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Abstract
We investigate the problem of cumulative regret minimization for individual sequence prediction
with respect to the best expert in a finite family of size K under limited access to information.
We assume that in each round, the learner can predict using a convex combination of at most p
experts for prediction, then they can observe a posteriori the losses of at most m experts. We
assume that the loss function is range-bounded and exp-concave. In the standard multi-armed
bandits setting, when the learner is allowed to play only one expert per round and observe only
its feedback, known optimal regret bounds are of the order O(

√
KT ). We show that allowing

the learner to play one additional expert per round and observe one additional feedback, improves
substantially the guarantees on regret. We provide a strategy combining only p = 2 experts per
round for prediction and observing m ≥ 2 experts’ losses. Its randomized regret (wrt. internal
randomization of the learners’ strategy) is of order O

(
(K/m) log(Kδ−1)

)
with probability 1− δ,

i.e., is independent of the horizon T (“constant” or “fast rate” regret) if (p ≥ 2 and m ≥ 3). We
prove that this rate is optimal up to a logarithmic factor in K. In the case p = m = 2, we provide
an upper bound of order O(K2 log(Kδ−1)), with probability 1 − δ. Our strategies do not require
any prior knowledge on the horizon T nor on the confidence parameter δ. Finally, we show that
if the learner is constrained to observe only one expert feedback per round, the worst-case regret
is the “slow rate” Ω(

√
KT ), suggesting that synchronous observation of at least two experts per

round is necessary to have a constant regret.
Keywords: Online Learning, Prediction with expert advice, Frugal Learning, Bandits feedback,
Partial monitoring.

1. Introduction

We study the problem of online individual sequence prediction with expert advice, based on the
setting presented by Cesa-Bianchi and Lugosi (2006, Chap. 2), under limited access to information.
In this game, the learner’s aim is to predict an unknown sequence (y1, y2, . . . ) of an outcome space
Y . The mismatch between the learner’s predictions (z1, z2, . . . ), taking values in a closed convex
subset X of a real vector space, and the target sequence is measured via a loss function `(z, y). The
learner’s predictions may only depend on past observations. Following standard terminology used
in prediction games, we will use the word “play” to mean the prediction output by the learner.

In each round t ∈ JT K (for a positive integer n, we denote JnK = {1, . . . , n}), the learner has
access to K experts predictions (F1,t, . . . , FK,t). The performance of the learner is compared to
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that of the best single expert. More precisely, the objective is to have a cumulated regret as small as
possible, where the regret is defined by

RT =
T∑
t=1

`(zt, yt)− min
i∈JKK

T∑
t=1

`(Fi,t, yt).

Experts aggregation is a standard problem in machine learning, where the learner observes the
predictions of all experts in each round and plays a convex combination of those. However, in many
practical situations, querying the advice of every expert is unrealistic. Natural constraints arise, such
as the financial cost of consultancy, time limitations in online systems, or computational budget
constraints if each expert is actually the output of a complex prediction model. One might hope to
make predictions in these scenarios while minimizing the underlying cost. Furthermore, we will
distinguish between the constraint on the number of experts’ advices used for prediction, and the
number of feedbacks (losses of individual experts) observed a posteriori. This difference naturally
arises in online settings where the advices are costly prior to the prediction task but just observing
reported experts’ losses after prediction can be cheaper. If the learner picks one single expert per
round, plays the prediction of that expert and observes the resulting loss, the game is the standard
multi-armed bandits problem. In this paper, we investigate intermediate settings, where the player
has a constraint p ≤ K on the number of experts used for prediction (via convex combination)
in each round and several feedbacks m ≤ K of actively chosen experts to see their losses. In the
standard multi-armed bandit problem, the played arm is necessarily the observed arm, this restriction
is known as the coupling between exploitation and exploration. In our protocol, we consider a
generalization of that restriction through the Inclusion Condition (IC): when m ≥ p, if IC = True,
we require that the set of played experts for prediction at round t, denoted St , is included in the
set of observed experts, denoted Ct. More precisely, if IC = True, in each round t, the player first
chooses p experts out of K and plays a convex combination of their prediction, then she observes
the feedback (loss) of the individual selected experts, then picksm−p additional experts to observe
their losses. When IC = False, the choice of played and observed experts is decoupled; this means
that the loss incurred by the p experts used for prediction is not necessarily observed.

A closely related question was considered by Seldin et al. (2014), obtaining O(
√
T ) regret

bounds for a general loss function (see extended discussion in the next section.) Our emphasis here
is on obtaining constant bounds guarantees on regret (i.e. independent of the time horizon T ). Such
“fast” rates, linked to assumptions related to strong convexity of the loss function `, have been the
subject of many works in learning (batch and online, in the stochastic setting) and optimization, but
are comparatively under-explored in fixed sequence prediction.

In the literature on the prediction of fixed individual sequences, no assumptions are made about
the distribution of the sequences. The attainability of fast rates (or constant regrets) is also possible
under certain assumptions on the loss function `: the full information setting was studied, mainly by
Vovk (1990), Vovk (1998), Vovk (2001), where it was shown that fast rates are attainable under the
mixability assumption on the loss function. The reader can find an extensive discussion of different
assumptions considered in the literature for this problem in van Erven et al. (2015). In the present
paper, we make the following assumption on the loss function:

Assumption 1 There exist B, η > 0, such that

• Exp-concavity: For all y ∈ Y , `(., y) is η-exp-concave over domain X .
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Protocol 1 The Game Protocol (p,m, IC).
Parameters:
p, the number of experts allowed for prediction.
m, the number of experts allowed for observation as feedback.
IC ∈ {False,True}, inclusion condition (if IC = True, we must have p ≤ m).

for each round t = 1, 2, . . . , T do
//Player phase:
Choose a subset St ⊆ JKK such that |St| = p, and convex combination weights (αi)i∈St .
if IC = True, then

Choose a subset Ct ⊆ JKK such that: |Ct| = m and St ⊆ Ct.
else if IC = False, then

Choose a subset Ct ⊆ JKK such that: |Ct| = m.
end if
//Resolution and feedback phase:
The player incurs the loss `(

∑
i∈St αi,tFi,t, yt).

The environment reveals the losses (`(Fi,t, yt))i∈Ct .
end for

• Range-boundedness: For all y ∈ Y: supx,x′∈X |`(x, y)− `(x′, y)| ≤ B.

Remark 1 This assumption is satisfied in some usual settings of learning theory such as the least
squares loss with bounded outputs: X = Y = [xmin, xmax] and `(x, x′) = (x − x′)2. Then `
satisfies Assumption 1, with B = (xmax − xmin)2 and η = 1/(2B).

Remark 2 The regret as well as all the algorithms to follow remain unchanged if we replace ` by
˜̀ : X → [0, B] defined by ˜̀(x, y) := `(x, y) −minx∈X `(x, y), so we can assume without loss of
generality ` ∈ [0, B] instead of range-boundedness; the results obtained still hold in the latter more
general case.

Assumption 1 was considered in several previous works tracking fast rates both in batch and
online learning (Koren and Levy, 2015, Mehta, 2017, Gonen and Shalev-Shwartz, 2016, Mahdavi
et al., 2015, van Erven et al., 2015). We introduce a new characterization for the class of functions
satisfying Assumption 1. Let c > 0, define E(c) as the class of functions f : X → R, such that

∀x, x′ ∈ X : f

(
x+ x′

2

)
≤ 1

2
f(x) +

1

2
f(x′)− 1

2c

(
f(x)− f(x′)

)2
. (1)

We introduce this class to highlight the sufficient and minimal property of ` required for the proofs
in this paper to work, namely we will only make use of (1) in the proofs of the results to come.

Lemma 3 below relates the class of functions E(.) to the set of functions satisfying Assumption 1
as well a sufficient condition (Lipschitz and Strongly Convex or LIST condition).

Lemma 3 Let y ∈ Y be fixed.

• If `(., y) is B-range-bounded and η-exp-concave, then: `(., y) ∈ E

(
ηB2

4 log
(

1+ η2B2

2

)
)

.
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• If `(., y) ∈ E(c) and is continuous, then: `(., y) is c-range-bounded and (4/c)-exp-concave.

• If `(., y) is L-Lipschitz and ρ-strongly convex, then `(., y) ∈ E(4L2/ρ).

Figure 1 summarizes bounds on regret for bounded and exp-concave loss functions. We only
consider fixed individual sequences, which corresponds to fully oblivious adversaries (see Audibert
and Bubeck, 2010 for a definition of different types of adversaries).

p = 1 p ≥ 2

Lower bound Upper bound Lower bound Upper bound (p = 2)

m = 1
√
KT

√
KT

√
KT

√
KT

[1] [2] [Thm 12] [2]

IC = True : K2 log(K)

m = 2
√
KT

√
KT K IC = False : K log(K)

[3] [2] [Thm 10] [Thm 7 and 6]

m ≥ 3
√

K
mT

√
K
mT log(K) K

m
K
m log(K)

[3] [3] [Thm 10] [Thm 6]

Figure 1: Existing bounds from the literature ([1] = Auer et al., 2002, [2]=Audibert and Bubeck,
2010, [3]=Seldin et al., 2014) and new bounds presented in this paper. All bounds hold
up to numerical constant factors. Under Assumption 1, all new upper bounds hold with
high probability if we replace the factor log(K) with log(Kδ−1), δ being the confidence
parameter. Lower bounds are in expectation. When bounds are the same, we omit the dis-
tinction between the settings IC = True and IC = False (coupling between exploration
and exploitation, see Protocol 1).

The remainder of this paper is organized as follows. Section 2 presents some results from the
literature relevant to the studied problem. Section 3 introduces algorithms satisfying constant regrets
in expectation in the case p = 2 and m ≥ 3; that section aims to present a preliminary view of the
intuitions for attaining our objective. Next, we present in Section 4 our main results consisting of
algorithms satisfying constant regrets with a high probability for p,m ≥ 2. Finally, in Section 5,
we present lower bounds for all the possible settings.

2. Discussion of related work

Games with limited feedback andO
(√
T
)

regret: In the standard setting of multi-armed bandit
problem, the learner has to repeatedly obtain rewards (or incur losses) by choosing from a fixed set
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of k actions and gets to see only the reward of the chosen action. Algorithms such as EXP3-IX
(Neu, 2015) or EXP3.P (Auer et al., 2002) achieve the optimal regret of order O

(√
KT

)
up to a

logarithmic factor, with high probability. A more general setting closer to ours was introduced by
Seldin et al. (2014). Given a budget m ∈ JKK, in each round t, the learner plays the prediction
of one expert It, then gets to choose a subset of experts Ct such that It ∈ Ct in order to see their
prediction. A careful adaptation of the EXP3 algorithm to this setting leads to an expected regret of
order O

(√
(K/m)T

)
, which is optimal up to logarithmic factor in K.

There are two significant differences between our framework and the setting presented by Seldin
et al. (2014). First, we allow the player to combine up to p experts out of K in each round for
prediction. Second, we make an additional exp-concavity-type assumption (Assumption 1) on the
loss function. These two differences allow us to achieve constant regrets bounds (independent of
T ).

Playing multiple arms per round was considered in the literature of multiple-play multi-armed
bandits (Zhou and Tomlin, 2018; Xia et al., 2016). In that setting, the player chooses in each round a
subset of arms of sizem, collects the sum of their rewards, and pays the sum of the (arm-dependent)
costs of the played arms, covered from a predefined budget B. However, optimal achievable guar-
antees in their setting are of the order O

(√
KB log(K/m)

)
, which translates into Ω(

√
KT/m)

where T is the total number of rounds.
Decoupling exploration and exploitation was considered by Avner et al. (2012). In each round,

the player plays one arm, then chooses one arm out of K to see its prediction (not necessarily the
played arm as in the canonical multi-armed bandits problem). They devised algorithms for this
setting and showed that the dependence on the number of arms K can be improved. However, it is
impossible to achieve a regret dependence on T better than O

(√
T
)
.

Prediction with limited expert advice was also investigated by Helmbold and Panizza (1997),Cesa-
Bianchi and Lugosi (2006, Chap. 6) and Cesa-Bianchi et al. (2005). However, in these problems,
known as label efficient prediction, the forecaster has full access to the experts advice but limited
information about the past outcomes of the sequence to be predicted. More precisely, the outcome
yt is not necessarily revealed to the learner. In such a framework, the optimal regret is of order
O
(√
T
)
.

Constant regrets in the full information setting: The setting where the learner plays a combi-
nation of all the experts and is allowed to see all their predictions in each round is known in the
literature as experts aggregation problem. It is a well-established framework (Cesa-Bianchi and
Lugosi, 2006) studied earlier by Freund and Schapire (1997), Kivinen and Warmuth (1999), Vovk
(1998). This setting was investigated under the assumption that the loss ` function is η-exp-concave
(i.e., the function exp(−η`) is concave). The Weighted Average Algorithm algorithm (Kivinen and
Warmuth, 1999) is known to achieve a constant regret of order O(log(K)/η). While this result
holds for any sequence of target variable and experts, it requires using a combination of all the ex-
perts in each round. In several situations, it is desirable to query and use the least number possible
of experts advice for various reasons (such as cost or time restrictions). In this paper, we aim at
achieving the same bounds (with high probability) under such constraints.

