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Abstract
This work considers online portfolio selection (OPS) and online learning quantum states with the
logarithmic loss. The problem of designing an optimal OPS algorithm, in both regret and efficiency,
has been open for more than 30 years (Cover, 1991; Cover and Ordentlich, 1996; Helmbold et al.,
1998; Nesterov, 2011; Orseau et al., 2017; Luo et al., 2018; van Erven et al., 2020; Mhammedi
and Rakhlin, 2022; Zimmert et al., 2022). Online learning quantum states is a generalization of
OPS to the quantum setup (Lin et al., 2021; Zimmert et al., 2022). The dimension of a quantum
state grows exponentially with the number of qubits, so scalability with respect to the dimension
becomes a critical issue in the quantum setup.

We formulate the two problems as online convex optimization where the loss functions are self-
concordant barriers and smooth relative to a convex function h. We analyze the regret of online
mirror descent with h as the regularizer. Then, based on the analysis, we prove the following in a
unified manner. Denote by T the time horizon and d the parameter dimension.

1. For OPS, the regret of ẼG, a variant of exponentiated gradient due to Helmbold et al. (1998),
is Õ(T 2/3d1/3). This improves on the original Õ(T 3/4d1/2) regret bound for ẼG.

2. For OPS, the regret of LB-OMD (online mirror descent with the logarithmic barrier) is Õ(
√
Td).

The regret bound and the per-iteration time are the same as those of Soft-Bayes due to Orseau
et al. (2017) up to logarithmic terms.

3. For online learning quantum states with the logarithmic loss, the regret of online mirror descent
with the log-determinant function is also Õ(

√
Td). Its per-iteration time is O(d3), shorter than

all existing algorithms we know.

† Extended abstract. Full version appears as (Tsai et al., 2022).
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Figure 1 presents the current efficiency-regret Pareto frontier for OPS, where the two results in bold
are our contributions.

In contrast to existing works on online convex optimization (Nesterov, 2011; Abernethy et al.,
2012; van Erven et al., 2020), our analysis does not assume h to be a self-concordant barrier.
Instead, we exploit the self-concordant barrier property of the loss functions, and only require h to
satisfy the relative smooth property. One advantage of our approach is that it includes ẼG as an
instance, though the entropic regularizer is not a barrier function.

Figure 1: Current efficiency-regret Pareto frontier for OPS, assuming T ≥ 4d/ log d. The figure is modified
from the one by Zimmert et al. (2022).
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