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Abstract
This study considers the partial monitoring problem with k-actions and d-outcomes and provides
the first best-of-both-worlds algorithms, whose regrets are favorably bounded both in the stochastic
and adversarial regimes. In particular, we show that for non-degenerate locally observable games,
the regret isO(m2k4 log(T ) log(kΠT )/∆min) in the stochastic regime andO(mk3/2

√
T log(T ) log kΠ)

in the adversarial regime, where T is the number of rounds, m is the maximum number of dis-
tinct observations per action, ∆min is the minimum suboptimality gap, and kΠ is the number
of Pareto optimal actions. Moreover, we show that for globally observable games, the regret is
O(c2G log(T ) log(kΠT )/∆

2
min) in the stochastic regime and O((c2G log(T ) log(kΠT ))

1/3T 2/3) in
the adversarial regime, where cG is a game-dependent constant. We also provide regret bounds
for a stochastic regime with adversarial corruptions. Our algorithms are based on the follow-the-
regularized-leader framework and are inspired by the approach of exploration by optimization and
the adaptive learning rate in the field of online learning with feedback graphs.
Keywords: partial monitoring, best-of-both-worlds, follow-the-regularized-leader, stochastic regime
with adversarial corruptions

1. Introduction

Partial monitoring (PM) is a general sequential decision-making problem with limited feedback,
which can be seen as a generalization of the bandit problem. A PM game G = (L,Φ) is defined by
the pair of a loss matrix L ∈ [0, 1]k×d and feedback matrix Φ ∈ Σk×d, where k is the number of
actions, d is the number of outcomes, and Σ is a set of feedback symbols. The game is sequentially
played by a learner and opponent for T ≥ 3 rounds. At the beginning of the game, the learner
observes L and Φ. At every round t ∈ [T ], the opponent chooses an outcome xt ∈ [d], and then
the learner chooses an action At ∈ [k], suffers an unobserved loss LAtxt , and receives a feedback
symbol σt = ΦAtxt , where Lax is the (a, x)-th element of L. In general, the learner cannot directly
observe the outcome and loss, and can only observe the feedback symbol. The learner’s goal is
to minimize their cumulative loss over all rounds. The performance of the learner is evaluated
by the regret RT , which is defined as the difference between the cumulative loss of the learner
and the single optimal action a∗ fixed in hindsight, that is, a∗ = argmina∈[k] E

[∑T
t=1Laxt

]
and

RT = E
[∑T

t=1

(
LAtxt − La∗xt

)]
= E

[∑T
t=1 ⟨ℓAt − ℓa∗ , ext⟩

]
, where ℓa ∈ Rd is the a-th row of

L, and ex ∈ {0, 1}d is the x-th orthonormal basis of Rd.
PM has been investigated in two regimes: the stochastic and adversarial regimes. In the stochas-

tic regime, outcomes (xt)Tt=1 are sampled from a fixed distribution ν∗ in an i.i.d. manner, whereas
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in the adversarial regime, the outcomes are arbitrarily decided from the set of outcomes [d] possibly
depending on the history of the actions (As)

t−1
s=1.

Some of the first investigations on PM originate from work by Rustichini (1999); Piccolboni
and Schindelhauer (2001). The seminal work was conducted by Cesa-Bianchi et al. (2006); Bartók
et al. (2011), the latter of which showed that all PM games can be classified into four classes based
on their minimax regrets. They classified PM games into trivial, easy, hard, and hopeless games, for
which their minimax regrets are 0, Θ̃(

√
T ), Θ(T 2/3), and Θ(T ), respectively. The easy and hard

games are also called locally observable and globally observable games, respectively.
PM algorithms have been established for both the stochastic and adversarial regimes. In the ad-

versarial regime, the most common form of algorithms is an Exp3-type one (Freund and Schapire,
1997; Auer et al., 2002). Recently, Lattimore and Szepesvári (2020b) showed that an Exp3-type
algorithm with the approach of exploration by optimization obtains the aforementioned minimax
bounds. Notably, they proved the regret bounds of O(mk3/2

√
T log k) for non-degenerate lo-

cally observable games, and O((cGT )
2/3(log k)1/3) for globally observable games, where m ≤

min{|Σ|, d} is the maximum number of distinct observations per action and cG is a game-dependent
constant defined in Section 5. PM has also been investigated in the stochastic regime and some algo-
rithms exploiting the stochastic structure of the problem can achieveO(log T ) regret bounds (Vanchi-
nathan et al., 2014; Komiyama et al., 2015; Tsuchiya et al., 2020).

Algorithms assuming the stochastic model for losses can suffer linear regret in the adversar-
ial regime, whereas algorithms for the adversarial regime tend to perform poorly in the stochastic
regime. Since knowing the underlying regime is difficult in practice, obtaining favorable perfor-
mance for both the stochastic and adversarial regimes without knowing the underlying regime is
desirable.

To achieve this goal, particularly in the classical multi-armed bandits, the Best-of-Both-Worlds
(BOBW) algorithms that perform well in both stochastic and adversarial regimes have been devel-
oped. The first BOBW algorithm was developed in a seminal paper by Bubeck and Slivkins (2012),
and the celebrated Tsallis-INF algorithm was recently proposed by Zimmert and Seldin (2021).
BOBW algorithms have also been developed beyond the multi-armed bandits (e.g., Gaillard et al.
2014; Luo and Schapire 2015; Erez and Koren 2021; Zimmert et al. 2019; Lee et al. 2021; Jin and
Luo 2020; Huang et al. 2022; Saha and Gaillard 2022), whereas they have never been investigated
in PM.

Some BOBW algorithms are known to perform well also in the stochastic regime with adver-
sarial corruptions (Lykouris et al., 2018), which is an intermediate regime between the stochastic
and adversarial regimes. This regime is advantageous in practice, since the stochastic assumption
on outcomes is too strong whereas the adversarial assumption is too pessimistic. Therefore it is also
practically important to develop BOBW algorithms that cover this intermediate regime.

1.1. Contribution of This Study

This study establishes new BOBW algorithms for PM based on the Follow-the-Regularized-Leader
(FTRL) framework (McMahan, 2011). We rely on two recent theoretical advances: (i) the Exp3-
type algorithm for PM developed with the approach of exploration by optimization (Lattimore and
Szepesvári, 2020b) and (ii) the adaptive learning rate for online learning with feedback graphs (Ito
et al., 2022b), for which BOBW algorithms have been developed (Erez and Koren, 2021; Ito et al.,
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Table 1: Regret upper bounds for PM. The constant C ≥ 0 is the corruption level, and Rloc and
Rglo are the regret upper bounds of the proposed algorithm in the stochastic regime for
locally and globally games, respectively. “observ.” means observability. TSPM is the
bound by Tsuchiya et al. (2020); refer to the paper for the definition of Λ′. ExpPM is
by Lattimore and Szepesvári (2020b). PM-DEMD is by Komiyama et al. (2015), and
D(ν∗) is a distribution-dependent constant.

observ. algorithm stochastic (stoc.) adversarial stoc. w/ corruptions

locally TSPM O
(

mk2d log(T )
Λ′2

)
– –

obs. ExpPM – O(mk3/2
√
T log k) –

Proposed O
(

m2k4 log(T ) log(kΠT )
∆min

)
O(mk3/2

√
T log(T ) log kΠ) Rloc +

√
CRloc

globally PM-DMED O(D(ν∗) log T ) – –
obs. ExpPM – O((cGT )

2/3(log k)1/3) –

Proposed O
(

c2G log(T ) log(kΠT )

∆2
min

)
O((cGT )

2/3(log(T ) log(kΠT ))
1/3) Rglo + (C2Rglo)1/3

2022a; Rouyer et al., 2022; Kong et al., 2022). Note that it is known that the FTRL with the
(negative) Shannon entropy regularizer corresponds to the Exp3 algorithm.

