l ∈ [k]} to be this partition we can then define {Bl | l ∈ [k]} to be such that Bl is the set of
column indices j such that ui,j = 1 for all i ∈ Al. Note that for any l ∈ [k] we have:

max
i′∈Al

∑
l′∈[k]

Ji′ ∈ Al′K = 1

and hence, by Theorem 9, there existsD ∈ E(U) with:

di,j ∈ O

∑
l∈[k]

Jj ∈ BlK

 .

Substituting this into Equation 2 gives a mistake bound of:

M∈ Õ

(m+ n) +mmax
j∈[n]

∑
l∈[k]

Jj ∈ BlK +
∑
l∈[k]

|Bl|


When the matrix U is sparse this bound can be a significant improvement over the bound of
Õ(k(m+ n)) given by Herbster et al. (2016).

6.2. The Similarity Model

This model is best explained by an application - that of online dating. Here we have two (possibly
overlapping) groups of people, the first group is of cardinality m and the second group of cardinality
n. Our matrix U ∈ {−1, 1}m×n is defined so that for all (i, j) ∈ [m] × [n] we have ui,j = 1 if a
date between the i-th person in the first group and the j-th person in the second group would be
successful. Some people are similar to each other in terms of personality and it’s natural to assume
that if person i gets on with person j then he/she is likely to get on with people similar to person
j as well. Our bounds for this model are given in terms of a tree over the first group and/or a tree
over the second group. This/these trees are those that best capture the similarity between people, in
that if two people are linked in a tree then they are likely to be similar. The above assumption then
translates to the assumption that if two people are linked in a tree then they are likely to get on with
many of the same people.

Although Herbster et al. (2016) considered all graphs rather than just trees, we note that we could
also use general graphs instead of just trees. However the bounds for general graphs scale with the
resistance diameter and are never better than our results for trees by more than a poly-logarithmic
factor. The proofs of our results for trees work by constructing a larger tree from the original tree.
This could also be done in Herbster et al. (2016) but our bounds significantly improve on that.

Mistake bounds for the similarity model can be derived from the following theorem and Equation
(2), possibly utilising theorems 7 and 8.

Theorem 10 Suppose we have m,n ∈ N and a matrix U ∈ {−1, 1}m×n. Then given trees R and
S with vertex sets [n] and [m] respectively, there exists C,D ∈ E(U) with:

ci,j ∈ O

ln(n)2
∑

(l,k)∈R

Jui,l 6= ui,kK

 and di,j ∈ O

ln(m)2
∑

(l,k)∈S

Jul,j 6= uk,jK
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for all (i, j) ∈ [m]× [n]. Note that the summations are over the edges of the trees.

We note that the technology in Herbster et al. (2012) can be used to (sometimes) substantially
reduce the terms ln(n)2 and ln(m)2 that appear in Theorem 10. However, how to do this is beyond
the scope of the paper and left as an exercise to the reader.

A particularly elegant corollary of Theorem 10 is that when U is symmetric we have, for any
tree R with vertex set [m], that the number of mistakes made by PCMC is bounded by:

M∈ Õ

(m+ n) +
∑

(l,k)∈R

∑
i∈[m]

Jul,i 6= uk,iK


where the term

∑
i∈[m]Jul,i 6= uk,iK is the Hamming distance between rows/columns l and k. Given

rows/columns l and k with (l, k) ∈ R, we have that l and k are hopefully similar and hence their
Hamming distance is hopefully small - leading to a low mistake bound.

7. Algorithm

In this section we introduce our algorithm PCMC. For all i ∈ [m+ n] we let ei be the i-th (m+ n)-
dimensional basis vector. In the pseudocode the := operation denotes the creation of a constant
whilst the← operation denotes the (re)setting of a variable. We have flags that take values in {◦, •}.
Our pseudocode is as follows:

PCMC

1. Initialise by:

(a) Define d := dlog2(m+ n)e ; f := 2 ; g := 4 ; c := 3− e
(b) For all ` ∈ [d] define θ` :=

√
1/f ` ; π` := 2gf ` ln(m+ n)/c

(c) For all (`, †) ∈ [d]× {◦, •} setW †
` ← I

(d) For all i ∈ [m] set λ◦i ← 1 ; µ◦i ← 0

(e) For all j ∈ [n] set λ•j ← 1 ; µ•j ← 0

2. For t = 1, 2, 3 · · ·T

(a) Receive (it, jt)

(b) If λ◦it ≤ λ
•
jt

then κt := it ; `t := λ◦it ; †t := ◦. Else κt := jt ; `t := λ•jt ; †t := •

(c) SetXt := 1
2(eit + em+jt)(eit + em+jt)

>

(d) Output ŷt := sign(Tr(XtW
†t
`t

)− 1)

(e) Receive yt
(f) If ŷt 6= yt then:

i. SetW †t
`t
← exp(ln(W

†t
`t

) + ytθ`tXt)

ii. If µ†tκt < π`t then µ†tκt ← µ
†t
κt + 1. Else µ†tκt ← 0 ; λ

†t
κt ← λ

†t
κt + 1

9
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We now describe the algorithm, which is inspired by the classic ‘doubling trick’ (see e.g. Cesa-
Bianchi and Lugosi (2006)) for automatically tuning parameters. Define d := dlog2(m+n)e, f := 2,
g := 4 and c := 3− e.

On any trial t we have a flag †t ∈ {◦, •}. We will describe how †t is selected later. At any point
in time, each i ∈ [m] has a ‘row-level’ λ◦i and each j ∈ [n] has a ‘column-level’ λ•j . The row-level of
i is increased by one when there have been π` := 2gf ` ln(m+ n)/c mistakes on trials t with it = i,
†t = ◦ and i at the current row-level. Similarly, the column-level of j is increased by one when there
have been π` mistakes on trials t with jt = j, †t = • and j at the current column-level. Note that the
row-levels of elements of [m] and the column-levels of elements of [n] are non-decreasing.

We now describe how †t and another value `t ∈ [d] are chosen on trial t. First, the row-level of it
is compared to the column level of jt. If the former is no larger than the later then †t := ◦ and `t is
set equal to the row-level of it. Otherwise †t := • and `t is set equal to the column-level of jt.

Note that we can partition [T ] as:

[T ] =
⋃
{L†` | ` ∈ [d] , † ∈ {◦, •}}

where we define:
L†` := {t ∈ [T ] | `t = ` ; †t = †}

for all ` ∈ [d] and † ∈ {◦, •}. We now describe how the algorithm behaves on trials in each of
the sets in this partition. So suppose we have some ` ∈ [d] and † ∈ {◦, •}. Let S := |L†`|. For all
s ∈ [S] let t(s) be the s-th trial in L†` - i.e. such that t(s) ∈ L†` and

∑
t′∈L†`

Jt′ ≤ t(s)K = s. For all

s ∈ [S] let W̃ s be the matrixW †
` at the start of trial t(s) and let X̃s := Xt(s). Then the values of

{ŷt : t ∈ L†`} that are produced by PCMC are equal to those formed by the following algorithm:

1. W̃ 1 ← I

2. For s = 1, 2, 3 · · ·S :

(a) Set X̃s := 1
2(eit(s) + em+jt(s))(eit(s) + em+jt(s))

>

(b) Output ŷt(s) := sign(Tr(X̃sW̃ s)− 1)

(c) W̃ s+1 := exp(ln(W̃ s) + 1
2θ`(yt(s) − ŷt(s))X̃s)

This algorithm is essentially that of Herbster et al. (2016) with parameter θ`. We will refer to
this algorithm as MCMC (Margin Complexity Matrix Completion). PCMC hence works with 2d
instances of MCMC in parallel: one for each pair in [d]× {◦, •}. The current state of the instance of
MCMC corresponding to the pair (`, †) is stored in the matrixW †

` . In order to bound the mistakes of
PCMC we will require a better bound on MCMC than that given in Herbster et al. (2016) - one that
can adapt to the number of rows and columns that actually take part in it. To describe our mistake
bound for MCMC we will need to define, for all L ⊆ [T ], θ ∈ [0, 1] and (P ,Q) ∈ N (U), the
following sets:

A(L) := {i ∈ [m] | ∃ t ∈ L : it = i} ; B(L) := {j ∈ [n] | ∃ t ∈ L : jt = j}

M(L) := {t ∈ L | ŷt 6= yt} ; Z(L, θ,P ,Q) := {t ∈M(L) | |pit · qjt | < θ} .
Our bound for MCMC is then given by the following theorem:

10
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Theorem 11 For all (`, †) ∈ [d]× {◦, •} and all (P ,Q) ∈ N (U) we have:

|M(L†`)| ≤
ln(m+ n)

cθ2
`

(|A(L†`)|+ |B(L†`)|) +
1

c
|Z(L†`, θ`,P ,Q)| .