Fast rates in the batch setting: Another line of works investigated the problem of experts (or
estimators) aggregation in the batch setting with stochastic and i.i.d samples (i.e., each expert’s
predictions are assumed to follow an independent and identical distribution, see Tsybakov, 2003).
There are two distinct phases: a first step where the learner has access to training data points, then a
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prediction step where she outputs a combination of experts. The output in this setting is compared
against the best expert. A non-exhaustive list of works considering this problem includes those
of Audibert (2008), Lecué and Mendelson (2009), Wintenberger (2017), and Saad and Blanchard
(2021), where the emphasis was put on obtaining O(1/T ) “fast” rates for excess risk with high
probability under some convexity assumptions on the loss function. However, these algorithms are
specific to the stochastic setting and are not translatable to the adversarial. Saad and Blanchard
(2021) presented a budgeted setting where the learner is constrained to see at most m experts fore-
casts per data point and can predict using p experts. This paper is an extension of their framework
in the adversarial setting with a cumulative regret. Note that the algorithms presented in Saad and
Blanchard (2021) rely on the early elimination of sub-optimal experts, which is not applicable in
the adversarial setting considered here.

Online Convex Optimization with bandit feedback: A different objective is considered in the
online convex optimization framework, where the losses are compared against the best convex com-
bination of the experts. This problem was studied by Agarwal et al. (2010) and Shamir (2017)
under limited feedback. More precisely, the learner can query the value of the loss function in two
points from the convex envelope of the compact set over which the optimization is performed. In
such a setting, it was shown that for Lipschitz and strongly-convex loss functions, it is possible to
achieve an expected regret bounded by O

(
d2 log(T )

)
, where d is the dimension of the linear span

of experts (which plays a similar role to K in our setting). Observe that online convex optimization
algorithms (eg. as considered in the cited references) cannot be applied in our setting, where the
player is not allowed to play (or observe) an arbitrary point in the convex envelope of the experts,
but rather convex combinations with support on p (or m) experts. On the other hand, the goal aimed
at is different as well, since we want to minimize the regret with respect to the best expert, not with
respect to the best convex combination of experts (which would not be an attainable goal under the
considered play restrictions).

Why aim at high probability bounds instead of expectation bounds? Consider an algorithm
with internal randomization. From a practical point of view, bounds on its expected regret do not
necessarily translate into a similar guarantee with high probability. In many applications, such as
finance, controlling the fluctuations of risk is very important. From a mathematical point of view,
the “phenomenon” of negative regrets occurs when the player has a chance of outperforming the
benchmark (such as the best-fixed expert in hindsight) for some rounds. In this case, an algorithm
may have optimal expected regret but sub-optimal deviations. A manifestation of this problem is
for the EXP3 algorithm in multi-armed bandit setting (p = m = 1 in Protocol 1), which has a
worst case regret of

√
KT in expectation, but the random regret can be linear Ω(T ) with constant

probability (see the exercises of Chapter 11 of Lattimore and Szepesvári, 2020).

3. Algorithm with upper bound in expectation

In this section, we introduce a new algorithm with constant bounds on the expected regret, for the
setting p = 2, m ≥ 3. The aim of this section is to present some central intuitions, which are
complemented in the next section to achieve stronger guarantees. To ease notation, we denote for
each i ∈ JKK and t ∈ JT K: `i,t := `(Fi,t, yt).

The high-level idea of Algorithm 2 is common in the literature. It consists in constructing
unbiased estimates of unseen losses, which are fed to the classical exponential weighting (EW)
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scheme over the experts. The first novelty introduced here is that the estimates are centered in a
“data-dependent” way, whose goal is to reduce variance. This variance control is essential in our
analysis (see sketch of the proof below) in order to have constant regrets.

Let us denote p̂t the probability distribution derived by the EW principle using estimated cumu-
lated losses L̂i,t over the set of experts at round t. The second novelty consists in sampling just two
experts It and Jt, independently at random following p̂t, and m− 2 additional experts uniformly at
random for exploration. Then, we play the mid-point of the predictions of It and Jt (i.e., predict we
predict 1

2FIt,t + 1
2FJt,t).

The main idea for getting a constant regret bound is to compensate the variance term introduced
by the estimates (ˆ̀

i,t) by the negative second order term in inequality (1) satisfied by the loss. The
following theorem presents a constant bound on the expected regret, with a sketch of the proof.

Algorithm 2 Prediction with limited advice (p = 2,m ≥ 3)

Input Parameters: λ, m.
Initialize: L̂i,0 = 0 for all i ∈ JKK.
for each round t = 1, 2, . . . do
//Player phase:
Let

p̂i,t =
exp
(
−λL̂i,t−1

)
∑

j exp
(
−λL̂j,t−1

) .
Draw It and Jt according to p̂t independently.
Sample m− 2 random integers uniformly without replacement from JKK. Denote Ut this set.
Put Ct = Ut ∪ {It, Jt}.
//Resolution and feedback phase:
Output prediction 1

2(FIt,t + FJt,t), and incur its loss.
Observe the losses `i,t for i ∈ Ct.
//Update phase:
for i ∈ JKK do

Let
ˆ̀
i,t =

K

m− 2
1(i ∈ Ut) `i,t +

(
1− K

m− 2
1(i ∈ Ut)

)
`It,t.

Update L̂i,t = L̂i,t−1 + ˆ̀
i,t.

end for
end for

Define the following constant

λ̄ := min

4 log
(

1 + η2B2

2

)
ηB2

,
1

B

. (2)
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Theorem 4 Suppose Assumption 1 holds. For any input parameter: λ ∈
(
0, m−2

4K λ̄
)
, where λ̄ is

defined in (2), the expected regret of Algorithm 2 satisfies:

E[RT ] ≤ log(K)

λ
,

where the expectation is with respect to the learner’s own randomization.

Remark 5 Comparing this result with the guarantees of the classical exponential weights averag-
ing (EWA) algorithm, one can notice that in the full information feedback setting (m = K), our
guarantee is of the same order, up to a numerical constant, as the constant regret bound for EWA
for exp-concave losses. The advantage of our procedure is that it necessitates sampling only two ex-
perts from the EW distribution instead of full averaging. The obtained bound in the full-information
setting is tight up to a numerical constant factor (a matching lower bound was presented in Haus-
sler et al., 1998) . In the partial feedback case (m < K), Algorithm 2 guarantees a regret of order
O(K log(K)/m), as one would expect, the factor K/m reflects the proportion of the information
available to the learner. The last bound is tight, up to a logarithmic factor in K (see Theorem 10).

Sketch of the proof. Let (Ft) denote the natural filtration associated to the process of available
information, (St, Ct, (`i,t)t∈Ct), and denote Pt−1 resp. Et−1 the conditional probability resp. ex-
pectation with respect to Ft−1 (“past observations”). The loss function ` satisfies Assumption 1.
Therefore, using Lemma 3, the expected cumulative loss of Algorithm 2 is given by

T∑
t=1

E
[
`

(
FIt,t + FJt,t

2
, yt

)]
≤

T∑
t=1

E
[

1

2
`It,t +

1

2
`Jt,t −

λ̄

2
(`It,t − `Jt,t)2

]

=
T∑
t=1

K∑
i=1

E[p̂i,t `i,t]︸ ︷︷ ︸
Term 1

− λ̄
2

T∑
t=1

K∑
i,j=1

E
[
p̂i,tp̂j,t(`i,t − `j,t)2

]
︸ ︷︷ ︸

Term 2

. (3)

Observe that by construction of Algorithm 2, the elements in Ut were sampled uniformly at random
without replacement from JKK. Moreover, Ut is independent of It. Therefore, ˆ̀

i,t is an unbiased
estimator of `i,t conditionally to the available information: Et−1[ˆ̀i,t] = `i,t.

Using the tower rule, Term 1 therefore writes
∑

t

∑
i E[p̂i,t ˆ̀i,t]. Next, we use Lemma 26 in

the Appendix (by cancellation of consecutive logarithmic terms) with µt =
∑K

i=1 p̂i,t`i,t for each
t ∈ JT K. We have the following upper bound for Term 1 in (3):

T∑
t=1

K∑
i=1

E
[
p̂i,t ˆ̀

i,t

]
≤ min

i∈JKK

T∑
t=1

E
[
ˆ̀
i,t

]
+

log(K)

λ
+ λ

T∑
t=1

K∑
i=1

E
[
p̂i,t

(
ˆ̀
i,t − µt

)2
]
. (4)

We use the definition of ˆ̀
i,t and the tower rule to upper bound the last term in (3):

E

[
K∑
i=1

p̂i,t

(
ˆ̀
i,t − µt

)2
]
≤ 2K

m− 2
E

[
K∑
i=1

p̂i,t(`i,t − µt)2

]
+

2K

m− 2
E
[
(`It,t − µt)

2
]

=
4K

m− 2
E

[
K∑
i=1

p̂i,t(`i,t − µt)2

]
.
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Finally, we combine (3), (4) and the bound above to obtain

E[RT ] ≤ log(K)

λ
+ λ

4K

m− 2
E

[
K∑
i=1

p̂i,t(`i,t − µt)2

]
− λ̄

T∑
t=1

K∑
i,j=1

E
[
p̂i,tp̂j,t(`i,t − `j,t)2

]
.

Recall that if X and Y are two independent and identically distributed variables, we have E[(X −
Y )2] = 2 Var(X). Applying this identity to Term 2 in (3), we have

E[RT ] ≤ log(K)

λ
+

(
λ

4K

m− 2
− 1

B

)
E

[
K∑
i=1

p̂i,t(`i,t − µt)2

]
.

We conclude using λ < m−2
4K λ̄.

4. Algorithms with high probability upper bounds

In this section, we present new algorithms with guarantees that hold with high probability with re-
spect to the player’s own randomization. As discussed in Section 2, high probability guarantees are
important to assess any algorithm’s goodness due to potential exposure to negative regrets phenom-
ena and thus the possibility of deviations having larger order than the expectation.

We introduce sampling strategies for three different settings: p = 2 and m ≥ 3, (p = 2,m =
2, IC = False) and (p = 2,m = 2, IC = True), presented in Algorithms 3 and 4; Algorithm 3
is common to the first two settings. To ease notations, we denote for each i ∈ JKK and t ∈ JT K:
`i,t := `(Fi,t, yt).

In Algorithms 3 and 4, we build on the idea presented in Algorithm 2 and construct estimates
of unseen losses, which are fed into an EW scheme from which experts are sampled. Let p̂t denotes
the resulting estimated EW distribution. The main differences between the algorithms below and
Algorithm 2 are (a) the constructed loss estimates and (b) the sampling strategy when m = 2 and
IC = True.

Modified loss estimates: We start with the same unbiased loss estimates, with data-dependent
centering, from Algorithm 2, but additionally introduce a negative (or “optimistic”) bias on the esti-
mated losses, which takes into account an estimated variance. This can be conceptually compared to
the uniform confidence bound (UCB) algorithm in the standard stochastic bandit setting, which will
select “optimistically” arms which have the highest potential reward given past information (here,
loss is a negative reward). In this sense, this term tends to encourage diversity in expert sampling
(i.e. encourage sampling experts with a possibly higher estimated loss but also larger variance than
the best estimated experts so far). This is used in both Algorithms 3 and 4.

In the case m ≥ 3 or (m = 2, IC = False), there is still at least one free observation left for
exploration decoupled from exploitation. In these settings, Algorithm 3 uses the same sampling
scheme as Algorithm 2, namely sampling independently at random two experts following p̂t and
playing the central point of the sampled predictions. The remaining “pure exploration” observations
are sampled uniformly at random, with replacement.

Modified sampling scheme: the case (m = 2, IC = True) is more difficult since there is
no “free exploration” observation possible. This is the counterpart of the exploration/exploitation
tradeoff of the standard bandit setting, in the framework where we aim at constant regrets (so that
playing combinations of at least two arms is necessary, see next section). Taking inspiration from
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the standard bandit setting literature (p = m = 1), introducing a small uniform exploration compo-
nent appears necessary for the sampling strategy for algorithms achieving optimal high probability
guarantees (Audibert and Bubeck, 2010, Auer et al., 2002, Beygelzimer et al., 2011, Bubeck and
Cesa-Bianchi, 2012). For example, EXP3.P mixes the EW sampling rule with a uniform distribution
over the arms. On the other hand, EXP-IX (Neu, 2015) incorporates the exploration component im-
plicitly through a biased estimate of the losses. However, this uniform exploration costs O(

√
KT )

on the cumulative regret. Hence, aiming at constant regret necessitates a more subtle sampling rule.
We introduce a two-step sampling strategy. The first expert, denotedAt, is sampled following p̂t.

The second expert, denoted Bt, is sampled uniformly at random (possibly Bt and At are identical).
The predictions of (At, Bt) are observed after making a prediction. For the playing strategy, we
sample two experts independently (conditionally to At and Bt) at random, following the restriction
of the law p̂t on {At, Bt}, and we play the central point of the two sampled experts. Therefore,
depending on the outcome of the second step, the algorithm’s prediction can be either one of the
two pre-selected experts or the central point of the two experts. This strategy ensures the necessary
uniform exploring component needed in the adversarial problems.

The possibility of having constant regrets guarantees is due to Property (1), satisfied for the
loss functions ` under Assumption 1: Lemma 3 suggests that when predicting the central point of
two experts, the learner benefits from the distance between the played predictions. This remark is
exploited in constructing of the distribution p̂t.

