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Abstract
Recent studies have shown that heavy tails can emerge in stochastic optimization and that the heav-
iness of the tails have links to the generalization error. While these studies have shed light on inter-
esting aspects of the generalization behavior in modern settings, they relied on strong topological
and statistical regularity assumptions, which are hard to verify in practice. Furthermore, it has been
empirically illustrated that the relation between heavy tails and generalization might not always be
monotonic in practice, contrary to the conclusions of existing theory. In this study, we establish
novel links between the tail behavior and generalization properties of stochastic gradient descent
(SGD), through the lens of algorithmic stability. We consider a quadratic optimization problem
and use a heavy-tailed stochastic differential equation (and its Euler discretization) as a proxy for
modeling the heavy-tailed behavior emerging in SGD. We then prove uniform stability bounds,
which reveal the following outcomes: (i) Without making any exotic assumptions, we show that
SGD will not be stable if the stability is measured with the squared-loss x 7→ x2, whereas it in turn
becomes stable if the stability is instead measured with a surrogate loss x 7→ |x|p with some p < 2.
(ii) Depending on the variance of the data, there exists a ‘threshold of heavy-tailedness’ such that
the generalization error decreases as the tails become heavier, as long as the tails are lighter than
this threshold. This suggests that the relation between heavy tails and generalization is not globally
monotonic. (iii) We prove matching lower-bounds on uniform stability, implying that our bounds
are tight in terms of the heaviness of the tails. We support our theory with synthetic and real neural
network experiments.
Keywords: Heavy tails, SGD, algorithmic stability, SDEs
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1. Introduction

Over the last decade, understanding the generalization behavior in modern machine learning settings
has been one of the main challenges in statistical learning theory. Here, the main goal has been
deriving upper-bounds on the so-called generalization error, i.e., the gap between the true and the
empirical risks |F (θ)− F̂ (θ,X)|, which are respectively defined as follows:

F (θ) := Ex∼PX [f(θ, x)], F̂ (θ,X) := (1/n)
∑n

i=1
f(θ, xi), (1)

where θ ∈ Rd denotes the parameter vector, f : Rd × X 7→ R+ is the loss function, X is the
space of data points, PX is the unknown data distribution, and finally X = {x1, . . . , xn} denotes a
(random) dataset with n points, such that each xi is independently and identically distributed (i.i.d.)
from PX .

The past few years have witnessed the development of a variety of mathematical frameworks for
analyzing the generalization error (see e.g., Liu and Theodorou (2019); He and Tao (2020) for recent
surveys). In the context of empirical risk minimization (ERM), i.e., solving minθ∈Rd F̂ (θ,X),
one promising direction has been to explicitly take into account the statistical properties of the
optimization algorithm used during training, which is typically chosen as stochastic gradient descent
(SGD) that is based on the following recursion:

θk+1 = θk − η∇F̃k+1(θk, X), (2)

where η is the step-size (or learning-rate), and ∇F̃k(θ,X) := 1
b

∑
i∈Ωk

f(θ, xi) is the stochastic
gradient, with Ωk ⊂ {1, . . . , n} being a random subset drawn with or without replacement, and
b := |Ωk| � n being the batch-size. In this line of research, Şimşekli et al. (2019) and Martin and
Mahoney (2019) empirically demonstrated that, perhaps surprisingly, a heavy-tailed behavior can
emerge in SGD in different ways, and the heaviness of the tails correlates with the generalization
error, suggesting that heavier tails indicate better generalization.

Theoretically investigating these empirical observations, Gürbüzbalaban et al. (2021) and Hodgkin-
son and Mahoney (2021) explored the origins of the observed heavy-tailed behavior. They simulta-
neously showed that, in online SGD1 (i.e., when the data is streaming), due the multiplicative nature
of the gradient noise, i.e., ∇F̃k(θ,X)−∇F̂ (θ,X), the distribution of the iterates θk can converge
to a heavy-tailed distribution as k → ∞. Furthermore, Gürbüzbalaban et al. (2021) showed that,
when the loss f is a quadratic and the data distribution is Gaussian, the tails become monotonically
heavier when η gets larger or b gets smaller.

Due to the fact that analyzing the heavy-tailed behavior arising from (2) can be highly non-
trivial, relatively simpler heavy-tailed mathematical models have been used as a proxy for the orig-
inal heavy-tailed SGD recursion in stationarity; e.g., SGD with heavy-tailed noise, i.e.,

θk+1 = θk − ηk+1

[
∇F̂ (θk, X) + ξk+1

]
, with E[‖ξk‖2] = +∞, for every k = 1, 2, . . . ,

(3)

where ξk denotes the heavy-tailed noise and ηk denotes a sequence of decreasing step-sizes. It has
been revealed that another interesting situation emerges in this setting, this time in the behavior

1. The framework of Hodgkinson and Mahoney (2021) can handle stochastic optimization algorithms other than SGD
as well.
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of the optimization error. Notably, Zhang et al. (2020, Remark 1) pointed out that, when the loss
function f is chosen as a simple quadratic, i.e., f(θ, x) = ‖θ‖2, we have that E[‖θk − θ?‖2] =
E[‖θk‖2] = E[f(θk, x)] = +∞ for all k, where θ? = 0 is the global minimum of f . While this
result might appear daunting as it might seemingly suggest that “SGD diverges” under heavy-tailed
perturbations, Wang et al. (2021) refined this result and showed that, if there exists p ∈ [1, 2) such
that E[‖ξk‖p] < ∞, then E[‖θk − θ?‖p] converges to zero, for a class of strongly convex losses f .
This result is particularly remarkable, since it shows that, even when the iterates may diverge under
the ‘true’ loss function f (which SGD is originally trying to minimize), i.e., E[f(θk, x)] = +∞,
they might still converge to the minimum of the original loss θ? when a surrogate loss function f̃ is
used for measuring the optimization error, which in this example is f̃(θ, x) = ‖θ‖p with p < 2.

In an initial attempt for formalizing the relation between the tail behavior and generalization,
Şimşekli et al. (2020) also modeled the original heavy-tailed recursion (2) by using a proxy and
considered the following stochastic differential equation (SDE) as a model (which can be seen as a
continuous-time version of (3)):

dθt = −∇F̂ (θt, X)dt+ Σ(θt)dLαt , (4)

where Σ : Rd 7→ Rd×d is a matrix-valued function and Lαt denotes a heavy-tailed α-stable Lévy
process, which is a random process parameterized by α ∈ (0, 2], such that a smaller α indicates
heavier tails (we will make the definition of Lαt precise in the next section). They showed that,
under several assumptions on the SDE (4), the worst-case generalization error over the trajectory,
i.e., supt∈[0,1] |F̂ (θt, X) − F (θt)| scales with the intrinsic dimension of the trajectory (θt)t∈[0,1],
which is then upper-bounded as a particular function of the tail-exponent around a local minimum,
indicating that heavier tails imply lower generalization error. Their results were later extended to
discrete-time recursions as well in Hodgkinson et al. (2022). More recently, Barsbey et al. (2021)
linked heavy-tails to generalization through a notion of compressibility in the over-parameterized
regimes. Yet, these bounds require several topological and statistical regularity assumptions that
are hard to verify in realistic settings, and the experiments in Barsbey et al. (2021) illustrated that
the relation between the tail-exponent and the generalization error is not always monotonic; hence,
a generalization bound that requires less assumptions while being more pertinent to the practical
observations is still missing.

In this study, we aim at establishing novel links between tail behavior and generalization and
address the aforementioned shortcomings. We consider the problem through the lens of algorithmic
stability (Bousquet and Elisseeff, 2002; Hardt et al., 2016), and explore the effects of heavy tails on
the stability of SGD. Similar to recent work (Ali et al., 2020; Gürbüzbalaban et al., 2021; Latorre
et al., 2021), in order to have a more explicit control over the problem, we limit our scope to
quadratic optimization, and consider the following SDE as a proxy for heavy-tailed SGD:

dθt = − 1

n

(
X>X

)
θtdt+ ΣdLαt , (5)

where Σ ∈ Rd×d is a matrix that scales the noise and is assumed to be fixed (i.e., state-independent),
and by a slight abuse of notation we represent the dataset as a matrix X ∈ Rn×d, such that i-th row
of X is equal to xi. This SDE naturally arises from the ERM problem with the loss function being
f(θ, x) = (θ>x)2.

As the learning algorithm, we first consider the case where we assume that we have a sample
from the stationary distribution of (5) (i.e., the case where t→∞) and analyze the stability of this
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sample. Then we extend our analysis in two directions: we analyze (i) the case where t is finite and
(ii) the case where the SDE is discretized by using a constant step-size. Our contributions are as
follows:
• As opposed to classical SDEs driven by a Brownian motion (rather than α-stable Lévy processes

Lαt as we consider here), the stationary distribution of (5) does not admit a simple analytical
closed-form expression. As a remedy, we perform the stability analysis in the Fourier domain,
and introduce new proof techniques.

• We prove upper-bounds on the stability of (5), which suggest that the algorithm will not be stable,
when α < 2 and the stability is measured with respect to the quadratic loss (θ>x)2. We further
show that, when the stability is instead measured with respect to a surrogate loss function |θ>x|p
with p < α < 2, the algorithm in turn becomes stable, where the level of stability depends on α,
among several other quantities. This result reveals a similar phenomenon to that of Zhang et al.
(2020) and Wang et al. (2021) as discussed above. Furthermore, our results do not require any
non-trivial assumptions, compared to the existing heavy-tailed generalization bounds (Şimşekli
et al., 2020; Hodgkinson et al., 2022; Barsbey et al., 2021).

• Our theory further discloses an interesting property: depending on the variance of the data distri-
bution PX , there exits an α0 > 1, such that the algorithm becomes more stable as α ∈ [α0, 2] get
smaller, i.e., the tails get heavier up to a certain point determined by α0. This result implies that
the stability of the algorithm, hence the generalization error will be monotonic with respect to the
tail-exponent α only when α is large enough. This outcome sheds more light on the experimental
results presented in Barsbey et al. (2021), where the relation between the tail-exponent and the
generalization error is only partially monotonic.

• We prove matching lower-bounds on the stability of (5), implying that our stability bounds are
tight in the tail-exponent α.

• We show that the same conclusions hold for finite t, and for the Euler discretization of (5) when
the step-size is small enough.

We support our theory on both synthetic data and real experiments conducted on standard bench-
mark datasets by using fully-connected and convolutional neural networks. All the proofs and the
implementation details are provided in the Appendix.

2. Notation and Background

Notation. Consider a real-valued function f : Rd → R defined on Rd. The Fourier transform of
f(θ) for θ ∈ Rd is denoted by Ff(u) and is defined as, Ff(u) :=

∫
Rd f(θ)e−iu

>θdθ. Similarly,
the inverse Fourier transform of a function f̂(u) that is from Rd to R is denoted by F−1f̂(θ) and is
defined by, F−1f̂(θ) := 1

(2π)d

∫
Rd f̂(u)eiu

>θdu. In both of these definitions, i :=
√
−1.

α-stable distributions. The α-stable distribution appears as the limiting distribution in the gener-
alized central limit theorems for a sum of i.i.d. random variables with infinite variance (Lévy, 1937).
A scalar random variable X is called symmetric α-stable, denoted by X ∼ SαS(σ), if its charac-
teristic function takes the form: E

[
eiuX

]
= exp (−σα|u|α), for any u ∈ R, where σ > 0 is known

as the scale parameter that measures the spread of X around 0 and α ∈ (0, 2] which is known as the
tail-index that determines the tail thickness of the distribution and the tail becomes heavier as α gets
smaller. In general, the probability density function of a symmetric α-stable distribution, α ∈ (0, 2],
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does not yield closed-form expression except for a few special cases. When α = 1 and α = 2, SαS
reduces to the Cauchy and the Gaussian distributions, respectively. When 0 < α < 2, the moments
are finite only up to the order α in the sense that E[|X|p] < ∞ if and only if p < α, which implies
infinite variance. Moreover, α-stable distribution can be extended to the high-dimensional case
for random vectors. One natural extension is the rotationally symmetric α-stable distribution. X
follows a d-dimensional rotationally symmetric α-stable distribution if it admits the characteristic
function E

[
ei〈u,X〉

]
= e−σ

α‖u‖α2 for any u ∈ Rd. We refer to Samorodnitsky and Taqqu (1994) for
the details of α-stable distributions.

Lévy processes. Lévy processes are stochastic processes with independent and stationary incre-
ments. Their successive displacements can be viewed as the continuous-time analogue of random
walks. Lévy processes include the Poisson process, Brownian motion, the Cauchy process, and
more generally stable processes; see e.g. Bertoin (1996); Samorodnitsky and Taqqu (1994); Apple-
baum (2009). Lévy processes in general admit jumps and have heavy tails which are appealing in
many applications; see e.g. Cont and Tankov (2004). In this paper, we will consider the rotationally
symmetric α-stable Lévy process Lαt in Rd that is defined as follows.
(i) Lα0 = 0 almost surely;

(ii) For any t0 < t1 < · · · < tN , the increments Lαtn − Lαtn−1
are independent;

(iii) The difference Lαt − Lαs and Lαt−s have the same distribution, with the characteristic function
exp(−(t− s)α‖u‖α2 ) for t > s;

(iv) Lαt has stochastically continuous sample paths, i.e. for any δ > 0 and s ≥ 0, P(‖Lαt −Lαs ‖ >
δ)→ 0 as t→ s.

When α = 2, Lαt =
√

2Bt, where Bt is the standard d-dimensional Brownian motion.

Ornstein-Uhlenbeck processes. Ornstein-Uhlenbeck (OU) process (Uhlenbeck and Ornstein, 1930)
is a d-dimensional Markov and Gaussian process that satisfies the SDE:

dXt = −AXtdt+ ΣdBt, (6)

where A and Σ are a d × d matrices and Bt is a standard d-dimensional Brownian motion. The
OU process is a special case of the Langevin equation in physics (Pavliotis, 2014), and has wide
applications including for example modeling the change in organismal phenotypes in evolutionary
biology (Martins, 1994), and the short-rate in the interest rate modeling in finance (Vasicek, 1977).
More generally, we can consider an OU process driven by a Lévy process, for example, replacing
Bt in (6) by a rotationally symmetric α-stable Lévy process Lαt so that

dXt = −AXtdt+ ΣdLαt . (7)

Under some mild conditions on A and Σ, the OU process Xt in (7) admits a unique stationary
distribution that can be fully characterized; see e.g. Sato and Yamazato (1984); Masuda (2004).

Algorithmic stability and generalization. In this paper, we study the generalization of the
continuous-time heavy-tailed SGD by using the tools of algorithmic stability. Several notions of
stability have been defined in the literature of statistical learning theory (Bousquet and Elisseeff,
2002; Elisseeff et al., 2005). We will use the notion of algorithmic stability of the randomized
algorithm A defined in Hardt et al. (2016). We denote the set Xn as the set of all possible size n
datapoints subsampled uniformly at random from PX .
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Definition 1 (Hardt et al. (2016), Definition 2.1) For a loss function f : Rd × X → R, an algo-
rithm A is ε-uniformly stable if

εstab(A) := sup
X∼=X̂

sup
z∈X

E
[
f(A(X), z)− f(A(X̂), z)

]
≤ ε, (8)

where the first supremum is taken over data X, X̂ ∈ Xn that differ by one element, denoted by
X ∼= X̂ .

Since its introduction in statistical learning theory in Bousquet and Elisseeff (2002), stability based
arguments have been useful in deriving generalization bound for several learning algorithms (Belkin
et al., 2004; Cortes et al., 2012; Wu and Cheng, 2021; Maurer and Jaakkola, 2005) and have also
been extended to get generalization bound for randomized algorithm like SGD and SGLD (Hardt
et al., 2016; Raginsky et al., 2017; Kuzborskij and Lampert, 2018; Mou et al., 2018; Chen et al.,
2018; Bassily et al., 2020; Charles and Papailiopoulos, 2018; Lei and Ying, 2020; Farghly and
Rebeschini, 2021). Here below, we provide a result from Hardt et al. (2016) which relates algorith-
mic stability with the generalization performance of a randomized algorithm.

Theorem 2 ((Hardt et al., 2016), Theorem 2.2) Suppose that A is an ε-uniformly stable algo-
rithm, then the expected generalization error is bounded by∣∣∣EA,X [

F̂ (A(X), X)− F (A(X))
]∣∣∣ ≤ ε. (9)

In several of recent works (Feldman and Vondrak, 2019; Bousquet et al., 2020; Klochkov and Zhiv-
otovskiy, 2021), high probability bounds have been obtained using algorithmic stability bounds.