Since the total number of mistakes of PCMC is the sum of |M(L†`)| over all (`, †) ∈ [d]× {◦, •},
Theorem 11 serves as the starting point of our analysis (proof of Theorem 2).

8. Conclusion

We considered the problem of learning a binary-valued matrix online. We gave an algorithm for
this problem which has a mistake bound almost as good as that of running the kernel perceptron
algorithm separately for each row of the matrix when given the optimal kernel over the columns of
the matrix - or as good as the same thing but with the transpose of the matrix. We showed how our
bound improves over previous bounds for the same problem and gave examples of our bound on two
natural models of matrix. A few open problems are:

• Moridomi et al. (2018) managed to remove (by modifying the algorithm) the factor O(ln(m+
n)) appearing in the bound of Hazan et al. (2012) - can the same be done to our work?

• As for previous algorithms for this problem, our algorithm has a time complexity ofO(m3+n3)
per trial - can this be reduced?

• Herbster et al. (2020) extended the work of Herbster et al. (2016) by considering additional
side information in the form of kernels over the rows and columns of the matrix - can the same
be done with our work?
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Appendix A. Proofs

A.1. Proof of Theorem 1

Lemma 12 For all (P ,Q) ∈ N (U) there existsK ∈ Pn such that:

∑
i∈[m]

ρ(K)2

δ(K,ui)2
≤
∑
i∈[m]

max
j∈[n]

(
1

pi · qj

)2

.

Proof Without loss of generality assume that the vectors {qi | i ∈ [n]} are linearly independent
(otherwise take limits).

Let {ẽi | i ∈ [n]} be an orthonormal basis for the span of {qi | i ∈ [n]}. Define the matrices
P̃ ∈ Rm×n and Q̃ ∈ Rn×n such that for i, j ∈ [n] we have:

q̃i,j := qi · ẽj

12
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and for all (i, j) ∈ [m]× [n]
p̃i,j := pi · ẽj .

Since the term 1/(pi · qj)2 decreases if pi · qj increases we can have, without loss of generality, that
pi is in the span of {qi | i ∈ [n]} (otherwise we could remove the part perpendicular to the span and
then normalise, not increasing the right hand side of the inequality in the lemma statement). This
means that ‖p̃i‖ = 1. Note that we automatically have ‖q̃i‖ = 1.

Now define K := Q̃Q̃
>

noting that for all i ∈ [n] we have ki,i = q̃i · q̃i = ‖q̃i‖2 = 1 so that
ρ(K)2 = 1. For all i ∈ [m] define wi such that w>i = p̃>i Q̃

−1
. Now for all (i, j) ∈ [m]× [n] we

have:
wi · kj = w>i Kej = p̃>i Q̃

−1
Q̃Q̃

>
ej = p̃>i q̃j = pi · qj (3)

so since (P ,Q) ∈ N (U) we have that sign(w>i Kej) = sign(pi · qj) = ui,j . This means that
sign(Kwi) = ui. We also have:

w>i Kwi = p̃>i Q̃
−1
Q̃Q̃

>
(Q̃
−1

)>p̃i = p̃>i IIp̃i = p̃>i p̃i = ‖p̃i‖2 = 1

and hence wi ∈ Λ(K,ui). By Equation (3) we then have:

δ(K,ui) ≥ min
j∈[n]
|wi · kj | = min

j∈[n]
|pi · qj |

so: ∑
i∈[m]

ρ(K)2

δ(K,ui)2
≤
∑
i∈[m]

max
j∈[n]

(
1

pi · qj

)2

as required.

Lemma 13 For allK ∈ Pn there exists (P ,Q) ∈ N (U) such that:

∑
i∈[m]

max
j∈[n]

(
1

pi · qj

)2

≤
∑
i∈[m]

ρ(K)2

δ(K,ui)2
.

Proof SinceK is positive semi-definite there exists Q̃ ∈ Rn×n such thatK = Q̃Q̃
>

. Given such
a Q̃ let Q be such that for all i ∈ [n] we have qi = q̃i/‖q̃i‖ noting that ‖qi‖ = 1 as required.
Construct P̃ ∈ Rm×n as follows. For all i ∈ [m] let:

wi := argmaxw∈Λ(K,ui) min
j∈[n]
|w · kj |

and let p̃i := Q̃
>
wi. Then define P ∈ Rm×n such that for all i ∈ [m] we have pi = p̃i/‖p̃i‖ noting

that ‖pi‖ = 1 as required. For all (i, j) ∈ [m]× [n] we now have, by definition of wi , that:

|p̃i · q̃j | = |p̃>i q̃j | = |(Q̃
>
wi)

>(Q̃
>
ej)| = |w>i Q̃Q̃

>
ej | = |w>i Kej | = |w · kj | ≥ δ(K,ui)

and hence: (
1

pi · qj

)2

≤
‖p̃i‖2‖q̃j‖2

δ(K,ui)2
.

13



PERCEPTRONIC COMPLEXITY AND ONLINE MATRIX COMPLETION

Note also that since wi ∈ Λ(K,ui) we have:

‖p̃i‖2 = p̃>i p̃i = w>i Q̃Q̃
>
wi = w>i Kwi = 1

and we have:
‖q̃j‖2 = q̃>j q̃j = e>j Q̃Q̃

>
ej = e>j Kej = kj,j ≤ ρ(K)2

so that: (
1

pi · qj

)2

≤ ρ(K)2

δ(K,ui)2

and hence: ∑
i∈[m]

max
j∈[n]

(
1

pi · qj

)2

≤
∑
i∈[m]

ρ(K)2

δ(K,ui)2

as required.

By the definition of τ(U), Lemma 12 implies that:

τ(U) ≤ min
(P ,Q)∈N (U)

∑
i∈[m]

max
j∈[n]

(
1

pi · qj

)2

whilst Lemma 13, implies that:

τ(U) ≥ min
(P ,Q)∈N (U)

∑
i∈[m]

max
j∈[n]

(
1

pi · qj

)2

.

�

A.2. Proof of Theorem 2

In this proof we adopt the notation defined in Section 7 and the PCMC algorithm. By Theorem 1
choose (P ◦,Q◦) ∈ N (U) and (P •,Q•) ∈ N (U) such that:

τ(U) =
∑
i∈[m]

max
j∈[n]

1

(p◦i · q◦j )2
; τ(U>) =

∑
j∈[n]

max
i∈[m]

1

(p•i · q•j )2
(4)

and for all (i, j) ∈ [m]× [n] define:

αi := min
j∈[n]
|p◦i · q◦j | ; βj := min

i∈[m]
|p•i · q•j | .

For all ` ∈ {0} ∪ [d] define:

Ψ` := {i ∈ [m] | αi ≤ θ`} ; Ω` := {j ∈ [n] | βj ≤ θ`} .

For all (i, j) ∈ [m] × [n] let λ̃◦i and λ̃•j be the values of λ◦i and λ•j on trial T respectively. For all
` ∈ {0} ∪ [d] we then define:

Ψ̃` := {i ∈ [m] | λ̃◦i > `} ; Ω̃` := {j ∈ [n] | λ̃•j > `} .

