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Abstract
Computing the dominant eigenvectors of a matrix A has many applications, such as principal
component analysis, spectral embedding, and PageRank. However, in general, this task relies on the
complete knowledge of the matrix A, which can be too large to store or even infeasible to observe in
many applications, e.g., large-scale social networks. Thus, a natural question is how to accurately
estimate the eigenvectors of A when only partial observations can be made by sampling entries from
A. To this end, we propose the Adaptive Power Method (APM), a variant of the well-known power
method. At each power iteration, APM adaptively selects a subset of the entries of A to observe
based on the current estimate of the top eigenvector. We show that APM can estimate the dominant
eigenvector(s) of A with squared error at most ϵ by observing roughly O(nϵ−2 log2(n/ϵ)) entries of
an n× n matrix. We present empirical results for the problem of eigenvector centrality computation
on two real-world graphs and show that APM significantly outperforms a non-adaptive estimation
algorithm using the same number of observations. Furthermore, in the context of eigenvector
centrality, APM can also adaptively allocate the observation budget to selectively refine the estimate
of nodes with high centrality scores in the graph.
Keywords: Adaptive sampling, Eigenvector estimation, Noisy power method

1. Introduction

Computing the dominant eigenvectors of a matrix A is a central task in countless applications.
Examples include dimensionality reduction techniques such as principal component analysis and
low-rank approximation, spectral clustering, matrix completion, topic modeling, and many other
data science problems. For instance, given a search query from a user, Google’s PageRank algorithm
shows the relevant websites by ranking the relevance of web pages via eigenvector computations
on their link structures (Brin and Page, 1998; Page et al., 1998). In addition, in light of the ongoing
growth of web-based services (e.g., Facebook), a key challenge for viral marketing in social networks
is to identify influencers in social networks (Kiss and Bichler, 2008; De Valck et al., 2009), which
can be accomplished through the notion of eigenvector centrality. The centrality is given by the
principal eigenvector’s entries, indicating an importance score of the corresponding entity/node: the
higher the score the greater the level of influence within the network. Computing the eigenvector
centrality of the nodes in a network also finds applications in computational biology, where the
relationships between biological entities such as genes, proteins and metabolites can be modeled as
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biological networks such as gene regulatory networks, protein interaction networks, and metabolic
networks (Wuchty and Stadler, 2003; Junker and Schreiber, 2011).

There are several well-known algorithms that find the principal eigenvector of a matrix A. One
important example is the power method. Starting with a randomly drawn normalized vector x0, in
the ℓth iteration, the algorithm updates the current eigenvector estimate by computing Axℓ−1 and
normalizing it, until convergence. The power method computes the dominant eigenvector(s) of an
n× n matrix A, with squared error at most ϵ in O(log(n/ϵ)) iterations (Van Loan and Golub, 1996;
Parlett, 1998). To compute the dominant eigenvectors, the power method relies on the complete
knowledge of all entries of A. However, there are many practical applications where observing all
entries of A may be prohibitive, particularly in high-dimensional or big data settings. For example,
there are at least 4.26 billion web pages (De Kunder, 2022) and the current number of social media
users is over 4.59 billion (Statista, 2022). The adjacency matrix corresponding to these networks is
not explicitly stored anywhere and must be learned through node/edge queries, making an eigenvector
computation fairly non-trivial. Access to the entries of a matrix may also be limited in situations
where it is physically difficult to query pairwise relationships, such as in biological networks. For
example, the mapping of the neural network circuitry of living organisms (e.g., the connectome of
C. elegans (Cook et al., 2019)) requires physical probing of the connectivity between neurons. In
such cases, it may be too costly to probe all pairwise relationships to build a complete adjacency
matrix. Identifying the most useful observations for the subsequent network analysis is thus crucial.

Motivated by settings where one can only access a limited number of the entries of A, we study
two related questions: (1) Is it possible to accurately estimate the top eigenvectors of a matrix A
from a carefully chosen small set of its entries? (2) Can adaptive sampling be used to improve the
estimation accuracy? Notice that sampling entries of A in an adaptive manner can be beneficial as
the previously chosen entries may provide information about which entries are more important for
the eigenvector estimation problem. Hence our goal is to develop adaptive sampling and estimation
algorithms with high eigenvector estimation accuracy, while minimizing the sample complexity.

Since the power method is an iterative algorithm for eigenvector computation, it provides a
natural starting point to develop an adaptive algorithm that samples elements of A in a sequential
manner. Based on this idea, we propose an algorithm called Adaptive Power Method (APM),
shown in a simplified form as Algorithm 1. The APM computes the dominant eigenvector of a
symmetric matrix with binary entries A ∈ {0, 1}n×n (such as a graph adjacency matrix) using
adaptively sampled entries. Generalizations to asymmetric real-valued (bounded) matrices and to
the computation of the dominant k eigenvectors are straightforward. The algorithm starts with
an initial random and normalized vector x0 ∈ Rn and iteratively updates the current eigenvector
estimate by computing A(ℓ)xℓ−1, with the sampled and scaled matrix A(ℓ) at the ℓth iteration. The
key is to adaptively construct the matrix A(ℓ) so that A(ℓ)x is an unbiased estimate of Ax. Using
concentration inequalities we can then derive a high-probability bound on ∥A(ℓ)x − Ax∥, which
can be combined with a result called the Noisy Power Method (Hardt and Price, 2014) to establish
convergence guarantees for the APM. Here we highlight one useful informal result to illustrate our
more general results. See Theorem 2 for our formal convergence guarantee.

Theorem 1 (Informal) Suppose the spectral gap between the largest singular value of A and the
second largest one is sufficiently large. If we run Algorithm 1 for L = O

(
log(n/ϵ)

)
iterations and

a budget of B = O(nϵ−2 log2(n/ϵ)) samples, APM returns the top eigenvector of A with squared
error at most ϵ.
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Algorithm 1 ADAPTIVE POWER METHOD (APM) (SIMPLIFIED)
Input: Symmetric matrix A ∈ {0, 1}n×n, budget B, number of iterations L, threshold c > 0
Output: Approximate top eigenvector xL ∈ Rn

1: Draw a random vector x0 ∈ Rn with ∥x0∥ = 1
2: for ℓ = 1, . . . , L do
3: Draw I

(ℓ)
ij ∼ Bern(p

(ℓ)
j ) ∀(i, j) ∈ [n]× [n] independently, where

p
(ℓ)
j = min

[
B

nL
·max

(
x2(ℓ−1)j , c

2
)
, 1

]
4: [A(ℓ)]ij ← aij

p
(ℓ)
j

I
(ℓ)
ij

5: yℓ ← A(ℓ)xℓ−1

6: xℓ ← yℓ
∥yℓ∥

7: end for

Hence, APM can estimate the top eigenvector of A by accessing only O(nϵ−2 log2(n/ϵ)) out of
the n2 entries of A (all of which are needed in the standard power method). Furthermore, we propose
a refinement over APM called APMminVar (Algorithm 2), which further optimizes the allocation of
the sample budget across the different rows of A in a non-uniform way. The non-uniform allocation
of samples across rows is chosen so as to minimize the total variance of the estimator A(ℓ)x of Ax.
Specifically, we demonstrate that the minimum variance can be achieved by allocating the budget in
a way that is proportional to the variance of the corresponding eigenvector coordinate estimate. This
non-uniform allocation of samples across rows is shown to outperform the basic APM for a variety
of choices of the input budget B. Moreover, we observe that this non-uniform budget allocation
produces eigenvector estimates with smaller errors on the largest entries. This can be thought of
as a way to selectively refine the estimate of the top entries of the principal eigenvector, which is
particularly useful in the context of eigenvector centrality estimation, where one is typically more
interested in identifying nodes with high centrality scores.

From numerical evaluations using benchmark datasets from Hu et al. (2020), we corroborate
our theoretical claims and the algorithms’ practicality by demonstrating significant performance
improvements over a non-adaptive baseline that uses the same number of observations.