The regret bounds of the proposed algorithms are as follows. We define the number of Pareto op-
timal actions by kΠ ≤ k, and the minimum suboptimality gap by ∆min = mina∈[k]\{a∗}∆a, where
∆a = (ℓa−ℓa∗)⊤ν∗ ≥ 0 for a ∈ [k] is the loss gap between action a and optimal action a∗. We show
that for non-degenerate locally observable games, the regret is O(m2k4 log(T ) log(kΠT )/∆min) in
the stochastic regime andO(mk3/2

√
T log(T ) log kΠ) in the adversarial regime. We also show that

for globally observable games, the regret is O(c2G log(T ) log(kΠT )/∆
2
min) in the stochastic regime

and O((cGT )
2/3(log(T ) log(kΠT ))

1/3) in the adversarial regime. In addition, we also consider
some intermediate regimes, such as the stochastic regime with adversarial corruptions (Lykouris
et al., 2018), which we define in PM based on the corruptions on outcomes. To our knowledge,
the proposed algorithms are the first BOBW algorithms for PM. Table 1 lists the regret bounds pro-
vided in this study and summarizes comparisons with existing work. Our algorithm is not the best
in the strict sense. For example in the stochastic regime, compared to Komiyama et al. (2015), the
dependence on T of their bound is log T , whereas that of ours is (log T )2. Nevertheless, this kind
of looseness often appears in the BOBW literature (Bubeck and Slivkins, 2012; Seldin and Slivkins,
2014; Seldin and Lugosi, 2017; Ito et al., 2022a) and it is an important future work to close this gap
as was done by Zimmert and Seldin (2021) in the case of multi-armed bandits.

1.2. Technical Summary

For locally observable games, we develop the algorithm based on the approach of exploration by op-
timization (Lattimore and Szepesvári, 2020b) with the Shannon entropy regularizer. This approach
is promising especially in locally observable games for bounding a component of regret, in which
we consider a certain optimization problem with respect to the action selection probability. To ob-
tain BOBW guarantees, we consider using a self-bounding technique (Zimmert and Seldin, 2021).
In the self-bounding technique, we first derive upper and lower bounds of regret using a random
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variable depending on the action selection probability, and then derive a regret bound by combining
the upper and lower bounds. However, using the exploration by optimization may make some action
selection probabilities extremely small, preventing deriving a meaningful lower bound. To handle
this problem, we consider an optimization over a restricted feasible set. This restriction enables us
to lower bound the regret such that the self-bounding technique is applicable, and we show that even
with the optimization over the restricted feasible set, the component of regret is favorably bounded.
In addition, we consider the upper truncation of the learning rate developed by Ito et al. (2022a) to
collaborate with the theory of exploration by optimization.

For globally observable games, we develop the algorithm using the Shannon entropy regular-
izer as for locally observable games. To derive BOBW guarantees, we use the technique of adaptive
learning rate developed in online learning with feedback graphs by Ito et al. (2022a), but in a mod-
ified way. Their work uses a regularization called hybrid regularizers, which combines a Shannon
entropy of the compensation of the action selection probability with typical regularizers (Zimmert
et al., 2019; Ito et al., 2022b,a). We think that naively applying this regularization also yields
BOBW guarantees, but it loses the closed form of the action selection probability in FTRL updates
and requires solving an optimization problem each round. This study shows that we can obtain the
BOBW guarantee even only with the standard Shannon entropy regularization, and consequently,
the proposed algorithm does not need to solve the optimization problem every round and can be
implemented efficiently.

1.3. Related Work

In the adversarial regime, FeedExp3 is a first Exp3-type algorithm, which has a first non-asymptotic
regret bound (Piccolboni and Schindelhauer, 2001) and is known to achieve a minimax regret of
O(T 2/3) (Cesa-Bianchi et al., 2006). Since then, Exp3-type algorithms have been used in many
contexts. Bartók (2013) relied on an Exp3-type algorithm as a subroutine of their algorithm. Lat-
timore and Szepesvári (2019a) showed that for a variant of the locally observable game (point-
locally observable games), an Exp3-type algorithm achieves an O(

√
T ) regret. Recently, Lattimore

and Szepesvári (2020b) showed that an Exp3-type algorithm using exploration by optimization can
obtain bounds with good leading constants for both easy and hard games. There are also a few
algorithms that are not Exp3-type (Bartók et al., 2011; Foster and Rakhlin, 2012).

PM has also been investigated in the stochastic regime, although less extensively than the adver-
sarial regime (Bartók et al., 2012). One study (Komiyama et al., 2015) is based on DMED (Honda
and Takemura, 2011), in which the algorithm heavily exploits the stochastic structure, and the al-
gorithm was shown to achieve an O(log T ) regret with a distribution-optimal constant factor for
globally observable games. Two other approaches (Vanchinathan et al., 2014; Tsuchiya et al., 2020)
are based on Thompson sampling (Thompson, 1933). They focus on another variant of locally ob-
servable games (strongly locally observable games), and the algorithms presented a strong empirical
performance in the stochastic regime with an O(log T ) regret bound (Tsuchiya et al., 2020).

It is worth noting that PM has been studied in a variety of contexts with somewhat different
settings, e.g., with feedback graphs (Alon et al., 2015) or with linear feedback (Lin et al., 2014).
While our focus in this paper is the locally and globally observable games, there has been some
literature for hopeless games; we basically cannot do anything with the current definition of the
regret, but some research has been done by modifying the definition of the regret (Rustichini, 1999;
Mannor and Shimkin, 2003; Perchet, 2011; Mannor et al., 2014).
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2. Background

Notation Let ∥x∥, ∥x∥1, and ∥x∥∞ be the Euclidian, ℓ1-, and ℓ∞-norms for a vector x respec-
tively, and ∥A∥∞ = maxi,j |Aij | be the maximum norm for a matrix A. Let Pk = {p ∈ [0, 1]k :
∥p∥1 = 1} be the (k − 1)-dimensional probability simplex. A vector ea ∈ {0, 1}k is the a-th
orthonormal basis of Rk, and 1 is the all-one vector.

C1

C2

Figure 1: An example of cell de-
composition. The points
• correspond to Pareto-
optimal actions. Cells C1

and C2 are neighbors.

Partial Monitoring Consider any PM game G = (L,Φ).
Let m ≤ |Σ| be the maximum number of distinct symbols in
a single row of Φ ∈ Σk×d over all rows. In the following, we
introduce several concepts in PM. Different actions a and b
are duplicate if ℓa = ℓb. We can decompose possible distribu-
tions of d outcomes in Pd based on the loss matrix: for every
action a ∈ [k], cell Ca = {u ∈ Pd : maxb∈[k](ℓa − ℓb)⊤u ≤
0} is the set of probability vectors in Pd for which action a is
optimal. Each cell is a convex closed polytope. Let dim(Ca)
be the dimension of the affine hull of Ca. If Ca = ∅, action a
is dominated. For non-dominated actions, if dim(Ca) = d−1
then action a is Pareto optimal, and if dim(Ca) < d− 1 then
action a is degenerate. We denote the set of Pareto optimal
actions by Π, and the number of Pareto optimal actions by
kΠ = |Π|. Two Pareto optimal actions a, b ∈ Π are neigh-
bors if dim(Ca∩Cb) = d−2, and this notion is used to define
the difficulty of PM games. It is known that the undirected graph induced by the above neighbor-
hood relations is connected (see e.g., Bartók et al. 2012, Lattimore and Szepesvári 2020a, Lemma
37.7), and this is useful for loss difference estimations between distinct Pareto optimal actions. A
PM game is called non-degenerate if it has no degenerate actions. An example of cell decomposition
is given in Figure 1. From hereon, we assume that PM game G is non-degenerate and contains no
duplicate actions. The following observability conditions characterize the difficulty of PM games.

Definition 1 Neighbouring actions a and b are globally observable if there exists function we :
[k]× Σ→ R such that

k∑
c=1

we(c,Φcx) = Lax − Lbx for all x ∈ [d] . (1)

Neighbouring actions a and b are locally observable if there exists we = wab satisfying (1) and
we(c, σ) = 0 for c ̸∈ {a, b}. A PM game is called globally (resp. locally) observable if all neigh-
boring actions are globally (resp. locally) observable.

It is easy to see from the above definition that any locally observable games are globally observable,
and this paper assumes that G is globally observable.