3. Algorithmic Stability of Heavy-Tailed SGD on Least Squares Regression

In this section, we will investigate the effects of heavy-tails on algorithmic stability. We con-
sider the setting of least square regression with f(θ, (x, y)) = (θ>x − y)2/2. We assume that
we only have the access to the data generation distribution PX via the generated training samples
and our goal is to learn a parameter vector θ ∈ Rd which minimize the corresponding popula-
tion risk. We denote the training data by the matrix X =

[
x>1 , x

>
2 , . . . , x

>
i , . . . , x

>
n

]
∈ Rn×d and

y = [y1, y2, . . . , yi, . . . , yn] ∈ Rn, where n is the number of data points, d is the dimension of the
problem, and xi ∈ Rd, yi ∈ R for all i. Training data points are i.i.d. from the distribution PX . We
consider the ERM problem as defined in (1): minθ∈Rd

1
2n

∑n
i=1(θ>xi − yi)2.

In the context of algorithmic stability, we assume that we have two training datasets (X, y) and
(X̂, ŷ) that differ in only one data point. Without loss of generality, we have

X̂ =
[
x>1 , x

>
2 , . . . , x̃

>
i , . . . , x

>
n

]
∈ Rn×d, ŷ = [y1, y2, . . . , ỹi, . . . , yn] ∈ Rn.

For our ERM problem, we consider the continuous-time heavy-tailed stochastic gradient descent,
which is represented by the following two SDEs that are driven by a rotationally symmetric α-stable
Lévy process Lαt in Rd,

dθt = − 1

n

(
X>Xθt −X>y

)
dt+ ΣdLαt , (10)
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dθ̂t = − 1

n

(
X̂>X̂θ̂t − X̂>ŷ

)
dt+ ΣdLαt , (11)

where Σ ∈ Rd×d is a real-valued matrix.
Under mild conditions, the SDEs (10) and (11) have unique strong solutions, which are Markov

processes and they admit unique invariant distributions (Sato and Yamazato, 1984). Thanks to the
linearity of the drifts of these SDEs, the stationary distribution is achieved very quickly, with an
exponential rate (Xie and Zhang, 2020). Hence, to ease our analysis, we will assume that we have
two samples from the stationary distributions of (10) and (11), say θ and θ̂. In other words, we
set our learning algorithm such that it gives a random sample from the stationary distribution of
the SDE determined by the dataset, i.e., Acont((X, y)) = θ, and Acont((X̂, ŷ)) = θ̂, where Acont
denotes the continuous-time heavy-tailed SGD algorithm. In the rest of this section, we will derive
stability bounds for this learning algorithm.

3.1. Warm-up: the need for the surrogate loss
To motivate our analysis technique, let us first consider the following simple setting, where we
set d = 1, so that we have f(θ, (x, y)) = (xθ − y)2. In this specific case, when α > 1, we
can compute the stationary distributions of (10) and (11) in an explicit form. With a slight abuse
of notation, the distribution of θt converges to a symmetric stable law: (δ/s) + SαS((αs)−1/α),
where s = (1/n)

∑n
i=1 x

2
i and δ = (1/n)

∑n
i=1 xiyi with δ/s being the mean (and the mode) of

the stationary distribution, which coincides with the ordinary least-squares solution. Similarly, the
distribution of θ̂t converges to (δ̂/ŝ) + SαS((αŝ)−1/α), where δ̂ and ŝ are defined analogously.

As a first observation, assume that we have a sample from the stationary distribution of θt, such
that θ ∼ (δ/s)+SαS((αs)−1/α). Considering this scheme as the algorithm, i.e.,Acont((X, y)) = θ,
a simple calculation shows that

EAcont(X,y) [f (Acont((X, y)), (X, y))] = Eθ,(X,y)

[
(1/n)

∑n

i=1
(xiθ − yi)2

]
= +∞,

since the variance of SαS((αs)−1/α) is infinite whenever α < 2. Therefore, it is clear that we
cannot expect any algorithmic stability in this scheme, as long as the stability is measured with
respect to the squared loss. However, as we will show in the sequel, in turns out that if we instead
measure the stability with respect to a surrogate loss function, which in this case would be |xθ−y|p
for some p ∈ [1, α), the algorithm becomes stable, even though it is based on a distribution that
concentrates near the optimum for squared loss.

On the other hand, we notice that the means of the stationary distributions, i.e., δ/s and δ̂/ŝ do
not interact with the tail exponent α. Since our main goal is to investigate the interplay between
the tail behavior and algorithmic stability, we will ignore this term and assume that yi = 0 almost
surely for all i (otherwise non-zero yi will only introduce terms in the stability that do not depend
on α). This way, we fall back to the SDE given in (5).

In the light of these two observations, for the general case where d ≥ 1, we will use the following
surrogate loss function to measure stability:

f(x) := f(θ, x) := |θ>x|p, for some p ∈ [1, 2], (12)

which generalizes the original loss function. Note that, from now on we will drop the notation f̃ for
denoting surrogate losses for simplicity and use a single notation for the loss function.
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3.2. Algorithmic stability analysis in the Fourier domain
For d ≥ 2, unfortunately we cannot identify the stationary distributions of (10) and (11) in an
explicit form. However, by using the theory of the characterization of the stationary distribution for
an Ornstein-Uhlenbeck process driven by a Lévy process in the literature (see Sato and Yamazato
(1984); Masuda (2004) and the background review in the Appendix), in the next lemma, we show
that we can characterize the stationary distribution of the Ornstein-Uhlenbeck process driven by a
rotationally symmetric α-stable Lévy process in a semi-explicit way:

dθt = −Aθtdt+ ΣdLαt , (13)

where A and Σ are d× d real matrices.

Lemma 3 Assume that A is a real symmetric matrix with all the eigenvalues being positive. Then
(13) admits a unique stationary distribution π whose characteristic function is given by∫

Rd
eiu
>xπ(dx) = exp

(
−
∫ ∞

0

∥∥∥Σ>e−sAu
∥∥∥α

2
ds

)
. (14)

While Lemma 3 provides us information about the stationary distributions of the SDEs (10)
and (11), it considers the Fourier transforms of these distributions, which makes this setting not
amenable to conventional algorithmic stability analysis tools.

As a remedy, we perform the stability analysis directly in the Fourier domain and use the Fourier
inversion theorem to compute stability bounds for continuous-time heavy-tailed SGD. Our main
approach is based on the following observation. Let g : Rd 7→ R be a function, and P , Q be random
variables in Rd with respective characteristic functions ψP and ψQ. If the Fourier inversion theorem
holds on g, then g is the inverse Fourier transform of Fg(·). Hence,

E [g(P )− g(Q)] =
1

(2π)d
E
[∫

Rd

(
eiu
>P − eiu>Q

)
Fg(u) du

]
=

1

(2π)d

∫
Rd

E
[
eiu
>P − eiu>Q

]
Fg(u) du

=
1

(2π)d

∫
Rd

(ψP (u)− ψQ(u))Fg(u) du

≤ 1

(2π)d

∫
Rd
|ψP (u)− ψQ(u)||Fg(u)| du. (15)

Hence, (15) enables us to utilize the result given in Lemma 3 and hence gives us a way to perform
stability analysis (as given in Definition 1) in the Fourier domain.

Algorithmic stability via characteristic function. By setting y = ŷ = 0 and invoking Lemma 3,
the characteristic functions of stationary distributions corresponding to the SDEs (10) and (11) are
respectively given as follows:

ψθ(u) = exp

(
−
∫ ∞

0

∥∥∥Σ>e−s
1
n

(X>X)u
∥∥∥α

2
ds

)
, (16)

ψθ̂(u) = exp

(
−
∫ ∞

0

∥∥∥Σ>e−s
1
n

(X̂>X̂)u
∥∥∥α

2
ds

)
. (17)
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From the Definition 1 and from (15) and (12), we have

εstab(Acont) = sup
X∼=X̂

sup
x∈X

E
[∣∣∣θ>x∣∣∣p − ∣∣∣θ̂>x∣∣∣p]

= sup
X∼=X̂

sup
x∈X

1

(2π)d

∫
Rd
|ψθ(u)− ψθ̂(u)| ·

∣∣∣F [|x> · |p] (u)
∣∣∣ du. (18)

In the remainder of this section, we will consider Σ = I for convenience with I being the identity
matrix. However, we provide bounds showing the effect of Σ in the Appendix.

One-dimensional case (d = 1). We first discuss the case where d = 1 and report it as a separate
result since its proof is simpler and more instructive. Following (15), as a first step, we prove a
lemma, which relates the characteristic functions of the stationary distributions by upper-bounding
|ψθ(u) − ψθ̂(u)|. For the sake of brevity, we present this result in the Appendix (Lemma 12).
By using this intermediate result, we next prove upper- and lower-bounds on the stability of the
continuous time heavy-tailed SGD algorithm and discuss its behavior with respect to α and p.

Theorem 4 Consider the one-dimensional loss function f(x) = |θx|p. For any x ∼ PX , if we
have |x| > R with probability δ1 and for any X sampled uniformly at random from the set Xn, if
we have ‖X‖22 ≤ σ2n with probability δ2. Then,

(i) For α ∈ [1, 2), the algorithm is not stable when p ∈ [α, 2] i.e. εstab(Acont) diverges. When
α = p = 2 then εstab(Acont) ≤ R4

πσ4n
with probability at least 1− δ1 − 2δ2.

(ii) For p ∈ [1, α), we have the following upper bound for the algorithmic stability,

εstab(Acont) ≤
2Rp+2

πσ2n
Γ(p+ 1) cos

(
(p− 1)π

2

)
1

α

(
1

ασ2

) p
α

Γ
(

1− p

α

)
=: c(α),

which holds with probability at least 1− δ1− 2δ2. Furthermore, for some α0 > 1, if we have

σ2 ≥ exp

(
1 +

2

p
− logα0 − φ

(
1− p

α0

))
, (19)

where φ is the digamma function, then the map α 7→ c(α) is increasing for α ∈ [α0, 2).

(iii) The stability bound is tight in α.

Informally, this result illuminates the following facts: (i) When subject to heavy tails, i.e., α < 2,
the algorithm is stable only when a surrogate loss is used with p < α. (ii) For 1 ≤ p < α < 2, the
stability level εstab is upper-bounded by a function of α, p, and the variance of the data distribution
σ2. Furthermore (and perhaps more surprisingly), for a given heavy-tailedness threshold α0 ∈
(1, 2), if the data variance is sufficiently large as in (19), the stability bound becomes monotonically
increasing for α ∈ [α0, 2), which indicates that as the algorithm becomes more stable it gets heavier-
tailed. However, this relation holds as long as the heaviness of the tails does not exceed the threshold
α0. (iii) We further show that, there exists a data distribution PX such that εstab is lower-bounded
by a function, which also depends on α, p, and σ2. In the proved lower-bound, the terms depending
on α have the same order as of the ones given in the upper-bound of Theorem 4. Hence our stability
bound is tight in α. Combined with point (ii), this result suggests that the generalization error might
not be globally monotonic with respect to the heaviness of the tails under our modeling strategy.
On the other hand, for a fixed data distribution where σ2 is given, (19) provides a ‘guideline’ for
choosing the optimal tail index α in the sense of algorithmic stability.
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Multi-dimensional case (d ≥ 2). Now we will focus our attention to the case of d dimensions.
We follow the same route as in Theorem 4, where we first relate the characteristic functions of
the stationary distributions. We also present this result in the Appendix (Lemma 13). Based on
Lemma 13, we next provide stability bounds for the d-dimensional case.

Theorem 5 Consider f(x) = |θ>x|p such that θ, x ∈ Rd. Assume that for almost all x ∼ PX , we
have ‖x‖2 ≤ R, for any X sampled uniformly at random from the set Xn, we have 1

n‖X
>Xu‖2 ≥

σmin‖u‖2 for all u ∈ Rd and for any two X ∼= X̂ sampled from Xn generating two stochastic
process given by SDEs in equations (10) and (11), we have ‖xix>i − x̃ix̃>i ‖2 ≤ 2σ holds with high
probability. Then,

(i) For α ∈ (1, 2), the algorithm is not stable when p ∈ [α, 2] i.e. εstab(Acont) diverges. When
α = p = 2 then with high probability εstab(Acont) ≤ 2R2

π
σ

nσ2
min

.

(ii) For p ∈ [1, α), we have the following upper bound for the algorithmic stability,

εstab(Acont) =
8Rp

π

σ

nα2σmin
Γ(p+ 1) cos

(
(p− 1)π

2

)(
1

ασmin

) p
α

Γ
(

1− p

α

)
= c(α),

which holds with high probability. Furthermore, for some α0 > 1, if we have

σmin ≥ exp

(
1 +

4

p
− logα0 − φ

(
1− p

α0

))
,

where φ is the digamma function, then the map α→ c(α) is increasing for α ∈ [α0, 2).

iii The stability bound is tight in α.

The conclusions of Theorem 5 are almost identical to the ones of Theorem 4, though its proof
requires a more careful analysis, especially for the lower-bound in (iii). The main differences here
are that, we need the smallest eigenvalue of the covariance matrix of PX , i.e., σmin to be large
enough, and we need a different condition on the second moment σ of the distribution. Under these
conditions, we obtain very similar stability and monotonicity properties.

As a final remark, we note that our results do not require any non-trivial topological or statistical
assumptions in comparison with Şimşekli et al. (2020) and Barsbey et al. (2021) that suggested a
globally monotonic relation for the generalization error and the tail exponent α. On the other hand,
the rate 1/n in our bounds are in line with the existing stability literature (Hardt et al., 2016; Maurer
and Jaakkola, 2005).

Finite time bound. The result presented in Theorem 5 is for the case when t→∞ i.e. θ is sam-
pled from the stationary distribution of the stochastic process corresponding to the SDE in equa-
tion (5). However, in the Appendix B, we characterize the finite time distribution of a Lévy-driven
OU process. We show that the characteristic function of the probability density corresponding to
the SDE in equation (5) is given as,

ψθ(t, u) = exp

(
−
∫ t

0

∥∥∥Σ>e−s
1
n

(X>X)u
∥∥∥α

2
ds

)
.

If we observe carefully, we can follow the similar procedure to get the stability bound for finite
time case as we did to obtain for t → ∞. In particular, in Remark 14 in the appendix, we show
that whenever t = O( 1

ασmin
), the same monotonicity conclusions of Theorem 5 still hold. See

Remark 14 for more details.
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Algorithmic stability for the Euler discretization. Previously, we have provided results for the
continuous-time case which can not be implemented in practice. Now, we derive a stability bound
for the Euler discretization of the SDE (5). We consider the following scheme:

θk+1 = θk −
η

n

(
X>Xθk −X>y

)
+ η1/αΣSk+1, (20)

θ̂k+1 = θ̂k −
η

n

(
X̂>X̂θ̂k − X̂>ŷ

)
+ η1/αΣSk+1. (21)

To provide algorithmic stability guarantees for the discretization, we first identify the characteristic
function of the stationary distribution of the discretization in Appendix C (Lemma 10). We then
provide a stability bound based on these characteristic functions. We only present the result for
k → ∞ here, however, the result for any finite k follows the same procedure as we have provided
stability bound for characteristic function for any finite k in Lemma 15.

Theorem 6 Consider f(x) = |θ>x|p such that θ, x ∈ Rd. Assume that for almost all x ∼ PX ,
we have ‖x‖2 ≤ R, for any X sampled uniformly at random from the set Xn, it holds that
1
n‖X

>Xu‖2 ≥ σmin‖u‖2 for all u ∈ Rd and for any two X ∼= X̂ sampled from Xn generating
the stochastic process given in (20) and (21), we have that 1

nX̂
>X̂ , ‖xix>i − x̃ix̃>i ‖2 ≤ 2σ holds

with high probability. Further assume that η ≤ 1
L where L is the maximum of largest eigenvalues

of 1
nX
>X . Then, for p ∈ [1, α), we have

εstab ≤
2Rp

π
Γ(p+ 1) cos

(
(p− 1)π

2

)
ση1+ p

α (1− ησmin)α−1

nα(1− (1− ησmin)α)1+ p
α

Γ
(

1− p

α

)
with high probability.

This theorem shows that the monotonicity behavior of algorithmic stability with respect to α can be
more complicated. However, if the step-size η is chosen small enough such that we can consider the
approximation (1 − ησmin)α ≈ 1 − ηασmin then the result from above Theorem 6 can be written

as, εstab ≤ 2Rp

π Γ(p + 1) cos
(

(p−1)π
2

)
σ

nα2σmin

(
1

ασmin

) p
α

Γ
(
1− p

α

)
, with high probability. This

expression is almost the same as the bound given in Theorem 5. Hence, we get a similar behavior
of εstab with respect to α for the discretized SDEs when η is small enough. Finally, this result is
independent of η, which is perhaps not surprising as similar results also exist for SGD with strong
convex losses (Hardt et al., 2016, Theorem 3.9).