Brief summary of related work: There is an extensive literature on a wide variety of eigenvector
computation problems under different constraints. This includes the eigenvector computation with an
incomplete knowledge on the underlying matrix (1) using query models that return vectors (Garber
et al., 2016; Simchowitz et al., 2017), (2) entry-wise sampling of the matrix (Kamath et al., 2020;
Ruggeri and De Bacco, 2019, 2020; Shomorony and Avestimehr, 2014), and (3) with the full matrix
in addition to a noise perturbation (Mitliagkas et al., 2013; Hardt and Roth, 2013; Hardt and Price,
2014; Musco and Musco, 2015; Liu et al., 2015; Balcan et al., 2016; Xu and Li, 2019, 2020, 2021,
2022). A detailed discussion of related works is presented in Section 5.

Notation: We focus on the setting where a symmetric matrix A = (aij) ∈ {0, 1}n×n is fixed and
unknown, and hence needs to be sampled in an entrywise manner. We write Ai: and A:j to indicate
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the ith row and jth column of the matrix A respectively. We use σi, i = 1, . . . , n, for the ith largest
singular value of the matrix A. We also let [n] := {1, 2, . . . , n}.

Throughout the paper, we denote vectors by a lowercase bold letter (e.g., x ∈ Rn) and assume
them to be in column form. In particular, u1 denotes the top eigenvector of A. Also, (·)T denotes
the transpose. We indicate the ithe entry of x with either [x]i or xi, and we use [x]S to denote the
concatenation of xis for all i ∈ S. We denote by ⟨x,y⟩ :=

∑
i xiyi ∈ R the inner product between

x and y. Unless otherwise mentioned, we use ∥ · ∥ for the ℓ2-norm. Lastly, we write Bern(p) for a
Bernoulli distribution with parameter p.

Outline: In Section 2, we propose the Adaptive Power Method (APM ) for the top eigenvector
computation. We extend our algorithm via variance reduction techniques in Section 3. In Section 4,
we numerically validate the theoretical findings and the practicality afforded by the two adaptive
schemes. In Section 5, we discuss related works. We conclude and discuss future works in Section 6.
Detailed proofs are presented in the Appendix.

2. Adaptive Power Method

In this section, we introduce the Adaptive Power Method (APM) and provide theoretical guarantees
for its sample complexity. As shown in Algorithm 1, the algorithm follows an iterative paradigm
inspired by the power method to estimate the principal eigenvector of a matrix A. The algorithm
starts with an initial random and normalized vector x0 ∈ Rn and iteratively updates the current
eigenvector estimate by computing A(ℓ)xℓ−1, for a matrix A(ℓ) carefully constructed from a small
number of sampled entries from A. At the ℓth iteration, Algorithm 1 draws sampling indicator
variables I(ℓ)ij ∼ Bern(pj) for all i, j independently with

pj = min

[
B

nL
·max

(
x2(ℓ−1)j , c

2
)
, 1

]
(1)

and builds the matrix A(ℓ) with [A(ℓ)]ij =
aij
pj
I
(ℓ)
ij . Note that the sampling procedure is adaptive in

the sense that the algorithm decides whether to sample aij depending on the value of x(ℓ−1)j : the
larger value |x(ℓ−1)j | is, there exists a higher chance for aij to be sampled. Since a larger |x(ℓ−1)j |
contributes more to the computation of Axℓ−1 in each iteration, our adaptive sampling effectively
allocates the budget in a way such that only the aijs that contribute significantly to the matrix-vector
product will be sampled with high probabilities.

Unbiased estimate of Axℓ−1: Algorithm 1 produces an unbiased estimate of Axℓ−1 ∀ℓ ∈ [L].
This can be readily seen from the entrywise analysis that ∀(ℓ, i) ∈ [L]× [n],

E
[
[A(ℓ)xℓ−1]i

]
=

n∑
j=1

pj ·
1

pj
aijx(ℓ−1)j =

n∑
j=1

aijx(ℓ−1)j = [Axℓ−1]i. (2)

Thresholding procedure: We note that the expression for pj in (1) performs a thresholding on
x2(ℓ−1)j : if |x(ℓ−1)j | > c, pj = B

nL · x
2
(ℓ−1)j ; otherwise, pj = B

nL · c
2. This thresholding prevents

1
pj
aij from becoming too large, which allows us to apply Bernstein’s inequality when bounding the

error of our estimator A(ℓ)xℓ−1 in Lemma 3. See Appendix C for details. However, this thresholding
comes at the cost of an excess sampling of entries of A that contribute little to the eigenvector
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estimation (i.e., entries where |x(ℓ−1)j | is small). This will make the expected number of samples be
(1 + c2n) ·B in the worst case. We resolve this by setting c to be small so as to make this additional
cost negligible, as explained next.

Number of observations: We claim that the expected number of sampled entries per row and per
iteration is at most B

nL(1 + c2n). This can be readily seen from

n∑
j=1

E
[
I
(ℓ)
ij

]
=

n∑
j=1

pj ≤
n∑

j=1

B

nL
·
(
x2(ℓ−1)j + c2

)
=

B

nL

(
1 + c2n

)
, ∀(ℓ, i) ∈ [L]× [n], (3)

where we use the fact that ∥xℓ−1∥ = 1 in the last step. This implies that the expected total number of
sampled entries is at most (1+c2n) ·B, since the total number of observations that the APM exploits
is
∑L

ℓ=1

∑n
i=1

∑n
j=1 I

(ℓ)
ij . If we set c ≤

√
α
n for some small α > 0, the expected budget is at most

(1 + α)B. Furthermore, using concentration inequalities, we can show that, with high probability,
the actual number of samples is close to (1 + α)B. This is proved in Appendix B.

Reusing previous samples: Notice that Algorithm 1 does not have memory of past sampled entries
and may sample the same entries of A multiple times. A natural improvement is then to use the
past sampled entries and to sample entries only among the unsampled ones. This corresponds to
setting p(ℓ)ij = 1 if I(ℓ−1)

ij = 1 before sampling entries according to equation (1), as shown in the

modified Algorithm 1 in Appendix A. Notice that once I(ℓ)ij is set to 1 for some ℓ, it remains equal
to 1 for subsequent iterations, meaning that the same previously sampled aij can be reused. The
empirical results in Section 4 show that exploiting past sampled entries yields a better performance
in practice, particularly when the ratio of the budget to the total number of entries B

n2 is not vanishing.
Note that this modification does not violate the unbiasedness in (2). See Appendix A for the detailed
description of the algorithm including the memory of the past sampled entries.

Our main theoretical result is a convergence guarantee for APM with respect to ℓ2 error. As
it turns out, this convergence guarantee can be established even for Algorithm 1, without reusing
previous samples, and we present this in Theorem 2. Intuitively, the reutilization of previous samples
in Algorithm 1 can only improve performance.

Theorem 2 Suppose Algorithm 1 is run for L = O
(

σ1
σ1−σ2

log
(
nτ
ϵ

))
iterations with a budget of

B = σ1
(σ1−σ2)3

n3

ϵ2
log2

(
nτ
ϵ

)
samples, and c =

√
α(σ1−σ2)

n3/2 . Then the eigenvector estimate xL satisfies∥∥u1 − ⟨u1,xL⟩xL

∥∥ ≤ ϵ, (4)

with probability at least 1− n−Ω(1) − τ−Ω(1).

Generalization to real-valued matrices A: Our techniques can be readily extended to obtain
similar results for a real-valued matrix A, as long as the entries are all bounded (i.e., aij ∈
[−W,W ], ∀(i, j), where W < ∞). The main difference in the analysis will be that the error
in the estimate of Ax will be increased by a factor of W . This will affect the two upper bounds
in Proposition 7 (having an additional factor of W for the norm and W 2 for the second moment).
Hence, as long as W is a constant (i.e., is not a function of n), it will not affect the sample complexity.
We also believe that it may be possible to obtain similar results even when the entries of A are not
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bounded, but we will need some kind of tail bound on the entries (such as subgaussianity) to establish
the error bounds.