Loss Difference Estimation Next, we introduce a method of loss difference estimations used in
PM. Let H be the set of all functions from [k]×Σ to Rd. In the following, we show that for globally
observable games we can estimate loss differences between any Pareto optimal actions using some
G ∈ H based on (1).

5



BEST-OF-BOTH-WORLDS ALGORITHMS FOR PARTIAL MONITORING

Lemma 2 (Lemma 4 of Lattimore and Szepesvári 2020b) Consider any globally observable game.
Then there exists a function G ∈ H such that for all b, c ∈ Π, we have

k∑
a=1

(G(a,Φax)b −G(a,Φax)c) = Lbx − Lcx for all x ∈ [d] . (2)

This result straightforwardly follows from the fact that the graph induced by the set of Pareto optimal
actions is connected. Let T be a tree over Π induced by the neighborhood relations. Lattimore and
Szepesvári (2020b) provides the following example of G:

G(a, σ)b =
∑

e∈pathT (b)

we(a, σ) for a ∈ Π , (3)

where pathT (b) is the set of edges from b ∈ Π to an arbitrarily chosen root c ∈ Π on T .

Intermediate Regimes between Stochastic and Adversarial Regimes Here, we discuss inter-
mediate regimes between the stochastic and adversarial regimes: the stochastic regime with adver-
sarial corruptions and an adversarial regime with a self-bounding constraint.

The stochastic regime with adversarial corruptions was originally considered by Lykouris et al.
(2018) in the classical multi-armed bandits. We define this regime in PM by considering the corrup-
tions on the sequence of outcomes (xt)Tt=1. In this regime, a temporary outcome x′t ∈ [d] is sampled
from an unknown distribution ν∗, and the adversary then corrupts x′t to xt without knowing At. We
define the corruption level by C = E

[∑T
t=1∥Lext − Lex′

t
∥∞
]
≥ 0. If C = 0, this regime corre-

sponds to the stochastic regime, and ifC ≥ T , this regime corresponds to the adversarial regime. As
we will see, the proposed algorithms work without knowing the corruption level C. We also define
another intermediate regime, a stochastically constrained adversarial regime, in Appendix A.

In this work, we consider an adversarial regime with a self-bounding constraint, developed in
the multi-armed bandits (Zimmert and Seldin, 2021) and includes the regimes that appeared so far.

Definition 3 Let ∆ ∈ [0, 1]k and C ≥ 0. The environment is in an adversarial regime with a
(∆, C, T ) self-bounding constraint if it holds for any algorithm that RT ≥ E

[∑T
t=1∆At − C

]
.

We can show that the regimes that have appeared so far are included in the adversarial regime with
a self-bounding constraint; the details are discussed in Appendix A.

In this study, we assume that there exists a unique optimal action. This assumption has been
employed by many studies aiming to develop BOBW algorithms (Gaillard et al., 2014; Luo and
Schapire, 2015; Wei and Luo, 2018; Ito, 2021; Zimmert and Seldin, 2021).

3. Follow-the-Regularized-Leader

This section introduces the FTRL framework and provides some fundamental bounds used in the
analysis. We recall that Π is the set of Pareto optimal actions. In the FTRL framework, a probability
vector pt ∈ Pk over the action set [k] is given as

qt ∈ argmin
q∈P(Π)

[〈
t−1∑
s=1

ŷs, q

〉
+ ψt(q)

]
, pt = Tt(qt) , (4)
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where the set P(B) := {p ∈ Pk : pa = 0 for a ̸∈ B} for B ⊂ [k] is a convex closed polytope on
the probability simplex with nonzero elements at indices in B, ŷs ∈ Rk is an estimator of the loss
at round t, ψt : Pk → R is a convex regularizer, and Tt : P(Π)→ Pk is a map from qt to an action
selection probability vector pt. We use the Shannon entropy for ψt, which is defined as

ψt(p) =
1

ηt

k∑
a=1

pa log(pa) = −
1

ηt
H(p) . (5)

We can easily check that if we use the Shannon entropy with learning rate ηt, qt ∈ P(Π) is expressed
as

qt,a =
1[a ∈ Π] exp

(
−ηt

∑t−1
s=1 ŷsa

)
∑

b∈Π exp
(
−ηt

∑t−1
s=1 ŷsb

) for a ∈ [k] . (6)

We set an estimator to ŷt = Gt(At, σt)/pt,At (Lattimore and Szepesvári, 2020b), where for locally
observable games, Gt is obtained by minimizing a certain optimization problem, whereas for glob-
ally observable games Gt is set to (3). The regret analysis of FTRL boils down to the evaluation of∑T

t=1

∑k
a=1 pt,a(ŷta − ŷta∗). We can decompose this quantity into

T∑
t=1

k∑
a=1

pt,a(ŷta−ŷta∗) ≤
T∑
t=1

(
ψt(qt+1)− ψt+1(qt+1)

)
+ ψT+1(ea∗)− ψ1(q1)

+
T∑
t=1

(
⟨qt − qt+1, ŷt⟩ −Dt(qt+1, qt)

)
:::::::::::::::::::::::::::::::

+
T∑
t=1

k∑
a=1

(qt,a − pt,a)(ŷta − ŷta∗) , (7)

where the inequality follows from the standard analysis of the FTRL framework (see e.g., Lattimore
and Szepesvári, 2020a, Exercise 28.12), and Dt : Rk × Rk → R+ is the Bregman divergence
induced by ψt, i.e., Dt(p, q) = ψt(p)−ψt(q)−⟨∇ψt(q), p− q⟩. We refer to the terms with dashed,

:::::
wavy, and straight underlines in (7) as the penalty, stability, and transformation terms, respectively.

We use a self-bounding technique to bound the regret in the stochastic regime, which requires a
lower bound of the regret. To this end, we introduce parameters Q(a∗) and Q̄(a∗) given by

Q(a∗) =

T∑
t=1

(1− qt,a∗) and Q̄(a∗) = E [Q(a∗)] . (8)

Note that 0 ≤ Q̄(a∗) ≤ T for any a∗ ∈ [k]. Based on quantity Q̄(a∗), the regret in the adversarial
regime with a self-bounding constraint can be bounded from below as follows.

Lemma 4 In the adversarial regime with a self-bounding constraint, if there exists c ∈ (0, 1] such
that pt,a ≥ c qt,a for t ∈ [T ] and a ∈ [k], the regret is bounded as RT ≥ c∆minQ̄(a∗)− C .

All omitted proofs are given in Appendix B. This lemma is used to derive poly-logarithmic regret
bounds in the adversarial regime with a self-bounding constraint.
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4. Locally Observable Case

This section provides a BOBW algorithm for locally observable games and derives its regret bounds.

4.1. Exploration by Optimization in PM

We first briefly explain the approach of exploration by optimization by Lattimore and Szepesvári
(2020b), based on which our algorithm for locally observable games is developed. In locally observ-
able games, the achievable regret is generally smaller than in globally observable games. Hence,
we need to exploit this easiness to achieve small regret, for which we rely on exploration-by-
optimization. Intuitively, in locally observable games, a loss estimator may suffer a large variance
because an informative action might not be selected due to its large losses. To overcome this issue,
Lattimore and Szepesvári (2020b) proposed exploration-by-optimization, which improves regret
bound by optimizing the stability that corresponds to the variance.

The key idea behind the approach is to minimize a part of a regret upper bound of an Exp3-
type algorithm (equivalently, FTRL with the Shannon entropy). In particular, they consider the
optimization on variables G : [k] × Σ → Rk and p ∈ Pk. Their algorithm computes every round
the function G and the action selection probability vector p by optimizing a part of the regret upper
bound of FTRL, expressed as

minimize
G∈H, p∈Pk

max
x∈[d]

[
(p− q)⊤Lex

η
+

biasq(G;x)

η
+

1

η2

k∑
a=1

pa

〈
q, ξ

(
ηG(a,Φax)

pa

)〉]
, (9)

where ξ(x) = e−x + x− 1 (we abuse the notation by applying ξ in an element-wise manner), and

biasq(G;x) =

〈
q, Lex −

k∑
a=1

G(a,Φax)

〉
+max

c∈Π

( k∑
a=1

G(a,Φax)c − Lcx

)
, (10)

is the bias function. In the optimization problem (9), the first term corresponds to the transformation
term, the second term corresponds to the regret for using a biased estimator, and the third term comes
from a part of the stability term. Note that the bias term does not appear when G satisfies (2). Note
also that the optimization problem in (9) is convex and can be solved numerically by using standard
solvers as discussed in Lattimore and Szepesvári (2020b).