4. Experiments
Synthetic data. We first test the implications of the theoretical findings presented above with
synthetic data experiments. We assume that y = 0 and PX is a scaled uniform distribution
U(−0.5a, 0.5a), with a determining the range of the distribution. We simulate the SDE presented
in (10) by using the Euler-Maruyama discretization, which yields the following recursion:

θk+1 = θk − η
1

n

(
X>X

)
θk − η1/αEk+1, (22)

where η is the learning-rate and each Ek ∈ Rd is a rotationally symmetric α-stable random vector.
In the experiments, we systematically vary a as well as the tail-index of the additive noise, α.

For all experiments we set η = 0.1 and ran the algorithm for 3000 iterations. We set n = 1000

11
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Figure 1: Results of the synthetic data experiments with varying a, α, and d. Each experiment was
repeated 200 times with n = 1000. The lines correspond to the median, and the shaded
areas are the interquartile ranges.

and varied d to be 100 or 250. The order of the loss function f was selected to be p = 1. For each
experimental setting, we repeated the experiment 200 times, where after sampling a population
N = 100000 observations, for each replication we sampled n = 1000 with replacement from
within this population. The generalization error was computed to be the difference between loss
computed on the replication sample of size n and the population of size N . To prevent numerical
issues, the noise was scaled with a constant of 0.1 in all experiments, which corresponds to choosing
Σ = (1/10)I .

The results are presented in Figure 1, and corroborate the trend predicted by Theorem 5. As
a grows, the variance of the input increases, leading the map α 7→ c(α) to become increasing for
α ∈ [α0, 2) for some α0. Since c(α) is the upper bound for stability εstab, this leads to the observed
‘V-shaped’ trend in generalization error for higher a values, where the inflection point corresponds
to α0 for a given experiment setting.2

Experiments on image data. In our second set of experiments, we consider a real image clas-
sification task, where we use plain SGD (2) without adding explicit heavy-tailed noise and monitor
the effect of the heavy-tails that are inherently introduced by SGD, as shown in Gürbüzbalaban
et al. (2021); Hodgkinson and Mahoney (2021). In this context, we will view the SDE (5) as a
proxy to the original SGD recursion near a local minimum, so that a quadratic approximation would
be pertinent.

Here, we train two fully connected neural networks (FCN) of different depths (4 vs. 6) as well
as a convolutional neural network (CNN) on the MNIST, CIFAR-10, and CIFAR-100 datasets
(LeCun et al., 2010; Krizhevsky, 2009). We train these models under different, constant learning
rates (η) and with batch sizes (b) of 50 or 100, producing models trained under a wide range of η/b
values. The models are trained until convergence, where the convergence criteria for MNIST and
CIFAR-10 is a training negative log-likelihood (NLL) of < 5 × 10−5 and a training accuracy of
100%, and for CIFAR-100 these are a NLL of < 1× 10−2 and a training accuracy of > 99%.

2. We note that the rather large error bars in Figure 1 are caused by the randomness coming from the heavy-tails (i.e.,
not by the randomness due to the choice of datasets). As we are essentially trying to compute the expectation of a
heavy-tailed random variable by using a finite number of samples, these errors bars are not surprising as the task is
notoriously difficult (Lugosi and Mendelson, 2019).
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For the estimation of the trained networks’ tail indices, we used the multivariate estimator pro-
posed in (Mohammadi et al., 2015, Corollary 2.4)3, which is previously used in various related
neural network research (Şimşekli et al., 2020; Gürbüzbalaban et al., 2021; Zhou et al., 2020; Bars-
bey et al., 2021). Since this estimator assumes a stable distribution, after convergence we ob-
tained 1000 iterations of SGD and computed the average to be used in this estimation, based on the
generalized central limit theorem (Gürbüzbalaban et al., 2021, Corollary 11), which demonstrated
that the ergodic averages of heavy-tailed SGD iterates converge to a multivariate stable distribu-
tion. Before estimating the parameters, we centered the parameters with median values. Each
layer’s tail-index estimation was conducted separately, which were in turn averaged to produce a
single tail-index for every model, as in Barsbey et al. (2021). See the Appendix for further details.
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Figure 2: Test accuracy vs. mean estimated tail-index (α̂)
for each model. Color: training η/b ratio.

Previous literature demonstrated
that (i) training neural networks with
larger η/b values lead to heavy-tailed
parameters (Gürbüzbalaban et al.,
2021) and (ii) networks with heavier-
tailed parameters are more likely to
generalize Şimşekli et al. (2020);
Barsbey et al. (2021). Here, Fig-
ure 2 demonstrates that networks
with highest α (light-tails) consis-
tently perform worst in terms of gen-
eralization and the performance im-
proves as the α decreases until some
threshold. This outcome is in line
with the predictions of our theo-
retical results, which suggest a ‘V-
shaped’ behavior for the relation be-
tween generalization and α, as op-
posed to Şimşekli et al. (2020); Bars-
bey et al. (2021). As a final remark, here the values of α are larger compared with the synthetic
experiments; however, we shall emphasize that such values for α still indicate strong heavy tails.

5. Conclusion

We established novel links between the tail behavior and generalization properties of SGD building
on the notion of algorithmic stability. We focused on quadratic optimization and considered a
heavy-tailed SDE previously proposed as a proxy to SGD dynamics. We then proved uniform
stability bounds which uncover several phenomena about the effect of the heaviness of the tails
on the generalization. We also established lower bounds which show that our stability bounds are
tight in terms of the heaviness of the tails. We then extended our results to the finite-time, and to
the discrete-time cases and showed that similar results hold. We finally supported our theory on a

3. We note that this estimator has been shown to be consistent; yet, we do not have an non-asymptotic understanding of
the esimates (Mohammadi et al., 2015).
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variety of experiments. Future work includes extending our work to explore the relation between
distributional robustness and heavy-tails Das et al. (2021).
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Guan-Horng Liu and Evangelos A Theodorou. Deep learning theory review: An optimal control
and dynamical systems perspective. arXiv preprint arXiv:1908.10920, 2019.
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Appendix

The Appendix is organized as follows:

• In Section A, we provide the background details about characterizing the stationary distribu-
tion of a Lévy-driven OU process.

• In Section B, we characterize the finite-time distribution of a Lévy-driven OU process.

• In Section C, we characterize the distributions of a discrete-time Lévy-driven OU process.

• In Section D, we provide the proofs for the 1-dimensional case.

• In Section E, we prove the results for least square in d-dimension.

• In Section F, we provide theory for the discretized SDE.

• In Section G, we extend the d-dimensional result for general preconditioner PSD Σ.

• In Section H, we discuss useful results which we utilize in proving our results for d-dimensional
case.

• In Section I, we provide further details about our experimental setup.

Appendix A. Characterizing the Stationary Distribution of a Lévy-Driven OU
Process

In this section, we review the technical background of characterizing the stationary distribution of
an Ornstein-Uhlenbeck process driven by a general Lévy process. Consider an Ornstein-Uhlenbeck
process driven by a general Lévy process

dθt = −Aθtdt+ dZt, (23)

where Zt is a general Lévy process. One particular example is Zt = ΣLαt so that

dθt = −Aθtdt+ ΣdLαt . (24)

Under some regularity conditions on A and the Lévy measure of Z, θt in (23) admits a unique
invariant distribution π, and the class of all possible π’s forms the class of all A-self-decomposable
distributions; see Masuda (2004) and the references therein.

Let d ∈ N and Zt is a d-dimensional Lévy process such that Z0 = 0 a.s. and Zt admits the
generating triplet (b, C, ν), that is, b ∈ Rd, C is a d× d symmetric non-negative definite matrix and
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ν is a σ-finite measure on Rd satisfying ν({0}) = 0 and
∫
Rd min(1, ‖z‖2)ν(dz) <∞ for which Zt

has the characteristic function

ϕt(u) := E
[
ei〈u,Zt〉

]
= exp

(
t

{
iu>b− 1

2
u>Cu+

∫
Rd

(
eiu
>z − 1− iu>z1‖z‖≤1

)
ν(dz)

})
(25)

for any u ∈ Rd and t > 0.

Lemma 7 (Theorems 4.1. and 4.2. in Sato and Yamazato (1984)) Assume that A is a d× d ma-
trix such that the real parts of all its eigenvalues are positive. Moreover, assume that∫

‖z‖>1
log ‖z‖ν(dz) <∞.

Then, θt in (23) admits a unique invariant distribution π whose characteristic function is given by∫
Rd
ei〈u,x〉π(dx) = exp

(∫ ∞
0

logϕ1

(
e−sA

>
u
)

ds

)
, (26)

for any u ∈ Rd. In particular, the generating triplet of the limiting distribution is (b∞, C∞, ν∞),
where

b∞ = A−1b+

∫
Rd

∫ ∞
0

e−sAz
(

1‖e−sAz‖≤1 − 1‖z‖≤1

)
dsν(dz), (27)

C∞ =

∫ ∞
0

e−sACe−sA
>

ds, (28)

ν∞(E) =

∫ ∞
0

ν
(
esAE

)
ds, for any E ∈ B(Rd). (29)

By using Lemma 7, we can easily obtain the following result.

Lemma [Restatement of Lemma 3] Assume that A is a real symmetric matrix with all the eigenval-
ues being positive. Then (24) admits a unique stationary distribution∫

Rd
ei〈u,x〉π(dx) = exp

(
−
∫ ∞

0

∥∥∥Σ>e−sAu
∥∥∥α

2
ds

)
, for any u ∈ Rd. (30)

Proof In our (24), A is a real symmetric matrix with positive eigenvalues and Zt = ΣLαt , where Lαt
is a rotationally symmetric α-stable Lévy process and moreover, α-stable Lévy measure satisfies the
condition

∫
‖z‖>1 log ‖z‖ν(dz) <∞, so that the condition in Lemma 7 is satisfied, and we conclude

that (24) admits a unique stationary distribution say π.
Moreover, in our case, the characteristic function of Zt = ΣLαt is given by

ϕ1(u) = E
[
ei〈u,ΣLα1 〉

]
= E

[
ei〈Σ>u,Lα1 〉

]
e−‖Σ

>u‖α2 . (31)

Therefore, by Lemma 7, the unique invariant distribution π of (24) has the following characteristic
function: ∫

Rd
ei〈u,x〉π(dx) = exp

(
−
∫ ∞

0

∥∥∥Σ>e−sAu
∥∥∥α

2
ds

)
. (32)

This completes the proof.
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Remark 8 (i) We can also characterize the generating triplet for the limiting distribution π in the
above lemma according to Lemma 7. In our case, b = 0 in (27), C = 0 in (28), and ν is the Lévy
measure for ΣLαt in (29).

(ii) In general, it is not possible to further simplify the expression (30) except for some special
cases. For example, when A = I . For any s ≥ 0, e−sI =

∑∞
k=0

(−sI)k
k! =

∑∞
k=0

(−s)k
k! I = e−sI .

Therefore, when A = I , we can compute from (30) that∫
Rd
ei〈u,x〉π(dx) = exp

(
−
∫ ∞

0
e−sα

∥∥∥Σ>u
∥∥∥α

2
ds

)
= e−

1
α‖Σ>u‖

α

2 . (33)

Hence, in this special case, the limiting distribution is α
−1
α ΣLα1 .

Appendix B. Characterizing the Finite-Time Distribution of a Lévy-Driven OU
Process

In this section, we derive the characteristic function for the finite-time distribution of a Lévy-driven
OU process. We recall from equation (24)

dθt = −Aθtdt+ ΣdLαt . (34)

We have the following technical lemma that computes the characteristic function of θt at any finite
time t > 0.

Lemma 9 For any t > 0 and u ∈ Rd, we have

E
[
eiu
>θt
]

= eiu
>e−Atθ0e−

∫ t
0‖Σ>e−sAu‖

α

2
ds.

Proof We can solve the Lévy-driven SDE (34) and obtain

θt = e−Atθ0 +

∫ t

0
e−A(t−s)ΣdLαs , (35)

such that for any u ∈ Rd, we have

E
[
eiu
>θt
]

= eiu
>e−Atθ0E

[
ei

∫ t
0 u
>e−A(t−s)ΣdLαs

]
= eiu

>e−Atθ0e−
∫ t
0‖Σ>e−(t−s)Au‖α

2
ds = eiu

>e−Atθ0e−
∫ t
0‖Σ>e−sAu‖

α

2
ds.

This completes the proof.

We recall from (10)-(11) that

dθt = − 1

n

(
X>Xθt −X>y

)
dt+ ΣdLαt , (36)

dθ̂t = − 1

n

(
X̂>X̂θ̂t − X̂>ŷ

)
dt+ ΣdLαt . (37)
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For the sake of simplicity, we take y = ŷ = 0 and θ0 = θ̂0 = 0. We denote ψθ(t, u) := E
[
e〈iu,θt〉

]
and ψθ̂(t, u) := E

[
e〈iu,θ̂t〉

]
. Hence, we obtain from Lemma 9 that

ψθ(t, u) = exp

(
−
∫ t

0

∥∥∥Σ>e−s
1
n

(X>X)u
∥∥∥α

2
ds

)
, (38)

ψθ̂(t, u) = exp

(
−
∫ t

0

∥∥∥Σ>e−s
1
n

(X̂>X̂)u
∥∥∥α

2
ds

)
. (39)

Appendix C. Heavy-Tailed Discretized SDE on Least Squares Regression

In this section, we introduce heavy-tailed discretized SGD for the least square regression.
In the context of algorithmic stability, we assume that we have two training datasets (X, y) and

(X̂, ŷ) that differ in only one data point. Without loss of generality, we have

X̂ =
[
x>1 , x

>
2 , . . . , x̃

>
i , . . . , x

>
n

]
∈ Rn×d

and
ŷ = [y1, y2, . . . , ỹi, . . . , yn] ∈ Rn.

We consider the following discretized heavy-tailed SDE for the ERM problem as defined in (1):

θk+1 = θk −
η

n

(
X>Xθk −X>y

)
+ η1/αΣSk+1, (40)

θ̂k+1 = θ̂k −
η

n

(
X̂>X̂θ̂k − X̂>ŷ

)
+ η1/αΣSk+1, (41)

where η > 0 is the stepsize and Σ ∈ Rd×d is a real-valued matrix and Sk are i.i.d. alpha-stable
random vectors with the characteristic function:

E
[
ei〈u,Sk〉

]
= e−‖u‖

α
2 , for any u ∈ Rd. (42)

We denote ψθ(k, u) := E
[
e〈iu,θk〉

]
and ψθ̂(k, u) := E

[
e〈iu,θ̂k〉

]
. For the sake of simplicity, we

take y = ŷ = 0 and θ0 = θ̂0 = 0. By Lemma 10, we obtain

ψθ(k, u) = exp

−η k−1∑
j=0

∥∥∥∥Σ>
(
I − η

n

(
X>X

))j
u

∥∥∥∥α
2

 , (43)

ψθ̂(k, u) = exp

−η k−1∑
j=0

∥∥∥∥Σ>
(
I − η

n

(
X̂>X̂

))j
u

∥∥∥∥α
2

 , (44)

which will be the key ingredients to obtain the algorithmic stability results.
Here below, we derive the characteristic function for distributions of a discrete-time Lévy-driven

OU process:
θk+1 = θk − ηAθk + η1/αΣSk+1, (45)
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where A is a real symmetric matrix and Sk are i.i.d. alpha-stable random vectors with the charac-
teristic function:

E
[
ei〈u,Sk〉

]
= e−‖u‖

α
2 , for any u ∈ Rd. (46)

We can compute the characteristic function of the finite-time distribution of the discrete-time Lévy-
driven OU process (45) as follows.

Lemma 10 Assume that A is a real symmetric matrix. For any k ∈ N and for any u ∈ Rd,

E
[
ei〈u,θk〉

]
= ei〈(I−ηA)ku,θ0〉e−η

∑k−1
j=0‖Σ>(I−ηA)ju‖α

2 . (47)

Proof We can compute from (45) that for any u ∈ Rd,

E
[
ei〈u,θk+1〉

]
= E

[
ei〈u,(I−ηA)θk〉

]
E
[
ei〈u,η

1/αΣSk〉
]

= E
[
ei〈(I−ηA)u,θk〉

]
E
[
ei〈η

1/αΣ>u,Sk〉
]

= E
[
ei〈(I−ηA)u,θk〉

]
e−η‖Σ

>u‖α2 , (48)

and we can further compute that

E
[
ei〈(I−ηA)u,θk〉

]
= E

[
ei〈(I−ηA)2u,θk−1〉

]
e−η‖Σ

>(I−ηA)u‖α2 . (49)

Hence, iteratively, we obtain

E
[
ei〈u,θk〉

]
= ei〈(I−ηA)ku,θ0〉e−η

∑k−1
j=0‖Σ>(I−ηA)ju‖α

2 . (50)

This completes the proof.