To summarize, the playing strategy relies on three essential ideas: the (conditional for m = 2)
independence of the played experts, the centering scheme for the losses estimates, and the second
order term to diversify the played arms.

Theorem 6 Suppose Assumption 1 holds.
Consider the case (m ≥ 3 and p = 2) or (m = 2 and p = 2 and IC = False). For any

input parameter λ ∈
(
0, m−1

128K λ̄
)
, where λ̄ is defined in (2), the regret of Algorithm 3 satisfies with

probability at least 1− 8δ, with respect to the player’s own randomization

RT ≤ c
1

λ
log

(
λ̄K

λδ

)
,

where c is a numerical constant.

Theorem 7 Suppose Assumption 1 holds.
Consider the case p = m = 2 and IC = True. For any input parameter λ ∈

(
0, λ̄

352K2

)
, where

λ̄ is defined in (2), the regret of Algorithm 4 satisfies with probability at least 1 − 8δ, with respect
to the player’s own randomization

RT ≤ c
(

1

λ
+
K

λ̄

)
log

(
λ̄K

λδ

)
,

where c is a numerical constant.

The probabilistic nature of the results of Theorems 6 and 10 in contrast to Theorem 4 (which was
in expectation only) requires more involved arguments, in particular second-order control of for
martingale deviations, applied to several sub-terms, in suitable combination with arguments entering
into the proof of Theorem 4. See Appendices D to H for detailed proofs.

10
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Algorithm 3 (p = 2, m ≥ 3) or (p = 2, m = 2, IC = False)
Input Parameters: λ,m.
Initialize: L̂i,0 = 0, V̂i,0 = 0 for all i ∈ JKK.
Let m̃ = max{m− 2, 1}.
for each round t = 1, 2, . . . do
//Player phase:
Let

p̂i,t =
exp
(
−λL̂i,t−1 + λ2V̂i,t−1

)
∑K

j=1 exp
(
−λL̂j,t−1 + λ2V̂j,t−1

) . (5)

Sample It and Jt according to p̂t from JKK independently.
Sample m̃ random integers without replacement from JKK. Denote Ut this set.
if m ≥ 3 then

Let Ct = {It, Jt} ∪ Ut.
else if m = 2 then

Let Ct = {It} ∪ Ut.
end if
//Resolution and feedback phase:
Output prediction 1

2(FIt,t + FJt,t), and incur its loss.
Observe the losses `i,t for i ∈ Ct.
//Update phase:
for i ∈ JKK do

Let

ˆ̀
i,t =

K

m̃
1(i ∈ Ut) `i,t +

(
1− K

m̃
1(i ∈ Ut)

)
`It,t (6)

v̂i,t =
(

ˆ̀
i,t − `It,t

)2
(7)

Update L̂i,t = L̂i,t−1 + ˆ̀
i,t and V̂i,t = V̂i,t−1 + v̂i,t.

end for
end for

Furthermore, the next proposition states that it is possible to implement efficiently the proposed
algorithms with a complexity per round which is linear in the number of queries but logarithmic in
the number of experts (except for the initialization). Therefore, the computational complexity also
depends mildly on the number of experts K.

Proposition 8 Algorithms 2, 3 and 4 can be implemented in such a way that after a one-time
computational cost of O(K) for initialization, the computational cost of each round, including
suitably keeping track of the distribution p̂t and sampling from it, is of complexity O(m logK).

See Appendix K for a proof. The high-level idea is that, keeping track of the estimated losses (6)
(after suitable equivalent reformulation) and variances (7) for all experts organized in a balanced

11
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Algorithm 4 (p = 2, m = 2, IC = True)
Input Parameters: λ.
Initialize: L̂i,0 = 0 for all i ∈ JKK.
for each round t = 1, 2, . . . do
//Player phase:
Let p̂t = (p̂i,t)i∈JKK denote the probability distribution defined on JKK by (5).
Sample independently one integer from JKK, denotedAt, according to p̂t, and one integer from
JKK, denoted Bt uniformly at random. Let Ct = {At, Bt}.
Let q̂t = (q̂i,t)i∈JKK denote the conditional distribution q̂t(·) = p̂t(·|Ct).
Draw (It, Jt) from Ct independently according to q̂t.
//Resolution and feedback phase:
Output the prediction 1

2(FIt,t + FJt,t), and incur its loss.
Observe the losses `i,t for i ∈ Ct.
//Update phase:
Update L̂i,t and V̂i,t for all i ∈ JKK following the same scheme as in Algorithm 3 with Ut =
{Bt} and It replaced by At in equations (6) and (7).

end for

binary tree, it is possible to update these quantities for each new observation and to draw from p̂
with a O(logK) cost only.

Remark 9 Since our analysis suggests that we can restrict possible plays to mid-points of just two
experts, one could argue that the coupled setting (p = m = 2, IC=True) looks quite similar to
learning with expert advice with bandit feedback, where the possible arms would be the K2 “bi-
experts” that are mid-points of original experts (i, j). One could therefore think of a more direct
approach: simply applying a bandit-type strategy, say EXP3.P or EXP3-IX (Auer et al., 2002 and
Neu, 2015, respectively) to these K2 “arms”. However, existing generic results only guarantee
a “slow” O(

√
T ) regret with respect to the best “bi-expert”, and this cannot be compensated in

general by exp-concavity, as the best “bi-expert” may not be much better than the best expert (if the
experts are “correlated”: see proof of lower bounds in Theorems 10 and 12). Furthermore, in the
playing strategy of EXP3.P and EXP3-IX, each pair of experts is played Ω(

√
K2T ) times, due the

uniform exploration component of their sampling schemes. This will lead regrets scaling with
√
T .

Notice that prior knowledge on the confidence level δ is not required by Algorithms 3 and 4.
The presented bounds in theorems above are valid for any δ ∈ (0, 1). Observe that taking λ close to
m/(128K) λ̄ leads to a bound of the order O(K log(Kδ−1)/m) in Theorem 6, which is minimax
optimal up to a log(K) factor (Theorem 10). Taking λ close to 1/(352K2) λ̄, leads to a bound of
the orderO(K2 log(Kδ−1)) in the special setting p = m = 2 with IC = True. This bound presents
a gap of factor K with the lower bound presented in Theorem 10. We emphasize that in the last
setting, the player chooses two experts to combine their predictions and observes only the feedback
of these two experts. Hence, unlike the setting considered in Theorem 6, the player is deprived of
additional ’freely chosen’ experts to explore their losses. This constraint necessitates a more careful
playing strategy, presented in Algorithm 4.

12
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5. Lower bounds

In this section, we provide lower bounds matching the upper bounds in Theorem 6, up to a logarith-
mic factor in K (except for the case p = m = 2, where we have a gap of factor K). The techniques
of the proof are similar to the ones presented by Auer et al. (1995). The main difference comes from
the construction of the experts’ distributions.

Theorem 10 Let ` be the squared loss: `(x, y) = (x− y)2 on X = Y = [0, 1]. Consider the game
protocol presented in Algorithm 1 with m ≥ 2 and p ≥ 2 and IC ∈ {False,True}. The expected
regret satisfies:

inf supE[RT ] ≥ c K
m
,

where c is a numerical constant, the infinimum is over all playing strategies and the supremum is
over all individual sequences.

Remark 11 The lower bound presented in Theorem 10 is valid for any p ≤ K. Algorithms 3 and 4
match it (up to a log factor in K) using only p = 2, suggesting that no significant improvements can
be obtained if we are allowed to predict using more than two experts.

Theorem below is of theoretical interest, it shows that if only one feedback is received per round,
then constant regrets are not achievable.

Theorem 12 Let ` be the squared loss: `(x, y) = (x− y)2 on X = Y = [0, 1]. Consider the game
protocol presented in Algorithm 1 with m = 1 and p ∈ JKK and IC ∈ {False,True} (in this setting,
only one expert prediction is seen per round, the incurred loss is not observed). We have

inf supE[RT ] ≥ c
√
KT,

where c is a numerical constant, the infinimum is over all playing strategies and the supremum is
over all individual sequences.

For the sake of completeness, we state the following lower bound from Seldin et al. (2014).

Theorem 13 (Direct consequence of Seldin et al., 2014) Let ` be the squared loss: `(x, y) =
(x − y)2 on X = Y = [0, 1]. Consider the game protocol presented in Algorithm 1 with p =
1 and m ∈ JKK and IC ∈ {False,True}, we have

inf supE[RT ] ≥ c
√
K

m
T,

where c is a numerical constant, the infinimum is over all playing strategies and the supremum is
over all individual sequences.

6. Discussion and open questions

• In the setting p = m = 2 with coupled exploration-exploitation (IC = True), Algorithm 4
presents a strategy with a bound of orderO(K2 log(Kδ−1)), while the lower bound presented
in Theorem 10 is of order O(K). It would be of interest to close this gap.
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• Previous works on achieving constant regret under a full observation model only assumed
exp-concavity of the loss (see e.g. Cesa-Bianchi and Lugosi, 2006, Chap. 3). In the limited
observation setting, we additionally assume that the loss function is bounded by a constant B
known to the player. It would be of interest to determine if this condition is necessary. We
note, however that loss boundedness is an important ingredient in applying Bernstein-type
inequalities for bounds in high probability.

• In the stochastic (i.i.d. experts and target variables) setting, a variation of the expert elim-
ination strategy proposed by Saad and Blanchard (2021) (suitably adapted to tackle cumu-
lative regret) can be shown to have fast rates for regret in an instance-free setting, as well
as suitable instance-dependent performance bounds (i.e., the bound depends on the average
performance of experts and their correlation, eliminating clearly sub-optimal experts earlier).
This a fairly different strategy from the exponential weighting variations proposed here. In
the bandit setting, Seldin and Slivkins (2014) have proposed a strategy that reaches almost
optimal bounds both in the stochastic and the adversarial settings. It would be interesting to
investigate whether such an omnibus strategy exists.

• We have shown that p = 2 is sufficient to get constant regret with respect to the best expert,
using a strong convexity-type assumption on the loss. For p = K, for an exp-concave loss
there exist strategies having constant regret with respect to the best convex combination of
experts (e.g. Cesa-Bianchi and Lugosi, 2006, Theorem. 3.3), albeit with a O(K) scaling
of the regret. It would be interesting to study if “intermediate” situations exist, for example
if it is possible to have constant regret with respect to k-combinations of experts using only
p = O(k) expert predictions.
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Appendix: detailed proofs

Appendix A. Notation

The following notation pertains to all the considered algorithms, where t is a given training round
and T is the game horizon:

• For any x > 0, let log+
2 (x) = max{0, log2(x)}.

• LetRT denote the cumulative random regret of the player over T rounds.

• Let St denote the set of combined experts to make a prediction at round t.

• Let Ct denote the set of observed experts after making the prediction at round t.

• For each i ∈ St, let αi,t denote the weight of expert i in the convex combination played in
round t.

• Let (Ft)t denote the natural filtration associated with the process (St, Ct, (`i,t)i∈Ct)t.

• Denote the conditional expectation with respect to Ft by Et[.] = E[.|Ft].

• For each expert i ∈ JKK, let Ni denote the number of times the prediction of expert i was
observed during the game (over T rounds).

• For each expert i ∈ JKK, let Mi denote the number of times the prediction of expert i was
used for prediction during the game (over T rounds): Mi := |{t ∈ JT K : i ∈ St}|.

• For each expert i ∈ JKK, we define `i,t = `(Fi,t, yt).

• Denote by `t : X → R such that ∀x ∈ JXK : `t(x) = `(x, yt).

Notation associated to Algorithms 3 and 4

• Let It and Jt denote the experts used for prediction in round t.

• Let Ut the set of experts queried for exploration (sampled uniformly without replacement
from JKK). In Algorithm 4 let Ut = {Bt}.

• Let m̃ = max{1,m− 2}.

Appendix B. Some preliminary technical results

The following device is standard (it is used for instance for proving Bennett’s inequality).

Lemma 14 Let X be a random variable with finite variance, such that X ≤ b almost surely for
some b > 0. For any λ > 0:

log
(
EeλX

)
≤ λE[X] +

φ(λb)

b2
E[X2].

Where φ(x) = exp(x)− 1− x.
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Proof The function x 7→ x−2φ(x) is non-decreasing on R. As a consequence, if X ≤ b a.s., for
any λ > 0 it holds exp(λX) ≤ φ(λb)

b2
X2 + 1 + λX , a.s. Taking the expectation, then applying the

inequality log(1 + t) ≤ t yields the result.

Corollary 15 Let X be a random variable with finite variance, such that X ≥ −b almost surely
for b > 0. For any λ ∈

(
0, 1

b

)
:

log
(
Ee−λX

)
≤ −λE[X] + λ2E[X2].

Proof This corollary is a direct consequence of applying Lemma 14 to the variable −X ≤ b, then
using the fact that ∀x ≤ 1 : φ(x) ≤ x2.

We now introduce some technical lemmas used in the proofs. Let us start by reminding the
following standard result (see Theorem 1.1.4 Niculescu and Persson, 2006).

Lemma 16 A continuous function f : X → R, where X is a convex set, is convex if and only if:
for any x, x′ ∈ X :

f

(
x+ x′

2

)
≤ 1

2
f(x) +

1

2
f(x′).