The regime where Theorem 2 provides the most meaningful gains in terms of sample complexity
is when the spectral gap satisfies σ1 − σ2 = Θ(n) (and σ1 = Θ(n)). In this regime, the number
of iterations required in Theorem 2 is L = O(log(n/ϵ)) and the expected number of samples used
is upper bounded by (1 + α)B = (1 + α) · σ1

(σ1−σ2)3
n3

ϵ2
log2

(
nτ
ϵ

)
= O

(
nϵ−2 log2(n/ϵ)

)
. This

recovers the (informal) Theorem 1. Notice that the standard power method would require n2 samples
to compute u1. We also note that even if σ1−σ2 is sublinear in n, as long as σ1

(σ1−σ2)3
= o

(
1

n log2 n

)
,

there are still sample complexity gains. The proof of Theorem 2 is based on the following key lemma.

Lemma 3 If Algorithm 1 is run for L = O
(

σ1
σ1−σ2

log
(
nτ
ϵ

))
iterations with a budget of B =

σ1
(σ1−σ2)3

n3

ϵ2
log2

(
nτ
ϵ

)
, for some fixed parameters τ and ϵ < 1/2, the algorithm satisfies

1.
∥∥∥A(ℓ)xℓ−1 −Axℓ−1

∥∥∥ ≤ ϵ
5(σ1 − σ2)

2.
∣∣∣(A(ℓ)xℓ−1 −Axℓ−1)

Tu1

∣∣∣ ≤ 1
5τ

√
n
(σ1 − σ2)

for all ℓ ∈ [L], with probability at least 1− n−Ω(1).

Establishing conditions 1 and 2 requires a careful bounding of the error of the estimator A(ℓ)xℓ−1

using Bernstein’s inequality. The proof is provided in Appendix C. By letting nℓ = A(ℓ)xℓ−1 −
Axℓ−1, and viewing A(ℓ)xℓ−1 = Axℓ−1 + nℓ, we are in the exact setting considered in the Noisy
Power Method (Hardt and Price, 2014), which implies the following lemma.

Lemma 4 If conditions 1 and 2 hold for some τ and ϵ < 1/2 for all iterations in Algorithm 1,
the output xL after L = O

(
σ1

σ1−σ2
log
(
nτ
ϵ

))
iterations satisfies

∥∥u1 − ⟨u1,xL⟩xL

∥∥ ≤ ϵ, with

probability at least 1− τ−Ω(1) − e−Ω(n).

Proof Starting with a randomly chosen normalized vector x0 ∈ Rn, the APM iteratively updates the
current eigenvector estimate xℓ−1 at ℓth iteration (ℓ ∈ [L]), by computing A(ℓ)xℓ−1 and normalizing
it. Defining nℓ = A(ℓ)xℓ−1 −Axℓ−1, one can view the APM as the noisy power method proposed
by Hardt and Price (2014), where the product Axℓ−1 is computed with an additive perturbation nℓ.
Theorem 2.4 followed by Corollary 1.1 in Hardt and Price (2014) completes the proof.

Proof of Theorem 2 By the union bound, Lemmas 3 and 4 imply that equation (4) holds with
probability at least 1 − n−Ω(1) − τ−Ω(1) − e−Ω(n) = 1 − n−Ω(1) − τ−Ω(1) with a budget B =

σ1
(σ1−σ2)3

n3

ϵ2
log2

(
nτ
ϵ

)
.

3. Adaptive Power Method with Variance Minimization

As stated in the previous section, Algorithm 1 produces an unbiased estimate ofAxℓ−1 for all iteration
steps ℓ ∈ [L]. Hence, one way to improve the algorithm’s performance is to reduce the estimator
variance Var(A(ℓ)xℓ−1). Intuitively, this would also reduce the final mean square error (MSE)
E ∥u1 − xL∥2, since u1 ≈ A(ℓ)xℓ−1/∥A(ℓ)xℓ−1∥ and Axℓ−1 ≈ σ1u1, and thus E ∥u1 − xL∥2 ≈
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Algorithm 2 ADAPTIVE POWER METHOD WITH MINIMUM VARIANCE (APMminVar)
Input: Symmetric matrix A ∈ {0, 1}n×n, budget B, number of iterations L
Output: Approximate top eigenvector xL ∈ Rn

1: Draw a random vector x0 ∈ Rn with ∥x0∥ = 1
2: for ℓ = 1, . . . , L do
3: Draw I

(ℓ)
ij ∼ Bern(p

(ℓ)
ij ) ∀(i, j) ∈ [n]× [n] independently, according to equation (6),

except p(1)ij ←
B
nL · x

2
0j

4: [A(ℓ)]ij ← aij
pj
I
(ℓ)
ij

5: yℓ ← A(ℓ)xℓ−1

6: xℓ ← yℓ
∥yℓ∥

7: end for

1
σ1

E ∥A(ℓ)xℓ−1 − Axℓ−1∥2. In order to reduce the estimator variance Var(A(ℓ)xℓ−1), instead of
specifying one sampling probability pj for all entries in the jth column, we consider a sampling
probability p(ℓ)ij that can differ for each row i. Dropping the superscript (ℓ) for conciseness, we have

[A(ℓ)xℓ−1]i =
n∑

j=1

aijx(ℓ−1)j

pij
Iij ; E

[
[A(ℓ)xℓ−1]i

]
=

n∑
j=1

aijx(ℓ−1)j ;

Var([A(ℓ)xℓ−1]i) =
n∑

j=1

a2ijx
2
(ℓ−1)j

p2ij
Var

(
Iij
)
=

n∑
j=1

a2ijx
2
(ℓ−1)j

pij
(1− pij); (5)

where we used the fact that Var(Iij) = pij(1− pij). Now the question boils down to choosing pij
for all (i, j) so as to minimize the total variance given the fixed expected budget B. In Appendix D,
we show that this constrained optimization problem can be solved by setting

p
(ℓ)
ij =

x2(ℓ−1)j

β(ℓ)
·

(
−∥[Axℓ−1]i∥2 +

√
∥[Axℓ−1]i∥4 + 4β(ℓ)∥Ai:∥2

2

)
. (6)

Here ∥Ai:∥2 :=
∑

j a
2
ij denotes the squared ℓ2 norm of ith row of A, and β(ℓ) is a normalization

constant chosen so that the expected budget per iteration is B/L; i.e.,
∑n

i=1

∑n
j=1(p

(ℓ)
ij )

2 = B/L.

Variance adaptivity across rows: In Appendix D, we also show that, given the choice of pij in
(6), the expected number of samples in row i is given by Var([A(ℓ)xℓ−1]i)/β

(ℓ). This implies that if
the variance of the ith coordinate of A(ℓ)xℓ−1 is large, the algorithm samples entries in the ith row
of A with higher probability than in other rows. This agrees with the intuition that if the variance
from row i is large, one needs to sample more entries in Ai: to make the estimation accurate. We also
observe that this connects to the idea of Stratified Monte Carlo Sampling introduced in Carpentier
et al. (2015) that samples entries proportionally to the stratum (e.g., the level of variability).