We can derive from Lemma 10 the characteristic function of the stationary distribution of the
discrete-time Lévy-driven OU process (45) as follows.

Corollary 11 Assume thatA is a real symmetric matrix with all the eigenvalues being positive and
less than 1/η. Then, for any u ∈ Rd,

E
[
ei〈u,θ∞〉

]
= e−η

∑∞
j=0 ‖Σ>(I−ηA)ju‖α2 . (51)

Proof When A is a real symmetric matrix with all the eigenvalues being positive and less than 1/η,
we have ‖I − ηA‖ < 1 and it follows that∣∣∣〈(I − ηA)ku, θ0

〉∣∣∣ ≤ ‖I − ηA‖k · ‖u‖ · ‖θ0‖ → 0, (52)

as k →∞, and moreover,∥∥∥Σ>(I − ηA)ju
∥∥∥α

2
≤
∥∥∥Σ>

∥∥∥ · ‖I − ηA‖j · ‖u‖, (53)

which is summable over j and hence the result follows from Lemma 10. The proof is complete.
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Appendix D. Proofs for the 1-Dimensional Case

In this section, we provide the proofs for the one-dimensional case. In the next lemma, we first
bound the difference between the characteristic functions of the stationary distributions.

Lemma 12 For two matrices X ∈ Rn and X̂ ∈ Rn as defined earlier, the absolute value of differ-
ence between the characteristic function for stationary distribution at any u ∈ R corresponding to
one-dimensional rotation invariant processes in equations (16) and (17) (d = 1) is bounded as

∣∣ψθ(u)− ψθ̂(u)
∣∣ ≤ x2

i − x̃2
i

‖X̂‖22

(
|u|α n

α‖X‖22
exp

(
−|u|α n

α‖X‖22

))
.

Proof We can compute that∣∣ψθ(u)− ψθ̂(u)
∣∣

=

∣∣∣∣exp

(
−
∫ ∞

0

∣∣∣e−s 1
n
‖X‖22u

∣∣∣α ds

)
− exp

(
−
∫ ∞

0

∣∣∣e−s 1
n
‖X̂‖22u

∣∣∣α ds

)∣∣∣∣
=

∣∣∣∣exp

(
−
∫ ∞

0

∣∣∣e−s 1
n
‖X‖22u

∣∣∣α ds

)(
1− exp

(∫ ∞
0

∣∣∣e−s 1
n
‖X‖22u

∣∣∣α ds

−
∫ ∞

0

∣∣∣e−s 1
n
‖X̂‖22u

∣∣∣α ds

))∣∣∣∣ (54)

≤ exp

(
−
∫ ∞

0

∣∣∣e−s 1
n
‖X‖22u

∣∣∣α ds

) ∣∣∣∣∫ ∞
0

∣∣∣e−s 1
n
‖X‖22u

∣∣∣α ds−
∫ ∞

0

∣∣∣e−s 1
n
‖X̂‖22u

∣∣∣α ds

∣∣∣∣
= exp

(
−|u|α

∫ ∞
0

e−s
α
n
‖X‖22ds

)
|u|α

∣∣∣∣∫ ∞
0

e−s
α
n
‖X‖22ds−

∫ ∞
0

e−s
α
n
‖X̂‖22ds

∣∣∣∣
= |u|α exp

(
−|u|α

∫ ∞
0

e−s
α
n
‖X‖22ds

) ∣∣∣∣∣ n

α‖X‖22
− n

α‖X̂‖22

∣∣∣∣∣
= |u|α exp

(
−|u|α n

α‖X‖22

) ∣∣∣∣∣ n

α‖X‖22
− n

α‖X̂‖22

∣∣∣∣∣
= |u|α n|x2

i − x̃2
i |

α‖X‖22‖X̂‖22
exp

(
−|u|α n

α‖X‖22

)
=
|x2
i − x̃2

i |
‖X̂‖22

(
|u|α n

α‖X‖22
exp

(
−|u|α n

α‖X‖22

))
,

which completes the proof.

Theorem [Restatement of Theorem 4] Consider the one-dimensional loss function f(x) = |θx|p.
For any x ∼ PX , if we have |x| > R with probability δ1 and for any X sampled uniformly at
random from the set Xn, if we have ‖X‖22 ≤ σ2n with probability δ2. Then,

(i) For α ∈ [1, 2), the algorithm is not stable when p ∈ [α, 2] i.e. εstab(Acont) diverges. When
α = p = 2 then εstab(Acont) ≤ R4

πσ4n
with probability at least 1− δ1 − 2δ2.
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(ii) For p ∈ [1, α), we have the following upper bound for the algorithmic stability,

εstab(Acont) ≤
2Rp+2

πσ2n
Γ(p+ 1) cos

(
(p− 1)π

2

)
1

α

(
1

ασ2

) p
α

Γ
(

1− p

α

)
=: c(α),

which holds with probability at least 1− δ1− 2δ2. Furthermore, for some α0 > 1, if we have

σ2 ≥ exp

(
1 +

2

p
− logα0 − φ

(
1− p

α0

))
, (55)

where φ is the digamma function, then the map α 7→ c(α) is increasing for α ∈ [α0, 2).

(iii) The stability bound is tight in α.

Proof Closed-form expression for the Fourier transform of function f(θ) = |θx|p has been given
in Gelfand and Shilov (1969). However, we provide here the result for the sake of completeness.
Let us compute the Fourier transform of the function θ → |θx|p for p ∈ [1, 2).∫ ∞

−∞
|θx|pe−iuθdθ =|x|p

∫ ∞
−∞
|θ|pe−iuθ dθ

=|x|p
∫ ∞

0
(eiuθ + e−iuθ)θp dθ

=|x|p
[∫ ∞

0
eiuθθp dθ +

∫ ∞
0

e−iuθθp dθ

]
=2|x|pΓ(p+ 1) cos

(
(p+ 1)π

2

)
1

|u|p+1
. (56)

From Gelfand and Shilov (1969),∫ ∞
−∞
|θx|2e−iuθdθ =

−2x2

u2
δ(u),

where δ(u) is the Dirac-delta function.
First, we get the result for p ∈ [1, 2). We utilize the result from Lemma 12 and equation (56) to

get,

εstab(Acont) = sup
X∼=X̂

sup
x∈X

[
1

(2π)

∫
R
|ψθ(u)− ψθ̂(u)|

∣∣∣∣∫ ∞
−∞
|θx|pe−iuθ dθ

∣∣∣∣ du

]
= sup

X∼=X̂
sup
x∈X

|x|p

π
Γ(p+ 1) cos

(
(p− 1)π

2

)
|x2
i − x̃2

i |
‖X̂‖22

n

α‖X‖22

·
∫
R

(
|u|α exp

(
−|u|α n

α‖X‖22

))
1

|u|p+1
du

≤ sup
X∼=X̂

sup
x∈X

2|x|p+2

π‖X̂‖22
Γ(p+ 1) cos

(
(p− 1)π

2

)
·
∫ ∞

0
uα−p−1 n

α‖X‖22
exp

(
−|u|α n

α‖X‖22

)
du.
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In the above integral, by substituting uα n
α‖X‖2 with t so that

dt = uα−1 n

‖X‖22
du, and

1

up
=

(
n

α‖X‖22

) p
α

t−p/α, (57)

we have,

εstab(Acont) ≤ sup
X∼=X̂

sup
x∈X

2|x|p+2

πα‖X̂‖22
Γ(p+ 1) cos

(
(p− 1)π

2

)(
n

α‖X‖22

) p
α
∫ ∞

0
t−p/αe−t dt.

(58)

It is clear that, the above integral diverges for p ≥ α, hence the algorithm is not stable for p ∈ [1, 2).
Now, we check the case for p = 2. For p = 2, we have,

εstab(Acont) ≤ sup
X∼=X̂

sup
x∈X

|x|4

π‖X̂‖22

n

‖X‖22

∫ ∞
0

uα−2 exp

(
−uα n

‖X‖22

)
δ(u) du.

The above integral clearly diverges for α < 2. However, when α = 2, then

εstab(Acont) ≤ sup
X∼=X̂

sup
x∈X

|x|4

π‖X̂‖22

n

‖X‖22
.

If we have |x| > R for any x ∼ PX with probability δ1 and ‖X‖22 ≤ σ2n for any X sampled
uniformly from the set Xn with probability δ2, then for α = 2 and p = 2,

εstab(Acont) ≤
R4

πσ4n
, (59)

with probability at least 1− δ1 − 2δ2. This proves the part (i) of our result.
Next, let us prove the part (ii). From equation (58), for p < α, we have

εstab(Acont) ≤ sup
X∼=X̂

sup
x∈X

2|x|p+2

πα‖X̂‖22
Γ(p+ 1) cos

(
(p− 1)π

2

)(
n

α‖X‖22

) p
α
∫ ∞

0
t−p/αe−t dt

= sup
X∼=X̂

sup
x∈X

2|x|p+2

πα‖X̂‖22
Γ(p+ 1) cos

(
(p− 1)π

2

)(
n

α‖X‖22

) p
α

Γ
(

1− p

α

)
.

If we have |x| > R for any x ∼ PX with probability δ1 and ‖X‖22 ≤ σ2n for any X sampled
uniformly at random from the set Xn with probability δ2, then with probability at least 1− δ1−2δ2,
the following holds:

εstab(Acont) ≤
2Rp+2

πσ2n
Γ(p+ 1) cos

(
(p− 1)π

2

)
1

α

(
1

ασ2

) p
α

Γ
(

1− p

α

)
= c(α).

Now, consider the function,

Λ(α) =
1

α

(
1

ασ2

) p
α

Γ
(

1− p

α

)
.

25



ALGORITHMIC STABILITY OF HEAVY-TAILED SGD ON LEAST SQUARES

We can compute that

∂α log Λ(α) =
p

α2

[
logα+ log σ2 − 1− α

p
+ φ

(
1− p

α

)]
,

where φ is the digamma function. For any arbitrary α0, if we choose

σ2 ≥ exp

(
1 +

2

p
− logα0 − φ

(
1− p

α0

))
,

then ∂α log Λ(α) > 0 for α ∈ [α0, 2). Hence, for all α1, α2 ∈ [α0, 2), α1 < α2 ⇒ Λ(α1) ≤ Λ(α2).
This proves that c(α) is an increasing map in α.

(iii). Now we show that the bound on the stability is tight for some appropriately chosen PX .
Note that we have,

εstab(Acont) = sup
X∼=X̂

sup
x∈X

[
1

(2π)

∫
R

∣∣ψθ(u)− ψθ̂(u)
∣∣ ∣∣∣∣∫ ∞
−∞
|θx|pe−iuθ dθ

∣∣∣∣ du

]
= sup

X∼=X̂
sup
x∈X

[
1

π

∫ ∞
0

∣∣ψθ(u)− ψθ̂(u)
∣∣ ∣∣∣∣∫ ∞
−∞
|θx|pe−iuθ dθ

∣∣∣∣ du

]
︸ ︷︷ ︸

:=Φx,X,X̂(Acont)

.

Hence, let us consider u ≥ 0. From equation (54), we have

∣∣ψθ(u)− ψθ̂(u)
∣∣ =

∣∣∣∣∣ exp

(
−
∫ ∞

0

∣∣∣e−s 1
n
‖X‖22u

∣∣∣α ds

)

·
(

1− exp

(∫ ∞
0

∣∣∣e−s 1
n
‖X‖22u

∣∣∣α ds−
∫ ∞

0

∣∣∣e−s 1
n
‖X̂‖22u

∣∣∣α ds

)) ∣∣∣∣∣
= exp

(
−
∫ ∞

0

∣∣∣e−s 1
n
‖X‖22u

∣∣∣α ds

)(
1− exp

(
−|u|α

[
n

α‖X̂‖22
− n

α‖X‖22

]))

= exp

(
−|u|α n

α‖X‖22

)1− exp

−|u|α
 n

:=δ︷ ︸︸ ︷
(x2
i − x̃2

i )

α‖X‖22‖X̂‖22





= exp

(
−|u|α n

α‖X‖22

) ∞∑
k=1

(−1)k+1

k!
|u|kα

(
nδ

α‖X‖22‖X̂‖22

)k .
Hence,

Φx,X,X̂(Acont) =

[
1

π

∫ ∞
0
|ψθ(u)− ψθ̂(u)|

∣∣∣∣∫ ∞
−∞
|θx|pe−iuθ dθ

∣∣∣∣ du

]
=

2|x|p

π
Γ(p+ 1) cos

(
(p+ 1)π

2

)∫ ∞
0

exp

(
−uα n

α‖X‖22

)

26



ALGORITHMIC STABILITY OF HEAVY-TAILED SGD ON LEAST SQUARES

·

 ∞∑
k=1

(−1)k+1

k!
ukα−p−1

(
nδ

α‖X‖22‖X̂‖22

)kdu. (60)

To simplify the above term, we do need to compute the integral:∫ ∞
0

exp

(
− uαn

α‖X‖22

)
ukα

up+1
du.

Let us use the substitution:

uαn

α‖X‖22
= t

such that

dt =
uα−1n

‖X‖22
du and u =

(
α‖X‖22
n

)1/α

t1/α.

Hence, ∫ ∞
0

exp

(
− uαn

α‖X‖22

)
ukα

up+1
du =

∫ ∞
0

e−tuα(k−1)−p ‖X‖22
n

dt

=
‖X‖22
n

(
α‖X‖22
n

)k−1− p
α
∫ ∞

0
e−ttk−1− p

αdt

=
‖X‖22
n

(
α‖X‖22
n

)k−1− p
α

Γ
(
k − p

α

)
.

This implies,

Φx,X,X̂(Acont) =
2|x|p

π
Γ(p+ 1) cos

(
(p+ 1)π

2

)∫ ∞
0

exp

(
− |u|

αn

α‖X‖22

)

·
∞∑
k=1

(−1)k+1

k!
ukα−p−1

(
nδ

α‖X‖22‖X̂‖22

)k du

=
2|x|p

π
Γ(p+ 1) cos

(
(p+ 1)π

2

)
·
∞∑
k=1

[
(−1)k+1

k!

δk

α‖X̂‖2k2

(
n

α‖X‖22

) p
α

Γ
(
k − p

α

)]

=
2|x|p

π
Γ(p+ 1) cos

(
(p+ 1)π

2

) ∞∑
k=1

(−1)k+1γk,

where γk = 1
k!

δk

α‖X̂‖2k2

(
n

α‖X‖22

) p
α

Γ
(
k − p

α

)
. Let us now compute γk+1

γk
. We have

γk+1

γk
=

δ

‖X̂‖22

Γ
(
k + 1− p

α

)
(k + 1)Γ

(
k − p

α

) =
δ

‖X̂‖22

k − p
α

k + 1
=

δ

‖X̂‖22

(
1−

1 + p
α

k + 1

)
.
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Hence, we have the following,

Φx,X,X̂(Acont) =
2|x|p

π
Γ(p+ 1) cos

(
(p+ 1)π

2

)γ1

∞∑
k=1

(
− δ

‖X̂‖22

)k−1

−γ1

(
1 +

p

α

) ∞∑
k=1

(
− δ

‖X̂‖22

)k−1 k−1∏
j=1

(
1

j + 1

)
≥ 2|x|p

π
Γ(p+ 1) cos

(
(p+ 1)π

2

)
γ1

∞∑
k=1

(
− δ

‖X̂‖22

)k−1

=
2|x|p

π
Γ(p+ 1) cos

(
(p+ 1)π

2

)
γ1

1 + δ
‖X̂‖22

≥ 2|x|p

π
Γ(p+ 1) cos

(
(p+ 1)π

2

)
δ

α‖X̂‖22

(
n

α‖X‖22

) p
α

Γ
(

1− p

α

)
. (61)

Now, let us assume that PX is a distribution with discrete support in range σ2 toRwithC number of
support points equally spaced. Hence, with probability (1− 1/C), δ ≥ c for some positive constant
c. Hence, with with high probability,

Φx,X,X̂(Acont) ≥
2σ2pc

R2πn
Γ(p+ 1) cos

(
(p+ 1)π

2

)
1

α

(
1

αR2

) p
α

Γ
(

1− p

α

)
.