4.2. Proposed Algorithm

This section describes the proposed algorithm for locally observable games. Although exploration-
by-optimization significantly improves the regret bound for locally observable games, they only
consider the adversarial regimes, and some modification is required for making it valid also for the
stochastic regime. To obtain BOBW guarantees, we often rely on a self-bounding technique, which
requires a certain lower bound on the action selection probability p (Gaillard et al., 2014; Wei and
Luo, 2018; Zimmert and Seldin, 2021). However, solving the optimization problem (9) may result
in pa = 0 for a certain a ∈ [k], which precludes the use of the technique. The proposed algorithm
considers the minimization problem over a restricted feasible set for p instead of over Pk. Let P′

k(q)
for q ∈ P(Π) be P′

k(q) = {p ∈ Pk : pa ≥ qa/(2k) for all a ∈ [k]} ⊂ Pk. We then consider the

8
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Algorithm 1: BOBW algorithm for locally observable games

1 input: B
2 for t = 1, 2, . . . do
3 Compute ηt using (12) and qt using (6)
4 Solve (11) with η ← ηt and q ← qt to determine V ′

t = max{0, opt′qt(ηt)} and the
corresponding solution pt and Gt

5 Sample At ∼ pt, observe σt ∈ Σ, compute ŷt = Gt(At, σt)/pt,At , update β′t using (12)

following optimization problem:

minimize
G∈H, p∈P′

k(q)
max
x∈[d]

[
(p− q)⊤Lex

η
+

biasq(G;x)

η
+

1

η2

k∑
a=1

pa

〈
q, ξ

(
ηG(a,Φax)

pa

)〉]
, (11)

which implies that the solution p of the optimization problem (11) satisfies p ≥ q/(2k). This
property is useful when applying the self-bounding technique to bound the regret in the stochastic
regime (possibly with adversarial corruptions). We define the optimal value of the optimization
problem (11) by opt′q(η) and its truncation at round t by V ′

t = max{0, opt′qt(ηt)}.

Regularizer and Learning Rate We use the Shannon entropy with learning rate ηt in (5) as a
regularizer. The learning rate ηt is defined as follows. Let β′1 = c1 ≥ 1 and

β′t+1 = β′t +
c1√

1 + (log kΠ)−1
∑t

s=1H(qs)
, βt = max

{
B, β′t

}
, and ηt =

1

βt
(12)

for c1 > 0 (determined in Theorem 6). The fundamental idea of this learning rate was developed
by Ito et al. (2022a), and we use its variant by the upper truncation of β′t. The truncation is required
when applying the following lemma to bound opt′q(η).

Lemma 5 For non-degenerate locally observable games and η ≤ 1/(2mk2), we have

opt′∗(η) := sup
q∈Pk

opt′q(η) ≤ 3m2k3 .

This lemma is a slightly stronger version of Proposition 8 of Lattimore and Szepesvári (2020b),
in which the same upper bound is derived for the minimum value over larger feasible set Pk ⊃
P′
k(q) in (9) instead of (11). Since the objective function of (9) and (11) originally comes from a

component of the regret, this lemma means that the restriction of the feasible set does not harm the
regret bound. Algorithm 1 provides the proposed algorithm for locally observable games.

4.3. Regret Analysis for Locally Observable Games

With the above algorithm, we can prove the following regret bound for locally observable games.

Theorem 6 Consider any locally observable non-degenerate partial monitoring game. If we run
Algorithm 1 with B ≥ 2mk2 and c1 = Θ

(
mk3/2

√
(log T )/(log kΠ)

)
, we have the following

9
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bounds. For the adversarial regime with a (∆, C, T ) self-bounding constraint, we have

RT = O

(
m2k4 log(T ) log(kΠT )

∆min
+

√
Cm2k4 log(T ) log(kΠT )

∆min

)
, (13)

and for the adversarial regime, we have

RT = O
(
mk3/2

√
T log(T ) log kΠ

)
+B log kΠ .

Note that (13) with C = 0 yields the bound in the stochastic regime. The bound for the adversarial
regime is a factor of

√
log(T ) log(kΠ)/ log k worse for large enough T than the algorithm by Lat-

timore and Szepesvári (2020b). This comes from the difficulty of obtaining the BOBW guarantee,
where we need to aggressively change the learning rate when the environment looks not so much
adversarial. Note that exactly solving the optimization problem (11) is not necessary, and we dis-
cuss regret bounds for this case in Appendix C. In the rest of this section, we provide a sketch of the
analysis.

We start by decomposing the regret as follows.

Lemma 7 RT ≤ E
[∑T

t=1

(
η−1
t+1 − η

−1
t

)
H(qt+1) +H(q1)/η1 +

∑T
t=1 ηtV

′
t

]
.

This can be proven by refining the analysis of the penalty term of Theorem 6 in Lattimore and
Szepesvári (2020b), in which we rely on the standard analysis in (7), and the first and remaining
terms correspond to the penalty term and the sum of the transformation and stability terms, respec-
tively. As will be shown in the proof of Theorem 6, the RHS of Lemma 7 can be bounded in terms
of
∑T

t=1H(qt), for which we have the following bound.

Lemma 8 For any a∗ ∈ [k], we have
∑T

t=1H(qt) ≤ Q(a∗) log(ekΠT/Q(a∗)).

We can show this lemma similarly to Lemma 4 of Ito et al. (2022a) by noting that qt,a = 0 for
a ̸∈ Π. Finally, we are ready to prove Theorem 6. Here, we only sketch the proof and provide the
complete proof can be found in Appendix B.5.
Proof sketch of Theorem 6. We prove this theorem by bounding the RHS of Lemma 7.

(Bounding the penalty term) Since β′t+1 is non-decreasing and β′t ≤ βt from the definition of
learning rate in (12), it holds that

T∑
t=1

(
ηt+1

−1 − ηt−1
)
H(qt+1) ≤

T∑
t=1

(β′t+1 − β′t)H(qt+1) =
T∑
t=1

c1
√
log kΠH(qt+1)√

log kΠ +
∑t

s=1H(qs)

≤ c1
√

log kΠ

T∑
t=1

2H(qt+1)√∑t+1
s=1H(qs) +

√∑t
s=1H(qs)

≤ 2c1
√
log kΠ

√√√√ T∑
t=1

H(qt) , (14)

where the second inequality follows from 0 ≤ H(qt+1) ≤ log kΠ, and the last inequality follows
by sequentially applying b/(

√
a+ b+

√
a) =

√
a+ b−

√
a for a, b > 0, the telescoping argument,√

a+ b−
√
b ≤
√
a for a, b ≥ 0, and H(qT+1) ≤ H(q1).

10
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(Bounding the sum of the transformation and part of stability terms) It holds that

T∑
t=1

ηtV
′
t ≤ max

s∈[T ]
V ′
s

T∑
t=1

ηt ≤ 3m2k3
T∑
t=1

ηt ≤
3m2k3(1 + log T )

c1

√√√√1 +
1

log kΠ

T∑
t=1

H(qt) , (15)

where the second inequality follows from Lemma 5 and the last inequality follows since the lower
bound β′t = c1 +

∑t−1
u=1

c1√
1+(log kΠ)−1

∑u
s=1 H(qs)

≥ c1t√
1+(log kΠ)−1

∑t
s=1 H(qs)

implies that

T∑
t=1

ηt ≤
T∑
t=1

1

β′t
≤

T∑
t=1

1

c1t

√√√√1 +
1

log kΠ

t∑
s=1

H(qs) ≤
1 + log T

c1

√√√√1 +
1

log kΠ

T∑
t=1

H(qt) .