Lemmas below give some bounds for some functions.

Lemma 17

• We have for any x ∈ R

1 +
x2

2
≤ cosh(x) ≤ exp(x2/2).

• Let c > 0. We have for any x ∈ [0, c]

log(1 + x) ≥ log(1 + c)

c
x.

Proof The first and third result is a direct consequence of Taylor’s expansion. The second result
follows simply by concavity of x→ log(1 + x).

Lemma 18 We have for any x, y > 0

log+
2 (x)− x

y
≤ log+

2 (y).

Proof Let x, y > 0, we have

log2(y) = log2(x)− log2

(
x

y

)
≥ log2(x)− x

y
,

where we used the fact that log2(t) ≤ t for any t > 0. To conclude we use the inequality

(a)+ − b ≤ (a− b)+,

valid for any a ∈ R and b > 0.
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Appendix C. Proof of Lemma 3

Let y ∈ Y . In this proof, we will denote `(.) instead of `(., y) so as to ease notation.

C.1. First claim

By exp-concavity of `, we have for any x, x′ ∈ X

1

2
exp{−η`(x)}+

1

2
exp
{
−η`(x′)

}
≤ exp

{
−η`

(
x+ x′

2

)}
.

Multiplying both sides by exp
{

1
2η`(x) + 1

2η`(x
′)
}

, we have

1 +
η2(`(x)− `(x′))2

2
≤ exp

{
η

2
`(x) +

η

2
`(x′)− η`

(
x+ x′

2

)}
,

where we used the first result of Lemma 17 to lower bound the left hand side.
Introducing the logarithm and using the second result of Lemma 17, we obtain

2 log
(

1 + η2B2

2

)
η2B2

η2
(
`(x)− `(x′)

)2 ≤ η

2
`(x) +

η

2
`(x′)− η`

(
x+ x′

2

)
.

We conclude that

`

(
x+ x′

2

)
≤ 1

2
`(x) +

1

2
`(x′)− 1

2c

(
`(x)− `(x′)

)2
,

where

c =
ηB2

4 log
(

1 + η2B2

2

) .
C.2. Second claim

Let c > 0, we denote E(c) the set of functions f : X → R, such that for any x, x′ ∈ X :

f

(
x+ x′

2

)
≤ 1

2
f(x) +

1

2
f(x′)− 1

2c

(
f(x)− f(x′)

)2
. (8)

Lemma 19 For any c > 0, we have for any f ∈ E(c)

sup
x,x′∈X

∣∣f(x)− f(x′)
∣∣ ≤ c.

Proof Put ∆xx′ = f(x′)− f(x), and ∆∗ = supx,x′∈X ∆xx′ . We first prove that ∆∗ ≤ 3c. Assume
this is not the case and let x, x′ ∈ X be such that ∆xx′ > 3c. Let z := 1

2(x+ x′). Using f ∈ E(c),
we obtain

∆xz = f(z)− f(x) ≤ 1

2

(
f(x′)− f(x)

)
− 1

2c
(f(x′)− f(x))2 =

1

2
∆xx′ −

1

2c
∆2
xx′ ≤ −∆xx′ ,

where the last inequality holds because ∆xx′ > 3c. Hence ∆zx > 3c and in turn, if x1 := 1
2(x+ z),

reiterating the above argument we get ∆x1z > 3c and in particular f(x1) < f(z). Also, we have
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∆zx′ = ∆zx + ∆xx′ > 3c, therefore putting x′1 := 1
2(x′ + z), again by the same token we get

f(x′1) < f(z). This is a contradiction, since z = 1
2(x1 + x′1), thus Assumption 1 implies that

f(z) ≤ max(f(x1), f(x′1)).
Since ∆∗ is finite,m := infx∈X f(x) is finite. For any ε > 0, let xε be such that f(xε) ≤ m+ε.

For any x′ ∈ X , putting again z := 1
2(x+ x′), it must be the case that ∆xεz ≥ −ε, and using again

the above display it must hold −ε ≤ ∆xεz ≤ 1
2∆xεx′ − 1

2c∆
2
xεx′

. This implies ∆xεx′ ≤ c + G(ε)
for any x′ ∈ X , with G(ε) = O(ε). Since ∆∗ ≤ ε + supx′∈X ∆xεx′ , we conclude to ∆∗ ≤ c by
letting ε→ 0.

Lemma 20 For any c > 0, we have for any continuous function f ∈ E(c): f is (4/c)-exp-concave.

Proof Fix c > 0 and f ∈ E(c). Let x, x′ ∈ X . Let us prove that

1

2
exp

{
−4

c
f(x)

}
+

1

2
exp

{
−4

c
f(x′)

}
≤ exp

{
−4

c
f

(
x+ x′

2

)}
. (9)

Recall that since f ∈ E(c), inequality (8) gives

2

c2

(
f(x)− f(x′)

)2 ≤ 2

c
f(x) +

2

c
f(x′)− 4

c
f

(
x+ x′

2

)
.

We introduce the exp function on both sides of the inequality and use the first result of Lemma 17
to lower bound the left hand side. We have

1

2
exp

{
2

c

(
f(x)− f(x′)

)}
+

1

2
exp

{
2

c

(
f(x′)− f(x)

)}
≤ exp

{
2

c
f(x) +

2

c
f(x′)

}
exp

{
−4

c
f

(
x+ x′

2

)}
,

which proves (9). We conclude using the characterization provided by Lemma 16.

C.3. Third claim

Lemma 21 Let f : X → R be a L-Lipschitz and ρ-strongly convex function, then f ∈ E
(
4L2/ρ

)
.

Proof
By strong convexity of f , we have for any x, x′ ∈ X

f

(
x+ x′

2

)
≤ 1

2
f(x) +

1

2
f(x′)− ρ

8

∥∥x− x′∥∥2
.

Moreover, f(.) is L-Lipschitz, hence: |f(x)− f(x′)| ≤ L‖x− x′‖. Therefore

f

(
x+ x′

2

)
≤ 1

2
f(x) +

1

2
f(x′)− ρ

8L2

(
f(x)− f(x′)

)2
.
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Appendix D. Concentration inequality for martingales

We recall Bennett’s inequality:

Theorem 22 Let Z,Z1, . . . , Zn be i.i.d random variables with values in [−B,B] and let δ > 0.
Then with probability at least 1− δ in (Z1, . . . , Zn) we have∣∣∣∣∣E[Z]− 1

n

n∑
i=1

Zi

∣∣∣∣∣ ≤
√

2 Var[Z] log(2/δ)

n
+

2B log(2/δ)

3n
.

We recall Freedman’s inequality (the exposition here is lifted from Fan et al., 2015). Let
(ξi,Fi)i≥1 be a (super)martingale difference sequence. Define Sn :=

∑n
i=1 ξi (then (Sn,Fn) is

a (super)martingale), and 〈S〉n :=
∑n

i=1 E
[
ξ2
i |Fi−1

]
the quadratic characteristic of S.

Theorem 23 (Freedman’s inequality) Assume ξi ≤ B for all i ≥ 1, where B is a constant. Then
for all t, v > 0:

P
[
Sk ≥ t and 〈S〉k ≤ v

2 for some k ≥ 1
]
≤ exp

(
− t2

2(v2 +Bt)

)
. (10)

The following direct consequence also appears in (Kakade and Tewari, 2008, Lemma 3) for fixed k.
Here we give a version that holds uniformly in k. See also (Gaillard et al., 2014, Theorem 12) for a
related result.

Corollary 24 Assume ξi ≤ B for all i ≥ 1, where B is a constant. Then for all δ ∈ (0, 1/3), with
probability at least 1− 3δ it holds

∀k ≥ 1 : Sk ≤ 2
√
〈S〉kε(δ, k) + 4Bε(δ, k),

where ε(δ, k) := log δ−1 + 2 log(1 + log+
2 (〈S〉k/B2)).

If |ξi| ≤ B for all i ≥ 1, observe that ε(δ, k) ≤ log δ−1 +O(log log k).

Proof By standard calculations, it holds that if t ≥ v
√

2 log δ−1 + 2B log δ−1, then t2

2(v2+Bt)
≥

log δ−1. Therefore (10) implies that for any v > 0 and δ ∈ (0, 1), it holds

P
[
∃k ≥ 1 : Sk ≥

√
2v2 log δ−1 + 2B log δ−1 and 〈S〉k ≤ v

2
]
≤ δ. (11)

Denote v2
j := 2jB2, δj := (j ∨ 1)−2δ, j ≥ 0, and define the non-decreasing sequence of stopping

times τ−1 = 1 and τj := min
{
k ≥ 1 : 〈S〉k > v2

j

}
for j ≥ 0. Define the events for j ≥ 0:

Aj :=

{
∃k ≥ 1 : Sk ≥

√
2v2
j log δ−1

j + 2B log δ−1
j and 〈S〉k ≤ v

2
j

}
,

A′j :=

{
∃k with τj−1 ≤ k < τj : Sk ≥ 2

√
〈S〉kε(δ, k) + 4Bε(δ, k)

}
.

From the definition of v2
j , δj , we have j = log2(v2

j /B
2) for j ≥ 1. For j ≥ 1, τj−1 ≤ k < τj

implies v2
j−1 = v2

j /2 < 〈S〉k ≤ v2
j , and further

log δ−1
j = log δ−1 + 2 log log2(v2

j /B
2) ≤ ε(δ, k).
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Therefore it holds A′j ⊆ Aj . Furthermore, for j = 0, we have v2
0 = B2, δ0 = δ. Further, if k < τ0

it implies 〈S〉k < B2 and therefore ε(δ, k) = log δ−1. Thus, provided log δ−1 ≥ 1 i.e. δ ≤ 1/e, it
holds

A′0 ⊆
{
∃k with k < τ0 : Sk ≥ 4B log δ−1

0

}
⊆
{
∃k ≥ 1 : Sk ≥

√
2v2

0 log δ−1
0 + 2B log δ−1

0 and 〈S〉k ≤ v
2
0

}
= A0.

Therefore, since by (11) it holds P[Aj ] ≤ δj for all j ≥ 0:

P
[
∃k ≤ n : Sk ≥ 2

√
〈S〉kε(δ, k) + 4Bε(δ, k)

]
= P

[ ⋃
j≥0

A′j

]
≤ P

[ ⋃
j≥0

Aj

]
≤ δ

∑
j≥0

(j ∨ 1)−2 ≤ 3δ.

Corollary 25 Assume ξi ≤ b for all i ≥ 1, where b is a constant. Let (νt)t denote an Ft-
measurable sequence, such that for any k ≥ 1: 〈S〉k ≤

∑k
i=1 νi. Then for all c > 0 and

δ ∈ (0, 1/3), with probability at least 1− 3δ it holds

∀k ≥ 1 : Sk −
c

b

k∑
i=1

νk ≤
(

8

c
+ 4

)(
log(δ−1) + 2 log+

2

(
32 + 16c

c2

))
b.

Proof Let c > 0 and fix δ ∈ (0, 1/3), we have using Corollary 24: with probability at least 1− 3δ,
it holds for any k ≥ 1

Sk −
c

b

k∑
i=1

νi ≤ 2
√
〈S〉kε(δ, k) + 4bε(δ, k)− c

b

k∑
i=1

νi

≤ 2
√
〈S〉kε(δ, k) + 4bε(δ, k)− c

b
〈S〉k

≤ 2

(
c

4b
〈S〉k +

4b

c
ε(δ, k)

)
+ 4bε(δ, k)− c

b
〈S〉k

≤
(

8

c
+ 4

)
bε(δ, k)− c

2b
〈S〉k

=

(
8

c
+ 4

)
b
(
log δ−1 + 2 log

(
1 + log+

2 (〈S〉k/b2)
))
− c

2b
〈S〉k

≤
(

8

c
+ 4

)
b
(
log δ−1 + 2 log+

2 (〈S〉k/b2)
)
− c

2b
〈S〉k

The result follows by upper-bounding the function x → log+
2 (x) − x/y, for x, y > 0 using

Lemma 18.
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Appendix E. Additional technical results

The following lemma is a consequence of Corollary 15, the chaining rule (i.e cancellation in the
sum of logarithmic terms) and Fubini’s theorem. Let (ĥi,t)t∈JT K,i∈JKK be a Ft-adapted process.

For each i ∈ JKK and t ∈ JT K we define: Ĥi,t :=
∑t

i=1 ĥi,s, we use the convention that
Ĥi,0 = 0. Let t ∈ JT K and λ > 0, we define the sequence (p̂i,t)i∈JKK:

p̂i,t :=
exp
{
−λĤi,t−1

}
∑K

j=1 exp
{
−λĤj,t−1

} . (12)

For each t ∈ JT K, define:

Ẑt :=
K∑
i=1

exp{−λĤi,t} (13)

Mt := log
(
Ẑt

)
− Et−1

[
log(Ẑt)

]
. (14)

Lemma 26 Let b > 0 and (ĥi,t)t∈JT K,i∈JKK be a sequence of numbers taking values in an interval
of length b. For each i ∈ JKK and t ∈ JT K, let Et−1[ĥi,t] = hi,t. Let (αt)t∈JT K be a sequence such
that αt is Ft−1-measurable and:

∀i ∈ JKK, t ∈ JT K,
∣∣∣ĥi,t − αt∣∣∣ ≤ b.