This completes the proof.

Appendix E. Proofs for Least-Square in d-Dimension

In this section, we provide the proofs for least-square in d-dimension. We start by proving the
following lemma, relating the characteristic functions of the two distributions.

Lemma 13 For two matrices X ∈ Rn×d and X̂ ∈ Rn×d as defined earlier, the absolute value
of difference between the characteristic functions of the stationary distributions at any u ∈ Rd
corresponding to d-dimensional rotation invariant processes in equations (16) and (17) is bounded
as ∣∣ψθ(u)− ψθ̂(u)

∣∣ ≤ 2(σ1 + σ2)‖u‖α2
nα2σ2

min

exp

(
− ‖u‖

α
2

ασmin

)
,

where σmin is the smaller of the smallest of singular values of the matrices 1
nX
>X and 1

nX̂
>X̂ ,

and xix>i − x̃ix̃>i = σ1v1v
>
1 + σ2v2v

>
2 where v1 and v2 are orthogonal vectors.

Proof We can compute that∣∣ψθ(u)− ψθ̂(u)
∣∣

=

∣∣∣∣exp

(
−
∫ ∞

0

∥∥∥e−s 1
n
X>Xu

∥∥∥α
2

ds

)
− exp

(
−
∫ ∞

0

∥∥∥e−s 1
n
X̂>X̂u

∥∥∥α
2

ds

)∣∣∣∣
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≤ exp

(
−
∫ ∞

0

∥∥∥e−s 1
n
X>Xu

∥∥∥α
2

ds

)
︸ ︷︷ ︸

:=B

∣∣∣∣∫ ∞
0

∥∥∥e−s 1
n
X>Xu

∥∥∥α
2

ds−
∫ ∞

0

∥∥∥e−s 1
n
X̂>X̂u

∥∥∥α
2

ds

∣∣∣∣︸ ︷︷ ︸
:=C

.

We first consider the term C in the above equation. From Lemma 19, we have for two positive
numbers a and b, and for some 1 ≤ α ≤ 2, we have

|aα − bα| ≤ |a− b|(aα−1 + bα−1).

Now,

C =

∣∣∣∣∫ ∞
0

∥∥∥e−s 1
n
X>Xu

∥∥∥α
2

ds−
∫ ∞

0

∥∥∥e−s 1
n
X̂>X̂u

∥∥∥α
2

ds

∣∣∣∣
=

∣∣∣∣∫ ∞
0

(∥∥∥e−s 1
n
X>Xu

∥∥∥α
2
−
∥∥∥e−s 1

n
X̂>X̂u

∥∥∥α
2

)
ds

∣∣∣∣
≤
∫ ∞

0

∣∣∣∥∥∥e−s 1
n
X>Xu

∥∥∥
2
−
∥∥∥e−s 1

n
X̂>X̂u

∥∥∥
2

∣∣∣ (∥∥∥e−s 1
n
X>Xu

∥∥∥α−1

2
+
∥∥∥e−s 1

n
X̂>X̂u

∥∥∥α−1

2

)
ds

≤
∫ ∞

0

∥∥∥e−s 1
n
X>Xu− e−s

1
n
X̂>X̂u

∥∥∥
2

(∥∥∥e−s 1
n
X>Xu

∥∥∥α−1

2
+
∥∥∥e−s 1

n
X̂>X̂u

∥∥∥α−1

2

)
ds

=

∫ ∞
0

∥∥∥e−s 1
n
X>X

(
I − es

1
n
X>X−s 1

n
X̂>X̂

)
u
∥∥∥

2

·
(∥∥∥e−s 1

n
X>Xu

∥∥∥α−1

2
+
∥∥∥e−s 1

n
X̂>X̂u

∥∥∥α−1

2

)
ds.

Now, we have from the definitions,

X>X − X̂>X̂ = xix
>
i − x̃ix̃>i .

Hence,

C ≤
∫ ∞

0

∥∥∥e−s 1
n
X>X

(
I − es

1
n(xix>i −x̃ix̃>i )

)
u
∥∥∥

2

(∥∥∥e−s 1
n
X>Xu

∥∥∥α−1

2
+
∥∥∥e−s 1

n
X̂>X̂u

∥∥∥α−1

2

)
ds.

We recall that the 2-norm ‖ · ‖2 for a matrix D ∈ Rd×d is defined as follows:

‖D‖2 = sup
u∈Rd:‖u‖2=1

‖Du‖2

for u ∈ Rd. We notice that

min

(
1

n

∥∥∥(X>X)u∥∥∥
2
,

1

n

∥∥∥(X̂>X̂)u∥∥∥
2

)
≥ σmin‖u‖2.

Hence,

C ≤
∫ ∞

0

∥∥∥e−s 1
n
X>Xu

∥∥∥
2

∥∥∥I − e−s 1
n(x̃ix̃>i −xix>i )

∥∥∥
2

(62)

·
(∥∥∥e−s 1

n
X>Xu

∥∥∥α−1

2
+
∥∥∥e−s 1

n
X̂>X̂u

∥∥∥α−1

2

)
ds
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=

∫ ∞
0

∥∥∥I − es 1
n(xix>i −x̃ix̃i

>)
∥∥∥

2︸ ︷︷ ︸
:=D

(∥∥∥e−s 1
n
X>Xu

∥∥∥α
2

+
∥∥∥e−s 1

n
X>Xu

∥∥∥
2

∥∥∥e−s 1
n
X̂>X̂u

∥∥∥α−1

2

)
︸ ︷︷ ︸

:=E

ds.

(63)

Let us consider the term D in (63) first. x̃iã>i − xix>i is a rank 2 matrix. Consider the two
non-zero eigenvalues of this matrix are σ1 and σ2. Hence, x̃ix̃>i −xix>i = σ1v1v

>
1 +σ2v2v

>
2 where

v1 and v2 are the eigenvectors. Then,

I − e−s
1
n(x̃iã>i −xix>i ) =

(
1− e

−sσ1
n

)
v1v
>
1 +

(
1− e

−sσ2
n

)
v2v
>
2 .

Hence,

D =
∥∥∥I − e−s 1

n(x̃iã>i −xix>i )
∥∥∥

2
≤
∥∥∥(1− e

−sσ1
n

)
v1v
>
1

∥∥∥
2

+
∥∥∥(1− e

−sσ2
n

)
v2v
>
2

∥∥∥
2

≤ sσ1

n
+
sσ2

n
,

where v1 and v2 are orthogonal vectors with ‖v1‖2 = ‖v2‖2 = 1 and v>1 v2 = 0. By definition, we
have

1

n

∥∥∥X>Xu∥∥∥
2
≥ σmin‖u‖2, and

1

n

∥∥∥X̂>X̂u∥∥∥
2
≥ σmin‖u‖2.

This gives, ∥∥∥e−s 1
n
X>Xu

∥∥∥
2
≤ e−sσmin , and

∥∥∥e−s 1
n
X̂>X̂u

∥∥∥
2
≤ e−sσmin ,

which implies that the E term in (63) can be bounded as:

E ≤ 2‖u‖α2 e−sασmin . (64)

Therefore,

C ≤ 2(σ1 + σ2)‖u‖α2
n

∫ ∞
0

se−sασminds =
2(σ1 + σ2)‖u‖α2

nα2σ2
min

. (65)

Hence, we have

|ψ1(u)− ψ2(u)| ≤ 2(σ1 + σ2)‖u‖α2
nα2σ2

min

exp

(
−
∫ ∞

0

∥∥∥e−s 1
n
X>Xu

∥∥∥α
2

ds

)
≤ 2(σ1 + σ2)‖u‖α2

nα2σ2
min

exp

(
−‖u‖α2

∫ ∞
0

e−sασminds

)
, (66)

where the last inequality is due to the definition of σmin. Hence we conclude that

|ψ1(u)− ψ2(u)| ≤ 2(σ1 + σ2)‖u‖α2
nα2σ2

min

exp

(
− ‖u‖

α
2

ασmin

)
, (67)

which completes the proof.
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Theorem [Restatement of Theorem 5] Consider the d-dimensional loss function f(x) = |θ>x|p
such that θ, x ∈ Rd. For any x ∼ PX if ‖x‖2 ≤ R, for any X sampled uniformly at random from
the set Xn, if 1

n‖X
>Xu‖2 ≥ σmin‖u‖2 for u ∈ Rd and for any two X ∼= X̂ sampled from Xn

generating two stochastic process given by SDEs in equations (10) and (11), ‖xix>i − x̃ix̃>i ‖2 ≤ 2σ
holds with high probability. Then,

(i) For α ∈ (1, 2), the algorithm is not stable when p ∈ [α, 2] i.e. εstab(Acont) diverges. When
α = p = 2 then with high probability εstab(Acont) ≤ 2R2

π
σ

nσ2
min

.

(ii) For p ∈ [1, α), we have the following upper bound for the algorithmic stability,

εstab(Acont) =
8Rp

π

σ

nα2σmin
Γ(p+ 1) cos

(
(p− 1)π

2

)(
1

ασmin

) p
α

Γ
(

1− p

α

)
= c(α),

which holds with high probability. Furthermore, for some α0 > 1, if we have

σmin ≥ exp

(
1 +

4

p
− logα0 − φ

(
1− p

α0

))
,

where φ is the digamma function, then the map α→ c(α) is increasing for α ∈ [α0, 2).

iii The stability bound is tight in α.

Proof We have d-dimensional loss function for an x ∈ Rd sampled uniformly at random from PX ,
f(θ) = |θ>x|p Let us denote the Fourier transform of f , Ff(u) as h(u). For an orthogonal matrix
A such that Ae1 = x

‖x‖2 , we have from the results in Lemma 21,

h(Au) = 2‖x‖p2(2π)d−1δ(u2, · · · , ud)Γ(p+ 1) cos

(
(p+ 1)π

2

)
1

|u1|p+1
for p ∈ [1, 2), (68)

and

h(Au) = 2‖x‖p2(2π)d−1δ(u1, u2, · · · , ud)
2

u2
1

for p = 2, (69)

where δ is the Dirac-delta function. Let us first consider the case when p ∈ [1, 2). From equa-
tion (18),

εstab(Acont) = sup
X∼=X̂

sup
x∈X

1

(2π)d

∫
Rd

∣∣ψθ(u)− ψθ̂(u)
∣∣ |h(u)| du

= sup
X∼=X̂

sup
x∈X

1

(2π)d

∫
Rd

∣∣ψθ(u)− ψθ̂(u)
∣∣ ∣∣∣∣∫

Rd
|θ>x|peiu>θ dθ

∣∣∣∣ du

= sup
X∼=X̂

sup
x∈X

1

(2π)d

∫
Rd

2(σ1 + σ2)‖u‖α2
nα2σ2

min

exp

(
− ‖u‖

α
2

ασmin

) ∣∣∣∣∫
Rd
|θ>x|peiu>θ dθ

∣∣∣∣ du.

In the above equation, let us apply the change of variable u = Av and use result from Lemma 21
(equations (68)) and we get the following,

εstab(Acont) = sup
X∼=X̂

sup
x∈X

1

(2π)d

∫
Rd

2(σ1 + σ2)‖Av‖α2
nα2σ2

min

exp

(
−‖Av‖

α
2

ασmin

) ∣∣∣∣∫
Rd
|θ>x|pei(Av)>θ dθ

∣∣∣∣ dv
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= sup
X∼=X̂

sup
x∈X

1

(2π)d

∫
Rd

2(σ1 + σ2)‖v‖α2
nα2σ2

min

exp

(
− ‖v‖

α
2

ασmin

)
|h(Av)| dv

= sup
X∼=X̂

sup
x∈X

1

(2π)d

∫
Rd

[(
2(σ1 + σ2)‖v‖α2

nα2σ2
min

exp

(
− ‖v‖

α
2

ασmin

))
·
(∣∣∣∣2‖x‖p2(2π)d−1δ(v2, · · · , vd)Γ(p+ 1) cos

(
(p+ 1)π

2

)
1

|v1|p+1

∣∣∣∣)] dv

= sup
X∼=X̂

sup
x∈X

2‖x‖p2
π

Γ(p+ 1) cos

(
(p− 1)π

2

)
(σ1 + σ2)

nα2σ2
min

·
∫ ∞
−∞
|v1|α exp

(
−|v1|α

ασmin

)
1

|v1|p+1
dv1

= sup
X∼=X̂

sup
x∈X

4‖x‖p2
π

(σ1 + σ2)

nα2σ2
min

Γ(p+ 1) cos

(
(p− 1)π

2

)
·
∫ ∞

0
vα−p−1

1 exp

(
−vα1
ασmin

)
dv1.

In the above integral, by substituting vα1
ασmin

with t so that

dt = vα−1
1

1

σmin
dv1, and

1

vp1
=

(
1

ασmin

) p
α

t−p/α, (70)

we have,

εstab(Acont) = sup
X∼=X̂

sup
x∈X

4‖x‖p2
π

(σ1 + σ2)

nα2σmin

· Γ(p+ 1) cos

(
(p− 1)π

2

)(
1

ασmin

) p
α
∫ ∞

0
t−p/αe−t dt. (71)

It is clear that, the above integral diverge for p ≥ α, hence the algorithm is not stable for p ∈ [1, 2).
Now, we check the case for p = 2. For p = 2, we have,

εstab(Acont) = sup
X∼=X̂

sup
x∈X

1

(2π)d

∫
Rd

2(σ1 + σ2)‖u‖α2
nα2σ2

min

exp

(
− ‖u‖

α
2

ασmin

) ∣∣∣∣∫
Rd
|θ>x|2eiu>θ dθ

∣∣∣∣ du.

In the above equation, we make change of variable u = Av and use result from Lemma 21 (equa-
tions (69)), we get the following,

εstab(Acont) = sup
X∼=X̂

sup
x∈X

1

(2π)d

∫
Rd

2(σ1 + σ2)‖Av‖α2
nα2σ2

min

· exp

(
−‖Av‖

α
2

ασmin

) ∣∣∣∣∫
Rd
|θ>x|2ei(Av)>θ dθ

∣∣∣∣ dv

= sup
X∼=X̂

sup
x∈X

1

(2π)d

∫
Rd

2(σ1 + σ2)‖v‖α2
nα2σ2

min

exp

(
− ‖v‖

α
2

ασmin

)
|h(Av)| dv

= sup
X∼=X̂

sup
x∈X

2

π

∫
Rd

(σ1 + σ2)‖v‖α2
nα2σ2

min

exp

(
− ‖v‖

α
2

ασmin

)
‖x‖22δ(v1, v2, · · · , vd)

2

v2
1

dv.
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The above integral clearly diverges for α < 2. However, when α = 2, then

εstab(Acont) ≤
‖x‖22
π

(σ1 + σ2)

nσ2
min

.

Now, if σ is the upper bound on σ1 and σ2 for all X ∼= X̂ ∈ Xn and ‖x‖2 ≤ R for x ∼ PX with
high probability, then,

εstab(Acont) ≤
2R2

π

σ

nσ2
min

,

holds with high probability. This proves the part (i) of our claim.
Next, we will prove part (ii) when p < α. We have from equation (71),

εstab(Acont) = sup
X∼=X̂

sup
x∈X

4‖x‖p2
π

(σ1 + σ2)

nα2σmin
Γ(p+ 1) cos

(
(p− 1)π

2

)(
1

ασmin

) p
α
∫ ∞

0
t−p/αe−t dt

= sup
X∼=X̂

sup
x∈X

4‖x‖p2
π

(σ1 + σ2)

nα2σmin
Γ(p+ 1) cos

(
(p− 1)π

2

)(
1

ασmin

) p
α

Γ
(

1− p

α

)
.

Now, if σ is the upper bound on σ1 and σ2 for all X ∼= X̂ ∈ Xn and ‖x‖2 ≤ R for x ∼ PX with
high probability then,

εstab(Acont) =
8Rp

π

σ

nα2σmin
Γ(p+ 1) cos

(
(p− 1)π

2

)(
1

ασmin

) p
α

Γ
(

1− p

α

)
holds with high probability. Now, consider the function,

Λ(α) =
1

α2

(
1

ασmin

) p
α

Γ
(

1− p

α

)
.

We can compute that

∂α log Λ(α) =
p

α2

[
logα+ log σmin − 1− 2α

p
+ φ

(
1− p

α

)]
,

where φ is the digamma function. For any arbitrary α0, if we choose

σmin ≥ exp

(
1 +

4

p
− logα0 − φ

(
1− p

α0

))
,

then ∂α log Λ(α) > 0 for α ∈ [α0, 2). Hence, for all α1, α2 ∈ [α0, 2), α1 < α2 ⇒ Λ(α1) ≤ Λ(α2).
This proves that c(α) is an increasing map in α.