Estimating ∥Ai:∥ and ∥[Axℓ−1]i∥: The optimal choice of pij in (6) requires knowledge of ∥Ai:∥
and ∥[Axℓ−1]i∥, but these quantities cannot be computed without full knowledge of A. Hence, we
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replace these quantities with their estimates based on the samples obtained in the (ℓ− 1)th iteration:

∥̂Ai:∥2 =
n∑

j I
(ℓ−1)
ij

∑
j:I

(ℓ−1)
ij =1

a2ij (7)

̂∥[Axℓ−1]i∥ = ∥[A(ℓ−1)xℓ−1]i∥. (8)

By replacing the true quantities ∥Ai:∥ and ∥[Axℓ−1]i∥ in (6) with these estimates, we can approxi-
mately compute the sampling probabilities p(ℓ)ij . The normalizing constant β(ℓ) can then be chosen so

that the expected number of samples is satisfied; i.e.,
∑n

i=1

∑n
j=1(p

(ℓ)
ij )

2 = B/L.
Our adaptive scheme with the variance minimization, which we refer to as APMminVar, is

summarized in Algorithm 2. As shown in the next section, APMminVar outperforms the first
APM for a variety of choices of the input budget B. In particular, we empirically observe that this
non-uniform allocation produces lower errors on the top-k entries of the principal eigenvector.

4. Empirical Results

In this section, we corroborate our theoretical claims with numerical experiments to validate the
practicality and performance of the two Adaptive Power Methods in a non-asymptotic setting. To this
end, we consider the problem of eigenvector centrality computation on real-world graphs, taking the
adjacency matrix A as an input. Notice that the centrality of a node corresponds to its corresponding
entry in the principal eigenvector.

Dataset: We use the two benchmark datasets from the Open Graph Benchmark (OGB) (Hu et al.,
2020), which includes a collection of realistic, large-scale, and diverse benchmark datasets for
machine learning on graphs:

1. ogbl-ddi dataset, representing drug-drug interactions

2. ogbl-biokg dataset, representing drug-drug, drug-protein, and protein-protein interactions

In particular, ogbl-ddi dataset is a dense graph, consisting of 4, 267 nodes and 2, 135, 822 edges. The
graph is homogeneous, unweighted, and undirected, where each node represents an FDA-approved or
experimental drug; an edge represents interactions between drugs. These interactions are interpreted
as the difference between the joint effect of taking the two drugs together and the expected effect when
drugs act independently of each other. Hence evaluating interactive nodes through the computation
of the eigenvector centrality and ranking them can potentially play a role in drug development.

The second dataset, called ogbl-biokg dataset, is a Knowledge Graph, created from a biomedical
data. The graph includes 5 types of entities: diseases, proteins, drugs, side effects, and protein
functions. All relations are modeled as directed edges. In such case, we consider the eigenvector
centrality for ATA or AAT instead in order to make the matrix symmetric. Then the top eigenvector
designates the importance of nodes in terms of in-edges and out-edges in the graph respectively.
Note, however, that sampling entries of ATA or AAT do not correspond to directly querying pairwise
relationships between nodes in the graph. In addition, since the dataset involves heterogeneous
interactions in a variety of scales, we construct a reduced homogeneous graph, consisting of 1, 500
nodes and 23, 131 edges and focusing on interactions between drugs and proteins. In contrast to the
first graph, we highlight that the constructed graph is sparse. As in the previous case, analyzing the
interactions among entities allows us to get better insights into predictions related to human biology.
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Performance metrics: We measure the effectiveness of the algorithms with three performance
metrics:

1. ℓ2 error between the true top eigenvector and the top eigenvector estimate, along the direction of
true eigenvector: Denoting xL be the final estimate, the error is given by

∥∥u1 − ⟨u1,xL⟩xL

∥∥.

2. ℓ2 error on the top-k entries: In order to measure how well the algorithm can produce the
approximate top-k entries of the principal eigenvector, we next focus on the same ℓ2 error on
the top-k entries. Define Ik := {i ∈ [n] : ψ(u1i) ∈ [k]}, where ψ is any ranking scheme that
returns a set of k indices in [n], and [k] denotes the (unordered) set of the first k indices. The
top-k ℓ2 error is then given by ∥[u1]Ik −

〈
[u1]Ik , [xL]Ik

〉
[xL]Ik∥.

3. Jaccard similarity (JS): For two setsA andB, the Jaccard similarity between them, JS(A,B), is
defined as the size of their intersection divided by the size of their union. Note that it is bounded
between 0 and 1; in addition, JS(A,B) = 0 if and only if A ∩ B = ∅ and JS(A,B) = 1 if
and only if A = B. We refer the interested reader to Leskovec et al. (2020), Chapter 3, for
a detailed review of the topic. Particularly, we focus on the Jaccard similarity on the top-k
entries, given by JS(Ik, Îk) = |Ik ∩ Îk|/|Ik ∪ Îk|. Here Îk := {i ∈ [n] : ψ(xLi) ∈ [k]}
denotes the top-k entries of the final eigenvector estimate xL.

Evaluation methods: With the aforementioned performance metrics, we evaluate the two proposed
schemes with the two baselines described below.

1. APM (Algorithm 1)

2. APMminVar (Algorithm 2)

3. Non-adaptive estimation algorithm that samplesB entries uniformly at random in the adjacency
matrix and computes the top eigenvector with sampled entries

4. Power method exploiting the full adjacency matrix

While implementing the first two algorithms, we include sample reuse procedures described in
Appendix A. Note that the third method serves as a baseline and the last one can be understood as the
oracle method. To check whether or not our theoretical convergence guarantee for fixed budget B
holds (as L increases) in practice, we first compare our algorithms with the non-adaptive estimation
algorithm. Specifically, we evaluate the ℓ2 error with respect to the number of iterations L. We next
measure the top-k ℓ2 error of the first three methods for fixed k (k = 100 or k = 500), with respect
to L. We then evaluate ℓ2 error on the top-k elements (k = 1, 2, . . . , n) of the four algorithms. To
this end, we fix the number of iterations of the algorithms to be L = 10. For the computation of the
Jaccard similarity, we run the four algorithms for L = 10 iterations, to evaluate JSk(Ik, Îk) over
k ∈ [n]. For these two evaluations, we set the standard power method as another baseline for the
performance using the full adjacency matrix.

Implementation details: While conducting the first two experiments for a variety range of budget
B, we face stability issues if the budget is low and the number of iterations run is large. In this
case, the expected number of sampled entries per row per iteration B

nL becomes very low, yielding a
large variance in the performance. As a heuristic way to stabilize the performance, we add few more
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(a) ℓ2 error (b) top-500 ℓ2 error of u1

(c) ℓ2 error over the top-k entries (d) Jaccard similarity over the top-k entries

Figure 1: All plots are the results with observing 50% of the entire ogbl-ddi dataset. (a) shows the
ℓ2 error between the top eigenvector estimate and the true one. (b) shows the same type of
ℓ2 error, but on the top-500 entries of the true top eigenvector. (c) shows the ℓ2 error over
the top-k entries. (d) shows the Jaccard similarity over the top-k entries.

power iterations (without further sampling) at the end of the proposed algorithms. When the budget
is large enough, the variance of the performance is small, and additional power iterations can lead to
performance degradation. Hence in this case, we remove additional power iteration steps.

Results and analysis: In Figure 1, we plot the error reductions afforded by adaptivity for the case
of sampling B = 0.5n2 (i.e., 50% budget) entries of the ogbl-ddi dataset. Specifically, figure 1(a)
represents the ℓ2 error between the eigenvector estimate and the true one, where there exists 54.36%
error reduction of APM over the non-adaptive estimation algorithm. In addition, we observe a
further significant error decrease for APMminVar over the non-adaptive scheme and over APM.
In particular, the improvement was projected to be 70.06% and 40.05% respectively. Figure 1(b)
represents the ℓ2 error on the top-500 entries of the true principal eigenvector. With the same
budget constraint, we observe much larger gains for the two proposed schemes over the non-adaptive
one. Specifically, the error decrease for APM and APMminVar over the non-adaptive scheme are
increased to be 61.83% and 89.99% respectively. We also observe that the error decrease of 75.63%,
for APMminVar over APM. Note that the idea of non-uniform allocation of samples across the
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(a) ℓ2 error (b) top-100 ℓ2 error of u1

(c) ℓ2 error over the top-k entries (d) Jaccard similarity over the top-k entries

Figure 2: All plots are the results with observing 5% of the entire ogbl-biokg dataset. (a) shows the
ℓ2 error between the top eigenvector estimate and the true one. (b) shows the top-100 ℓ2
error. (c) shows the ℓ2 error over the top-k entries. (d) shows the Jaccard similarity over
the top-k entries.

different rows of A in APMminVar plays a key role in reducing the top-k error significantly. From
the two plots, we additionally corroborate our theoretical findings from the two plots that the errors
converge as the number of iterations increases. Figure 1(c) and figure 1(d) represent ℓ2 error and the
Jaccard similarity over the top-k entries. In particular, we use a simple moving average method with
a window size of 4 for plotting the Jaccard similarity over top-k entries.