Then for any λ ∈ (0, 1/b), for all t ∈ JT K we have:

T∑
t=1

K∑
i=1

p̂i,t hi,t ≤ min
i∈JKK

T∑
t=1

ĥi,t +
log(K)

λ
+

1

λ

T−1∑
t=1

Mt + λ

T∑
t=1

K∑
i=1

p̂i,t Et−1

[(
ĥi,t − αt

)2
]
,

where the sequence (p̂i,t)t∈JT K,i∈JKK is defined by (12) and (Mt) is defined by (14).

Proof Let t ∈ JT K, we denote by p̂t the probability distribution on JKK defined by the weights
(p̂i,t)i∈JKK. We apply Corollary 15 to the random variable Xt := ĥI,t − αt, where I is drawn from
JKK following p̂t: for any λ ∈ (0, 1/b),

log

(
K∑
i=1

p̂i,t exp
{
−λ
(
ĥi,t − αt

)})
≤ −λ

K∑
i=1

p̂i,t

(
ĥi,t − αt

)
+ λ2

K∑
i=1

p̂i,t

(
ĥi,t − αt

)2
.

Rearranging terms we obtain:

K∑
i=1

p̂i,t ĥi,t ≤ αt −
1

λ
log

((
K∑
i=1

p̂i,t exp{−λĥi,t}

)
exp{λαt}

)
+ λ

K∑
i=1

p̂i,t

(
ĥi,t − αt

)2

= − 1

λ
log

(
K∑
i=1

p̂i,t exp{−λĥi,t}

)
+ λ

K∑
i=1

p̂i,t

(
ĥi,t − αt

)2

= − 1

λ

(
log
(
Ẑt

)
− log

(
Ẑt−1

))
+ λ

K∑
i=1

p̂i,t

(
ĥi,t − αt

)2
,
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where Ẑt is defined by (13). Taking the conditional expectation with respect to Ft−1 gives

K∑
i=1

p̂i,thi,t ≤ −
1

λ

(
Et−1

[
log
(
Ẑt

)]
− log

(
Ẑt−1

))
+ λ

K∑
i=1

p̂i,tEt−1

[(
ĥi,t − αt

)2
]
.

Summing over t ∈ JT K we obtain:

T∑
t=1

K∑
i=1

p̂i,t hi,t ≤
log(Z0)

λ
−

log
(
ẐT

)
λ

+
1

λ

T−1∑
t=1

Mt + λ
T∑
t=1

K∑
i=1

p̂i,t Et−1

[(
ĥi,t − αt

)2
]
.

Finally observe that Z0 = K and that:

− 1

λ
log
(
ẐT

)
= − 1

λ
log

(∑
i

exp{−λĤi,t}

)
≤ min

i∈JKK
Ĥi,t.

Appendix F. A preliminary result for the proof of Theorem 6 and 7

In this section we present two key results for the proof of Theorem 6 and 7. Lemma 31 provides a
bound for the cases (p = 2,m ≥ 3) and (p = 2,m = 2, IC = False). Lemma 32 presents a similar
bound for the particular case (p = 2,m = 2, IC = True). We decided to separate these two settings
because each one requires a different condition on λ.

We consider the notation of Algorithms 3 and 4. In Algorithm 3 (m ≥ 3), we take At = It.
Recall that m̃ = max{1,m− 2} (as defined in Section A).

Lemma 27 For any k ≥ 1,

Et−1

[(
ˆ̀
i,t − `At,t

)k]
=

(
K

m̃

)k−1

Et−1

[
(`i,t − `At,t)

k
]
,

where m̃ = max{1,m− 2}.

Proof Suppose that m ≥ 3. Consider the notation of Algorithm 3. Let k ≥ 1, we have

Et−1

[(
ˆ̀
i,t − `At,t

)k]
= Et−1

[(
K

m− 2
1(i ∈ Ut)`i,t +

(
1− K

m− 2
1(i ∈ Ut)

)
`At,t − `At,t

)k]

= Et−1

[(
K

m− 2
1(i ∈ Ut)`i,t −

K

m− 2
1(i ∈ Ut)`At,t

)k]

=

(
K

m− 2

)k
Et−1[1(i ∈ Ut)](`i,t − `At,t)

k

=

(
K

m− 2

)k−1

Et−1

[
(`i,t − `At,t)

k
]
,
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where we used the fact that Ut and At are independent conditionally to Ft−1.
Suppose that m = 2. Consider the notation of Algorithm 4. Let k ≥ 1, we have

Et−1

[(
ˆ̀
i,t − `At,t

)k]
= Et−1

[(
ˆ̀
i,t − `At,t

)k]
= Et−1

[
(K1(Bt = i)`i,t + (1−K1(Bt = i))`At,t − `At,t)

k
]

= KkEt−1

[
1(Bt = i)(`i,t − `At,t)

k
]

= Kk−1Et−1

[
(`i,t − `At,t)

k
]
.

Introduce the notation

µ̂t :=
∑
i∈JKK

p̂i,t`i,t, (15)

ξ̂t :=
1

2

∑
i,j∈JKK

p̂i,tp̂j,t (`i,t − `j,t)2, (16)

where (p̂i,t) is defined in (12). For each t ∈ JT K, let

Ẑt =

K∑
i=1

exp
{
−λL̂i,t + λ2V̂i,t

}
Mt = log

(
Ẑt

)
− Et−1

[
Ẑt

]
, (17)

where L̂i,t =
∑t

s=1
ˆ̀
i,t and V̂i,t =

∑t
s=1 v̂i,t, in agreement with the notation used in Algorithms 3

and 4, and in Section E.

Lemma 28 Let λ ∈
(
0, 2m̃

K λ̄
)
, where λ̄ is defined in (2) and m̃ = max{m − 2, 1}. For each

i ∈ JKK, t ∈ JT K, let ĥi,t = ˆ̀
i,t − λv̂i,t. We have

T∑
t=1

µ̂t ≤ min
i∈JKK

T∑
t=1

ĥi,t +
1

λ

T∑
t=1

Mt +
log(K)

λ
+

11λK

m̃

T∑
t=1

ξ̂t,

where µ̂t is defined in (15), ξ̂t is defined in (16) and Mt is defined in (17).

Proof Let hi,t := Et−1[ĥi,t] = `i,t − λEt−1[v̂i,t], we apply Lemma 26 to the sequence (ĥi,t)i,t. We
take αt = µ̂t, which is an Ft−1-measurable process. For each i ∈ JKK and t ≥ 0, we have

T∑
t=1

K∑
i=1

p̂i,thi,t ≤ min
i∈JKK

T∑
t=1

ĥi,t +
log(K)

λ
+

1

λ

T∑
t=1

Mt + λ

T∑
t=1

K∑
i=1

p̂i,tEt−1

[(
ĥi,t − µ̂t

)2
]
. (18)
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Now, let us develop a lower bound on the left hand side of the inequality above. Recall that in
Algorithm 3, we take At = It, then At ∼ p̂t. In Algorithm 4, Lemma 33 shows that At ∼ p̂t. Fix
t ∈ JT K, we have:

K∑
i=1

p̂i,thi,t =

K∑
i=1

p̂i,t(`i,t − λEt−1[v̂i,t])

=
K∑
i=1

p̂i,t`i,t − λ
K∑
i=1

p̂i,tEt−1

[(
ˆ̀
i,t − `At,t

)2
]

=
K∑
i=1

p̂i,t`i,t − λ
K

m̃

(
K∑
i=1

p̂i,t(`i,t − µ̂t)2

)
− λK

m̃
Et−1

[
(`At,t − µ̂t)

2
]

= µ̂t − 2λ
K

m̃
ξ̂t, (19)

where we used in the second line the definition v̂i,t =
(

ˆ̀
i,t − `At,t

)2
, Lemma 27 with k = 2 in the

third line, and the fact that At is distributed following p̂ in the third and fourth line.
Next, we develop an upper bound on the last term of the right hand side of (18). We have

T∑
t=1

K∑
i=1

p̂i,t Et−1

[(
ĥi,t − µ̂t

)2
]
≤ 2

T∑
t=1

K∑
i=1

p̂i,t

{
Et−1

[(
ˆ̀
i,t − µ̂t

)2
]

+ λ2Et−1

[
v̂2
i,t

]}
. (20)

Fix t ∈ JT K. Let us bound each of the terms in the right hand side of the inequality above

K∑
i=1

p̂i,tEt−1

[(
ˆ̀
i,t − µ̂t

)2
]
≤

K∑
i=1

2p̂i,t

(
Et−1

[(
ˆ̀
i,t − `At,t

)2
]

+ Et−1

[
(`At,t − µ̂t)

2
])

= 2Et−1

[
(`At,t − µ̂t)

2
]

+ 2
K

m̃

K∑
i=1

p̂i,tEt−1

[
(`i,t − `At,t)

2
]

= 2ξ̂t + 2
K

m̃

K∑
i=1

p̂i,t

{
(`i,t − µ̂t)2 + Et−1

[
(`At,t − µ̂t)

2
]}

≤ 6K

m̃
ξ̂t, (21)

where we used Lemma 27 for the second line. Moreover, using the same Lemma 27 with k = 4, we
have

K∑
i=1

p̂i,tEt−1

[
v̂2
i,t

]
=

K∑
i=1

p̂i,t

(
K

m̃

)3

Et−1

[
(`i,t − `At,t)

4
]

≤
(
K

m̃

)3

B2
K∑
i=1

p̂i,tEt−1

[
(`i,t − `At,t)

2
]

= 2

(
K

m̃

)3

B2ξ̂t. (22)
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We plug the bounds obtained from (21) and (22) into inequality (19), and obtain

T∑
t=1

K∑
i=1

p̂i,t Et−1

[(
ĥi,t − µ̂t

)2
]
≤ 2

(
6K

m̃
+ 2λ2 K3

(m̃)3
B2

) T∑
t=1

ξ̂t. (23)

Recall that by definition (2), λ̄ ≤ 1
B . Hence, λ < 2m̃

K λ̄ gives

λ2K
2

m̃2
B2 ≤ 4,

we plug this bound into (23) and obtain

T∑
t=1

K∑
i=1

p̂i,t Et−1

[(
ĥi,t − µ̂t

)2
]
≤ 20

K

m̃

T∑
t=1

ξ̂t. (24)

Next, we plug the bounds obtained in (19) and (24) into (18) to obtain

T∑
t=1

µ̂t ≤ min
i∈JKK

T∑
t=1

ĥi,t +
1

λ

T∑
t=1

Mt +
log(K)

λ
+

22λK

m̃

T∑
t=1

ξ̂t.

Lemma 29 Let λ ∈
(
0, 2m̃

K λ̄
)
, where λ̄ is defined in (2) and m̃ = max{1,m − 2}. Consider the

martingale difference sequence (Mt)t∈JT K defined in (17). We have

• ∀t ∈ JT K : |Mt| ≤ 3λKm̃B.

•
∑T

t=1 E
[
M2
t

]
≤ 5Km̃λ

2
∑T

t=1 ξ̂t.

Proof Observe that the sequence (Mt,Ft)t∈JT K is a martingale difference. For any t ∈ JT K, we
have

Mt = E
[
log
(
Ẑt+1

)
|Ft
]
− log

(
Ẑt

)
= log

(
Ẑt

Ẑt−1

)
− Et−1

[
log

(
Ẑt

Ẑt−1

)]

= log

(
K∑
i=1

p̂i,t exp{−λˆ̀
i,t + λ2v̂i,t}

)
− Et−1

[
log

(
K∑
i=1

p̂i,t exp{−λˆ̀
i,t + λ2v̂i,t}

)]
,

where we used the fact that Ẑt−1 is Ft−1-measurable in the second line.
The loss function `(., y) is B-range-bounded for any y. Let cmin and cmax denote the lower and

upper bounds, respectively, for the values of ` (cmax − cmin ≤ B). Therefore, for any i ∈ JKK,
ˆ̀
i,t ∈

[
cmin − K

m̃B, cmax + K
m̃B

]
and v̂i,t ∈ [0, (Km̃ )2B2]. Therefore

exp

(
λcmax −

K

m̃
λB

)
≤ exp

(
−λˆ̀

i,t + λ2v̂i,t

)
≤ exp

(
−λcmin + λ

K

m̃
B + 2λ2K

2

m̃2
B2

)
.
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Hence

λcmax − λ
KB

m̃
≤ log

(
K∑
i=1

p̂i,t exp{−λˆ̀
i,t + λ2v̂i,t}

)
≤ −λcmin + λ

KB

m̃
+ 2λ2K

2B2

m̃2

Recall that Mt is a centered variable and λ < m̃
128KB . Therefore

|Mt| ≤ 4λ
K

m̃
B. (25)

Now, let us bound the quadratic characteristic of (Mt)t. We have

Et−1

[
M2
t

]
= Vart−1

(
log
(
Ẑt

))
= Vart−1

(
log
(
Ẑt

)
− log

(
Ẑt−1

))
, (26)

where we used the fact that Ẑt−1 is Ft−1-measurable.
Furthermore we have

Ẑt =
K∑
i=1

exp
(
−λL̂i,t + λ2V̂i,t

)
=

K∑
i=1

exp
(
−λL̂i,t−1 + λ2V̂i,t

)
exp
(
−λˆ̀

i,t + λ2v̂i,t

)
=

K∑
i=1

p̂i,tẐt−1 exp
(
−λˆ̀

i,t + λ2v̂i,t

)
.