(Summing up arguments and applying a self-bounding technique) By bounding the RHS of
Lemma 7 by (14) and (15) with c1 = Θ

(
mk3/2

√
log(T )/log kΠ

)
, we have RT = O

(
mk3/2√

log(T )
∑T

t=1H(qt) +mk3/2
√

log(T ) log kΠ

)
+ 2mk2 log kΠ . Since

∑T
t=1H(qt) ≤ T log kΠ,

the desired bound for the adversarial regime is obtained. We consider the adversarial regime with
a self-bounding constraint in the following. Here, we only consider the case of Q(a∗) ≥ e,
since otherwise we easily obtain the desired bound. Note that Lemma 8 with Q(a∗) ≥ e implies∑T

t=1H(qt) ≤ Q(a∗) log(kΠT ). Hence, for any λ > 0

RT = (1 + λ)RT − λRT ≤ E
[
(1 + λ)O

(
mk3/2

√
log(T ) log(kΠT )Q(a∗)

)
− λ∆minQ(a∗)

2k

]
+ λC

≤ O
(
Rloc + λ(Rloc + C) + Rloc/λ

)
,

where the first inequality follows by Lemma 4 with c = 1/(2k), and the second inequality follows
from a

√
x− bx/2 ≤ a2/(2b) for a, b, x ≥ 0 and Rloc = m2k4 log(T ) log(kΠT )/∆min. Appropri-

ately choosing λ gives the desired bound.

5. Globally Observable Case

This section proposes an algorithm for globally observable games and derives its BOBW regret
bound. We use G defined in (3) and let cG = max{1, k∥G∥∞} be the game-dependent constant.

5.1. Proposed Algorithm

In the proposed algorithm for globally observable games, we use the regularizer ψt in (5) as used
in the locally observable case, but with different parameters. We define βt, γt ∈ R by β1 =
max{c2, 2cG} and

γ′t =
1

4

c1bt

c1 +
(∑t

s=1 bs
)1/3 , βt+1 = βt +

c2bt

γ′t

(
c1 +

∑t−1
s=1

bsas+1

γ′
s

)1/2 , γt = γ′t +
cG
2βt

, (16)

where c1 and c2 are parameters satisfying c1 ≥ max{1, log kΠ}, and at and bt are defined by

at = H(qt) = −
∑
a∈Π

qt,a log(qt,a) and bt = 1−max
a∈Π

qt,a . (17)

11
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Algorithm 2: BOBW algorithm for globally observable games

1 for t = 1, 2, . . . do
2 Compute qt using (6)
3 Compute at, bt in (17), γ′t, γt in (16), and pt from qt by (18)
4 Sample At ∼ pt, observe σt ∈ Σ, compute ŷt = G(At, σt)/pt,At , and update βt using (16)

Note that we have ψt(0) = 0, and using βt ≥ β1 ≥ 2cG and bt ≤
∑k

a=1 qt,a ≤ 1 we have
γt ≤ c1bt/(4c1) + cG/(2cG) ≤ 1/2. We use the following transform from qt to pt:

pt = Tt(qt) = (1− γt)qt +
γt
k
1 . (18)

Algorithm 2 presents the proposed algorithm for globally observable games.

5.2. Regret Analysis for Globally Observable Games

With the above algorithm, we can prove the following regret bound for globally observable games.

Theorem 9 Consider any globally observable partial monitoring game. If we run Algorithm 2
with c1 = Θ

((
c2G log(T ) log(kΠT )

)1/3) and c2 = Θ
(√

c2G log T
)

, we have the following bounds.

For the adversarial regime with a (∆, C, T ) self-bounding constraint, we have

RT = O

(
c2G log(T ) log(kΠT )

∆2
min

+

(
C2c2G log(T ) log(kΠT )

∆2
min

)1/3)
, (19)

and for the adversarial regime, we have

RT = O
((
c2G log(T ) log(kΠT )

)1/3
T 2/3

)
,

where in the last big-O notation, the terms of o(poly(k, cG)(T log T )2/3) are ignored.

Note that (19) with C = 0 yields the bound in the stochastic regime. The bound for the adversar-
ial regime is a factor of (log(T ) log(kΠT )/ log k)1/3 worse than the algorithm by Lattimore and
Szepesvári (2020b). This comes from the difficulty of obtaining the BOBW guarantee, where we
need to aggressively change the learning rate when the environment looks not so much adversarial.

We begin the analysis by decomposing the regret as follows.

Lemma 10 The regret of Algorithm 2 is bounded as RT ≤ E
[∑T

t=1 γt +
∑T

t=1

(
⟨ŷt, qt − qt+1⟩ −

Dt(qt+1, qt)
)
+
∑T

t=1

(
ψt(qt+1)− ψt+1(qt+1)

)
+ ψT+1(ea∗)− ψ1(q1)

]
.

This lemma can be proven based on the fact that we can estimate loss differences between Pareto
optimal actions, and boundedness of L, combined with the standard analysis of FTRL given in (7).
Note that the first, second, and last terms correspond to the transformation, stability, and penalty
terms, respectively. We can bound the stability term on the RHS of Lemma 10 as follows.

Lemma 11 If ψt is given by (5) and bt is defined by (17), then we have

E[⟨ŷt, qt − qt+1⟩ −Dt(qt+1, qt)] ≤ E
[
2c2Gbt/(βtγt)

]
. (20)

12
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Remark 12 Globally observable PM is a generalization of the weakly observable setting in online
learning with feedback graphs (Alon et al., 2015). For this online learning problem, the regu-
larizer in the form of −H(p) − H(1 − p) rather than (6) is introduced in Ito et al. (2022a) to
make the LHS of (20) easy to bound. However, FTRL with this regularizer requires solving a con-
vex optimization every round. This study shows that the LHS of (20) can be favorably bounded
without the regularization of −H(1 − p). The key to the proof of this lemma is that for any
a′ ∈ [k] it holds that ⟨ŷt, qt − qt+1⟩ − Dt(qt+1, qt) = ⟨ŷt − ŷta′1, qt − qt+1⟩ − Dt(qt+1, qt) ≤
βt
∑k

a=1 qt,aξ ((ŷta − ŷta′)/βt) , which enables us to bound the stability term with bt in (17), lead-
ing to the regret upper bound depending on Q(a∗) in Proposition 13.

Using the definition of βt and γt in (16) with Lemmas 10 and 11, we can bound the regret as follows.

Proposition 13 Assume βt and γt are given by (16). Then, the regret is bounded as RT =

O
(
E
[
c1B

2/3
T + c̃

√
c21 + (log kΠ +AT )

(
c1 +B

1/3
T

)]
+β1 log kΠ

)
, where AT =

∑T
t=1 at, BT =∑T

t=1 bt, and c̃ = O
(

1√
c1

(
c2
G
log T

c2
+ c2

))
= O

(
c1√

log(kΠT )

)
.

The proof of this lemma is similar to Proposition 2 of Ito et al. (2022a). Now we are ready to prove
Theorem 9, whose proof is sketched below and completed in Appendix B.9.
Proof sketch of Theorem 9. We first consider the adversarial regime. In the adversarial regime,
Proposition 13 with AT ≤ T log kΠ and BT ≤ T immediately leads to

RT = O
(
c1T

2/3+ c̃
√
c21 + (log kΠ + T log kΠ)(c1 + T 1/3)

)
= O

((
c1 + c̃

√
log kΠ

)
T 2/3

)
. (21)

We next consider the adversarial regime with a self-bounding constraint. Here, we only consider
the case of Q(a∗) > max{e, c31}, since otherwise we can easily obtain the desired bound. Note that
AT ≤ Q(a∗) log(kΠT ) by Lemma 8 with Q(a∗) ≥ e and BT =

∑T
t=1 (1−maxa∈Π qt,a) ≤∑T

t=1 (1− qt,a∗) = Q(a∗). Then, Proposition 13 with these inequalities and Q(a∗) > c31 gives

RT ≤ O
(
E
[
c1Q(a∗)2/3 + c̃

√
log(kΠT )Q(a∗)4/3

])
≤ O

((
c1 + c̃

√
log(kΠT )

)
Q̄(a∗)2/3

)
. (22)

By (21) and (22), there exists ĉ = O
(
c1 + c̃

√
log(kΠT )

)
satisfying RT ≤ ĉ T 2/3 for the

adversarial regime and RT ≤ ĉ Q̄(a∗)2/3 for the adversarial regime with a self-bounding constraint.
Recalling the definitions of c1 and c2, we have ĉ = O

(
(c2G log(T ) log(kΠT ))

1/3
)
, which gives

the desired bounds for the adversarial regime. For the adversarial regime with a self-bounding
constraint, using RT ≤ ĉ Q̄(a∗)2/3 and Lemma 4 with c = 1/2 for any λ ∈ (0, 1] it holds that

RT = (1 + λ)RT − λRT ≤ (1 + λ)ĉ · Q̄(a∗)2/3 − λ∆minQ̄(a∗)/2 + λC . (23)

Taking the worst case of this with respect to Q̄(a∗) and taking λ ∈ (0, 1] appropriately gives the
desired bound for the adversarial regime with a self-bounding constraint.
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Chloé Rouyer, Dirk van der Hoeven, Nicolò Cesa-Bianchi, and Yevgeny Seldin. A near-optimal
best-of-both-worlds algorithm for online learning with feedback graphs. In Advances in Neural
Information Processing Systems, volume 35. Curran Associates, Inc., 2022.