This completes the proof till part (ii). Now, we will prove tightness result in α. Let us have the
following construction. Consider a one-dimensional distribution PX supported in a ring such that
the density function

∫
A p(x)dx ≤ η such that A = {x : |x| ≥

√
σmind log d or |x| ≤ R}. The

empirical covariance matrix X>X is a diagonal matrix. Hence, from the results in Flatto (2019).
with high probability 1− δ, we have

1

n

∥∥∥X>Xu∥∥∥
2
≥ σmin‖u‖2.
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Exact expression for δ is given in Flatto (2019). Similarly, for the dataset X̂ , the similar condition
holds,

1

n

∥∥∥X̂>X̂u∥∥∥
2
≥ σmin‖u‖22

with high probability 1− δ. We have,∣∣ψθ(u)− ψθ̂(u)
∣∣

=

∣∣∣∣exp

(
−
∫ ∞

0

∥∥∥e−s 1
n
X>Xu

∥∥∥α
2

ds

)
− exp

(
−
∫ ∞

0

∥∥∥e−s 1
n
X̂>X̂u

∥∥∥α
2

ds

)∣∣∣∣
= exp

(
−
∫ ∞

0

∥∥∥e−s 1
n
X>Xu

∥∥∥α
2

ds

) ∣∣∣∣1− exp

(
−
∫ ∞

0

∣∣∣∥∥∥e−s 1
n
X̂>X̂u

∥∥∥α
2
−
∥∥∥e−s 1

n
X>Xu

∥∥∥α
2

∣∣∣ds)∣∣∣∣ .
(72)

From equation (18),

εstab(Acont) = sup
X∼=X̂

sup
x∈X

1

(2π)d

∫
Rd

∣∣ψθ(u)− ψθ̂(u)
∣∣ |h(u)| du

= sup
X∼=X̂

sup
x∈X

1

(2π)d

∫
Rd

∣∣ψθ(u)− ψθ̂(u)
∣∣ ∣∣∣∣∫

Rd
|θ>x|peiu>θ dθ

∣∣∣∣ du.

In the above equation, let us apply the change of variable u = Av where A is the orthogonal matrix
defined earlier and we get the following,

εstab(Acont) = sup
X∼=X̂

sup
x∈X

1

(2π)d

∫
Rd

∣∣ψθ(Av)− ψθ̂(Av)
∣∣ ∣∣∣∣∫

Rd
|θ>x|pei(Av)>θ dθ

∣∣∣∣ dv

= sup
X∼=X̂

sup
x∈X

1

(2π)d

∫
Rd

∣∣ψθ(Av)− ψθ̂(Av)
∣∣ |h(Av)| dv

Since, A is orthogonal matrix, we can see that∣∣ψθ(Av)− ψθ̂(Av)
∣∣ =

∣∣ψθ(v)− ψθ̂(v)
∣∣ .

Hence,

εstab(Acont) = sup
X∼=X̂

sup
x∈X

1

(2π)d

∫
Rd

∣∣ψθ(v)− ψθ̂(v)
∣∣ |h(Av)| dv

= sup
X∼=X̂

sup
x∈X

1

(2π)d

∫
Rd

∣∣ψθ(v)− ψθ̂(v)
∣∣(∣∣∣∣∣2‖x‖p2(2π)d−1δ(v2, · · · , vd)

· Γ(p+ 1) cos

(
(p+ 1)π

2

)
1

|v1|p+1

∣∣∣∣∣
)

dv.

Let us denote

Φx,X,X̂(Acont) :=
1

(2π)d

∫
Rd

∣∣ψθ(v)− ψθ̂(v)
∣∣(∣∣∣∣∣2‖x‖p2(2π)d−1δ(v2, · · · , vd)
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· Γ(p+ 1) cos

(
(p+ 1)π

2

)
1

|v1|p+1

∣∣∣∣∣
)

dv.

Now, we use the property of Dirac-delta function. From our construction, X>X and X̂>X̂ are
diagonal matrices. Let us denote X>X = diag(a1, a2, · · · , ad). Similarly, we denote X̂>X̂ =
diag(â1, â2, · · · , âd). Hence, we have

exp

(
−
∫ ∞

0

∥∥∥e−s 1
n
X>Xv

∥∥∥α
2

ds

)
= exp

−∫ ∞
0

(
d∑
i=1

e−2(s/n)aiv2
i

)α
2

ds

 .

From the construction, the matrix X>X and X̂>X are both diagonal and differ at two diagonal
elements with probability (1 − 1/d). They differ at one diagonal element with probability 1/d.
Let’s assume that xi has non-zero element at dimension 1 and x̃i has non-zero element either at
dimension 1 or at 2 (without loss of generality). Hence, with high probability,∣∣∣∣1− exp

(
−
∫ ∞

0

∣∣∣∥∥∥e−s 1
n
X̂>X̂u

∥∥∥α
2
−
∥∥∥e−s 1

n
X>Xu

∥∥∥α
2

∣∣∣ds)∣∣∣∣
= 1− exp

−∫ ∞
0

∣∣∣∣∣∣
(

d∑
i=1

e−2(s/n)aiv2
i

)α/2
−

(
d∑
i=1

e−2(s/n)âiv2
i

)α/2∣∣∣∣∣∣ ds


Combining everything together and using the property of Dirac-delta function we get,

Φx,X,X̂(Acont) =
1

2π

∫ ∞
−∞

[
exp

(
−
∫ ∞

0
e−(sα/n)a1 |v1|αds

)
·
[
1− exp

(
−
∫ ∞

0

(
e−(sα/n)a1 − e−(sα/n)ã1

)
|v1|αds

)]
·

(∣∣∣∣∣2‖x‖p2Γ(p+ 1) cos

(
(p+ 1)π

2

)
1

|v1|p+1

∣∣∣∣∣
)]

dv1

=
2‖x‖p2
π

Γ(p+ 1) cos

(
(p+ 1)π

2

)∫ ∞
0

[
exp

(
−
∫ ∞

0
e−(sα/n)a1vα1 ds

)

· 1

vp+1
1

[
1− exp

(
−
∫ ∞

0

(
e−(sα/n)a1 − e−(sα/n)ã1

)
vα1 ds

)]]
dv1

=
2‖x‖p2
π

Γ(p+ 1) cos

(
(p+ 1)π

2

)∫ ∞
0

[
exp

(
−vα1

n

αa1

)

· 1

vp+1
1

[
1− exp

(
−vα1

[ n

αa1
− n

αâ1

])]]
dv1

=
2‖x‖p2
π

Γ(p+ 1) cos

(
(p+ 1)π

2

)∫ ∞
0

[
1

vp+1
1

exp

(
−vα1

n

αa1

)

·
[
1− exp

(
n(‖xi‖22 − ‖x̃i‖22)

αa1â1

)]]
dv1.
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Let us denote δ := ‖xi‖22 − ‖x̃i‖22. Hence,

Φx,X,X̂(Acont) =
2‖x‖p2
π

Γ(p+ 1) cos

(
(p+ 1)π

2

)
·
∫ ∞

0

[
1

vp+1
1

exp

(
−vα1

n

αa1

)[
1− exp

(
nδ

αa1â1

)]]
dv1

=
2‖x‖p2
πα

Γ(p+ 1) cos

(
(p+ 1)π

2

)∫ ∞
0

exp

(
−vα1

n

αa1

)
·

[ ∞∑
k=1

(−1)k+1

k!
vkα−p−1

1

(
nδ

αa1â1

)k]
dv1.

The above equation is just reduction to the computation of one-dimensional case which we did
in equation (60). We apply similar argument that we did apply in computing the lower bound in
equation (60). Hence, with high probability, we get (equation (61))

Φx,X,X̂(Acont) ≥
2‖x‖p2
π

Γ(p+ 1) cos

(
(p+ 1)π

2

)
δ

α2â1

(
n

αa1

) p
α

Γ
(

1− p

α

)
.

Here, we also assume that PX is a distribution with discrete support in range σ2 to R with C
number of support points equally spaced. Hence, with probability (1 − 1/C), δ ≥ c for some
positive constant c.

By construction and the result from Flatto (2019), we know that nCd log d ≥ a1 ≥ nσmin for
some positive constant C with high probability. This also holds for â1. Hence, for some positive
constant C1 and C2 (C1 and C2 has dependence on the dimension) , with high probability

Φx,X,X̂(Acont) ≥
C1

nα2
Γ(p+ 1) cos

(
(p+ 1)π

2

)(
1

αC2

) p
α

Γ
(

1− p

α

)
.

This completes the proof.

Remark 14 As we have characterized the finite-time distribution of a Lévy-driven OU process in
Appendix B, it is clear to see that for any finite time t, if ψ(t)

i (u) denotes the characteristic function
at that time then following the same procedure as that in Lemma 13,∣∣∣ψ(t)

1 (u)− ψ(t)
2 (u)

∣∣∣
≤ 2(σ1 + σ2)‖u‖α2

nα2σ2
min

(
1− (ασmint+ 1)e−ασmint

)
exp

(
− ‖u‖

α
2

ασmin

(
1− e−ασmint

))
.

And hence, the algorithmic stability can be calculated in the similar way as that given in Theorem 5
for any time instance t. From here, it is hard to analyze the monotonic behavior of algorithmic
stability for all time instance t. Here, we consider two interesting cases to discuss the monotone
behavior:
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• When t = O( 1
ασmin

) or higher but finite. In this case,∣∣∣ψ(t)
1 (u)− ψ(t)

2 (u)
∣∣∣ ≤ 2(σ1 + σ2)‖u‖α2

nα2σ2
min

exp

(
− ‖u‖

α
2

ασmin

(
1− 1

e

))
.

The above expression differs from the result in Lemma 13 only by a constant factor in the
exponential. Hence, the stability bound will have similar monotonic behavious as that for
t→∞.

• When t is very small i.e. t� 1
ασmin

such that 1− e−ασmint ≈ ασmint. Then,∣∣∣ψ(t)
1 (u)− ψ(t)

2 (u)
∣∣∣ ≤ 2(σ1 + σ2)‖u‖α2 t

nασmin
exp (−‖u‖α2 t) .

In that case, we can easily see that under similar conditions in Theorem 5,

εstab(Acont) ≤
8Rp

π

σt
p
α

nα2σmin
Γ(p+ 1) cos

(
(p− 1)π

2

)
Γ
(

1− p

α

)
= c(α).

We can similarly show here that there exist some α0 corresponding to every t when c(α) is
monotonic in [α0, 2).

Appendix F. Theory and Proofs for the Discretized SDE

In this section, we provide theoretical results and their proofs of the discretized SDE (40)-(41).

Lemma 15 For two matrices X ∈ Rn×d and X̂ ∈ Rn×d as defined earlier, the absolute value
of difference between the characteristic functions of the anytime distributions for η ≤ 1

L where L
is the maximum of largest eigenvalues of 1

nX
>X and 1

nX̂
>X̂ , at any u ∈ Rd corresponding to

d-dimensional rotation invariant processes in equations (43) and (44) is bounded as∣∣ψθ(k, u)− ψθ̂(k, u)
∣∣

≤ η2(σ1 + σ2)

n(1− ησmin)

(k − 1)(1− ησmin)α(k+1) − k(1− ησmin)αk + (1− ησmin)α

(1− (1− ησmin)α)2

· ‖u‖α2 exp

(
−η(1− (1− ησmin)kα)

1− (1− ησmin)α
‖u‖α2

)
,

for any k > 0, where σmin is the smaller of the smallest of singular values of the matrices 1
nX
>X

and 1
nX̂
>X̂ , and xix>i − x̃ix̃>i = σ1v1v

>
1 + σ2v2v

>
2 where v1 and v2 are orthogonal vectors.

Proof For simplicity, we consider Σ = I here. For general PSD sigma, similar steps can be
followed as in Appendix G. We can compute that∣∣ψθ(k, u)− ψθ̂(k, u)

∣∣
=

∣∣∣∣∣∣exp

−η k−1∑
j=0

∥∥∥∥(I − η

n

(
X>X

))j
u

∥∥∥∥α
2

− exp

−η k−1∑
j=0

∥∥∥∥(I − η

n

(
X̂>X̂

))j
u

∥∥∥∥α
2

∣∣∣∣∣∣
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≤ exp

−η k−1∑
j=0

∥∥∥∥(I − η

n

(
X>X

))j
u

∥∥∥∥α
2


︸ ︷︷ ︸

:=B

·

∣∣∣∣∣∣η
k−1∑
j=0

∥∥∥∥(I − η

n

(
X>X

))j
u

∥∥∥∥α
2

− η
k−1∑
j=0

∥∥∥∥(I − η

n

(
X̂>X̂

))j
u

∥∥∥∥α
2

∣∣∣∣∣∣︸ ︷︷ ︸
:=C

. (73)

We first consider bounding the term C in equation (73). From Lemma 19, we have for two positive
numbers a and b, and for some 1 ≤ α ≤ 2, we have

|aα − bα| ≤ |a− b|(aα−1 + bα−1).

Utilizing the above result and triangle inequality, we have∣∣∣∣∣∣η
k−1∑
j=0

∥∥∥∥(I − η

n

(
X>X

))j
u

∥∥∥∥α
2

− η
k−1∑
j=0

∥∥∥∥(I − η

n

(
X̂>X̂

))j
u

∥∥∥∥α
2

∣∣∣∣∣∣
=η

∣∣∣∣∣∣
k−1∑
j=0

[(∥∥∥∥(I − η

n

(
X>X

))j
u−

(
I − η

n

(
X̂>X̂

))j
u

∥∥∥∥
2

)

·

(∥∥∥∥(I − η

n

(
X>X

))j
u

∥∥∥∥α−1

2

+

∥∥∥∥(I − η

n

(
X̂>X̂

))j
u

∥∥∥∥α−1

2

)]∣∣∣∣∣ .
By definition, we have

1

n

∥∥∥X>Xu∥∥∥
2
≥ σmin‖u‖2, and

1

n

∥∥∥X̂>X̂u∥∥∥
2
≥ σmin‖u‖2.

If η ≤ 1
L , where L is the maximum of largest eigenvalues of 1

nX
>X and 1

nX̂
>X̂ , then,∥∥∥∥(I − η

n

(
X>X

))j
u

∥∥∥∥
2

≤ (1− ησmin)j‖u‖2.

Similarly, ∥∥∥∥(I − η

n

(
X̂>X̂

))j
u

∥∥∥∥
2

≤ (1− ησmin)j‖u‖2.

For any two symmetric matrices A and B with AB = BA, we have Aj − Bj = (A− B)(Aj−1 +
ABj−2 · · ·+Bj−1). It follows from the definitions that

X>X − X̂>X̂ = xix
>
i − x̃ix̃>i .

By using similar argument as before, we have∥∥∥∥(I − η

n

(
X>X

))j
u−

(
I − η

n

(
X̂>X̂

))j
u

∥∥∥∥
2

≤ ηj

n

∥∥∥xix>i − x̃ix̃>i ∥∥∥
2

(1− ησmin)j−1‖u‖2.
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Note that x̃iã>i − xix>i is a rank 2 matrix. Consider the two non-zero eigenvalues of this matrix are
σ1 and σ2. Hence, x̃ix̃>i −xix>i = σ1v1v

>
1 +σ2v2v

>
2 where v1 and v2 are the eigenvectors. Hence,

we have obtained a bound on the term C in equation (73) such that

C ≤ η2(σ1 + σ2)

n(1− ησmin)
‖u‖α2

k−1∑
j=0

j(1− ησmin)jα.

Now, let us consider bounding the term B in equation (73). Using previous arguments,

exp

−η k−1∑
j=0

∥∥∥∥(I − η

n

(
X>X

))j
u

∥∥∥∥α
2

 ≤ exp

−η k−1∑
j=0

(1− ησmin)jα‖u‖α2

 .

Hence, we get,∣∣ψθ(k, u)− ψθ̂(k, u)
∣∣

≤ η2(σ1 + σ2)

n(1− ησmin)

k−1∑
j=0

[j(1− ησmin)jα]‖u‖α2 exp

−η k−1∑
j=0

(1− ησmin)jα‖u‖α2


=

η2(σ1 + σ2)

n(1− ησmin)

(k − 1)(1− ησmin)α(k+1) − k(1− ησmin)αk + (1− ησmin)α

(1− (1− ησmin)α)2

· ‖u‖α2 exp

(
−η(1− (1− ησmin)kα)

1− (1− ησmin)α
‖u‖α2

)
,

where we applied Lemma 20 and the proof is complete.