In Figure 2, we plot the error decrease afforded by adaptivity with sampling B = 0.05n2 (i.e.,
5% budget) entries of the ogbl-biokg dataset. For this sparse graph dataset, we observe larger
performance improvements. In particular, the decrease in errors for APM and APMminVar over the
non-adaptive scheme are 97.03% and 99.39% respectively. Notice that 100% decrease indicates the
acquirement of zero error. In addition, the improvement of APMminVar over APM is 79.6%. For
the case of the error over the top-100 entries, we highlight that there exist significant error reductions
of 98.07%, 99.99%, and 99.26% respectively. Referring to the log-scale error plot in figure 2(c),
the performance of APMminVar is close to that of the standard power method that exploits the full
adjacency matrix. Compared to the results for the ogbl-ddi dataset, we empirically observe that
these improvements are noticeable when the budget constraint is low. As the budget increases, both
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schemes work very well and their performance behaves similarly. Furthermore, recall that there is a
procedure of estimating ∥Ai:∥2 in APMminVar. We observe that the row norm estimation still works
well even if the budget is low in the sparse graph. This is in contrast to the dense graph case that
there needs to be a moderate amount of budget to guarantee the estimation of ∥Ai:∥2, in order for
APMminVar to perform reasonably well.

Remark 5 (Comparison between APM vs. Non-adaptive Scheme) Although we demonstrate the
superiority of APM compared to the non-adaptive estimation algorithm through experiments, we

note that the non-adaptive scheme requires a budget of B = Ω

(
max

{
(1+ϵ)2

ϵ2
· n3

(σ1−σ2)2
, n log n

})
samples in theory, indicating a better dependency on n (by a log n factor). We provide a proof sketch
of the sample complexity of the non-adaptive scheme in Appendix E.

5. Related Work

To the best of our knowledge, the most relevant works on eigenvector estimation based on incomplete
knowledge of the matrix are based on query models that return vectors. For example, given a
distribution D with covariance matrix Σ = Ea∼D[aa

T] ∈ Rn×n, Garber et al. (2016) propose
another variant of the power method for estimating the top eigenvector when the learner has access to
an oracle that returns independent samples a ∈ Rn from D. In particular, they show that the sample
complexity required to obtain an ϵ-approximate top eigenvector is O(nϵ−1 log(n/ϵ)). There are four
key distinctions relative to our case. First, the learner in Garber et al. (2016) samples a vector a ∈ Rn

(which is of dimension n) from D, and hence one can view the effective sample complexity to be
O(n2ϵ−1 log(n/ϵ)); in our work, we show the sample complexity of O(nϵ−2 log2(n/ϵ)). Second,
the way of sampling is different: we assume that the underlying matrix A is fixed and the learner
performs an entry-wise observation and acquires the exact value of the entry of A. Third, the matrix
has to be symmetric positive definite (pd) in Garber et al. (2016), whereas the matrix of interest
A in our case is not necessarily pd, and can also be asymmetric. Lastly, instead of ℓ2 norm as
the performance metric for representing errors, the authors use a norm with symmetric positive
definite matrix; particularly, their goal is to obtain x such that xΣx ≥ (1− ϵ)σ1(Σ). Another work
by Simchowitz et al. (2017) develops a lower bound for the problem of computing the top eigenvector
of a symmetric n×n matrix A. In particular, they consider a query model in which a learner receives
noiseless responses of the form x = Ay, for some adaptively drawn vector y, for T queries. It is
shown that T = Ω(log n) queries, and hence Ω(n log n) effective samples are necessary for any
adaptive, randomized algorithm that finds a normalized vector û1 satisfying ûT

1Aû1 ≥ (1− ϵ)∥A∥op
for some small ϵ > 0. Such a model allows the sampling of a full column of A (by choosing y to be
one-hot), but individual entries cannot be sampled as in our setting.

For the case of performing entrywise observations on data, motivated by applications in crowd-
sourcing and computational biology, Kamath et al. (2020) consider the problem of identifying the
k largest entries of the leading left singular vector u1 in a rank-one matrix. An adaptive spectral
estimation algorithm based on multi-armed bandits is proposed to find the k largest entries of u1,
by roughly observing O(n log n) entries of a rank-one matrix A ∈ Rm×n with m ≥ n. In addition,
Ruggeri and De Bacco (2019, 2020) develop a sampling method that selects the best node from a set
of non-sampled nodes in an online fashion, to estimate eigenvector centrality. From the perspective of
graph signal processing, Shomorony and Avestimehr (2014) also develop efficient online algorithms
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for finding the smallest subset of nodes for a given cut-off frequency, where it designates the highest
frequency component of a given signal that guarantees recovery from the samples.

There have also been works on estimating dominant eigenvectors from noisy observations of A
using variants of the power method. This captures various forms of noise, including missing entries,
sampling errors, approximation error, privacy constraints, or adversarial attacks (Mitliagkas et al.,
2013; Hardt and Roth, 2013; Hardt and Price, 2014; Musco and Musco, 2015; Liu et al., 2015; Balcan
et al., 2016; Xu and Li, 2019, 2020, 2021, 2022). In particular, the noisy power method by Hardt
and Price (2014) is a meta algorithm that obtains the dominant eigenspace with high probability,
under noise-corrupted matrix-vector multiplications. As with the noiseless setting, the convergence
rate of the noisy power method is inversely proportional to and largely depends on the consecutive
spectral gap σk − σk+1. The key distinction relative to our setting is that they introduce an additive
perturbation noise but have access to the full matrix A, whereas our algorithms focus on adaptively
sampling entries of A to improve the eigenvector estimation accuracy.

In terms of adaptive algorithms for partially observing a matrix, methods have been proposed (Li
et al., 2013; Cohen et al., 2015; Musco and Musco, 2017) to adaptively query entries of a matrix
based on the importance of rows. Rather than trying to estimate eigenvectors, the goal in these works
is to approximate the leverage scores of the matrix. Nevertheless, their algorithms are similar to our
adaptive scheme in the sense that they sample parts of the matrix based on current estimates (i.e.,
leverage score sampling using leverage score estimates) and refine the estimates iteratively.

6. Discussion and Conclusion

We studied the problem of eigenvector estimation when the matrixA is unknown but a limited number
of its entries can be adaptively observed. Our new algorithm, Adaptive Power Method, can adaptively
choose entries from A to observe based on the current eigenvector estimate. We also provided a
theoretical convergence guarantee for estimating the dominant eigenvector with small error, which
implies that only a small fraction of the entries of A needs to be sampled to ensure estimation
accuracy. On two real-world benchmark datasets, we demonstrated the performance improvements
of the two proposed schemes over the non-adaptive schemes via numerical simulations.

Several extensions of our results are possible. First, a generalization to the estimation of the
top-k eigenvectors of A can be readily obtained since the Noisy Power Method (Hardt and Price,
2014) generalizes for the top-k eigenvectors. Another direction for future work is to establish a
convergence guarantee for APMminVar. We believe an analysis similar to that of Algorithm 1 should
be possible for this extension based on the following steps, although it would likely be much longer.
First, we assume that the values of ∥[Ax]i∥ and ∥Ai:∥2 in equation (6) are known exactly and use
a similar analysis as that in Appendix C, based on Bernstein’s inequality, to bound the error of the
estimator for Ax. Second, we would obtain high probability bounds on our estimates for ∥[Ax]i∥
and ∥Ai:∥2, and analyze the impact of only knowing ∥[Ax]i∥ and ∥Ai:∥2 within some bounded error.
All these steps should be feasible, although cumbersome.