Aldo Rustichini. Minimizing regret: The general case. Games and Economic Behavior, 29(1):
224–243, 1999.

Aadirupa Saha and Pierre Gaillard. Versatile dueling bandits: Best-of-both world analyses for
learning from relative preferences. In Proceedings of the 39th International Conference on Ma-
chine Learning, volume 162 of Proceedings of Machine Learning Research, pages 19011–19026.
PMLR, 2022.
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Appendix A. Intermediate Regimes between Stochastic and Adversarial Regimes

This section details the discussion on intermediate regimes between stochastic and adversarial
regimes given in Section 2. This section first defines the stochastically constrained adversarial
regime in PM, and then shows that the stochastic regime, adversarial regime, stochastically con-
strained adversarial regime, and stochastic regime with adversarial corruptions are indeed adversar-
ial regimes with a self-bounding constraint defined in Definition 3.

The stochastically constrained adversarial regime was initially considered by Wei and Luo
(2018) and also discussed in Zimmert and Seldin (2021) in the context of the multi-armed ban-
dit problem. We say that the environment is the stochastically constrained adversarial regime if for
any a ̸= a∗ there exists ∆̃a,a∗ > 0 such that Ext∼ν∗ [Laxt − La∗xt |x1, . . . , xt−1] ≥ ∆̃a,a∗ .

Next, we show that the stochastic regime, adversarial regime, stochastically constrained ad-
versarial regime, and stochastic regime with adversarial corruptions are indeed included in the
adversarial regime with a self-bounding constraint. We first consider the stochastic regime. In-
deed, if outcomes (xt)t follow a distribution ν∗ independently for t = 1, 2, . . . , T , we have RT =
maxa∗∈[k] E[

∑T
t=1(LAtxt − La∗xt)] = E[

∑T
t=1∆At ], where we define ∆ ∈ [0, 1]k by ∆a =

Ex∼ν∗ [Lax − La∗x]. This implies that the stochastic regime is in the adversarial regime with a
(∆, 0, T ) self-bounding constraint. We next consider the stochastic regime with adversarial corrup-
tions. In fact, using the definition of the corruption level C, we have

RT = E

[
T∑
t=1

(LAtxt − La∗xt)

]

= E

[
T∑
t=1

(
LAtx′

t
− La∗x′

t

)]
+ E

[
T∑
t=1

(
LAtxt − LAtx′

t

)]
+ E

[
T∑
t=1

(
La∗x′

t
− La∗xt

)]

≥ E

[
T∑
t=1

∆At

]
− 2C ,

which implies that the stochastic regime with adversarial corruption with corruption levels C is an
adversarial regime with a (∆, 2C, T ) self-bounding constraint. It is also easy to see that adversarial
regimes are the adversarial regime with a (∆, 2T, T ) self-bounding constraint, and the stochastically
constrained adversarial regime are the adversarial regime with a (∆, 0, T ) self-bounding constraint
by defining ∆ ∈ [0, 1]k by ∆a = ∆̃a,a∗ .

Appendix B. Omitted Proofs

B.1. Proof of Lemma 4

Proof Note that the environment is the adversarial regime with a self-bounding constraint with
∆ ∈ [0, 1]k such that ∆a ≥ ∆min for all a ∈ [k] \ {a∗}. Hence, the regret is then bounded as

RT ≥ E

[
T∑
t=1

∆At

]
− C = E

[
T∑
t=1

k∑
a=1

pt,a∆a

]
− C

≥ E

[
T∑
t=1

k∑
a=1

c qt,a∆a

]
− C ≥ c∆minQ̄(a∗)− C ,

18



BEST-OF-BOTH-WORLDS ALGORITHMS FOR PARTIAL MONITORING

where the first inequality follows from Definition 3, the equality follows from At ∼ pt, the second
inequality follows from the definition of pt given in (4), and the last inequality follows from the
assumption pt,a ≥ c qt,a for all t ∈ [T ], a ∈ [k] and the definition of Q̄(a∗) given in (8). This
completes the proof of Lemma 4.

B.2. Proof of Lemma 5

Before proving Lemma 5, we review the definition and property of the water transfer operator Wν

introduced by Lattimore and Szepesvári (2019b). We refer to T ⊂ [k]× [k] representing the edges
of a directed tree with vertices [k] as in-tree with vertex set [k] and define E = {(a, b) ∈ [k]× [k] :
a and b are neighbors}.

Lemma 14 (Lattimore and Szepesvári, 2019b) Assume that partial monitoring game G is non-
degenerate and locally observable and let ν ∈ Pd. Then there exists a function Wν : Pk → Pk

such that the following hold for all q ∈ Pk: (a) (Wν(q)− q)⊤Lν ≤ 0; (b) Wν(q)a ≥ qa/k for
all a ∈ [k]; and (c) there exists an in-tree T ⊂ E over [k] such that Wν(q)a ≤ Wν(q)b for all
(a, b) ∈ T .

Using this, we prove the generalized version of Proposition 8 of Lattimore and Szepesvári
(2020b), where the proof follows a quite similar argument as their proof therein.
Proof of Lemma 5. We define the set of functions that satisfy (2) by

H◦ =

{
G : (eb − ec)⊤

k∑
a=1

G(a,Φax) = Lbx − Lcx for all b, c ∈ Π and x ∈ [d]

}
.

Take any q ∈ Pk. By Sion’s minimax theorem, we have

opt′q(η) ≤ min
G∈H◦, p∈P′

k(q)
max
ν∈Pd

[
1

η
(p− q)⊤Lν + 1

η2

d∑
x=1

νx

k∑
a=1

pa

〈
q, ξ

(
ηG(a,Φax)

pa

)〉]

= max
ν∈Pd

min
G∈H◦, p∈P′

k(q)

[
1

η
(p− q)⊤Lν + 1

η2

d∑
x=1

νx

k∑
a=1

pa

〈
q, ξ

(
ηG(a,Φax)

pa

)〉]
,

where the first inequality follows since we added the constraint that G ∈ H◦, which makes the bias
term zero. Take any ν ∈ Pd and let T be the in-tree over [k]. Using these variables, we define the
action selection probability vector p ∈ P′

k(q) by

p = (1− γ)u+
γ

k
1 , where u =Wν(q) , and γ =

ηmk2

2
.

Here, Wν : Pk → Pk is the water operator. It is worth noting that from the assumption that
η ≤ 1/(mk2), we have γ ≤ 1/2 and pa ≥ ua/2 =Wν(q)a/2 ≥ qa/(2k), where the last inequality
follows from Part (b) of Lemma 14, and this indeed implies p ∈ P′

k(q).
We take G ∈ H◦ defined in (3), where we recall that G(a, σ)b =

∑
e∈pathT(b)we(a, σ). By

Lemma 20 of Lattimore and Szepesvári (2020b) and the assumption that G is non-degenerate,we can
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be chosen so that ∥we∥∞ ≤ m/2. Since paths in T have length at most k, we have ∥G∥∞ ≤ km/2.
From the above definitions, for any x ∈ [d] we have

ηG(a,Φax)

pa
≥ −ηmk

2

2γ
= −1 .