Hence

Ẑt

Ẑt−1

=
K∑
i=1

p̂i,t exp
(
−λˆ̀

i,t + λ2v̂i,t

)
=

K∑
i=1

p̂i,t exp

(
−λ
(
`At,t +

K

m̃
1(i ∈ Ut)(`i,t − `At,t)

)
+ λ2K

2

m̃2
1(i ∈ Ut)(`i,t − `At,t)2

)

= exp(−λ`At,t)
K∑
i=1

p̂i,t exp

(
−λK

m̃
1(i ∈ Ut)(`i,t − `At,t) + λ2K

2

m̃2
1(i ∈ Ut)(`i,t − `At,t)2

)
= exp(−λ`At,t)EA′

t

[
exp

(
−λK

m̃
1
(
A′t ∈ Ut

)
(`A′

t,t
− `At,t) + λ2K

2

m̃2
1
(
A′t ∈ Ut

)
(`A′

t,t
− `At,t)2

)]
,

(27)

where A′t is a random variable, independent of At, such that for each i ∈ JKK, P(A′t = i) = p̂i,t,
and EA′

t
is the expectation with respect to the random variable A′t. So as to ease notation, denote

Dt :=
K

m̃
1
(
A′t ∈ Ut

)
(`A′

t,t
− `At,t)− λ

K2

m̃2
1
(
A′t ∈ Ut

)
(`A′

t,t
− `At,t)2.
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We take the logarithm of both sides of inequality (27), we have

log
(
Ẑt

)
− log

(
Ẑt−1

)
= −λ`At,t + log

(
EA′

t
[exp(−λDt)]

)
.

We inject the equality above in (26). We obtain

Et−1

[
M2
t

]
= Vart−1

(
−λ`At,t + log

(
EA′

t
[exp(−λDt)]

))
≤ 2 Vart−1(λ`At,t) + 2 Vart−1

(
log
(
EA′

t
[exp(−λDt)]

))
≤ 2 Vart−1(λ`At,t) + 2Et−1

[
log2

(
EA′

t
[exp(−λDt)]

)]
. (28)

Observe that

|λDt| =
∣∣∣∣λKm̃1(A′t ∈ Ut)(`A′

t,t
− `At,t

)
− λ2K

2

m̃2
1
(
A′t ∈ Ut

)
(`A′

t,t
− `At,t)2

∣∣∣∣ ≤ 1

5
.

where we used λ ∈
(
0, m̃

128KB

)
.

The function x 7→ log2(x) is convex on [e−1, e]. Hence, using Jensen’s inequality, we have

Et−1

[
log2

(
EA′

t
[exp(−λDt)]

)]
≤ Et−1EA′

t

[
log2(exp(−λDt))

]
= Et−1EA′

t

[
λ2D2

t

]
(29)

From (28) and (29), we conclude that

Et−1

[
M2
t

]
≤ 2λ2 Vart−1(`At,t) + 2Et−1EA′

t

[
λ2D2

t

]
≤ 2λ2ξ̂t + 2Et−1EA′

t

[
λ2D2

t

]
. (30)

where we used Vart−1(`At,t) = ξ̂t. Furthermore:

Et−1EA′
t

[
λ2D2

t

]
≤ 2Et−1EA′

t

[
λ2K2

m̃2
1
(
A′t ∈ Ut

)(
`A′

t,t
− `At,t

)2
+
K4λ4

m̃4
1
(
A′t ∈ Ut

)(
`A′

t,t
− `At,t

)4
]

≤ 2

(
λ2K2

m̃2
+
λ4K4

m̃4
B2

)
Et−1EA′

t

[
1
(
A′t ∈ Ut

)
(`A′

t,t
− `At,t)2

]
≤ 3

λ2K2

m̃2
Et−1EA′

t

[
1
(
A′t ∈ Ut

)
(`A′

t,t
− `At,t)2

]
≤ 3

λ2K2

m̃2
EA′

t

[
Et−1

[
1
(
A′t ∈ Ut

)]
Et−1

[
(`A′

t,t
− `At,t)2

]]
= 3

λ2K2

m̃2

m̃

K

K∑
i,j=1

p̂i,tp̂j,t(`i,t − `j,t)2

= 3
K

m̃
λ2ξ̂t, (31)

where we used the independence of Ut and At conditionally to Ft−1.
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We plug (31) into (30). Therefore, it holds

T∑
t=1

Et−1

[
M2
t

]
≤

T∑
t=1

(
2λ2ξ̂t + 3

K

m̃
λ2ξ̂t

)

≤ 5
K

m̃
λ2

T∑
t=1

ξ̂t.

The following lemma provides a bound with high probability on the quantity L̂i,T − λV̂i,T , for
each i ∈ JKK.

Lemma 30 For any i ∈ JKK and λ ∈ (0, m̃λ̄
128K ), with λ̄ defined in (2) and m̃ = max{1,m − 2}.

We have for any δ ∈ (0, 1/3), with probability at least 1− 6δ:

L̂i,T − λV̂i,T ≤ Li,T +
721

λ
log

(
m̃

KBλδ

)
.

Proof Let i ∈ JKK. Recall that we have for any t ∈ JT K

ˆ̀
i,t − `i,t =

(
K

m̃
1(i ∈ Ut)− 1

)
(`i,t − `At,t)

ˆ̀
i,t − `At,t =

K

m̃
1(i ∈ Ut)(`i,t − `At,t).

We introduce the following notation

νi,t := Et−1

[
(`i,t − `At,t)

2
]
.

We have

L̂i,T − λV̂i,T = Li,T +
T∑
t=1

(
ˆ̀
i,t − `i,t

)
− λ

T∑
t=1

(
K

m̃

)2

1(i ∈ Ut)(`i,t − `At,t)2

= Li,T +

T∑
t=1

(
ˆ̀
i,t − `i,t

)
− λ K

2m̃

T∑
t=1

νi,t︸ ︷︷ ︸
Term 21

+ λ
K

2m̃

T∑
t=1

νi,t − λ
T∑
t=1

(
K

m̃

)2

1(i ∈ Ut)(`i,t − `At,t)2

︸ ︷︷ ︸
Term 22

. (32)

Bounding Term 21: Observe that (ˆ̀
i,t− `i,t)t is a martingale difference with respect to the filtra-

tion F , bounded in absolute value by K
m̃B. Let us bound its quadratic characteristic. Recall that At

30



CONSTANT REGRET FOR SEQUENCE PREDICTION WITH LIMITED ADVICE

and Ut are independent conditionally to Ft−1. We have

T∑
t=1

Et−1

[
(ˆ̀
i,t − `i,t)2

]
=

T∑
t=1

Et−1

[(
1− K

m̃
1(i ∈ Ut)

)2

(`i,t − `At,t)2

]

=
T∑
t=1

Et−1

[(
1− K

m̃
1(i ∈ Ut)

)2
]
Et−1

[
(`i,t − `At,t)2

]
≤ K

m̃

T∑
t=1

Et−1

[
(`i,t − `At,t)2

]
=
K

m̃

T∑
t=1

νi,t.

Next, we apply Corollary 25 to the sequence (ˆ̀
i,t − `i,t)t∈JT K: We take c = λKB/(4m̃) ≤ 1, with

probability at least 1− 3δ, it holds

T∑
t=1

(
ˆ̀
i,t − `i,t

)
− λ K

2m̃

T∑
t=1

νi,t ≤
720

λ
log

(
m̃

KBλδ

)
. (33)

Bounding Term 22: Define the sequence (Qt)t∈JT K as follows:

Qt := −λK
2

m̃2
1(i ∈ Ut)(`i,t − `At,t)2 + λ

K

m̃
νi,t.

Notice that (Qt) is a martingale difference sequence with respect to the filtration F , and bounded
in absolute value by 2λK

2B2

m̃2 . Let us bound its quadratic characteristic. We have

T∑
t=1

Et−1

[
Q2
t

]
≤ λ2

T∑
t=1

Et−1

[
K4

m̃4
1(i ∈ Ut)(`i,t − `At,t)

4

]

≤ λ2K
4B2

m̃4

T∑
t=1

Et−1[1(i ∈ Ut)]Et−1

[
(`i,t − `At,t)

2
]

=
K3λ2B2

m̃3

T∑
t=1

νi,t.

Next, we apply Corollary 25 to this sequence. We take c = 1, we have with probability at least
1− 3δ:

T∑
t=1

Qt − λ
K

2m̃

T∑
t=1

νi,t ≤ 36λ
K2

m̃2
B2 log

(
δ−1
)

≤ 9

32
B log(δ−1). (34)
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Conclusion: To conclude, we inject bounds obtain in (33) and (34) into (32).

We provide a key lemma that will be used in the proof of Theorem 6 and 7.

Lemma 31 Let λ ∈
(
0, m̃

128K λ̄
)
, where λ̄ is defined in (2). Consider Algorithm 3 with inputs

(λ,m). We have with probability at least 1− 9δ

T∑
t=1

µ̂t −
7λ̄

32

T∑
t=1

ξ̂t ≤ min
i∈JKK

Li,T + c
1

λ
log

(
m̃

Bλδ

)
where m̃ = max{1,m− 1} and c is a numerical constant.

Proof For each i ∈ JKK and t ∈ JT K, let ĥi,t := ˆ̀
i,t − λv̂i,t and hi,t := Et−1

[
ĥi,t

]
. Using

Lemma 28, we have

T∑
t=1

µ̂t −
7λ̄

32

T∑
t=1

ξ̂t ≤ min
i∈JKK

T∑
t=1

ĥi,t +
1

λ

T∑
t=1

Mt +
log(K)

λ
+

(
11λK

m̃
− 7

32
λ̄

) T∑
t=1

ξ̂t

≤ min
i∈JKK

T∑
t=1

ĥi,t +
1

λ

T∑
t=1

Mt −
λ̄

8

T∑
t=1

ξ̂t +
log(K)

λ
, (35)

where we used the fact that λ ∈
(
0, m̃

128K λ̄
)
.

In order to conclude, we only need bounds on the terms mini∈JKK
∑T

t=1 ĥi,t and 1
λ

∑T
t=1Mt. Re-

call that Lemma 29 shows that (Mt) is a martingale difference sequence and provides a bound on
its conditional variance. Hence, applying Corollary 25 to this sequence with c = 3Bλ̄/40, with
probability at least 1− 3δ, it holds

1

λ

T∑
t=1

Mt −
m̃λ̄

40λ̄2K

T∑
t=1

5
K

m̃
λ2ξ̂t ≤

324K

m̃λ̄

(
log δ−1 + 2 log+

2

(
7024

B2λ̄2

))
.

We conclude that
1

λ

T∑
t=1

Mt −
λ̄

8

T∑
t=1

ξ̂t ≤ 8428
K

m̃λ̄
log

(
1

Bλ̄δ

)
. (36)

Next, to bound the term mini∈JKK
∑T

t=1 ĥi,t we use Lemma 30. We have with probability at least
1− 6δ

min
i∈JKK

T∑
t=1

ĥi,t = min
i∈JKK

L̂i,T − λV̂i,T

≤ min
i∈JKK

Li,T +
721

λ
log

(
m̃

Bλδ

)
. (37)

Finally, we inject (36) and (37) into (35) and use λ ∈
(
0, m̃

128K λ̄
)
. We obtain that with probability

at least 1− 9δ
T∑
t=1

µ̂t −
7λ̄

32

T∑
t=1

ξ̂t ≤ min
i∈JKK

Li,T + c
1

λ
log

(
m̃

Bλδ

)
,
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where c is a numerical constant.

The following Lemma is specific to the case m = p = 2 and IC = True in Algorithm 4.

Lemma 32 Let λ ∈
(

0, λ̄
352K2

)
, where λ̄ is defined in (2). Consider Algorithm 4 with input λ. We

have with probability at least 1− 9δ

T∑
t=1

µ̂t −
3λ̄

32K

T∑
t=1

ξ̂t ≤ min
i∈JKK

Li,T + c
1

λ
log

(
1

Bλδ

)
,

where c is a numerical constant.

Proof For each i ∈ JKK and t ∈ JT K, let ĥi,t := ˆ̀
i,t − λv̂i,t and hi,t := Et−1

[
ĥi,t

]
. Using

Lemma 28, we have

T∑
t=1

µ̂t −
3λ̄

32K

T∑
t=1

ξ̂t ≤ min
i∈JKK

T∑
t=1

ĥi,t +
1

λ

T∑
t=1

Mt +
log(K)

λ
+

(
11λK − 3λ̄

32K

) T∑
t=1

ξ̂t

≤ min
i∈JKK

T∑
t=1

ĥi,t +
1

λ

T∑
t=1

Mt −
λ̄

16K

T∑
t=1

ξ̂t +
log(K)

λ
, (38)

where we used the fact that λ ∈
(

0, λ̄
352K2

)
.