14
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Given ` ∈ [d] and some i ∈ [m] we now bound the number of trials t ∈M(L◦` ) in which it = i.
If t ∈ M(L◦` ) and it = i then t ∈ L◦` so we have `t = ` and †t = ◦ and hence we must also have
λ◦i = λ◦it = ` at the start of trial t, and have κt = it = i. Also, since t ∈M(L◦` ) we have ŷt 6= uit,jt

and hence µ†tκt ≡ µ◦i increases by one or λ†tκt ≡ λ◦i increases by one on trial t. Since λ◦i increases
by one if and only if µ◦i = π`t ≡ π` , and that when λ◦i increases we never have λ◦i = ` again, there
can only be at most π` such trials. In addition, there must be exactly π` such trials if there exists
a trial on which λ◦i > `. Since i ∈ Ψ̃` if and only if there exists a trial with λ◦i > ` we then have
that for all i ∈ Ψ̃` there exists π` trials t ∈ M(L◦` ) with it = i. Summing over all i ∈ Ψ̃` gives us
|M(L◦` )| ≥ π`|Ψ̃`|.

By applying this argument with j ∈ [n] instead of i and • instead of ◦ we then have the following
inequalities:

∀(`, i) ∈ [d]× [m] ,
∑

t∈M(L◦` )

Jit = iK ≤ π` ; ∀(`, j) ∈ [d]× [n] ,
∑

t∈M(L•` )

Jjt = jK ≤ π` (5)

∀` ∈ [d] , |M(L◦` )| ≥ π`|Ψ̃`| ; ∀` ∈ [d] , |M(L•` )| ≥ π`|Ω̃`| . (6)

Given ` ∈ [d] we now bound |A(L◦` )| + |B(L◦` )| as follows. Choose any i ∈ A(L◦` ). Then there
exists a trial t ∈ L◦` with it = i. Since t ∈ L◦` we have †t = ◦ and `t = `. We must then have
λ◦i = λ◦it = ` > `− 1 at the start of trial t. This implies that i ∈ Ψ̃`−1. Now choose any j ∈ B(L◦` ).
Then there exists a trial t ∈ L◦` with jt = j. Since t ∈ L◦` we have †t = ◦ and `t = `. We must then
have λ◦it = ` > ` − 1 and λ•j = λ•jt ≥ λ◦it so λ•j > ` − 1 at the start of trial t. This implies that
j ∈ Ω̃`−1. So we have shown that A(L◦` ) ⊆ Ψ̃`−1 and B(L◦` ) ⊆ Ω̃`−1.

By applying the same argument to A(L•` ) and B(L•` ) we then have the following inequality.

∀(`, †) ∈ [d]× {◦, •} , |A(L†`)|+ |B(L†`)| ≤ |Ω̃`−1|+ |Ψ̃`−1| . (7)

Given ` ∈ [d] we can now bound |M(L◦` )| as follows. Given t ∈ Z(L◦` , θ`,P
◦,Q◦) we must

have that t ∈M(L◦` ) and that |p◦it · q
◦
jt
| < θ` which implies that it ∈ Ψ`. Hence we have:

Z(L◦` , θ`,P
◦,Q◦) ⊆ {t ∈M(L◦` ) | it ∈ Ψ`}

so by Equation (5) we have:

|Z(L◦` , θ`,P
◦,Q◦)| ≤

∑
t∈M(L◦` )

Jit ∈ Ψ`K =
∑
i∈Ψ`

∑
t∈M(L◦` )

Jit = iK ≤
∑
i∈Ψ`

π` = π`|Ψ`| .

By combining this inequality with Equation (7) and Theorem 11 with (P ,Q) := (P ◦,Q◦) we then
have:

|M(L◦` )| ≤
ln(m+ n)

cθ2
`

(|Ω̃`−1|+ |Ψ̃`−1|) +
1

c
π`|Ψ`| =

π`
2g

(|Ω̃`−1|+ |Ψ̃`−1|) +
1

c
π`|Ψ`| . (8)

By the same argument for • instead of ◦ we also have:

|M(L•` )| ≤
π`
2g

(|Ω̃`−1|+ |Ψ̃`−1|) +
1

c
π`|Ω`| . (9)
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Combining equations 8 and 9 gives us:

|M(L◦` )|+ |M(L•` )| ≤
π`
g

(|Ω̃`−1|+ |Ψ̃`−1|) +
π`
c

(|Ψ`|+ |Ω`|) (10)

so that Equation 6 gives us:

|Ψ̃`|+ |Ω̃`| ≤
1

π`
(|M(L◦` )|+ |M(L•` )|) ≤

1

g
(|Ω̃`−1|+ |Ψ̃`−1|) +

1

c
(|Ψ`|+ |Ω`|) . (11)

Since Ψ̃0 = [m] = Ψ0 and Ω̃0 = [n] = Ω0 we have:

|Ψ̃0|+ |Ω̃0| = |Ψ0|+ |Ω0| <
1

c
(|Ψ0|+ |Ω0|) . (12)

The following inequality, which holds for all ` ∈ [d], is then easily verified via induction on ` using
equations 11 and 12.

|Ψ̃`−1|+ |Ω̃`−1| ≤
1

c

`−1∑
k=0

1

g(`−1−k)
(|Ψk|+ |Ωk|) .

Substituting this inequality back into Equation 10 gives us:

|M(L◦` )|+ |M(L•` )| ≤
π`
c

∑̀
k=0

1

g(`−k)
(|Ψk|+ |Ωk|)

so:

M =

d∑
`=1

(|M(L◦` )|+ |M(L•` )|) ≤
1

c

d∑
`=1

∑̀
k=0

π`
g(`−k)

(|Ψk|+ |Ωk|)

≤ 1

c

d∑
k=0

(|Ψk|+ |Ωk|)
d∑
`=k

π`
g(`−k)

=
2g ln(m+ n)

c2

d∑
k=0

(|Ψk|+ |Ωk|)
d∑
`=k

f `

g(`−k)

=
2g ln(m+ n)

c2

d∑
k=0

(|Ψk|+ |Ωk|)fk
d∑
`=k

(
f

g

)`−k

≤ 2g ln(m+ n)

c2

d∑
k=0

(|Ψk|+ |Ωk|)fk
∞∑
s=0

(
f

g

)s
=

2g ln(m+ n)

c2(1− f/g)

d∑
k=0

(|Ψk|+ |Ωk|)fk (13)

since f < g. Now, given i ∈ [m] let ζi := blogf (1/α2
i )c. Note that for all ` ∈ [d] with ` > ζi we

have, since f > 1, that:

θ2
` = (1/f)` ≤ (1/f)ζi+1 < (1/f)logf (1/α2

i ) = α2
i

so i /∈ Ψ` . This gives us:

d∑
k=0

Ji ∈ ΨkKfk ≤
ζi∑
k=0

fk = f ζi
ζi∑
k=0

fk−ζi ≤ f ζi
∞∑
s=0

f−s =
f ζi

1− 1/f
≤ 1

(1− 1/f)α2
i
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which implies, by Equation (4) and definition of αi:

d∑
k=0

|Ψk|fk =

d∑
k=0

∑
i∈[m]

Ji ∈ ΨkKfk =
∑
i∈[m]

d∑
k=0

Ji ∈ ΨkKfk ≤
1

1− 1/f

∑
i∈[m]

1

α2
i

=
τ(U)

1− 1/f
.

Using also the same argument, with j ∈ [n] instead of i, we now have:

d∑
k=0

|Ψk|fk ≤
τ(U)

1− 1/f
;

d∑
k=0

|Ωk|fk ≤
τ(U>)

1− 1/f
.