Hence, using Parts (b) and (c) of Lemma 14, we have

1

η2

k∑
a=1

pa

〈
q, ξ

(
ηG(a,Φax)

pa

)〉
≤

k∑
a=1

1

pa

k∑
b=1

qb (G(a,Φax)b)
2

≤ 2
k∑

a=1

1

ua

k∑
b=1

qb (G(a,Φax)b)
2

= 2
k∑

b=1

k∑
a=1

qb
ua

 ∑
e∈pathT(b)

we(a,Φax)

2

≤ m2

2

k∑
b=1

k∑
a=1

qb
ua

 ∑
e∈pathT(b)

1[a ∈ e]

2

≤ 2m2k3 ,

where the first inequality follows from

ξ(x) = exp(−x) + x− 1 ≤ x2 for x ≥ −1 , (24)

the second inequality follows since pa ≥ ua/2, the third inequality follows since ∥we∥∞ ≤ m/2,
and the last inequality follows from Part (b) of Lemma 14 to implying that qb ≤ kub and Part (c)
implying that ua ≥ ub for a ∈ pathT(b). Finally,

1

η
(p− q)⊤Lν =

1

η
(u− q)⊤Lν + γ

η

(
1

k
1− u

)⊤
Lν ≤ γ

η

(
1

k
1− u

)⊤
Lν ≤ mk2 ,

where the first inequality follows from Part (a) of Lemma 14. Summing up the above arguments,
we have opt′q(η) ≤ 3m2k3, which completes the proof of Lemma 5.

B.3. Proof of Lemma 7

We first analyze the stability term in (7) for ψt defined in (5).

Lemma 15 If ψt is given by (5), it holds for any ℓ ∈ Rk and p, q ∈ Pk that

⟨ℓ, p− q⟩ −Dt(q, p) ≤ βt
k∑

a=1

paξ

(
ℓa
βt

)
,

where we recall that ξ(x) = exp(−x) + x− 1.
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Proof For any x, y ∈ (0, 1), we let d(y, x) ≥ 0 be the Bregman divergence over (0, 1) induced by
ψ(x) = x log x, i.e.,

d(y, x) = y log y − x log x− (log x+ 1)(y − x) = y log
y

x
+ x− y .

Using this, the Bregman divergence induced byψt(p) = (1/ηt)
∑k

a=1 pa log(pa) = βt
∑k

a=1 pa log(pa)
in (5) can be written as

Dt(q, p) = ψt(p)− ψt(q)− ⟨∇ψt(q), p− q⟩ = βt

k∑
a=1

d(qa, pa) .

From this, we have

⟨ℓ, p− q⟩ −Dt(q, p) ≤
k∑

a=1

(ℓa(pa − qa)− βtd(qa, pa)) . (25)

We show

ℓa(pa − qa)− βtd(qa, pa) ≤ βtpaξ
(
ℓa
βt

)
. (26)

As ℓa(pa − qa) − βtd(qa, pa) is concave in q, its maximum subject to q ∈ R is attained when the
derivative of it is equal to zero, i.e.,

∂

∂qa
(ℓa(pa − qa)− βtd(qa, pa)) = −ℓa − βt (log qa − log pa) = 0 .

This implies that the maximum is attained when qa = q∗a := pa exp (−ℓa/βt). Hence, we ob-
tain (26) by

ℓa(pa − qa)− βtd(qa, pa) ≤ ℓa(pa − q∗a)− βtd(q∗a, pa)
= ℓa(pa − q∗a)− βt (q∗a log q∗a − pa log pa − (log pa + 1)(q∗a − pa))
= ℓapa − βt (q∗a log pa − pa log pa − (log pa + 1)(q∗a − pa))

= ℓapa + βt(q
∗
a − pa) = βtpa

(
exp

(
−ℓa
βt

)
+
ℓa
βt
− 1

)
= βtpaξ

(
ℓa
βt

)
,

where the second equality follows from log q∗a = log pa − ℓa/βt, and the fourth equality follows
from q∗a = pa exp (−ℓa/βt). Combining (25) and (26) completes the proof.

Proof of Lemma 7. Let a∗ = argmina∈[k] E
[∑T

t=1Laxt

]
∈ Π be the optimal action in hindsight.

We have

RT = E

[
T∑
t=1

(LAtxt − La∗xt)

]
= E

[
T∑
t=1

k∑
b=1

pt,b(Lbxt − La∗xt)

]

= E

[
T∑
t=1

k∑
b=1

(pt,b − qt,b)(Lbxt − La∗xt) +

T∑
t=1

k∑
b=1

qt,b(Lbxt − La∗xt)

]
. (27)
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The first term in (27) is equal to E
[∑T

t=1(pt − qt)⊤Lext

]
. The second term in (27) can be bounded

as

E

[
k∑

b=1

qt,b(Lbxt − La∗xt)

]
= E

[
k∑

b=1

q⊤t Lext − La∗xt

]

= E

[
k∑

b=1

q⊤t Lext − q⊤t
k∑

a=1

Gt(a,Φaxt) +

k∑
a=1

Gt(a,Φaxt)a∗ − La∗xt

]

+ E

[
q⊤t

k∑
a=1

Gt(a,Φaxt)−
k∑

a=1

Gt(a,Φaxt)a∗

]
≤ E[biasqt(G;xt)] + E

[
q⊤t ŷt − ŷta∗

]
, (28)

where in the last inequality we used the definition in (10) and Lemma 2 with a∗ ∈ Π and qt,a = 0
for a ̸∈ Π. The sum over t ∈ [T ] of the last term in (28) can be bounded using (7) and the definition
of the regularizer (5) as

E

[
T∑
t=1

k∑
b=1

qt,b(ŷtb − ŷta∗)

]

≤ E

[
T∑
t=1

(
1

ηt+1
− 1

ηt

)
H(qt+1) +

H(q1)

η1
+

T∑
t=1

(
⟨qt − qt+1, ŷt⟩ −Dt(qt+1, qt)

)]

≤ E

[
T∑
t=1

(
1

ηt+1
− 1

ηt

)
H(qt+1) +

H(q1)

η1
+

T∑
t=1

⟨qt, ξ(ηtŷt)⟩
ηt

]

= E

[
T∑
t=1

(
1

ηt+1
− 1

ηt

)
H(qt+1) +

H(q1)

η1
+

T∑
t=1

1

ηt

k∑
a=1

pt,a

〈
qt, ξ

(
ηtG(a, σt)

pt,a

)〉]
, (29)

where in the second inequality we used the following inequality obtained by Lemma 15:

⟨ŷt, qt − qt+1⟩ −Dt(qt+1, qt) ≤ βt
k∑

a=1

qt,aξ

(
ŷta
βt

)
=
⟨qt, ξ(ηtŷt)⟩

ηt
.

Using the definition of the optimization problem (11) and V ′
t = max{0, opt′qt(ηt)}, we have

(pt − qt)⊤Lext + biasqt(G;xt) +
1

ηt

k∑
a=1

pt,a

〈
qt, ξ

(
ηtG(a, σt)

pt,a

)〉
≤ ηtV ′

t . (30)

Summing up the arguments in (27), (28), (29), and (30), we have

RT ≤ E

[
T∑
t=1

(
1

ηt+1
− 1

ηt

)
H(qt+1) +

H(q1)

η1
+

T∑
t=1

ηtV
′
t

]
,

which completes the proof.
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B.4. Proof of Lemma 8

Proof For any q ∈ P(Π) and a∗ ∈ Π, we have

H(p) =
∑
a∈Π

qa log
1

qa
=

∑
a∈Π\{a∗}

qa log
1

qa
+ qa∗ log

(
1 +

1− qa∗
qa∗

)
≤ (kΠ − 1)

∑
a∈Π\{a∗}

1

kΠ − 1
qa log

1

qa
+ qa∗

1− qa∗
qa∗

≤ (kΠ − 1) ·
∑

a∈Π\{a∗} qa

kΠ − 1
log

kΠ − 1∑
a∈Π\{a∗} qa

+ qa∗
1− qa∗
qa∗

= (1− qa∗)
(
log

kΠ − 1

1− qa∗
+ 1

)
≤ (1− qa∗) log

ekΠ
1− qa∗

, (31)

where the first inequality follows from log(1 + x) ≤ x for x ≥ 0, the last inequality follows from
Jensen’s inequality, and the last equality follows from

∑
a∈Π qa = 1. Using (31), for any a∗ ∈ [k]

we have
T∑
t=1

at =
T∑
t=1

H(qt) ≤
T∑
t=1

(1− qta∗) log
ekΠ

1− qta∗

= T
T∑
t=1

1

T
(1− qt,a∗) log

ekΠ
1− qt,a∗

≤ T

(
T∑
t=1

1

T
(1− qt,a∗)

)
log

ekΠ∑T
t=1

1
T (1− qt,a∗)

= T
Q(a∗)

T
log

ekΠT

Q(a∗)
= Q(a∗)

(
log

ekΠT

Q(a∗)

)
,

where in the second inequality we used Jensen’s inequality since f(x) = x log(1/x) is concave,
and in the third inequality we used the definition of Q(a∗) in (8).