Based on the empirical observation that APMminVar achieves better estimation accuracy on
the largest entries of the eigenvectors, another interesting direction is to study the problem of only
accurately estimating the top-k entries of the top eigenvector.

Lastly, we point out that it may be possible to reduce the sample complexity beyond the
(nϵ−2 log2(n/ϵ)) that we achieved. In particular, There are several possible ways to improve
the factor n3σ1

(σ1−σ2)3
in the sample complexity. This factor comes from (1) using the convergence
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guarantee from Hardt and Price (2014) and (2) using Bernstein’s inequality to bound the norm of the
perturbation and the inner product between the perturbation and the top eigenvector. This analysis is
presented in step (vi) in Proposition 8. In order to improve this factor, we would need to improve
(1) or (2). Even if we stick to the same algorithm, one should be able to obtain better convergence
guarantee results for the algorithm in Appendix A, which reuses past samples. Furthermore, there
have been recent results that improve the convergence guarantees of noisy power methods by improv-
ing from σ1 − σ2 to O(σ1 − σq) in (Balcan et al., 2016) and to Õ(

√
σ1 − σq) in (Xu and Li, 2022),

where q ≥ 2. We believe we can adapt those results in order to improve our query complexity. We
may also be able to use other iterative algorithms like the Lanczos algorithm to improve the query
complexity.
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Appendix A. Description of Adaptive Power Method with Sample Reuse

Algorithm 1 ADAPTIVE POWER METHOD (APM) (WITH SAMPLE REUSE)
Input: Symmetric matrix A ∈ {0, 1}n×n, budget B, number of iterations L, threshold c > 0
Output: Approximate top eigenvector xL ∈ Rn

1: Draw a random vector x0 ∈ Rn with ∥x0∥ = 1
2: for ℓ = 1, . . . , L do
3: Draw I

(ℓ)
ij ∼ Bern(p

(ℓ)
ij ) ∀(i, j) ∈ [n]× [n] independently, where

p
(ℓ)
ij =


1, if I(ℓ−1)

ij = 1;

min

[
B
nL ·max

(
x2
(ℓ−1)j

M , c2
)
, 1

]
, else.

4: [A(ℓ)]ij ← aij

p
(ℓ)
ij

I
(ℓ)
ij

5: yℓ ← A(ℓ)xℓ−1

6: xℓ ← yℓ
∥yℓ∥

7: M ←
∑

j:I
(ℓ)
ij =0

x2ℓj

8: end for

Appendix B. High Probability Guarantee for Number of Samples Used

In this section, we show that APM uses at most (1 + c2n+ o(1))B samples with high probability.
Notice that if σ1 − σ2 = Θ(n) and we set c =

√
α(σ1−σ2)

n3/2 = O(
√

α
n ) for some small α > 0, then

the number of observation becomes at most (1 + α+ o(1))B with high probability.

Lemma 6 If we run Algorithm 1 for L steps, with an expected budget of B = ω
(
n
√
L log

(
1/δ
))

,

then the algorithm samples at most (1 + c2n + o(1))B entries of a n × n matrix A in total, with
probability at least 1− δ.

Proof Since I(ℓ)ij ∼ Bern(p
(ℓ)
j ), ∀(ℓ, i, j) ∈ [L]× [n]× [n], where

p
(ℓ)
j = min

 B

nL
·max

x2(ℓ−1)j

M
, c2

 , 1

 ,
one can readily see that the total number of sampled entries is

∑L
ℓ=1

∑n
i=1

∑n
j=1 I

(ℓ)
ij . By Hoeffding’s

inequality, we observe that

Pr

∣∣∣∣∣∣
L∑

ℓ=1

n∑
i=1

n∑
j=1

(
I
(ℓ)
ij − E

[
I
(ℓ)
ij

])∣∣∣∣∣∣ ≥ η
 ≤ 2 exp

(
− 2η2

n2L

)
.
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This implies that if we set η := n
√

L
2 log(2δ ), APM samples at most

L∑
ℓ=1

n∑
i=1

n∑
j=1

E
[
I
(ℓ)
ij

]
+ n

√
L

2
log

(
2

δ

)
(9)

entries, with probability at least 1− δ.
What is remaining is to bound the expected number of sampled entries. Referring to equation (3)

in Section 2, we see that

L∑
ℓ=1

n∑
i=1

n∑
j=1

E
[
I
(ℓ)
ij

]
≤

L∑
ℓ=1

n∑
i=1

n∑
j=1

p
(ℓ)
j = (nL) · B

nL

(
1 + c2n

)
=
(
1 + c2n

)
·B. (10)

From equations (9) and (10), we see that with probability at least 1− δ, the number of entries that
APM exploits is:

L∑
ℓ=1

n∑
i=1

n∑
j=1

E
[
I
(ℓ)
ij

]
+ n

√
L

2
log

(
2

δ

)

≤
(
1 + c2n

)
·B + n

√
L

2
log

(
2

δ

)
. (11)

Hence if B = ω
(
n
√
L log

(
1/δ
))

, then the algorithm samples at most (1 + c2n+ o(1))B entries
of a n× n matrix A in total, with probability at least 1− δ.

Notice that when L = O
(

σ1
σ1−σ2

log
(
nτ
ϵ

))
and B = σ1

(σ1−σ2)3
n3

ϵ2
log2

(
nτ
ϵ

)
, as in the statement

of Theorem 2, and if σ1 − σ2 = Θ(n), we indeed have B = ω
(
n
√
L log

(
1/δ
))

, and the lemma

above implies that we sample at most (1 + c2n+ o(1))B entries with probability 1− δ.

Appendix C. Proof of Lemma 3

We show that conditions 1 and 2 hold via Bernstein’s inequality. We will use the following statement
of Bernstein’s inequality: if W1, . . . ,Wn are independent zero-mean random variables such that
|Wi| ≤M with probability 1. Then for all t > 0,

Pr

∣∣∣∣∣∣
n∑

i=1

Wi

∣∣∣∣∣∣ ≥ t
 ≤ 2 exp

(
−

1
2 t

2∑n
i=1 E

[
W 2

i

]
+ 1

3Mt

)
. (12)

To apply this inequality, we first provide the following proposition which will serve as key ingredients
for proving the lemma.

Proposition 7 Let W (ℓ)
ij := [A(ℓ)]ijx(ℓ−1)j − aijx(ℓ−1)j . Then for all (ℓ, i, j) ∈ [L]× [n]× [n], the

following two hold:

1.
∣∣∣W (ℓ)

ij

∣∣∣ ≤ max
(
1, nLcB

)
18
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2. E
[∣∣∣W (ℓ)

ij

∣∣∣2] ≤ nL
B

Proof Since [A(ℓ)]ij =
aij

p
(ℓ)
j

I
(ℓ)
ij , we bound

∣∣∣W (ℓ)
ij

∣∣∣ as:

∣∣∣W (ℓ)
ij

∣∣∣ =
∣∣∣∣∣∣ aijp

(ℓ)
j

I
(ℓ)
ij x(ℓ−1)j − aijx(ℓ−1)j

∣∣∣∣∣∣ = aij |x(ℓ−1)j |

∣∣∣∣∣∣ 1

p
(ℓ)
j

I
(ℓ)
ij − 1

∣∣∣∣∣∣
≤ |x(ℓ−1)j |max

 1

p
(ℓ)
j

, 1

 =
|x(ℓ−1)j |

p
(ℓ)
j

=
|x(ℓ−1)j |

min

[
B
nL ·max

(
x2(ℓ−1)j , c

2
)
, 1

]
≤

|x(ℓ−1)j |

min
[

B
nL · c|x(ℓ−1)j |, 1

]
= max

(∣∣∣x(ℓ−1)j

∣∣∣ , nL
cB

)
≤ max

(
1,
nL

cB

)
, (13)

where in the first inequality we used the fact that aij ∈ {0, 1} so aij ≤ 1, and in the second-to-last
inequality we used the fact that max(a2, b2) ≥ |ab|.