The remainder of the proof is similar to the proof of Lemma 31.
Lemma 29 provides the following bound with probability at least 1− 3δ

1

λ

T∑
t=1

Mt −
λ̄

16K

T∑
t=1

ξ̂t ≤
3520

λ̄
log

(
1

Bλ̄δ

)
. (39)

Moreover, Lemma 30 provides the following bound with probability at least 1− 6δ

min
i∈JKK

T∑
t=1

ĥi,t = min
i∈JKK

Li,T +
721

λ
log

(
1

Bλδ

)
. (40)

Finally, we inject (39) and (40) into (38). We obtain that with probability at least 1− 9δ

T∑
t=1

µ̂t −
3λ̄

32K

T∑
t=1

ξ̂t ≤ min
i∈JKK

Li,T + c
1

λ
log

(
1

Bλδ

)
,

where c is a numerical constant.
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Appendix G. On the sampling strategy in the case m = p = 2, IC = True

Let p denote a distribution over JKK. Let E = {A,B} denote a random set of elements in JKK,
such that A is sampled from JKK following p and B is sampled independently and uniformly at
random from JKK (possibly A = B and E is a singleton). Therefore, we have for each u, v ∈ JKK,
such that u 6= v:

P(E = {u, v}) =
pu + pv
K

,

and
P(E = {u}) =

pu
K
.

Finally, let pE denote the restriction of the distribution p on E , conditional to E . Let X denote a
random variable following pE

∀i ∈ E : pE(X = i) = p(X = i|E) =
pi∑
j∈E pj

.

Let I and J denote two random variables on JKK sampled conditionally to E , independently fol-
lowing pE (with replacement).

In this section, we prove two results: the marginal distribution of I on JKK is identical to p, and
a bound on the probabilities of the joint unconditional distribution of (I, J).

Lemma 33 For each i ∈ JKK,
P(I = i) = pi.

Proof Fix i ∈ JKK. Let K denote the set of subsets of JKK, constituted of at most two elements.
For any subset a ∈ K, define

pa :=
∑
i∈a

pi.

We have

P(I = i) =
∑
a∈K

P(I = i, E = a)

= P(I = i|E = {i}) P(E = {i}) +
∑

u∈JKK\{i}

P(I = i|E = {u, i}) P(E = {u, i})

=
pi
K

+
∑

u∈JKK\{i}

pi
pu + pi

pu + pi
K

=
pi
K

+
pi
K

(K − 1)

= pi.

Lemma 34 For each i, j ∈ JKK,

P(I = i, J = j) ≥ 1

K
pipj .
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Proof Fix i, j ∈ JKK. Let K denote the set of subsets of JKK, constituted of at most two elements.
Suppose that i = j. We have

P(I = i, J = i) =
∑
a∈K

P(I = i, J = i, E = a)

=
∑
a∈K

P(I = i, J = i|E = a)P(E = a)

=
∑
a∈K

P(I = i|E = a)2P(E = a),

where we used the fact that I and J are independent conditionally to E and that I and J follow the
same distribution. We use Jensen’s inequality:

P(I = i, J = i) ≥

(∑
a∈K

P(I = i|E = a)P(E = a)

)2

= p2
i .

Now suppose that i 6= j. We have

P(I = i, J = j) = P(I = i, J = j, E = {i, j})
= P(I = i|E = {i, j})P(J = j|E = {i, j})P(E = {i, j})

=
pi

pi + pj

pj
pi + pj

pi + pj
K

=
pipj
K

.

Appendix H. Proof of Theorems 6 and 7

We consider the notation of Algorithms 3 and 4. Let π̂ij,t = P(It = i, Jt = j|Ft−1). Introduce (µ̂t
and ξ̂t are the same quantities as in the previous section):

µ̂t :=
∑
i∈JKK

p̂i,t`i,t,

ν̂t :=
1

2

∑
i,j∈JKK

π̂ij,t (`i,t − `j,t)2

ξ̂t :=
1

2

∑
i,j∈JKK

p̂i,tp̂j,t (`i,t − `j,t)2
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We have, using (8) with c = 1/λ̄ (implied by Assumption 1, see Lemma 3):
T∑
t=1

`t

(
FIt + FJt

2

)
≤

T∑
t=1

(
1

2
`It,t +

1

2
`Jt,t −

λ̄

2
(`It,t − `Jt,t)2

)

=
1

2

T∑
t=1

Ut +
1

2

T∑
t=1

U′t −
m̃λ̄

32K

T∑
t=1

ξ̂t −
λ̄

2

T∑
t=1

Wt −
λ̄

4

T∑
t=1

ν̂t︸ ︷︷ ︸
Term 1

+

T∑
t=1

µ̂t +
m̃λ̄

32K

T∑
t=1

ξ̂t −
λ̄

4

T∑
t=1

ν̂t︸ ︷︷ ︸
Term 2

,

where
Ut := `It,t − µ̂t; U′t := `Jt,t − µ̂t; Wt := (`It,t − `Jt,t)2 − ν̂t.

Section H.1 below is common to Theorem 6 and 7. In Section H.2, we distinguish between the
case where (p = m = 2, IC = True) and (p = 2,m ≥ 3) or (p = 2,m = 2, IC = False).

H.1. Bounding Term 1

Recall that in Algorithm 3 we have by definition of It, conditionally to Ft−1: It ∼ p̂t. Furthermore,
in Algorithm 4, using Lemma 33, conditionally to Ft−1, we have: It ∼ p̂t. Hence, (Ut)t∈JT K is a
martingale difference sequence bounded in absolute value by B. Moreover, we have for all t ∈ JT K

E
[
U2
t |Ft−1

]
= ξ̂t.

Next we apply the high probability bound provided by Corollary 25 to the sequence (Ut)t∈JT K, with
c = m̃Bλ̄/(32K). We have with probability at least 1− 3δ

T∑
t=1

Ut −
m̃

32K
λ̄

T∑
t=1

ξ̂t ≤ 7700
K

m̃λ̄
log

(
K

m̃Bλ̄δ

)
. (41)

Recall that in Algorithm 3 and 4, It and Jt have the same marginal distribution. Therefore, with
probability at least 1− 3δ, (41) holds with Ut replaced by U′t.
Similarly, the sequence ((−λ̄/2)Wt)t∈JT K is a martingale difference bounded in absolute value by
λ̄B2. For any t ∈ JT K,

λ̄2

4
E
[
W2

t |Ft
]
≤ λ̄2

4
E
[
(`It,t − `Jt,t)

4|Ft−1

]
≤ λ̄2B2

4
ν̂t.

Next, we apply Corollary 25 to the sequence ((−λ̄/2)Wt)t∈JT K: We take c = 1, we have with
probability 1− 3δ:

− λ̄
2

T∑
t=1

Wt −
λ̄

4

T∑
t=1

ν̂t ≤ 72λ̄B2 log(δ−1)

≤ 72B log(δ−1). (42)

Using (41) and (42), we conclude that with probability 1− 9δ

Term 1 ≤ 7772
K

m̃λ̄
log

(
K

m̃Bλ̄δ

)
. (43)
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H.2. Bounding Term 2

We divide this part of the proof into two section (depending on the expression of the joint distribution
π̂t).

H.2.1. CASE (p = 2 AND m ≥ 3) OR (p = 2, m = 2 AND IC = FALSE)

Recall that conditionally to Ft−1, the played experts It and Jt are sampled independently according
to p̂t from JKK. Therefore for any i, j ∈ JKK, π̂ij,t = p̂i,tp̂j,t and ν̂t = ξ̂t.
Hence, Term 2 satisfies the following bound

Term 2 ≤
T∑
t=1

µ̂t −
7λ̄

32

T∑
t=1

ξ̂t.

Using the first claim of Lemma 31, we have if λ ∈
(
0, m̃

128K λ̄
)

Term 2 ≤ min
i∈JKK

Li,T + c
1

λ
log

(
m̃

Bλδ

)
, (44)

where c is a numerical constant. The conclusion of the theorem follows by combining the upper
bounds obtained in (43) and (44).

H.2.2. CASE m = p = 2 AND IC = TRUE:

Using Lemma 33 we have It ∼ p̂t. Furthermore, using Lemma 34 we have that for any i, j ∈ JKK,
any t ∈ JT K:

π̂ij,t ≥
1

K
p̂i,tp̂j,t.

Therefore ν̂t ≥ 1
K ξ̂t, and we have the following bound on Term 2:

Term 2 ≤
T∑
t=1

µ̂t −
3λ̄

32K

T∑
t=1

ξ̂t.

Using the second claim of Lemma 32, we have if λ ∈
(

0, λ̄
352K2

)
T∑
t=1

µ̂t −
7

32B

T∑
t=1

ξ̂t ≤ min
i∈JKK

Li,T + c
1

λ
log

(
1

λBδ

)
. (45)

The conclusion of the theorem follows by combining the upper bounds obtained in (43) and (45).

Appendix I. Proofs of lower bounds, Theorem 10 and Theorem 12

The proofs of Theorem 10 and Theorem 12 are presented in four steps. The only difference between
the proofs is in the last step. Thus the first three steps are common to both proofs.

We adapt the main steps of Auer et al. (1995) to our setting. The gist of the proof is the following.
We construct a distribution with very correlated experts. In this situation, going from a weighted
average of experts to a single expert with the largest weight does not change the prediction risk
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much. Then, we use some classical arguments in deriving lower bounds for the expected regret
using information theory results.

Let T > 0 be fixed, we consider that the loss function is the squared loss and we focus on the
particular setting where the target variables (Yt) are identically 0.

First step: Specifying the distributions. We start by considering a deterministic forecaster. We
denote by Pi the joint distribution of expert predictions, where all experts are identical and dis-
tributed as one and the same Bernoulli variable with parameter 1/2, except the optimal expert i who
has distribution B

(
1
2 − ε

)
but is still strongly correlated to the others.

More precisely, let (Ut)t∈JT K be a sequence of independent random variables distributed accord-
ing the uniform distribution on [0, 1]. We consider that in each round the expert predictions have the
following joint distribution Pi:

• For j 6= i: Fj,t = 1
(
Ut ≤ 1

2

)
.

• Fi,t = 1
(
Ut ≤ 1

2 − ε
)
.

Recall that in this setting we have for any k, j ∈ JKK \ {i}

Ei[Fj,tFk,t] =
1

2

Ei[Fi,tFj,t] =
1

2
− ε.

Finally, we denote by P0 the joint distribution where all experts are equal to the same Bernoulli(1/2)
variables, i.e., experts predictions are defined by Fi,t = 1(Ut ≤ 1/2), i ∈ JKK.

Second step: Strategy Reduction. Suppose that the player follows a deterministic strategyA. In
each round t, given Ft−1, this strategy selects a subsets St of JKK of size m and a sequence of non-
negative weights (αi,t)i∈St , such that

∑
i αi,t = 1, and plays the convex combination

∑
i∈St αi,tFi,t.

For such a strategy A, we associate a strategy Â, such that in each round, we run the strategy A
except that we play only the expert with the largest weight ît ∈ Arg Maxi∈St αi,t.

Let us analyse the difference of the cumulative loss between the strategies A and Â. Let lt(A)
denote the loss of the strategy A at round t. We have

Ei
[
lt(A)− lt(Â)

]
= Ei

(∑
j∈St

αj,tFj,t

)2
− Ei

(∑
j∈St

1
(
ît = j

)
Fj,t

)2
.

If i /∈ St then we have Ei[lt(A)− lt(Â)] = 0.
If i ∈ St and ît = i, we have (let j ∈ JKK such that j 6= i)

Ei
[
lt(A)− lt(Â)

]
= Ei

[
((1− αi,t)Fj,t + αi,tFi,t)

2
]
− Ei[Fi,t]

= (1− αi,t)2 1

2
+ α2

i,t

(
1

2
− ε
)

+ 2αi,t(1− αi,t)
(

1

2
− ε
)
− 1

2
+ ε

= ε(1− αi,t)2

≥ 0.
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If i ∈ St and ît 6= i, we have (let j ∈ JKK such that j 6= i)

Ei
[
lt(A)− lt(Â)

]
= Ei

[
((1− αi,t)Fj,t + αi,tFi,t)

2
]
− Ei[Fj,t]

= (1− αi,t)2 1

2
+ α2

i,t

(
1

2
− ε
)

+ 2αi,t(1− αi,t)
(

1

2
− ε
)
− 1

2

= εα2
i,t − 2εαi,t

≥ −3

4
ε,

where we used the fact that αi,t ∈ [0, 1/2], since ît 6= i.
To summarize, in the worst case, the excess loss between A and Â is −3

4ε. Hence, we have the
following lower bound on the expected regret between the two strategies:

RT (A)−RT (Â) ≥ −3

4
Tε. (46)

Third step: Information theoretic tools. Let us introduce the following notation: assume the
player follows a deterministic strategy A, and let Zt = (Ct, lt(Fi,t)i∈Ct) denote the information
disclosed to the player at time t. Denote Zt = (Z1, . . . , Zt) the entire information available to the
player since the start. The quantities Zt,Zt are considered as random variables, whose distribution
is determined by the underlying experts distribution, and the player strategy A.