Substituting these inequalities into Equation (13) then gives us:

M≤ 2g ln(m+ n)

c2(1− f/g)(1− 1/f)
(τ(U) + τ(U>))

which upon setting f := 2, g := 4 and c := 3− e gives us:

M≤ 32

(3− e)2
ln(m+ n)(τ(U) + τ(U>)) .

�

A.3. Proof of Theorem 3

Note first that for all t ∈ [T ] we have, since Ũ ∈ S(U), that ytũit,jt = |ũit,jt | ≥ ũ∗ = 1/g. This
implies that

`t(ũit,jt) = max{0,−gytũit,jt + 1} ≤ max

{
0,−g

g
+ 1

}
= 0

so since `t(ũit,jt) ≥ 0 we must have `t(ũit,jt) = 0 and hence:∑
t∈Z

`t(ũit,jt) = 0 . (14)

Now note that if t ∈ Z then yt 6= sign(wt) so ytwt ≤ 0 which implies:

`t(wt) = max{0,−gytwt + 1} ≥ max{0, 1} = 1

so we have: ∑
t∈Z

`t(wt) ≥
∑
t∈Z

1 = |Z| . (15)

Substituting equations (14) and (15) into Equation (1) gives us:

|Z| ≤ 2g min
(A,B)∈D(Ũ)

√
τ̃(A,B)β̃(A,B) ln(2(m+ n))|Z| .

Squaring both sides an dividing through by |Z| then gives us:

|Z| = 4g2 min
(A,B)∈D(Ũ)

τ̃(A,B)β̃(A,B) ln(2(m+ n)) .

Then substituting in |Z| =
∑

t∈[T ]Jyt 6= sign(wt)K and g = 1/ũ∗ gives us the result. �

17



PERCEPTRONIC COMPLEXITY AND ONLINE MATRIX COMPLETION

A.4. Proof of Theorem 4

Lemma 14 For all Ũ ∈ Rm×n we have:

min
(P ,Q)∈F(Ũ)

∑
i∈[m]

‖pi‖2 max
j∈[n]
‖qj‖2 +

∑
j∈[n]

‖qj‖2 max
i∈[m]

‖pi‖2
 ≤ 2 min

(A,B)∈D(Ũ)
τ̃(A,B)β̃(A,B) .

Proof Choose the pair (A,B) ∈ D(Ũ) that minimises τ̃(A,B)β̃(A,B). Since A is positive
semi-definite we can find some C ∈ R(m+n)×(m+n) such that A = CC> so choose such a C.
Now choose P+ ∈ Rm×(m+n) and Q+ ∈ Rn×(m+n) such that [P+,Q+] = C . We now have the
following equalities:

∀(i, j) ∈ [m]× [n] , ai,(m+j) = ci · c(m+j) = p+
i · q

+
j .

max
i∈[m+n]

ai,i = max
i∈[m+n]

ci · ci = max
i∈[m+n]

‖ci‖2 = max

{
max
i∈[m]

‖p+
i ‖

2,max
i∈[n]
‖q+

i ‖
2

}
.

Tr(A) =
∑

i∈[m+n]

ai,i =
∑

i∈[m+n]

ci · ci =
∑

i∈[m+n]

‖ci‖2 =
∑
i∈[m]

‖p+
i ‖

2 +
∑
i∈[n]

‖q+
i ‖

2 .

Similarly there exist P− ∈ Rm×(m+n) andQ− ∈ Rn×(m+n) such that:

∀(i, j) ∈ [m]× [n], bi,(m+j) = p−i · q
−
j .

max
i∈[m+n]

bi,i = max

{
max
i∈[m]

‖p−i ‖
2,max
i∈[n]
‖q−i ‖

2

}
.

Tr(B) =
∑
i∈[m]

‖p−i ‖
2 +

∑
i∈[n]

‖q−i ‖
2 .

Now define P andQ such that:

P> := [(P+)>,−(P−)>]

and:
Q> := [(Q+)>, (Q−)>] .

Since (A,B) ∈ D(Ũ) we haveA−B = sym(Ũ) so for all (i, j) ∈ [m]× [n] we have

ai,(m+j) − bi,(m+j) = ũi,j

and hence, by the above equalities and definitions of P andQ, we have:

pi · qj = p+
i · q

+
j − p

−
i · q

−
j = ai,(m+j) − bi,(m+j) = ũi,j

so (P ,Q) ∈ F(Ũ).
Now, by the above equalities and definition of P we have:

max
i∈[m]

‖pi‖2 = max
i∈[m]

(
‖p+

i ‖
2 + ‖p−i ‖

2
)

18
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≤ max
i∈[m]

‖p+
i ‖

2 + max
i∈[m]

‖p−i ‖
2

≤ max

{
max
i∈[m]

‖p+
i ‖

2,max
i∈[n]
‖q+

i ‖
2

}
+ max

{
max
i∈[m]

‖p−i ‖
2,max
i∈[n]
‖q−i ‖

2

}
= max

i∈[m+n]
ai,i + max

i∈[m+n]
bi,i

≤ 2 max

{
max

i∈[m+n]
ai,i , max

i∈[m+n]
bi,i

}
= 2β̃(A,B)

and similarly:
max
j∈[n]
‖qj‖2 ≤ 2β̃(A,B)

so, by the above equalities and definitions of P andQ, we have:∑
i∈[m]

‖pi‖2 max
j∈[n]
‖qj‖2 +

∑
j∈[n]

‖qj‖2 max
i∈[m]

‖pi‖2

≤ 2β̃(A,B)

∑
i∈[m]

‖pi‖2 +
∑
j∈[n]

‖qj‖2


= 2β̃(A,B)

∑
i∈[m]

(‖p+
i ‖

2 + ‖p−i ‖
2) +

∑
j∈[n]

(‖q+
j ‖

2 + ‖q−j ‖
2)


= 2β̃(A,B)

∑
i∈[m]

‖p+
i ‖

2 +
∑
i∈[n]

‖q+
i ‖

2

+

∑
i∈[m]

‖p−i ‖
2 +

∑
i∈[n]

‖q−i ‖
2


= 2β̃(A,B)(Tr(A) + Tr(B))

= 2β̃(A,B)τ̃(A,B)

as required.

Lemma 15 For all Ũ ∈ Rm×n we have:

min
(A,B)∈D(Ũ)

τ̃(A,B)β̃(A,B) ≤ 2 min
(P ,Q)∈F(Ũ)

∑
i∈[m]

‖pi‖2 max
j∈[n]
‖qj‖2 +

∑
j∈[n]

‖qj‖2 max
i∈[m]

‖pi‖2
 .

Proof Choose (P ,Q) ∈ F(Ũ) that minimises the right hand side of this inequality. Note that
for any number x ∈ R \ {0}, multiplying P by x and dividing Q by x does not affect the term in
brackets or the values pi · qj ≡ ũi,j . This means that, without loss of generality, we may assume
that:

max
i∈[m]

‖pi‖2 = max
j∈[n]
‖qj‖2 . (16)

Let C := [P ,Q] and defineA := CC>. Then define:

B := [[PP>,0n,m]>, [0m,n,QQ>]>] .
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For all i, j ∈ [m] we have ai,j = pi · pj = bi,j so ai,j − bi,j = 0. Similarly for all i, j ∈ [n] we
have a(m+i),(m+j) = qi · qj = b(m+i),(m+j) so a(m+i),(m+j) − b(m+i),(m+j) = 0. Also, for all
(i, j) ∈ [m]× [n] we have ai,(m+j) = pi · qj = ũi,j and bi,(m+j) = 0 so ai,(m+j) − bi,(m+j) = ũi,j

and similarly we have a(m+j),i− b(m+j),i = ũj,i. This implies thatA−B = sym(Ũ) so since both
A andB are positive semidefinite we have (A,B) ∈ D(Ũ).