We also bound the the second moment of W (ℓ)
ij as

E
[∣∣∣W (ℓ)

ij

∣∣∣2] = E
[(

[A(ℓ)]ijx(ℓ−1)j − aijx(ℓ−1)j

)2]
= E

[
[A(ℓ)]2ijx

2
(ℓ−1)j − 2aij [A

(ℓ)]ijx
2
(ℓ−1)j + a2ijx

2
(ℓ−1)j

]
=
a2ij
p2j

E
[
I
(ℓ)
ij

]
x2(ℓ−1)j − 2

aij
pj

E
[
I
(ℓ)
ij

]
x2(ℓ−1)j + a2ijx

2
(ℓ−1)j

=
aij
pj
x2(ℓ−1)j − aijx

2
(ℓ−1)j = aijx

2
(ℓ−1)j

(
1

pj
− 1

)

≤
x2(ℓ−1)j

pj
≤

x2(ℓ−1)j

min
[

B
nLx

2
(ℓ−1)j , 1

] ≤ max

(
nL

B
, 1

)
=
nL

B
, (14)

where we used the facts that E[I(ℓ)ij ] = pj , aij ∈ {0, 1} and |x(ℓ−1)j | ≤ 1; and the last equality holds
for any reasonable budget B ≥ nL (which is required for us to have at least one sample per row per
iteration). This completes the proof.

Now we are ready to prove that conditions 1 and 2 hold. For conciseness, define Z(ℓ)
i :=

[A(ℓ)xℓ−1]i − [Axℓ−1]i. Then one can readily see that Z(ℓ)
i =

∑n
j=1W

(ℓ)
ij . Starting with the union
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bound, we obtain

Pr

(
∃ℓ ∈ [L] :

∥∥∥A(ℓ)xℓ−1 −Axℓ−1

∥∥∥ ≥ ϵ

5
(σ1 − σ2)

)

= Pr

 L⋃
ℓ=1

{∥∥∥A(ℓ)xℓ−1 −Axℓ−1

∥∥∥ ≥ ϵ

5
(σ1 − σ2)

}
≤ Pr

 L⋃
ℓ=1

n⋃
i=1

{∣∣∣[A(ℓ)xℓ−1]i − [Axℓ−1]i

∣∣∣ ≥ ϵ

5
√
n
(σ1 − σ2)

}
≤ nL · Pr

(∣∣∣[A(ℓ)xℓ−1]i − [Axℓ−1]i

∣∣∣ ≥ ϵ

5
√
n
(σ1 − σ2)

)
= nL · Pr

(∣∣∣Z(ℓ)
i

∣∣∣ ≥ ϵ

5
√
n
(σ1 − σ2)

)

= nL · Pr

∣∣∣∣∣∣
n∑

j=1

W
(ℓ)
ij

∣∣∣∣∣∣ ≥ ϵ

5
√
n
(σ1 − σ2)


(i)

≤ 2nL · exp

(
−C1 log

(
n

ϵ

))
(ii)
= 2nC ′ · σ1

σ1 − σ2
· log

(
nτ

ϵ

)
· exp

(
−C1 log

(
n

ϵ

))

≤ 2 exp

(1− C1) log

(
n

ϵ

)
+ log

(
2C ′ · σ1

σ1 − σ2
· log

(
nτ

ϵ

))
≤ 2 exp

(
(2− C1) log

(
n

ϵ

)
+ o(log n)

)
= n−Ω(1),

where (i) follows from Proposition 8 below that holds under the setting B = σ1
(σ1−σ2)3

n3

ϵ2
log2

(
nτ
ϵ

)
;

and (ii) follows from setting L = C ′ · σ1
σ1−σ2

· log
(
nτ
ϵ

)
for some constant C ′ > 0.

For sufficiently large n, we therefore conclude that as long as we chooseB = σ1
(σ1−σ2)3

n3

ϵ2
log2

(
nτ
ϵ

)
and set τ large enough to guarantee C1 > 2, the following holds∥∥∥A(ℓ)xℓ−1 −Axℓ−1

∥∥∥ ≤ ϵ

5
(σ1 − σ2), ∀ℓ ∈ [L],

with probability at least 1− n−Ω(1).

Proposition 8 If c =
√
α(σ1−σ2)

n3/2 and B = σ1
(σ1−σ2)3

n3

ϵ2
log2

(
nτ
ϵ

)
, for each ℓ ∈ [L],

Pr

∣∣∣∣∣∣
n∑

j=1

W
(ℓ)
ij

∣∣∣∣∣∣ ≥ ϵ

5
√
n
(σ1 − σ2)

 ≤ 2 exp

(
−C1 log

(
n

ϵ

))
.
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Proof From Bernstein’s inequality described in equation (12), we obtain:

Pr

∣∣∣∣∣∣
n∑

j=1

W
(ℓ)
ij

∣∣∣∣∣∣ ≥ ϵ

5
√
n
(σ1 − σ2)


(iii)

≤ 2 exp

−1

2
·

(
ϵ

5
√
n
(σ1 − σ2)

)2
∑n

j=1
nL
B + ϵ(σ1−σ2)

15
√
n
·max

(
1, nLcB

)


(iv)
= 2 exp

−1

2
·

(
ϵ

5
√
n
(σ1 − σ2)

)2
n2L
B + ϵ(σ1−σ2)

15
√
n
·max

(
1, n5/2L√

α(σ1−σ2)B

)


(v)

≤ 2 exp

− ϵ2
50
·

(σ1−σ2)
2

n

max
[
n2L
B + ϵ(σ1−σ2)

15
√
n
, n2L
C′′B

]


= 2 exp

− ϵ2
50
·min

C ′′ · B
L
· (σ1 − σ2)

2

n3
,

1
n3L

B(σ1−σ2)2
+ ϵ

√
n

15(σ1−σ2)




(vi)
= 2 exp

(
− ϵ

2

50
· C ′′ · B

L
· (σ1 − σ2)

2

n3

)
(vii)

≤ 2 exp

(
−C1 log

(
n

ϵ

))
for some C1 > 2,

where (iii) follows from equation (13) and equation (14) shown in Proposition 7; (iv) follows
from the fact that the choice of c =

√
α(σ1−σ2)

n3/2 , B = σ1
(σ1−σ2)3

n3

ϵ2
log2

(
nτ
ϵ

)
, L described in (ii); (v)

follows from setting C ′′ = (1 + 15
√
α

ϵ )C ′; (vi) follows from the fact that the regime of interest
would be σ1 − σ2 = Ω(

√
n log n) so that B = σ1

(σ1−σ2)3
n3

ϵ2
log2

(
nτ
ϵ

)
= O(n2); and (vii) follows

by setting B = σ1
(σ1−σ2)3

n3

ϵ2
log2

(
nτ
ϵ

)
and τ large enough to guarantee C1 > 2. This completes the

proof.