In particular, by letting k → ∞ in Lemma 15, we obtain the following corollary that concerns
the stability of the characteristic functions for the stationary distributions. By denoting ψθ(u) :=
ψθ(∞, u) and ψθ̂(u) := ψθ̂(∞, u), we have the following result.

Corollary 16 Under the settings in Lemma 15, we have∣∣ψθ(u)− ψθ̂(u)
∣∣ ≤ η2(σ1 + σ2)(1− ησmin)α−1

n(1− (1− ησmin)α)2
· ‖u‖α2 exp

(
− η

1− (1− ησmin)α
‖u‖α2

)
.

Proof The results directly follows from Lemma 15 by letting k →∞ and using the results for sum
of geometric series.

Theorem [Restatement of Theorem 6] Consider the d-dimensional loss function f(x) = |θ>x|p
such that θ, x ∈ Rd. For any x ∼ PX if ‖x‖2 ≤ R, for any X sampled uniformly at random from
the set Xn, if 1

n‖X
>Xu‖2 ≥ σmin‖u‖2 for u ∈ Rd and for any two X ∼= X̂ sampled from Xn

generating two stochastic process given by SDEs in equations (20) and (21) for η ≤ 1
L where L is

the maximum of largest eigenvalues of 1
nX
>X and 1

nX̂
>X̂ , ‖xix>i − x̃ix̃>i ‖2 ≤ 2σ holds with high

probability. Then, for p ∈ [1, α), we have

εstab ≤
2Rp

π
Γ(p+ 1) cos

(
(p− 1)π

2

)
ση1+ p

α (1− ησmin)α−1

nα(1− (1− ησmin)α)1+ p
α

Γ
(

1− p

α

)
with high probability.
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Proof We have d-dimensional loss function for an x ∈ Rd sampled uniformly at random from PX ,
f(θ) = |θ>x|p Let us denote the Fourier transform of f , Ff(u) as h(u). For an orthogonal matrix
A such that Ae1 = x

‖x‖2 , we have from the results in Lemma 21,

h(Au) = 2‖x‖p2(2π)d−1δ(u2, · · · , ud)Γ(p+ 1) cos

(
(p+ 1)π

2

)
1

|u1|p+1
for p ∈ [1, 2), (74)

and

h(Au) = 2‖x‖p2(2π)d−1δ(u1, u2, · · · , ud)
2

u2
1

for p = 2, (75)

where δ is the Dirac-delta function. Let us first consider the case when p ∈ [1, 2). From equa-
tion (18),

εstab(Acont)

= sup
X∼=X̂

sup
x∈X

1

(2π)d

∫
Rd

∣∣ψθ(u)− ψθ̂(u)
∣∣ |h(u)| du

= sup
X∼=X̂

sup
x∈X

1

(2π)d

∫
Rd

∣∣ψθ(u)− ψθ̂(u)
∣∣ ∣∣∣∣∫

Rd
|θ>x|peiu>θ dθ

∣∣∣∣ du

= sup
X∼=X̂

sup
x∈X

1

(2π)d

∫
Rd

η2(σ1 + σ2)(1− ησmin)α−1

n(1− (1− ησmin)α)2
· ‖u‖α2 exp

(
− η

1− (1− ησmin)α
‖u‖α2

)
·
∣∣∣∣∫

Rd
|θ>x|peiu>θ dθ

∣∣∣∣ du.

In the above equation, let us apply the change of variable u = Av and use result from Lemma 21
(equations (74)) and we get the following,

εstab(Acont)

= sup
X∼=X̂

sup
x∈X

1

(2π)d

∫
Rd

η2(σ1 + σ2)(1− ησmin)α−1

n(1− (1− ησmin)α)2
· ‖Av‖α2 exp

(
− η‖Av‖α2

1− (1− ησmin)α

)
·
∣∣∣∣∫

Rd
|θ>x|pei(Av)>θ dθ

∣∣∣∣ dv

= sup
X∼=X̂

sup
x∈X

1

(2π)d

∫
Rd

η2(σ1 + σ2)(1− ησmin)α−1

n(1− (1− ησmin)α)2

· ‖v‖α2 exp

(
− η‖v‖α2

1− (1− ησmin)α

)
|h(Av)| dv

= sup
X∼=X̂

sup
x∈X

1

(2π)d

∫
Rd

[
η2(σ1 + σ2)(1− ησmin)α−1

n(1− (1− ησmin)α)2
· ‖v‖α2 exp

(
− η‖v‖α2

1− (1− ησmin)α

)
·
(∣∣∣∣2‖x‖p2(2π)d−1δ(v2, · · · , vd)Γ(p+ 1) cos

(
(p+ 1)π

2

)
1

|v1|p+1

∣∣∣∣)] dv

= sup
X∼=X̂

sup
x∈X

‖x‖p2
π

Γ(p+ 1) cos

(
(p− 1)π

2

)
η2(σ1 + σ2)(1− ησmin)α−1

n(1− (1− ησmin)α)2
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·
∫ ∞
−∞
|v1|α exp

(
−η|v1|α

1− (1− ησmin)α

)
1

|v1|p+1
dv1

= sup
X∼=X̂

sup
x∈X

2‖x‖p2
π

Γ(p+ 1) cos

(
(p− 1)π

2

)
η2(σ1 + σ2)(1− ησmin)α−1

n(1− (1− ησmin)α)2

·
∫ ∞

0
|v1|α−p−1 exp

(
−η|v1|α

1− (1− ησmin)α

)
dv1.

In the above integral, by substituting ηvα1
1−(1−ησmin)α with t so that

dt = vα−1 ηα

1− (1− ησmin)α
dv1, and

1

vp
=

(
η

1− (1− ησmin)α

) p
α

t−p/α, (76)

we have,

εstab(Acont) = sup
X∼=X̂

sup
x∈X

2‖x‖p2
π

Γ(p+ 1) cos

(
(p− 1)π

2

)
η2(σ1 + σ2)(1− ησmin)α−1

n(1− (1− ησmin)α)2

· 1− (1− ησmin)α

ηα

(
η

1− (1− ησmin)α

) p
α
∫ ∞

0
t−p/αe−t dt

= sup
X∼=X̂

sup
x∈X

2‖x‖p2
π

Γ(p+ 1) cos

(
(p− 1)π

2

)
η1+ p

α (σ1 + σ2)(1− ησmin)α−1

nα(1− (1− ησmin)α)1+ p
α

Γ
(

1− p

α

)
. (77)

Now, if σ is the upper bound on σ1 and σ2 for all X ∼= X̂ ∈ Xn and ‖x‖2 ≤ R for x ∼ PX with
high probability then,

εstab ≤
2Rp

π
Γ(p+ 1) cos

(
(p− 1)π

2

)
ση1+ p

α (1− ησmin)α−1

nα(1− (1− ησmin)α)1+ p
α

Γ
(

1− p

α

)
. (78)

This completes the proof.

Appendix G. Case for General P.S.D Σ (Preconditioning)

In this section, we would discuss the effect of general positive semidefinite matrix Σ. As in equa-
tions (79) and (80), we consider two SDEs corresponding to a rotationally symmetric α-stable Lévy
process Lαt in Rd,

dθt = − 1

n

(
X>X

)
θtdt+ ΣdLαt , (79)

dθ̂t = − 1

n

(
X̂>X̂

)
θ̂tdt+ ΣdLαt , (80)

where Σ ∈ Rd×d is a real valued P.S.D matrix. The corresponding characteristic functions are given
by as in equations (81) and (82) (see Lemma 3),

ψθ(u) = exp

(
−
∫ ∞

0

∥∥∥Σ>e−s
1
n

(X>X)u
∥∥∥α

2
ds

)
, (81)
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ψθ̂(u) = exp

(
−
∫ ∞

0

∥∥∥Σ>e−s
1
n

(X̂>X̂)u
∥∥∥α

2
ds

)
. (82)

We assume that the largest and smallest eigenvalues of the matrix Σ is λmax and λmin.

Lemma 17 For two matrices X ∈ Rn×d and X̂ ∈ Rn×d as defined earlier, the absolute value
of difference between the characteristic functions of the stationary distributions at any u ∈ Rd
corresponding to d-dimensional rotation invariant processes in equations (81) and (82) is bounded
as

|ψθ(u)− ψθ̂(u)| ≤ λαmax

2(σ1 + σ2)‖u‖α2
nασmin

exp

(
−λ

α
min‖u‖α2
α2σ2

min

)
,

where σmin is the smaller of the smallest of singular values of the matrices 1
nX
>X and 1

nX̂
>X̂ ,

and xix>i − x̃ix̃>i = σ1v1v
>
1 + σ2v2v

>
2 where v1 and v2 are orthogonal vectors.

Proof We can compute that

|ψθ(u)− ψθ̂(u)|

=

∣∣∣∣exp

(
−
∫ ∞

0

∥∥∥Σ>e−s
1
n
X>Xu

∥∥∥α
2

ds

)
− exp

(
−
∫ ∞

0

∥∥∥Σ>e−s
1
n
X̂>X̂u

∥∥∥α
2

ds

)∣∣∣∣
≤ exp

(
−
∫ ∞

0

∥∥∥Σ>e−s
1
n
X>Xu

∥∥∥α
2

ds

)
︸ ︷︷ ︸

:=B

∣∣∣∣∫ ∞
0

∥∥∥Σ>e−s
1
n
X>Xu

∥∥∥α
2

ds−
∫ ∞

0

∥∥∥Σ>e−s
1
n
X̂>X̂u

∥∥∥α
2

ds

∣∣∣∣︸ ︷︷ ︸
:=C

.

We first consider the term C in the above equation. From Lemma 19, we have for two positive
numbers a and b, and for some 1 ≤ α ≤ 2, we have

|aα − bα| ≤ |a− b|(aα−1 + bα−1).

Now,

C =

∣∣∣∣∫ ∞
0

∥∥∥Σ>e−s
1
n
X>Xu

∥∥∥α
2

ds−
∫ ∞

0

∥∥∥Σ>e−s
1
n
X̂>X̂u

∥∥∥α
2

ds

∣∣∣∣
=

∣∣∣∣∫ ∞
0

(∥∥∥Σ>e−s
1
n
X>Xu

∥∥∥α
2
−
∥∥∥Σ>e−s

1
n
X̂>X̂u

∥∥∥α
2

)
ds

∣∣∣∣
≤
∫ ∞

0

∣∣∣∥∥∥Σ>e−s
1
n
X>Xu

∥∥∥
2
−
∥∥∥Σ>e−s

1
n
X̂>X̂u

∥∥∥
2

∣∣∣
·
(∥∥∥Σ>e−s

1
n
X>Xu

∥∥∥α−1

2
+
∥∥∥Σ>e−s

1
n
X̂>X̂u

∥∥∥α−1

2

)
ds

≤
∫ ∞

0

∥∥∥Σ>e−s
1
n
X>Xu− Σ>e−s

1
n
X̂>X̂u

∥∥∥
2

(∥∥∥Σ>e−s
1
n
X>Xu

∥∥∥α−1

2
+
∥∥∥Σ>e−s

1
n
X̂>X̂u

∥∥∥α−1

2

)
ds

=

∫ ∞
0

∥∥∥Σ>e−s
1
n
X>X

(
I − es

1
n
X>X−s 1

n
X̂>X̂

)
u
∥∥∥

2

·
(∥∥∥Σ>e−s

1
n
X>Xu

∥∥∥α−1

2
+
∥∥∥Σ>e−s

1
n
X̂>X̂u

∥∥∥α−1

2

)
ds
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≤ λαmax

∫ ∞
0

∥∥∥e−s 1
n
X>X

(
I − es

1
n
X>X−s 1

n
X̂>X̂

)
u
∥∥∥

2

(∥∥∥e−s 1
n
X>Xu

∥∥∥α−1

2
+
∥∥∥e−s 1

n
X̂>X̂u

∥∥∥α−1

2

)
ds︸ ︷︷ ︸

This term has been analyzed as an upper bound on term C in Lemma 13 (Equation (63)).

.

Using the result directly from equation (65), we have,

C ≤ λαmax

2(σ1 + σ2)‖u‖α2
nα2σ2

min

. (83)

Next, let us consider the term B. Using the similar arguments as in Lemma 13 (equation (66)), we
have,

exp

(
−
∫ ∞

0

∥∥∥Σ>e−s
1
n
X>Xu

∥∥∥α
2

ds

)
≤ exp

(
−λαmin‖u‖α2

∫ ∞
0

e−sασminds

)
= exp

(
−λ

α
min‖u‖α2
ασmin

)
. (84)

Hence, we have the final result,

|ψθ(u)− ψθ̂(u)| ≤ λαmax

2(σ1 + σ2)‖u‖α2
nα2σ2

min

exp

(
−λ

α
min‖u‖α2
ασmin

)
, (85)

which completes the proof.

Theorem 18 Consider the d-dimensional loss function f(x) = |θ>x|p such that θ, x ∈ Rd. For any
x ∼ PX if ‖x‖2 ≤ R, for any X sampled uniformly at random from the set Xn, if 1

n‖X
>Xu‖2 ≥

σmin‖u‖2 for u ∈ Rd and for any two X ∼= X̂ sampled from Xn generating two stochastic process
given by SDEs in equations (79) and (80), ‖xix>i − x̃ix̃>i ‖2 ≤ 2σ holds with high probability. Then,

(i) For α ∈ (1, 2), the algorithm is not stable when p ∈ [α, 2] i.e. εstab(Acont) diverges. When
α = p = 2 then with high probability εstab(Acont) ≤ 2R2

π
λ2maxσ
nσmin

.

(ii) For p ∈ [1, α), we have the following upper bound for the algorithmic stability,

εstab(Acont)

≤ 8Rp

π
λpmin

(
λmax

λmin

)α σ

nα2σmin
Γ(p+ 1) cos

(
(p− 1)π

2

)(
1

ασmin

) p
α

Γ
(

1− p

α

)
= c(α),

which holds with high probability. Furthermore, for some α0 > 1, if we have

σmin ≥ exp

(
1 +

4

p
− logα0 − φ

(
1− p

α0

)
− α2

0 log

(
λmax

λmin

))
,

where φ is the digamma function, then the map α→ c(α) is increasing for α ∈ [α0, 2).
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Proof We have d-dimensional loss function for an x ∈ Rd sampled uniformly at random from PX ,
f(θ) = |θ>x|p Let us denote the Fourier transform of f , Ff(u) as h(u). For an orthogonal matrix
A such that Ae1 = x

‖x‖2 , we have from the results in Lemma 21,

h(Au) = 2‖x‖p2(2π)d−1δ(u2, · · · , ud)Γ(p+ 1) cos

(
(p+ 1)π

2

)
1

|u1|p+1
for p ∈ [1, 2), (86)

and

h(Au) = 2‖x‖p2(2π)d−1δ(u1, u2, · · · , ud)
2

u2
1

for p = 2, (87)

where δ is the Dirac-delta function. Let us first consider the case when p ∈ [1, 2). From equa-
tion (18) and Lemma 17,

εstab(Acont) = sup
X∼=X̂

sup
x∈X

1

(2π)d

∫
Rd
|ψθ(u)− ψθ̂(u)||h(u)| du

= sup
X∼=X̂

sup
x∈X

1

(2π)d

∫
Rd
|ψθ(u)− ψθ̂(u)|

∣∣∣∣∫
Rd
|θ>x|peiu>θ dθ

∣∣∣∣ du

= sup
X∼=X̂

sup
x∈X

1

(2π)d

∫
Rd
λαmax

2(σ1 + σ2)‖u‖α2
nα2σ2

min

· exp

(
−λ

α
min‖u‖α2
ασmin

) ∣∣∣∣∫
Rd
|θ>x|peiu>θ dθ

∣∣∣∣ du.