Note that for all i, j ∈ [m] we have ai,i = pi · pi and a(m+j),(m+j) = qj · qj so:∑
l∈[m+n]

al,l =
∑
i∈[m]

ai,i +
∑
j∈[n]

a(m+j),(m+j) =
∑
i∈[m]

‖pi‖2 +
∑
j∈[n]

‖qj‖2

and:

max
l∈[m+n]

al,l = max

{
max
i∈[m]

ai,i , max
j∈[n]

a(m+j),(m+j)

}
= max

{
max
i∈[m]

‖pi‖2 , max
j∈[n]
‖qi‖2

}
which by Equation (16) gives us:

max
l∈[m+n]

al,l = max
i∈[m]

‖pi‖2 = max
j∈[n]
‖qi‖2 .

Similarly we have:∑
l∈[m+n]

bl,l =
∑
i∈[m]

‖pi‖2 +
∑
j∈[n]

‖qj‖2 and max
l∈[m+n]

bl,l = max
i∈[m]

‖pi‖2 = max
j∈[n]
‖qi‖2

so:

τ̃(A,B) = 2

∑
i∈[m]

‖pi‖2 +
∑
j∈[n]

‖qj‖2
 and β̃(A,B) = max

i∈[m]
‖pi‖2 = max

j∈[n]
‖qi‖2

which gives us:

τ̃(A,B)β̃(A,B) = 2

∑
i∈[m]

‖pi‖2 max
j∈[n]
‖qj‖2 +

∑
j∈[n]

‖qj‖2 max
i∈[m]

‖pi‖2


which, since by above we have (A,B) ∈ D(Ũ), implies the result.

Lemmas 14 and 15 imply the result. �

A.5. Proof of Theorem 5

The result clearly holds for k = 1 so without loss of generality let k ≥ 2. Let f := 1/10 . We start
with the following lemma.

Lemma 16 There exists a matrixR ∈ {−1, 1}k×k such that for all l ∈ N and P ,Q ∈ Rk×l with
ri,jpi · qj ≥ 1 for all i, j ∈ [k] , we have:

max
i,j∈[k]

‖pi‖‖qj‖ ≥ f
√
k .
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Proof We use the (parameter-free) algorithm of Herbster et al. (2016), with k2 trials, to build the
matrixR. Let (i′t, j

′
t) be the pair given to the algorithm on trial t. Given the algorithm’s prediction

y′t ∈ {−1, 1} we then set ri′t,j′t = −y′t. This defines R. Now suppose we have l ∈ N and P ,Q ∈
Rk×l with ri,jpi · qj ≥ 1 for all i, j ∈ [k]. Note that, by the mistake bound in Herbster et al. (2016),
the number of mistakes made by the algorithm is no greater than (k/f2) maxi,j∈[k] ‖pi‖2‖qj‖2.
But the algorithm made a mistake on every trial and hence made k2 mistakes. This means that
maxi,j∈[k] ‖pi‖2‖qj‖2 ≥ f2k so that maxi,j∈[k] ‖pi‖‖qj‖ ≥ f

√
k as required.

Letting m = n = k + k2, we define our matrix U ∈ {−1, 1}m×n as follows. Choose R so
that it satisfies Lemma 16. For all (i, j) ∈ [k]2 let ui,j = ri,j and for all (i, j) ∈ [m]2 \ [k]2 let
ui,j = 1− 2Ji 6= jK. We now have the following two lemmas:

Lemma 17 We have:
h(U) ≥ fk5/2 .

Proof Choose the minimising Ũ ∈ S(U) in the definition of h(U). Since h(U) is scale invariant,
without loss of generality assume that ũ∗ = 1. Next choose the minimising (P ,Q) ∈ F(Ũ) in the
definition of h(U). Note that for all i, j ∈ [k] we have ui,jpi · qj > 0 so since |pi · qj | = |ũi,j | ≥ 1

and ui,j = ri,j we have ri,jpi·qj ≥ 1. So by Lemma 16 there exists i, j ∈ [k] with ‖pi‖‖qj‖ ≥ f
√
k.

For all i ∈ [m] we have |pi · qi| = |ũi,i| ≥ 1 which implies ‖pi‖‖qi‖ ≥ 1. By above, this means
that:

(‖pi‖max
l∈[m]

‖ql‖)(‖qi‖max
j∈[m]

‖pj‖) = (‖pi‖‖qi‖) max
j,l∈[m]

‖pj‖‖ql‖ ≥ (‖pi‖‖qi‖)f
√
k ≥ f

√
k .

This means that either ‖pi‖2 maxl∈[m] ‖ql‖2 ≥ f
√
k or ‖qi‖2 maxj∈[m] ‖pj‖2 ≥ f

√
k. Substituing

into the definition of h(U) gives us h(U) ≥ mf
√
k ≥ fk5/2.

Lemma 18 We have:
h′(U) ≤ 40k2 .

Proof We construct (P ,Q) ∈ Rm×(m+3) as follows. For all i ∈ [k] define pi, qi ∈ Rm+3 as
follows:

∀j ∈ [k], (pi,j , qi,j) := (ui,j , Ji = jK
√
k) .

∀j ∈ [m] \ [k], (pi,j , qi,j) := (0, 0) .

(pi,m+1, qi,m+1) := (
√
k, 0) ; (pi,m+2, qi,m+2) := (0,

√
k) ; (pi,m+3, qi,m+3) := (0, 0) .

For all i ∈ [m] \ [k] define pi, qi ∈ Rm+3 as follows.

∀j ∈ [k], (pi,j , qi,j) := (0, 0) .

∀j ∈ [m] \ [k], (pi,j , qi,j) := (
√

2Ji = jK,
√

2Ji = jK) .

(pi,m+1, qi,m+1) := (0,−1) ; (pi,m+2, qi,m+2) := (−1, 0) ; (pi,m+3, qi,m+3) := (−1, 1) .

Note that for all i ∈ [k] we have ‖pi‖2 = ‖qi‖2 = 2k and for all i ∈ [m] \ [k] we have ‖pi‖2 =
‖qi‖2 = 4. Now define Ũ ∈ Rm×m such that for all i, j ∈ [m] we have ũi,j = pi · qj , noting that
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(P ,Q) ∈ F(Ũ). We then have the following identities. For all i, j ∈ [k] we have ũi,j = ui,j
√
k.

For all i, j ∈ [m] \ [k] we have ũi,j = 2Ji = jK − 1. For all (i, j) ∈ [k] × ([m] \ [k]) we have
ũi,j = ũj,i = −

√
k. So we have that Ũ ∈ S(U) and that:

∀i ∈ [k] , max
j∈[m]

‖qj‖2

(pi · qj)2
= max

j∈[m]

‖pj‖2

(qi · pj)2
= max

{
2k

k
,

4

k

}
= 2

and:

∀i ∈ [m] \ [k] , max
j∈[m]

‖qj‖2

(pi · qj)2
= max

j∈[m]

‖pj‖2

(qi · pj)2
= max

{
2k

k
,
4

1

}
= 4 .

Substituting into the definition of h′(U) we have:

h′(U) ≤ (k · (2k) · 2 + (m− k) · 4 · 4) + (k · (2k) · 2 + (m− k) · 4 · 4) = 40k2

as required.

Lemmas 17 and 18 imply the result. �

A.6. Proof of Theorem 6

Recall:

h′(U) := min
Ũ∈S(U)

min
(P ,Q)∈F(Ũ)

∑
i∈[m]

max
j∈[n]

(‖pi‖‖qj‖
ũi,j

)2

+
∑
j∈[n]

max
i∈[m]

(‖pi‖‖qj‖
ũi,j

)2
 .

Clearly:

h′(U) ≤ min
(P ,Q)∈N (U)

∑
i∈[m]

max
j∈[n]

(
1

pi · qj

)2

+
∑
j∈[n]

max
i∈[m]

(
1

pi · qj

)2


since if (P ,Q) ∈ N (U) then by defining Ũ := PQ> we have Ũ ∈ S(U), (P ,Q) ∈ F(Ũ), and
for all (i, j) ∈ [m]× [n] we have ũi,j = pi · qj and ‖pi‖ = ‖qj‖ = 1 .