In order to show the condition 2, we view (A(ℓ)xℓ−1−Axℓ−1)
Tu1 as the sum of n2 independent

random variables. Similar to what we have shown before, applying Bernstein’s inequality yields:

Pr

(
∃ℓ ∈ [L] :

∣∣∣∣(A(ℓ)xℓ−1 −Axℓ−1

)T

u1

∣∣∣∣ ≥ 1

5τ
√
n
(σ1 − σ2)

)

≤ LPr

∃ℓ ∈ [L] :

∣∣∣∣∣∣
n∑

i=1

n∑
j=1

W
(ℓ)
ij u1i

∣∣∣∣∣∣ ≥ 1

5τ
√
n
(σ1 − σ2)


(viii)

≤ 2L exp

− 1

50τ2
·

(σ1−σ2)
2

n∑n
i=1

∑n
j=1

u2
1inL
B + 1

3 ·
nL
cB ·

1
5τ

√
n
(σ1 − σ2)


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(ix)
= 2L exp

− 1

50τ2
·

(σ1−σ2)
2

n

n2L
B + (σ1−σ2)

√
n

15τ · L
cB


= 2L exp

− 1

50τ2
· B
L
·

(
(σ1 − σ2)2

n3
+

15τc(σ1 − σ2)
n3/2

)
= 2L exp

(
−1 + 15τ

√
α

50τ2
·B · (σ1 − σ2)3

σ1n3 log
(
nτ
ϵ

))
(x)

≤ 2 exp

(
−C2 log

(
nτ

ϵ

)
+ o(log n)

)
for some C2 > 0

= n−Ω(1),

where (viii) follows from setting c =
√
α(σ1−σ2)

n3/2 , from Proposition 7 and the regime of interest
described in (vi) and thus nL

cB > 1 ≥ |x(ℓ−1)j |; (ix) follows from the fact that ∥u1∥2 = 1; and (x)

follows by setting B = σ1
(σ1−σ2)3

n3

ϵ2
log2

(
nτ
ϵ

)
. Therefore, we see that for sufficiently large n, the

following holds ∣∣∣(A(ℓ)xℓ−1 −Axℓ−1)
Tu1

∣∣∣ ≤ 1

5τ
√
n
(σ1 − σ2), ∀ℓ ∈ [L],

with probability at least 1− n−Ω(1). Applying union bound techniques, we obtain the desired result.
This completes the proof.

Appendix D. Detailed Derivation of Equation (6)

The rationale behind our new scheme is as follows. Decomposing the total budget-per-row into
B
L =

∑
iB

(ℓ)
i , where Bi denotes the expected budget allocated to row i, the key observation is by

Cauchy-Schwarz inequality that

Var(A(ℓ)xℓ−1) =

n∑
i=1

Var([A(ℓ)xℓ−1]i) =
1

B/L

n∑
i=1

Var([A(ℓ)xℓ−1]i) ·
B

L

=
L

B

 n∑
i=1

Var([A(ℓ)xℓ−1]i)

 ·
 n∑

i=1

Bi


≥ L

B

n∑
i=1

(√
Var([A(ℓ)xℓ−1]i) ·

√
Bi

)2

,

and the equality holds if and only if Bi ∝ Var([A(ℓ)xℓ−1]i. Notice that, if we have p(ℓ)ij =

Var([A(ℓ)xℓ−1]i) ·
x2
(ℓ−1)j

β for all i, for some normalization constant β, we obtain

B
(ℓ)
i =

∑
j

p
(ℓ)
ij = Var([A(ℓ)xℓ−1]i)

∑
j

x2(ℓ−1)j

β
=

Var([A(ℓ)xℓ−1]i)

β
,
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and the Cauchy-Schwarz bound above is achieved with equality. Plugging p(ℓ)ij = Var([A(ℓ)xℓ−1]i) ·
x2
(ℓ−1)j

β into the formula for Var([A(ℓ)xℓ−1]i) in (5), we obtain

Var([A(ℓ)xℓ−1]i) =

n∑
j=1

a2ijx
2
(ℓ−1)j

p
(ℓ)
ij

(1− p(ℓ)ij )

=

n∑
j=1

a2ij

Var([A(ℓ)xℓ−1]i)

(
β − x2(ℓ−1)j Var([A

(ℓ)xℓ−1]i)
)

=
β

Var([A(ℓ)xℓ−1]i)

n∑
j=1

a2ij −
n∑

j=1

a2ijx
2
(ℓ−1)j

If we let y = Var([A(ℓ)xℓ−1]i) and let ∥Ai:∥2 =
∑

j a
2
ij be the squared ℓ2 norm of ith row of A, the

above can be written as the equation

y =
β

y
∥Ai:∥2 − ∥[Axℓ−1]i∥2 ⇔ y2 + ∥[Axℓ−1]i∥2y − β∥Ai:∥2 = 0,

which yields the solution

y = Var([A(ℓ)xℓ−1]i) =
−∥[Axℓ−1]i∥2 +

√
∥[Axℓ−1]i∥4 + 4β∥Ai:∥2
2

.

We conclude that, if we had access to ∥[Axℓ−1]i∥ and ∥Ai:∥ (which are not known, as A is not
known), the optimal choice of pijs at the ℓth iteration would be

p
(ℓ)
ij =

x2(ℓ−1)j

β(ℓ)
·

(
−∥[Axℓ−1]i∥2 +

√
∥[Axℓ−1]i∥4 + 4β(ℓ)∥Ai:∥2

2

)
,

where β(ℓ) is chosen so that the expected budget per iteration is B/L. This completes the derivation
of the equation (6). Notice that the result holds for all i ∈ [n]. Also notice that the resulting expected
number of samples in row i is

∑
j

p
(ℓ)
ij =

−∥[Axℓ−1]i∥2 +
√
∥[Axℓ−1]i∥4 + 4β(ℓ)∥Ai:∥2
2β(ℓ)

=
Var([A(ℓ)xℓ−1]i)

β(ℓ)
,

which is proportional to Var([A(ℓ)xℓ−1]i) as expected.

Appendix E. Sample Complexity of the Non-adaptive Scheme

In this section, we provide a proof sketch of the sample complexity needed for the non-adaptive
estimation algorithm that samples entries of A uniformly at random. Specifically, we will see that the
non-adaptive scheme can estimate the top eigenvector (which we will denote by û1) with squared

error at most ϵ by observing B = Ω

(
max

{
(1+ϵ)2

ϵ2
· n3

(σ1−σ2)2
, n log n

})
entries of A.

Our proof sketch consists of two parts. We initially resort to the Davis-Kahan theorem (Davis
and Kahan, 1970) to bound the ℓ2 error between the top eigenvector and the estimate with respect to
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the operator norm of the difference between A and the estimated matrix (denoted by Â). We will
then use a result by Hajek et al. (2016, Theorem 5) to bound the operator norm ∥Â−A∥op, which
will yield the desired result.

Suppose the algorithm sets the sampling probability to be p = B
n2 to construct the estimated

matrix Â of A, where Âij ∼ n2

B · aij ·Bern(
B
n2 ). Then one can readily see that E[Â] = A. Denoting

the top eigenvector of Â as û1, we observe from the Davis-Kahan theorem that

∥∥u1 − ⟨u1, û1⟩ û1

∥∥ ≤
∥∥∥Â− E[Â]

∥∥∥
op

max
{
σ1(A)− σ2(Â), σ1(Â)− σ2(A)

} ≤
∥∥∥Â− E[Â]

∥∥∥
op

σ1(A)− σ2(A)−
∥∥∥Â− E[Â]

∥∥∥
op

.

Here ∥ · ∥op denotes the operator norm (i.e., ∥A∥op := sup∥w∥=1 ∥Aw∥). Now, the result by Hajek
et al. (2016, Theorem 5) implies that ∥Â − A∥op ≤ c

√
np · 1p for some c > 0, with probability at

least 1− n−c, under the condition that B
n2 = Ω( lognn ). We note that the 1

p factor is due to the scaling

when constructing Â. Using this, we conclude that with probability at least 1− n−c,

∥∥u1 − ⟨u1, û1⟩ û1

∥∥ ≤
∥∥∥Â−A∥∥∥

op

σ1(A)− σ2(A)−
∥∥∥Â−A∥∥∥

op

≤
c
√

B
n ·

n2

B

σ1(A)− σ2(A)− c
√

B
n ·

n2

B

≤ ϵ,

provided that B = Ω

(
max

{
(1+ϵ)2

ϵ2
· n3

(σ1−σ2)2
, n log n

})
.
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