In the above equation, we make change of variable u = Av and use the result from Lemma 21
(equation (86)) to get the following,

εstab(Acont) = sup
X∼=X̂

sup
x∈X

1

(2π)d

∫
Rd
λαmax

2(σ1 + σ2)‖Av‖α2
nα2σ2

min

· exp

(
−λ

α
min‖Av‖α2
ασmin

) ∣∣∣∣∫
Rd
|θ>x|pei(Av)>θ dθ

∣∣∣∣ dv

= sup
X∼=X̂

sup
x∈X

1

(2π)d

∫
Rd
λαmax

2(σ1 + σ2)‖v‖α2
nα2σ2

min

exp

(
−λ

α
min‖v‖α2
ασmin

)
|h(Av)| dv

= sup
X∼=X̂

sup
x∈X

1

(2π)d

∫
Rd

[(
λαmax

2(σ1 + σ2)‖v‖α2
nα2σ2

min

exp

(
−λ

α
min‖v‖α2
ασmin

))
·
(∣∣∣∣2‖x‖p2(2π)d−1δ(v2, · · · , vd)Γ(p+ 1) cos

(
(p+ 1)π

2

)
1

|v1|p+1

∣∣∣∣)] dv

= sup
X∼=X̂

sup
x∈X

2‖x‖p2
π

Γ(p+ 1) cos

(
(p− 1)π

2

)
λαmax(σ1 + σ2)

nα2σ2
min

·
∫ ∞
−∞
|v1|α exp

(
−λαmin|v1|α

ασmin

)
1

|v1|p+1
dv1

= sup
X∼=X̂

sup
x∈X

4‖x‖p2
π

λαmax(σ1 + σ2)

nα2σ2
min

Γ(p+ 1) cos

(
(p− 1)π

2

)
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·
∫ ∞

0
vα−p−1

1 exp

(
−λαminv

α
1

ασmin

)
dv1.

In the above integral, by substituting λαminv
α

ασmin
with t so that

dt = λαminv
α−1 1

σmin
dv, and

1

vp
= λpmin

(
1

ασmin

) p
α

t−p/α, (88)

we have,

εstab(Acont) = sup
X∼=X̂

sup
x∈X

4‖x‖p2
π

λpmin

(
λmax

λmin

)α (σ1 + σ2)

nα2σmin

· Γ(p+ 1) cos

(
(p− 1)π

2

)(
1

ασmin

) p
α
∫ ∞

0
t−p/αe−t dt. (89)

It is clear that, the above integral diverge for p ≥ α, hence the algorithm is not stable for p ∈ [1, 2).
Now, we check the case for p = 2. For p = 2, we have,

εstab(Acont) = sup
X∼=X̂

sup
x∈X

1

(2π)d

∫
Rd
λαmax

2(σ1 + σ2)‖u‖α2
nα2σ2

min

· exp

(
−λ

α
min‖u‖α2
ασmin

) ∣∣∣∣∫
Rd
|θ>x|2eiu>θ dθ

∣∣∣∣ du.

In the above equation, we make change of variable u = Av and use the result from Lemma 21
(equation (87)) to get the following,

εstab(Acont)

= sup
X∼=X̂

sup
x∈X

{
1

(2π)d

∫
Rd
λαmax

2(σ1 + σ2)‖Av‖α2
nα2σ2

min

· exp

(
−λ

α
min‖Av‖α2
ασmin

) ∣∣∣∣∫
Rd
|θ>x|2ei(Av)>θ dθ

∣∣∣∣ dv

}

= sup
X∼=X̂

sup
x∈X

1

(2π)d

∫
Rd
λαmax

2(σ1 + σ2)‖v‖α2
nα2σ2

min

exp

(
−λ

α
min‖v‖α2
ασmin

)
|h(Av)| dv

= sup
X∼=X̂

sup
x∈X

2

π

∫
Rd
λαmax

(σ1 + σ2)‖v‖α2
nα2σ2

min

exp

(
−λ

α
min‖v‖α2
ασmin

)
‖x‖22δ(v1, v2, · · · , vd)

2

v2
1

dv.

In the last equation, we used the result from Lemma 21. The above integral clearly diverges for
α < 2. However, when α = 2, then

εstab(Acont) ≤
‖x‖22
π

λ2
max(σ1 + σ2)

nσ2
min

.

Now, if σ is the upper bound on σ1 and σ2 for all X ∼= X̂ ∈ Xn and ‖x‖2 ≤ R for x ∼ PX
with high probability then,

εstab(Acont) ≤
2R2

π

λ2
maxσ

nσ2
min

,
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holds with high probability. This proves part (i) of our claim.
Next, we will prove part (ii) when p < α. We have from equation (89),

εstab(Acont)

= sup
X∼=X̂

sup
x∈X

{
4‖x‖p2
π

λpmin

(
λmax

λmin

)α (σ1 + σ2)

nα2σmin
Γ(p+ 1)

· cos

(
(p− 1)π

2

)(
1

ασmin

) p
α
∫ ∞

0
t−p/αe−t dt

}

= sup
X∼=X̂

sup
x∈X

4‖x‖p2
π

λpmin

(
λmax

λmin

)α (σ1 + σ2)

nα2σmin
Γ(p+ 1) cos

(
(p− 1)π

2

)(
1

ασmin

) p
α

Γ
(

1− p

α

)
.

Now, if σ is the upper bound on σ1 and σ2 for all X ∼= X̂ ∈ Xn and ‖x‖2 ≤ R for x ∼ PX with
high probability then,

εstab(Acont) =
8Rp

π
λpmin

(
λmax

λmin

)α σ

nα2σmin
Γ(p+ 1) cos

(
(p− 1)π

2

)(
1

ασmin

) p
α

Γ
(

1− p

α

)
holds with high probability. Now, consider the function,

Λ(α) =
1

α2

(
λmax

λmin

)α( 1

ασmin

) p
α

Γ
(

1− p

α

)
.

We can compute that

∂α log Λ(α) = log

(
λmax

λmin

)
+

p

α2

[
logα+ log σmin − 1− 2α

p
+ φ

(
1− p

α

)]
,

where φ is the digamma function. For any arbitrary α0, if we choose

σmin ≥ exp

(
1 +

2

p
− logα0 − φ

(
1− p

α0

)
− α2

0 log

(
λmax

λmin

))
,

then ∂α log Λ(α) > 0 for α ∈ [α0, 2). Hence, for all α1, α2 ∈ [α0, 2), α1 < α2 it follows that
Λ(α1) ≤ Λ(α2). This proves that c(α) is an increasing map in α. This completes the proof.

Appendix H. Useful Results

Here below, we provide a few technical results which are used in the proofs of the main results.

Lemma 19 For any two positive numbers a and b, and for some 0 < α ≤ 2, we have

|aα − bα| ≤ |a− b|(aα−1 + bα−1). (90)

Proof When a = b > 0, the result is obviously true. Without loss of generality, let us assume that
a > b > 0 and by considering the RHS of (90), we get

|a− b|(aα−1 + bα−1) = (a− b)(aα−1 + bα−1)
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= aα + abα−1 − aα−1b− bα

= |aα − bα|+ abα−1 − aα−1b.

Since, we have assumed that a > b > 0 and α > 0, hence abα−1 − aα−1b > 0 always which
essentially means,

|aα − bα| ≤ |a− b|(aα−1 + bα−1).

Same argument can be given while assuming b > a > 0. This completes the proof.

Lemma 20 For any a > 0, and k ∈ N,

k−1∑
j=0

jaj =
(k − 1)ak+1 − kak + a

(a− 1)2
.

In particular, for any 0 < a < 1,
∞∑
j=0

jaj =
a

(a− 1)2
.

Proof We can compute that

k−1∑
j=0

jaj = a

k−1∑
j=1

jaj−1 = a
d

da

k−1∑
j=1

aj = a
d

da

(
ak − a
a− 1

)
=

(k − 1)ak+1 − kak + a

(a− 1)2
.

The proof is complete.

Lemma 21 (Fourier transform of |θ>x|p) Consider the function f(θ) = |θ>x|p for p ∈ [1, 2]
and h(u) denotes the Fourier transform of f(θ) where u = [u1, · · · , ud] is a vector in d-dimension.
Given an unitary matrix A ∈ Rd×d such that A>A = AA> = I where I is an identity matrix in
Rd×d and Ae1 = x

‖x‖2 where ei is vector in Rd with all entries set to 0 except ith entry which is set
to 1, we have

h(Au) = 2‖x‖p2(2π)d−1δ(u2, · · · , ud)Γ(p+ 1) cos

(
(p+ 1)π

2

)
1

|u1|p+1
for p ∈ [1, 2),

and

h(Au) = 2‖x‖p2(2π)d−1δ(u1, u2, · · · , ud)
2

u2
1

for p = 2,

where δ is the Dirac-delta function.

Proof We recall that the Fourier transform is given by

Ff(u) =

∫
Rd
f(θ)e−iu

>θdθ.
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Let

h(u) := F [|〈x, ·〉|p] = ‖x‖p2F
[∣∣∣∣〈 x

‖x‖2
, ·
〉∣∣∣∣p] .

We consider now an unitary matrix A ∈ Rd×d such that A>A = AA> = I where I is an identity
matrix in Rd×d and Ae1 = x

‖x‖2 where ei is vector in Rd with all entries set to 0 except ith entry
which is set to 1. Now let us compute h(Au).

h(Au) = ‖x‖p2
∫
Rd

∣∣∣∣〈 x

‖x‖2
, θ

〉∣∣∣∣p e−i(Au)>θ dθ

= ‖x‖p2
∫
Rd
|〈Ae1, θ〉|p e−i(Au)>θ dθ.

In the above integral we substitute, β = A>θ. Hence, when p ∈ [1, 2), we have

h(Au) = ‖x‖p2
∫
Rd
|〈e1, β〉|pe−iu

>β dβ

= ‖x‖p2(2π)d−1δ(u2, · · · , ud)
∫ ∞
−∞
|β1|p e−iu1β1 dβ1

= ‖x‖p2(2π)d−1δ(u2, · · · , ud)
∫ ∞

0

(
e−iu1β1 + eiu1β1

)
βp1 dβ1

= 2‖x‖p2(2π)d−1δ(u2, · · · , ud)Γ(p+ 1) cos

(
(p+ 1)π

2

)
1

|u1|p+1
.

When p = 2, we have

h(Au) = ‖x‖p2
∫
Rd
|〈e1, β〉|2e−iu

>β dβ

= ‖x‖p2(2π)d−1δ(u2, · · · , ud)
∫ ∞
−∞
|β1|2 e−iu1β1 dβ1

= 2‖x‖p2(2π)d−1δ(u1, u2, · · · , ud)
2

u2
1

. (91)

This completes the proof.

Appendix I. Further Details on Experiment Settings and Resources

This section contains further details regarding the experiments presented in the main paper. As the
synthetic data experiment setting was fully described in the text, most of the information below will
pertain to the real data experiments with the exception of additional synthetic data results that in-
clude mean estimates. See the accompanying code regarding the implementation of the experiments
described.

I.1. Additional synthetic data results

In addition to median and interquartile range based results presented in the paper, we add the fol-
lowing results in Figure 3 with a robust mean estimate of the results, demonstrating a similar pattern
to that observed in the main paper.
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Figure 3: Results of the synthetic data experiments with varying a, α, and d. Each experiment was
repeated 500 times with n = 1000. The lines correspond to the robust mean estimates
with the samples with losses above the 90% quantile removed from among the respective
experiments.

I.2. Datasets

The real data experiments involved a supervised learning setting, where images are classified into
a number of predefined class labels. Each model architecture with given hyperparameters were
trained on MNIST (LeCun et al., 2010), CIFAR10, and CIFAR100 (Krizhevsky, 2009) data sets4.
The MNIST data set includes 28× 28 black and white handwritten digits, with digits ranging from
0 to 9. The data set in its original form includes 60000 training and 10000 test samples. CIFAR10
and CIFAR100 are also image classification dataset comprising 32 × 32 color images of objects
or animals, making up 10 and 100 classes respectively. There are 50000 training and 10000 test
images in either of these data sets, and the instances are divided among classes equally. We used
the standard train-test splits in all data sets.

I.3. Models

We used three different architectures in our experiments: a fully connected network with 4 hidden
layers (FCN4), another fully connected network with 6 hidden layers (FCN6), and a convolutional
neural network (CNN). In both FCN architectures, all hidden layer widths were 2048. All archi-
tectures featured ReLU activation functions. Batch normalization, dropout, residual layers, or any
explicit regularization term in the loss function were not used in any part of the experiments. The
architecture we chose for our CNN model closely follows that of VGG11 model (Simonyan and Zis-
serman, 2015), with the significant difference that only a single linear layer with a softmax output
follows the convolutional layers presented below:

64,M, 128,M, 256, 256,M, 512, 512,M, 512, 512,M.

Here, integers describe the number of filters for 2-dimensional convolutional layers - for which
the kernel sizes are 3× 3. M stands for 2× 2 max-pooling operations with a stride value of 2. This

4. MNIST and CIFAR10/100 data sets have been shared under Creative Commons Attribution-Share Alike 3.0 license
and MIT License respectively.
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architecture was slightly modified for the MNIST experiments by removing the first max-pooling
layer due to the smaller dimensions of the MNIST images. The Table 1 describes the number of
different parameters used for each model-dataset combination.

FCN4 FCN6 CNN
MNIST 14,209,024 22,597,632 9,221,696

CIFAR10 18,894,848 27,283,456 9,222,848
CIFAR100 18,899,456 27,288,064 9,227,456

Table 1: Number of parameters for model-dataset combinations.

I.4. Training and hyperparameters

As described in the main text, the models were trained with SGD until convergence on the training
set. The convergence criteria for MNIST and CIFAR-10 is a training negative log-likelihood
(NLL) of < 5 × 10−5 and a training accuracy of 100%, and for CIFAR-100 these are a NLL of
< 1× 10−2 and a training accuracy of > 99%. We use two different batch sizes (b = 50, 100) and
a diversity of learning rates (η) to generate a large range of η/b values. Table 2 presents the η/b
values created for each experiment setting. The varying nature of these ranges are due to the fact
that different η/b values might lead to heavy-tailed behavior or divergence under different points
in this hyperparameter space. Source code includes the enumerations of specific combinations of
these hyperparameters for all settings.

FCN4 FCN6 CNN
MNIST 5× 10−5 to 1.14× 10−2 5× 10−5 to 8.8× 10−3 1× 10−5 to 6.35× 10−3

CIFAR10 5× 10−5 to 2.7× 10−3 2.5× 10−5 to 4× 10−3 1× 10−5 to 1.5× 10−3

CIFAR100 1× 10−5 to 1.6× 10−3 1× 10−5 to 2.25× 10−3 1× 10−5 to 7× 10−4

Table 2: The ranges of η/b for all experiments.

I.5. Tail-index estimation

The multivariate estimator proposed by Mohammadi et al. (2015) was used for tail-index estimation:

Theorem 22 ((Mohammadi et al., 2015, Corollary 2.4)) Let {Xi}Ki=1 be a collection of i.i.d. ran-
dom vectors where each Xi is multivariate strictly stable with tail-index α, and K = K1 × K2.
Define Yi :=

∑K1
j=1Xj+(i−1)K1

for i ∈ {1, . . . ,K2}. Then, the estimator

1̂

α
,

1

logK1

( 1

K2

K2∑
i=1

log ‖Yi‖ −
1

K

K∑
i=1

log ‖Xi‖
)

(92)

converges to 1/α almost surely, as K2 →∞.

Previous deep learning research such as Tzagkarakis et al. (2018); Şimşekli et al. (2019); Bars-
bey et al. (2021) have also used this estimator. As described in the main text, tail-index estimation
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is conducted on the ergodic averaged version of the parameters, an operation which does not change
the tail-index of the parameters, to conform to this estimator’s assumptions. We use the columns
of parameters in FCN’s and specific filter parameters in CNN as the random vectors instances for
the multivariate distribution. Before conducting the tail-index estimation we center the parameters
using the index-wise median values. We observe that (i) centering with mean values, and/or (ii) us-
ing the alternative univariate tail-index estimator (Mohammadi et al., 2015, Corollary 2.2) from the
same paper produces qualitatively identical results. We also observe that using alternative tail index
estimators with symmetric α-stable assumption produces no qualitatively significant differences in
the estimated values (Sathe and Upadhye, 2022).

I.6. Hardware and software resources

The computational resources for the experiments were provided by a research institute. The bulk of
the resources were expended on the real data experiments, where a roughly equal division of labor
between Nvidia Titan X, 1080 Ti, and 1080 model GPU’s. Our results rely on 273 models, training
of which brings about a GPU-heavy computational workload. The training of a single model took
approximately 4.5 hours, with an approximate estimated total GPU time for the ultimate results 1270
hours. This total also includes the training time for the 40 models which diverged during training,
with the training stopping around 1 hour mark on average. The computational time expended for
tail-index estimation in real data experiments and the totality of synthetic experiments amounted to
approximately 20 hours of computation with similar hardware as described above.

The experiments were implemented in the Python programming language. For the real data
experiments, the deep learning framework PyTorch (Paszke et al., 2019) was extensively used, in-
cluding the implementation methodology in some of its tutorials5. PyTorch is shared under the
Modified BSD License.

5. HTTPS://GITHUB.COM/PYTORCH/VISION/BLOB/MASTER/TORCHVISION/MODELS/VGG.PY
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