So all that’s left is to prove is that:

h′(U) ≥ min
(P ,Q)∈N (U)

∑
i∈[m]

max
j∈[n]

(
1

pi · qj

)2

+
∑
j∈[n]

max
i∈[m]

(
1

pi · qj

)2


which is done by showing that for all Ũ ∈ S(U) and (P̃ , Q̃) ∈ F(Ũ) there exists (P ,Q) ∈ N (U)
with: (

1

pi · qj

)2

=

(‖p̃i‖‖q̃j‖
ũi,j

)2

for all (i, j) ∈ [m] × [n]. To show this define, for all (i, j) ∈ [m] × [n] , pi := p̃i/‖p̃i‖ and
qj := q̃j/‖q̃j‖ so that:

1

pi · qj
=
‖p̃i‖‖q̃j‖
p̃i · q̃j

=
‖p̃i‖‖q̃j‖
ũi,j

.

�
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A.7. Proof of Theorem 7

By definition of E(U) there exists (P ′,Q′) ∈ N (U) and (P ′′,Q′′) ∈ N (U) such that for all
(i, j) ∈ [m]× [n] we have:

di,j ≥

(
1

p′i · q′j

)2

and fi,j ≥

(
1

p′′i · q′′j

)2

.

Now let P andQ be such that for all (i, j) ∈ [m]× [n] we have:

pi :=
1√
2

[p′i , p
′′
i ] and qj :=

1√
2

[q′j , q
′′
j ]

and let C be such that for all (i, j) ∈ [m]× [n] we have:

ci,j :=

(
1

pi · qj

)2

.

Note that for all (i, j) ∈ [m]× [n] we have:

• ‖pi‖2 = 1
2(‖p′i‖2 + ‖p′′i ‖2) = 1

2(1 + 1) = 1 .

• ‖qj‖2 = 1
2(‖q′j‖2 + ‖q′′j ‖2) = 1

2(1 + 1) = 1 .

• (pi · qj)ui,j = 1
2((p′i · q′j)ui,j + (p′′i · q′′j )ui,j) > 1

2(0 + 0) = 0

so (P ,Q) ∈ N (U) and hence C ∈ E(U). Since sign(p′i · q′j) = sign(p′′i · q′′j ) we also have:

ci,j =

(
1

pi · qj

)2

=

(
1

(p′i · q′j + p′′i · q′′j )/2

)2

= 4

(
1

p′i · q′j + p′′i · q′′j

)2

≤ 4 min


(

1

p′i · q′j

)2

,

(
1

p′′i · q′′j

)2
 ≤ 4 min{di,j , fi,j}

as required. �

A.8. Proof of Theorem 8

Let a := 1.5 and let:

b :=

(
1 +

a2

4

)(
1 +

2

a2

)
noting that b < 3. By definition of E(U) there exists (P ′,Q′) ∈ N (U) such that:

fi,j ≥

(
1

p′i · q′j

)2

for all (i, j) ∈ [m]× [n]. For all i ∈ [m] let:

zi := argminz∈{−1,1}max
j∈[n]

Jui,j = zKfi,j
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and let:
gi :=

1

2
min

j∈[n]:ui,j=zi
|p′i · q′j |

where here the minimiser of the empty set is equal to 1. Note that since ‖p′i‖ = ‖q′j‖ = 1 we have
|p′i · q′j | ≤ 1 for all j ∈ [n] so gi ≤ 1/2. Now let P be such that for all i ∈ [m] with zi = −1 we
have:

pi :=
1√

1 + a2/4

[
p′i,

(
agi, 0,

√
a2/4− a2g2

i

)>]
and for all i ∈ [m] with zi = 1 we have:

pi :=
1√

1 + a2/4

[
p′i,

(
0, agi,

√
a2/4− a2g2

i

)>]
.

Then letQ be such that for all j ∈ [n] we have:

qj :=
1√

1 + 2/a2

[
q′j ,

(
1

a
,−1

a
, 0

)>]

and let C be such that for all (i, j) ∈ [m]× [n] we have:

ci,j :=

(
1

pi · qj

)2

.

Note first that for all (i, j) ∈ [m]× [n] with zi = −1 we have:

pi · qj =
1√
b
(p′i · q′j + gi) . (17)

If, in addition, ui,j = 1 then sign(p′i · q′j) = ui,j = 1 so by Equation (17), we have that pi · qj ≥
gi/
√
b. On the other hand, if ui,j = −1 then we have that sign(p′i · q′j) = ui,j = −1 and, since

zi = −1 = ui,j , we have:

|p′i · q′j | ≥ min
j∈[n]:ui,j=zi

|p′i · q′j | = 2gi

so p′i · q′j ≤ −2gi and hence by Equation (17) we have that pi · qj ≤ −gi/
√
b. Hence, in either case,

given zi = −1 we have (pi · qj)ui,j ≥ gi/
√
b. The same argument gives us (pi · qj)ui,j ≥ gi/

√
b

when zi = 1 as well. Hence we have, for all (i, j) ∈ [m]× [n], that:

(pi · qj)ui,j ≥ gi/
√
b . (18)

In addition, for all (i, j) ∈ [m]× [n] we have:

• ‖pi‖2 = 1
1+a2/4

(‖p′i‖2 + a2/4) = 1
1+a2/4

(1 + a2/4) = 1

• ‖qj‖2 = 1
1+2/a2

(‖qj‖2 + 2/a2) = 1
1+2/a2

(1 + 2/a2) = 1
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which, combined with Equation 18, implies that (P ,Q) ∈ N (U). Hence we have C ∈ E(U) as
required. By Equation 18 we also have, for all (i, j) ∈ [m]× [n], that:

ci,j =

(
1

pi · qj

)2

≤ b

g2
i

= 4b max
j′∈[n]:ui,j′=zi

(
1

p′i · q′j′

)2

where here the maximiser of the empty set is equal to one. Noting that:

max
j′∈[n]:ui,j′=zi

(
1

p′i · q′j′

)2

= min
z∈{−1,1}

max
j′∈[n]:ui,j′=z

fi,j′ ≤ 1 + min
z∈{−1,1}

max
j′∈[n]

Jui,j′ = zKfi,j′

we have proved that there exists C ∈ E(U) with:

max
j∈[n]

ci,j ≤ 4b+ 4b min
z∈{−1,1}

max
j′∈[n]

Jui,j′ = zKfi,j′

for all i ∈ [m]. By the same argument, but with U> instead of U , we have that there also exists
D ∈ E(U) with:

max
i∈[m]

di,j ≤ 4b+ 4b min
z∈{−1,1}

max
i′∈[m]

Jui′,j = zKfi′,j

as required. �

A.9. Proof of Theorem 9

For all j ∈ [n] define:
βj :=

∑
l∈[k]

Jj ∈ BlK .

DefineQ ∈ Rn×(k+1) by, for all (j, l) ∈ [n]× [k + 1] :

• If l ∈ [k] then qj,l := 1√
2βj

Jj ∈ BlK .

• If l = k + 1 then qj,l := 1√
2

.

Define P̃ ∈ Rm×(k+1) by, for all (i, l) ∈ [m]× [k + 1] :

• If l ∈ [k] then p̃i,l := Ji ∈ AlK maxj∈Bl

√
βj .

• If l = k + 1 then p̃i,l := −1/2

and then define P ∈ Rm×(k+1) by pi := p̃i/‖p̃i‖ for all i ∈ [m], and define C such that for all
(i, j) ∈ [m]× [n] we have:

ci,j :=

(
1

pi · qj

)2

.