Lemma 35 Let F (ZT ) be any fixed function of the player observations, taking values in [0, B].
Then for any i ∈ JKK and any player strategy A,

Ei
[
F
(
ZT
)]
≤ E0

[
F
(
ZT
)]

+
B

2

√
E0[Ni] log(1− 2ε)−1,

where Ni =
∑T

i=1 1{i ∈ Ct}.
In the case where |Ct| = 1 for all t, the following sharper bound holds:

Ei
[
F
(
ZT
)]
≤ E0

[
F
(
ZT
)]

+
B

2

√
E0[Ni] log(1− 4ε2)−1,

Proof Fix i ∈ JKK. Denote Qi the distribution of ZT induced by expert distribution Pi and a fixed
player strategyA (omitted from the notation for simplicity). For any function G bounded by R, it is
well-known that it holds |EX∼P[G(X)]− EX∼Q[G(X)]| ≤ 2R‖P−Q‖TV , where ‖·‖TV denotes
the total variation distance. Hence, by shifting F by −B/2, we get

Ei
[
F (ZT )

]
− E0

[
F (ZT )

]
≤ B‖Qi −Q0‖TV ≤ B

√
1

2
KL(Q0‖Qi),

by Pinsker’s inequality, where KL(.) denotes the Kullback-Leibler divergence.
Next, we will compute the quantity KL(Q0‖Qi). The chain rule for relative entropy (Theorem

2.5.3 in Cover, 1999) gives:

KL(Q0‖Qi) =

T∑
t=1

KL
(
Q0

{
Zt|Zt−1

}
‖Qi

{
Zt|Zt−1

})
, (47)
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where

KL
(
Q0

{
Zt|Zt−1}‖Qi{Zt|Zt−1

})
:=
∑
zt

Q0

{
zt−1

}
Q0

{
zt|zt−1

}
log

(
Q0

{
zt|zt−1

}
Qi{zt|zt−1}

)

=
∑
zt

s.t. i∈Ct

Q0

{
zt−1, Ct

}
Q0{zt|Ct} log

(
Q0{zt|Ct}
Qi{zt|Ct}

)
.

The last line holds because Q•
{
zt|zt−1

}
= Q•

{
zt|zt−1, Ct

}
Q•
{
Ct|zt−1

}
, and it holds Q0

{
Ct|zt−1

}
=

Qi

{
Ct|zt−1

}
since the strategy’s play only depends on past observations; also Q•

{
zt|zt−1, Ct

}
=

Q•{zt|Ct} since the observed experts’ losses at round t are independent of the past given the choice
of Ct. Furthermore, if i 6∈ Ct, one has Q0{zt|Ct} = Qi{zt|Ct}.

On the other hand, if zt is such that i ∈ Ct, then:

• under Q0 since all experts are identical and equal to the same Ber(1/2) variable (and Yt
is identically 0), Q0(zt|Ct) only charges the two points with all observed losses equal to 0
(denote this u0) or all equal to 1 (denote this u1), each with probability 1/2;

• under Qi, it holds Qi(u1|Ct) = 1
2 − ε and Qi(u0|Ct) ≥ 1

2 . In fact, if |Ct| ≥ 2, then
Qi(u0|Ct) = 1

2 (since with probability ε under Qi, we observe a state that is neither u0 nor
u1, namely when all observed experts err but Fi), and if |Ct| = 1, then Qi(u0|Ct) = 1

2 + ε
(since Fi alone is observed then).

Therefore, in general

KL
(
Q0

{
Zt|Zt−1}‖Qi{Zt|Zt−1

})
≤ P0(i ∈ Ct)

(
1

2
log

(
1/2

1/2− ε

)
+

1

2
log

(
1/2

1/2

))
≤ 1

2
P0(i ∈ Ct)log(1− 2ε)−1.

In the case where |Ct| = 1 for all t, we get the sharper bound

KL
(
Q0

{
Zt|Zt−1}‖Qi{Zt|Zt−1

})
= P0(i ∈ Ct)

(
1

2
log

(
1/2

1/2− ε

)
+

1

2
log

(
1/2

1/2 + ε

))
=

1

2
P0(i ∈ Ct)log

(
1− 4ε2

)−1
.

Plugging this into (47), we obtain
KL(Q0‖Qi) ≤ −1

2E0[Ni] log(1− 2ε), resp. KL(Q0‖Qi) ≤ −1
2E0[Ni] log

(
1− 4ε2

)
, if |Ct| =

1 for all t, leading to the claims.

Fourth step for Theorem 10: lower bounding the regret of Â in the case |Ct| ≥ 2. Recall ît
denotes the single expert played by the “reduced” strategy Â. At round t, the expected loss for the
player playing Â is given by

Ei
[
lt,̂it

]
=

(
1

2
− ε
)
Pi
(
ît = i

)
+

1

2
Pi
(
ît 6= i

)
=

1

2
− ε Pi

(
ît = i

)
.
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For each j ∈ JKK let Mj :=
∑T

t=1 1
{
ît = j

}
. Hence

T∑
t=1

Ei
[
lt,̂it

]
=
T

2
− ε Ei[Mi],

and the regret with respect to the optimal arm i under Pi is

Ei
[
RT (Â)

]
= ε(T − Ei[Mi]). (48)

We can apply Lemma 35 to F (Zt) = Mi: since we assume the player follows a deterministic
strategy,Mi is a function of the information Zt available to the player, bounded by T . Thus it holds:

Ei[Mi] ≤ E0[Mi] +
T

2

√
E0[Ni] log(1− 2ε)−1. (49)

Observe that
∑K

i=1Mi = T and
∑K

i=1Ni = mT . Hence

K∑
i=1

Ei[Mi] ≤
K∑
i=1

E0[Mi] +
T

2

K∑
i=1

√
E0[Ni] log(1− 2ε)−1

≤ E0

[
K∑
i=1

Mi

]
+
TK

2

√√√√ 1

K

K∑
i=1

E0[Ni] log(1− 2ε)−1

= T + T
3
2

√
mKε,

where we used the fact that for ε ∈ (0, 1/4) : − log(1− 2ε) ≤ 4ε. Let P∗ = 1
K

∑K
i=1 Pi the

adversary choosing uniformly at random among the expert distributions Pi at the start of the game
(i.e. choosing at random the optimal expert). From the above and (48) we deduce

E∗
[
RT (Â)

]
≥ 1

K

K∑
i=1

Ei
[
RT (Â)

]
≥ ε
(
T

(
1− 1

K

)
− T

3
2

√
mε

K

)
Using inequality (46), we obtain

E∗[RT (A)] ≥ ε
(
T

(
1

4
− 1

K

)
− T

3
2

√
mε

K

)
≥ εT

(
1

20
−
√
Tmε

K

)
,

if K ≥ 5. Choosing ε = 1
900

K
mT , we get

E∗[RT (A)] ≥ 10−5 K

m
.

Recall that this lower bound was derived for deterministic players. Generalizing this bound to
random players follows simply by applying Fubini’s theorem. Also since the bound is in expec-
tation over expert predictions drawn according to P∗, for any strategy A there exists at least one
deterministic sequence of expert forecasts with regret larger than its expectation.
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Fourth step for Theorem 12: lower bounding the regret of Â in the case |Ct| = 1. The only
difference between the proof in this case and the proof in the previous case is the bound given by
Lemma 35. The regret with respect to the optimal arm i under Pi is

Ei
[
RT (Â)

]
= ε(T − Ei[Mi]). (50)

We can apply Lemma 35 to F (Zt) = Mi: since we assume the player follows a deterministic
strategy,Mi is a function of the information Zt available to the player, bounded by T . Thus it holds:

Ei[Mi] ≤ E0[Mi] +
T

2

√
E0[Ni] log(1− 4ε2)−1.

Observe that
∑K

i=1Mi = T and
∑K

i=1Ni = T . Hence

K∑
i=1

Ei[Mi] ≤
K∑
i=1

E0[Mi] +
T

2

K∑
i=1

√
E0[Ni] log(1− 4ε2)−1

≤ E0

[
K∑
i=1

Mi

]
+
TK

2

√√√√ 1

K

K∑
i=1

E0[Ni] log(1− 2ε2)−1

= T + T
3
2

√
2Kε2,

where we used the fact that for ε ∈ (0, 1/4) : − log
(
1− 4ε2

)
≤ 8ε2. Let P∗ = 1

K

∑K
i=1 Pi the

adversary choosing uniformly at random among the expert distributions Pi at the start of the game
(i.e. choosing at random the optimal expert). From the above and (50) we deduce

E∗
[
RT (Â)

]
≥ 1

K

K∑
i=1

Ei
[
RT (Â)

]
≥ ε

(
T

(
1− 1

K

)
− T

3
2

√
2
ε2

K

)

Using inequality (46), we obtain

E∗[RT (A)] ≥ ε

(
T

(
1

4
− 1

K

)
− T

3
2

√
2
ε2

K

)
≥ εT

(
1

20
−
√

2
Tε2

K

)
,

if K ≥ 5. Choosing ε = 1
30

√
K
T , we get

E∗[RT (A)] ≥ 10−5
√
KT.

The generalization for the random players follows directly using the same argument as in the
fourth step of the proof of Theorem 10.

Appendix J. Proof of Theorem 13

Let ` be the squared loss: l(x, y) = (x − y)2 on X = Y = [0, 1]. Consider the game protocol
presented in Algorithm 1 with p = 1 and m ∈ JKK. Suppose that the target variable y is identically
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equal to 0 (yt = 0 for all t ∈ JT K). Suppose that at each round t ∈ JT K, for each expert i ∈ JKK,
the prediction Fi,t follows a Bernoulli distribution of a parameter denoted `i,t. We have

E[RT ] =
T∑
t=1

E[FIt,t]− min
i∈JKK

T∑
t=1

E[Fi,t].

The game protocol presented in Algorithm 1 reduces to theK-armed bandit game withm feedbacks
in each round, analysed in Seldin et al. (2014).

Theorem below presented in Seldin et al. (2014) (the full version including appendices) as The-
orem 2, provides a lower bound for the regret.

Theorem 36 (Seldin et al. (2014)) For the K-armed bandit game with mT observed rewards and
T ≥ 3

16
K
m ,

inf supE[RT ] ≥ 0.03

√
K

m
T,

where the infinimum is over all playing strategies and the supremum is over all individual sequences.

The result stated in Theorem 13 is a direct consequence of the Theorem 36 and the setting
described above.

Appendix K. Proof of Proposition 8

We concentrate on Algorithm 3 for simplicity, but the arguments below apply to all algorithms.
We start with a fundamental observation. While the definitions (6), (7) for ˆ̀

i,t and v̂i,t were writ-
ten in order to emphasize the unbiased character of the loss estimates, the algorithm is unchanged if
we use instead the shifted “pseudo-loss” estimates

˜̀
i,t := ˆ̀

i,t − `It,t =
K

m̃
1(i ∈ Ut)(`i,t − `It,t), (51)

and further observe that it holds v̂i,t = ˜̀2
i,t. Using the above pseudo-losses in place of the estimated

losses does not change the sampling distribution p̂t, since all estimated losses are shifted by the
same quantity `It,t, which gets cancelled through the normalization in the definition (5) of the EW
distribution p̂t.

Observe that the pseudo-loss estimates ˜̀
i,t (as well as the corresponding variance estimates v̂i,t)

are equal to zero for all i 6∈ Ut. Therefore, to keep track of the cumulative pseudo-loss estimates
L̃i,t =

∑
k≤t

˜̀
i,k, only |Ut| = max{m− 2, 1} of them have to be updated at each round.

In order to keep track and sample efficiently from p̂t, we propose the following construction.
Let T be a balanced binary tree of depth dlog2(K)e, with K leaves, such that each leaf i ∈ ∂T is
identified to an expert index. Furthermore, assume that each internal node u of T stores the partial
sum Su,t =

∑
v∈∂Tu exp

(
−λL̃v,t + λ2V̂v,t

)
, where Tu is the subtree of T rooted at node u. Then,

by the above considerations, it holds that Su,t = Dt
∑

v∈∂Tu p̂u,t = Dtp̂t(∂Tu), where Dt is a
normalizing factor depending only on t but not on the node u. Note also that Dt = S∅, where ∅
denotes the root note of T . It is then possible to sample efficiently It ∼ p̂t in a standard manner, as
follows:

1. Generate U ∼ Unif[0, 1], and put Z = S∅U . Let v = ∅.
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2. If v is a leaf of T , stop and output v.

3. Let vleft, vright denote the two descendent nodes of v.

4. If Z < Svleft , then let v ← vleft and go to step 2.

5. Otherwise, i.e. Z ≥ Svleft , let v ← vright, Z ← Z − Svleft , and go to step 2.

It easy to check that the above sampling returns a random sample from the probability p̂t. (Namely,
each time that step 2 is reached, conditionally to past steps Z is uniformly distributed in the interval
[0, Sv], and therefore the left or right descendent of u is picked with probability p̂t(∂Tvleft |∂Tv)
resp. p̂t(∂Tvright |∂Tv); the chain rule yields the claim.) Obviously, the computing complexity of the
above is O(logK) (the depth of the tree).

Furthermore, to update the quantities stored at the nodes of T at each round, since only the
estimated cumulative pseudo-losses of experts i ∈ Ut have their value modified, it is sufficient to do
the following for each i ∈ Ut:

1. Let v be the leaf representing i. Update Sv ← Sv exp
(
−λ˜̀

i,t + λ2v̂i,t

)
.

2. Go up the tree to the root and sequentially update all ancestors w of v according to Sw =
Swleft

+ Swright
.

Again, the computing complexity of this update operation is O(logK).
All in all, the computational cost of the initialization of the tree isO(K), but then at each round

the computational cost of the sampling and update operations is O(m log(K)).
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