Given (i, j) ∈ [m] × [n] with ui,j = 1 there exists l ∈ [k] with Ji ∈ AlKJj ∈ BlK = 1 so since
p̃i,l′qi,l′ ≥ 0 for all l′ ∈ [k] , we have:

p̃i · qj = p̃i,k+1qj,k+1 +
∑
l′∈[k]

p̃i,l′qj,l′
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≥ p̃i,k+1qj,k+1 + p̃i,lqj,l

= − 1

2
√

2
+

(
Ji ∈ AlK max

j′∈Bl

√
βj′

)
1√
2βj

Jj ∈ BlK

= − 1

2
√

2
+ max
j′∈Bl

√
βj′√
2βj

≥ − 1

2
√

2
+

1√
2

=
1

2
√

2
.

Given (i, j) ∈ [m]× [n] with ui,j = −1 we have Ji ∈ AlKJj ∈ BlK = 0 and hence p̃i,lqj,l = 0 for
all l ∈ [k] , which implies:

p̃i · qj = p̃i,k+1qj,k+1 +
∑
l∈[k]

p̃i,lqj,l = − 1

2
√

2
+ 0 = − 1

2
√

2
.

So we have proved, for all (i, j) ∈ [m]× [n] , that ui,jp̃i · qj ≥ 1/(2
√

2) and hence that:

ui,jpi · qj ≥
1

2
√

2‖p̃i‖
. (19)

Now note that for all j ∈ [n] we have:

‖qj‖2 = q2
j,k+1 +

∑
l∈[k]

q2
j,l =

1

2
+
∑
l∈[k]

Jj ∈ BlK
2βj

=
1

2
+

∑
l∈[k]Jj ∈ BlK

2βj
=

1

2
+

βj
2βj

= 1

so, combining with Equation (19) and the fact that ‖pi‖ = 1 for all i ∈ [m], we have that (P ,Q) ∈
N (U) and hence that C ∈ E(U).

For all i ∈ [m] we have that:

‖p̃i‖2 = p̃2
i,k+1 +

∑
l∈[k]

p̃2
i,l =

1

4
+
∑
l∈[k]

Ji ∈ AlK max
j∈Bl

βj =
1

4
+
∑
l∈[k]

Ji ∈ AlK max
j∈Bl

∑
l′∈[k]

Jj ∈ Bl′K

so, by Equation (19), we have:

ci,j =

(
1

pi · qj

)2

≤ 8‖p̃i‖2 = 2 + 8
∑
l∈[k]

Ji ∈ AlK max
j′∈Bl

∑
l′∈[k]

Jj′ ∈ Bl′K

for all (i, j) ∈ [m]× [n]. So we have shown that there exists C ∈ E(U) with:

ci,j ≤ 2 + 8
∑
l∈[k]

Ji ∈ AlK max
j′∈Bl

∑
l′∈[k]

Jj′ ∈ Bl′K

for all (i, j) ∈ [m] × [n]. By applying the same argument to U> instead of U we have that there
existsD ∈ E(U) with:

di,j ≤ 2 + 8
∑
l∈[k]

Jj ∈ BlK max
i′∈Al

∑
l′∈[k]

Ji′ ∈ Al′K

for all (i, j) ∈ [m]× [n], which completes the proof. �
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A.10. Proof of Theorem 10

Without loss of generality assume that n is an integer power of 2 (else just add dummy vertices to
R - i.e. dummy columns to U ). From the tree R first construct a spine L (defined in Herbster et al.
(2008)). Without loss of generality assume that the jth vertex in L is j (noting that all vertices are in
[n]). From Herbster et al. (2008) we have:∑

j∈[n−1]

Jui,j 6= ui,j+1K ≤ 2
∑

(l,k)∈R

Jui,l 6= ui,kK (20)

for all i ∈ [m]. Now construct a binary support tree B (defined in Herbster et al. (2008)) of L, letting
the added vertices be the set [2n − 1] \ [n]. For all i ∈ [m] construct the vector ũi ∈ R2n−1 such
that for all j ∈ [n] we have ũi,j := ui,j and for all j ∈ [2n− 1] \ [n] we have ũi,j := ũi,↓(j) where
↓(j) is the left-child of j in the tree B. From Equation (20) we then have:∑

(l,k)∈B

Jũi,l 6= ũi,kK ≤ log2(n)
∑

j∈[n−1]

Jui,j 6= ui,j+1K ≤ 2 log2(n)
∑

(l,k)∈R

Jui,l 6= ui,kK . (21)

Let r be the maximum value of any diagonal element of the pseudoinverse of the laplacian of B.
Note that it is a standard result that r is upper bounded by the resistance diameter of B, which is
equal to 2 log2(n).

We have from Herbster and Pontil (2006) (noting the equivalence between the kernel perceptron
and the ordinary perceptron over a feature space) that there exists a matrix Q̃ ∈ R(2n−1)×(2n−1)

with:
max

j∈[2n−1]
‖q̃j‖2 ≤ r (22)

such that for all vectors ũ there exists a vector p̃ such that for all j ∈ [2n− 1] we have p̃ · q̃j = ũj ,
and:

‖p̃‖2 =
1

r
+ 4

∑
(l,k)∈B

Jũl 6= ũkK .

Hence, by equation (21), there exists such a Q̃, and a matrix P̃ ∈ Rm×(2n−1) such that for all
i ∈ [m] we have p̃i · q̃j = ui,j and

‖p̃i‖2 =
1

r
+ 4

∑
(l,k)∈B

Jũi,l 6= ũi,kK ≤
1

r
+ 8 log2(n)

∑
(l,k)∈R

Jui,l 6= ui,kK (23)

so choose such a Q̃ and P̃ . Now define P ∈ Rm×(2n+1) and Q ∈ Rn×(2n+1) such that for all
(i, j) ∈ [m]× [n] we have pi := p̃i/‖p̃i‖ and pj := p̃j/‖p̃j‖, noting that:

(pi · qj)ui,j =
(p̃i · q̃j)ui,j
‖p̃i‖‖q̃j‖

=
u2
i,j

‖p̃i‖‖q̃j‖
=

1

‖p̃i‖‖q̃j‖
. (24)

Then define C ∈ Rm×n such that:

ci,j :=

(
1

pi · qj

)2
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for all (i, j) ∈ [m]×[n]. By equation (24) and the fact that ‖pi‖ = ‖qj‖ = 1 for all (i, j) ∈ [m]×[n] ,
we have that (P ,Q) ∈ N (U) and hence C ∈ E(U). By equations (22), (23) and (24) we have:

ci,j =

(
1

pi · qj

)2

= ‖p̃i‖2‖q̃j‖2

≤ ‖p̃i‖2r

≤

1

r
+ 8 log2(n)

∑
(l,k)∈R

Jui,l 6= ui,kK

 r

= 1 + r8 log2(n)
∑

(l,k)∈R

Jui,l 6= ui,kK

= 1 + 16 log2(n)2
∑

(l,k)∈R

Jui,l 6= ui,kK

for all (i, j) ∈ [m]× [n]. So we have shown that, for any value of n (not just a power of two), there
exists C ∈ E(U) such that:

ci,j ≤ 1 + 16dlog2(n)e2
∑

(l,k)∈R

Jui,l 6= ui,kK

for all (i, j) ∈ [m] × [n]. By the same argument, but with U> instead of U , there also exists
D ∈ E(U) such that:

di,j ≤ 1 + 16dlog2(m)e2
∑

(l,k)∈S

Jul,j 6= uk,jK

for all (i, j) ∈ [m]× [n], as required. �

A.11. Proof of Theorem 11

Let L := L†` and θ := θ`. Let S := |L|. For all s ∈ [S] let t(s) be the s-th trial in L - i.e. such that
t(s) ∈ L and

∑
t∈LJt ≤ t(s)K = s. For all s ∈ [S] let W̃ s be the matrixW †

` at the start of trial t(s)
and let X̃s := Xt(s). Then the values of {ŷt(s) : s ∈ [S]} that are produced by PCMC are equal to
those formed by the following algorithm:

1. W̃ 1 ← I

2. For s = 1, 2, 3 · · ·S :

(a) Set X̃s := 1
2(eit(s) + em+jt(s))(eit(s) + em+jt(s))

>

(b) Output ŷt(s) := sign(Tr(X̃sW̃ s)− 1)

(c) W̃ s+1 := exp(ln(W̃ s) + 1
2θ(yt(s) − ŷt(s))X̃s)

Let l be such that P ∈ Rm×l. Let M̃ := {s ∈ [S] | t(s) ∈ M(L)} and let Z̃ := {s ∈ [S] | t(s) ∈
Z(L, θ,P ,Q)} noting that Z̃ ⊆ M̃ . Define P̃ and Q̃ by, for all (i, j) ∈ [m]× [n]:

p̃i := [ Ji ∈ A(L)Kpi , Ji /∈ A(L)Kei ] ; q̃j = [ Jj ∈ B(L)Kqj , Jj /∈ B(L)Kem+j ]
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where here [ · , · ] concatenates two vectors. Now define V := [P̃ , Q̃] and define Ũ := V V >.
Given positive definite matrices C,D of the same dimensionality we define their quantum relative
entropy as:

∆(C,D) := Tr(C ln(C)−C ln(D) +D −C) .

For all s ∈ [S] we then define:

∆̃s := ∆(Ũ , W̃ s)−∆(Ũ , W̃ s+1) .

Lemma 19 We have:
Tr(Ũ) = m+ n

and:
Tr(Ũ ln(Ũ)) ≤ (|A(L)|+ |B(L)|) ln(m+ n) .

Proof The first equality is true since:

Tr(Ũ) =
∑

i∈[m+n]

vi · vi =
∑

i∈[m+n]

‖vi‖2 =
∑
i∈[m]

‖p̃i‖2 +
∑
i∈[n]

‖q̃i‖2 = m+ n .

Let σ ∈ Rm+n be the vector whose components are the eigenvalues of Ũ in any order. For any
i ∈ [m] \ A(L) we have that p̃i = [0, ei] so by definition of P̃ and Q̃ we have p̃i · p̃i = 1 and
for all i′ ∈ [m] \ {i} we have p̃i′ · p̃i = 0 and for all j ∈ [n] we have q̃j · p̃i = 0. This implies
that V p̃i = ei and hence that Ũei = V (V >ei) = V p̃i = ei so that ei is an eigenvector of Ũ
with eigenvalue 1. Similarly, for all j ∈ [n] \B(L) we have that em+j is an eigenvector of Ũ with
eigenvalue 1. This gives us at least (n + m) − |A(L)| − |B(L)| eigenvectors with eigenvalue 1.
Hence, without loss of generality, assume that σi = 1 for all i ∈ [m+ n] with i > |A(L)|+ |B(L)|.
We have, from the first equality, that ‖σ‖1 = Tr(Ũ) = m+ n so:

∑
i≤|A(L)|+|B(L)|

σi = ‖σ‖1 −
m+n∑

i=|A(L)|+|B(L)|+1

σi

= ‖σ‖1 − (m+ n− (|A(L)|+ |B(L)|))
= |A(L)|+ |B(L)| .

Since Ũ is positive semi-definite all components of σ are non-negative and hence, from the first
equality, we have ln(σi) ≤ ln(‖σ‖1) = ln(m+ n) for all i ∈ [m+ n]. This gives us:

Tr(Ũ ln(Ũ)) =
∑

i∈[m+n]

σi ln(σi)

=
∑

i≤|A(L)|+|B(L)|

σi ln(σi) +
m+n∑

i=|A(L)|+|B(L)|+1

σi lnσi

=
∑

i≤|A(L)|+|B(L)|

σi ln(σi) +

m+n∑
i=|A(L)|+|B(L)|+1

ln(1)

=
∑

i≤|A(L)|+|B(L)|

σi ln(σi)
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≤
∑

i≤|A(L)|+|B(L)|

σi ln(m+ n)

= (|A(L)|+ |B(L)|) ln(m+ n)

as required.

Lemma 20 For all s ∈ M̃ we have:

yt(s)(Tr(ŨX̃s)− 1) ≥ Js /∈ Z̃Kθ .

Proof We have

Tr(ŨX̃s) =
1

2
Tr(V V >(eit(s) + em+jt(s))(eit(s) + em+jt(s))

>)

=
1

2
Tr((eit(s) + em+jt(s))

>V V >(eit(s) + em+jt(s)))

=
1

2
‖V >(eit(s) + em+jt(s))‖

2

=
1

2
‖vit(s) + vm+jt(s)‖

2

=
1

2
‖p̃it(s) + q̃jt(s)‖

2 .

Since t(s) ∈ L we have it(s) ∈ A(L) and hence p̃it(s) = pit(s) . Similarly we have q̃jt(s) = qjt(s) so
since (P ,Q) ∈ N (U) we have:

Tr(ŨX̃s) =
1

2
‖pit(s) + qjt(s)‖

2 =
1

2
‖pit(s)‖

2 + pit(s) · qjt(s) +
1

2
‖qjt(s)‖

2 = 1 + pit(s) · qjt(s)

and hence:

yt(s)(Tr(ŨX̃s)− 1) = uit(s),jt(s)(Tr(ŨX̃s)− 1) = uit(s),jt(s)pit(s) · qjt(s)

Since (P ,Q) ∈ N (U) this is always greater than 0 and if s /∈ Z̃ we have t(s) ∈ M(L) \
Z(L, θ,P ,Q) so |pit(s) · qjt(s) | ≥ θ as required.

Lemma 21 For all s ∈ M̃ we have:

∆̃s ≥ θyt(s) Tr(ŨX̃s) + (1− eθyt(s)) Tr(W̃ sX̃s) .

Proof As in Herbster et al. (2016) Lemma A.3.

Lemma 22 For all s ∈ [S]:

• If s /∈ M̃ then ∆̃s = 0 .

• If s ∈ Z̃ then ∆̃s ≥ (c− 1)θ2 .
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• If s ∈ M̃ \ Z̃ then ∆̃s ≥ cθ2 .

Proof As in Herbster et al. (2016) Lemma A.4, multiplying by m+ n throughout. Note that this
proof utilises lemmas 20 and 21 above.

By Lemma 19 we have:

∆(Ũ , W̃ 1) = ∆(Ũ , I)

= Tr(Ũ ln(Ũ))− Tr(Ũ ln(I)) + Tr(I)− Tr(Ũ)

≤ (|A(L)|+ |B(L)|) ln(m+ n)− Tr(Ũ ln(I)) + Tr(I)− (m+ n)

= (|A(L)|+ |B(L)|) ln(m+ n)− Tr(Ũ0) + (m+ n)− (m+ n)

= (|A(L)|+ |B(L)|) ln(m+ n)

so since ∆(C,D) ≥ 0 for all positive definite matrices C,D we have, by Lemma 22 that:

(|A(L)|+ |B(L)|) ln(m+ n) ≥ ∆(Ũ , W̃ 1)

≥ ∆(Ũ , W̃ 1)−∆(Ũ , W̃ S+1)

=
∑
s∈[S]

(∆(Ũ , W̃ s)−∆(Ũ , W̃ s+1))

=
∑
s∈[S]

∆̃s

≥ |Z̃|(c− 1)θ2 + |M̃ \ Z̃|cθ2

so:

|M̃ \ Z̃| ≤ ln(m+ n)

cθ2
(|A(L)|+ |B(L)|) +

1− c
c
|Z̃|

and hence:

|M(L)| = |M̃ |
= |M̃ \ Z̃|+ |Z̃|

≤ ln(m+ n)

cθ2
(|A(L)|+ |B(L)|) +

1

c
|Z̃|

=
ln(m+ n)

cθ2
(|A(L)|+ |B(L)|) +

1

c
|Z(L, θ,P ,Q)|

as required. �
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