B.5. Proof of Theorem 6

Proof We prove this theorem by bounding the RHS of Lemma 7.

(Bounding the penalty term) Let t0 = min{t ∈ [T ] : β′t ≥ B}. Then, the definition of the
learning rate (12) gives that

T∑
t=1

(
1

ηt+1
− 1

ηt

)
H(qt+1) =

T∑
t=1

(βt+1 − βt)H(qt+1)

=

t0−2∑
t=1

(βt+1 − βt)H(qt+1) + (βt0 − βt0−1)H(qt+1) +

T∑
t=t0

(βt+1 − βt)H(qt+1)

≤ 0 +
(
β′t0 − β

′
t0−1

)
H(qt+1) +

T∑
t=t0

(
β′t+1 − β′t

)
H(qt+1)
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≤
T∑
t=1

(
β′t+1 − β′t

)
H(qt+1) ,

where in the first inequality we used the fact that β′t+1 is non-decreasing, βt+1 = βt for t ≤ t0 − 1,
β′t ≤ βt, and β′t = βt for t ≥ t0. Using this inequality, we have

T∑
t=1

(
1

ηt+1
− 1

ηt

)
H(qt+1) ≤

T∑
t=1

(
β′t+1 − β′t

)
H(qt+1)

=
T∑
t=1

c1√
1 + (log kΠ)−1

∑t
s=1H(qs)

·H(qt+1)

= 2c1
√

log kΠ

T∑
t=1

H(qt+1)√
log kΠ +

∑t
s=1H(qs) +

√
log kΠ +

∑t
s=1H(qs)

≤ 2c1
√

log kΠ

T∑
t=1

H(qt+1)√∑t+1
s=1H(qs) +

√∑t
s=1H(qs)

= 2c1
√
log kΠ

T∑
t=1


√√√√ t+1∑

s=1

H(qs)−

√√√√ t∑
s=1

H(qs)


= 2c1

√
log kΠ


√√√√T+1∑

s=1

H(qs)−
√
H(q1)


≤ 2c1

√
log kΠ


√√√√T+1∑

s=2

H(qs)

 ≤ 2c1
√

log kΠ

√√√√ T∑
t=1

H(qt) , (32)

where the second inequality follows from 0 ≤ H(qt+1) ≤ log kΠ, the third inequality follows from
the inequality

√
a+ b −

√
b ≤

√
a that holds for a, b ≥ 0, and the last inequality follows since

H(qT+1) ≤ H(q1).

(Bounding the sum of the transformation and part of stability term) Using the definition of
β′t in (12), we can bound β′t as

β′t = c1 +

t−1∑
u=1

c1√
1 + (log kΠ)−1

∑u
s=1H(qs)

≥ c1t√
1 + (log kΠ)−1

∑t
s=1H(qs)

.

Using this inequality, we have

T∑
t=1

ηt ≤
T∑
t=1

1

β′t
≤

T∑
t=1

1

c1t

√√√√1 +
1

log kΠ

t∑
s=1

H(qs) ≤
1 + log T

c1

√√√√1 +
1

log kΠ

T∑
t=1

H(qt) . (33)

Further, we have
T∑
t=1

ηtV
′
t ≤ max

s∈[T ]
V ′
s

T∑
t=1

ηt =

(
max
s∈[T ]

max
{
0, opt′∗(ηs)

}) T∑
t=1

ηt ≤ 3m2k3
T∑
t=1

ηt , (34)
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where in the last inequality we used Lemma 5 with ηt ≤ 1/(2mk2).

(Summing up the above arguments with a self-bounding technique) By bounding the RHS of
Lemma 7 using (32), (33), and (34), we have

RT ≤ 3m2k3E

1 + log T

c1

√√√√1 + (log kΠ)−1

T∑
t=1

H(qt)

+ 2c1
√
log kΠ E


√√√√ T∑

t=1

H(qt)

+
log kΠ
η1

= O

mk3/2
√√√√log(T )

T∑
t=1

H(qt) +mk3/2
√
log(T ) log kΠ

+ 2mk2 log kΠ , (35)

where we set c1 = Θ
(
mk3/2

√
log T
log kΠ

)
.

The desired bound is obtained for the adversarial regime, since
∑T

t=1H(qt) ≤ T log kΠ. We
consider the stochastic regime in the following. If Q(a∗) ≤ e, Lemma 8 implies

∑T
t=1H(qt) ≤

e log(kΠT ) since kΠT ≥ e, and otherwise we have
∑T

t=1H(qt) ≤ Q(a∗) log(kΠT ). In the former
case, we can trivially obtain the desired bound immediately from (35). For the latter case, using the
inequality

∑T
t=1H(qt) ≤ Q(a∗) log(kΠT ), (34), and Lemma 4 with c = 1/(2k), we have for any

λ > 0 that

RT = (1 + λ)RT − λRT ≤ E
[
(1 + λ)O

(
mk3/2

√
log(T ) log(kΠT )Q(a∗)

)
− λ∆min

2k
Q(a∗)

]
+ λC

≤ O
(
(1 + λ)2m2k4 log(T ) log(kΠT )

λ∆min

)
+ λC

= O

(
m2k4 log(T ) log(kΠT )

∆min
+ λ

(
m2k4 log(T ) log(kΠT )

∆min
+ C

)
+

1

λ

m2k4 log(T ) log(kΠT )

∆min

)
,

(36)

where the second inequality follows from a
√
x− bx/2 ≤ a2/(2b), which holds for any a, b, x ≥ 0.

Taking

λ = O

(√
m2k4 log(T ) log(kΠT )

/(m2k4 log(T ) log(kΠT )

∆min
+ C

))

completes the proof.

B.6. Proof of Lemma 10

Proof Let a∗ = argmina∈[k] E
[∑T

t=1Laxt

]
be the optimal action in hindsight, where ties are

broken so that a∗ ∈ Π. Note that since action a with dim(Ca) < d− 1 cannot be uniquely optimal,
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one can see that we can take action b ∈ Π instead of such a with the same loss. We have

RT = E

[
T∑
t=1

(LAt,xt − La∗,xt)

]
= E

[
T∑
t=1

⟨pt − ea∗ ,Lext⟩

]

= E

[
T∑
t=1

⟨qt − ea∗ ,Lext⟩+
T∑
t=1

γt

〈
1

k
1− qt,Lext

〉]

≤ E

[
T∑
t=1

⟨qt − ea∗ ,Lext⟩+
T∑
t=1

γt

]
= E

[
T∑
t=1

k∑
a=1

qt,a (Laxt − La∗xt) +

T∑
t=1

γt

]

= E

[
T∑
t=1

k∑
a=1

qt,a (ŷta − ŷta∗) +
T∑
t=1

γt

]
= E

[
T∑
t=1

⟨qt − ea∗ , ŷt⟩+
T∑
t=1

γt

]
,

where the inequality follows from the boundedness of L, the fourth equality follows since a∗ ∈ Π,
qt,a = 0 for a ̸∈ Π, and Lemma 2, and the fifth equality follows from the definitions of ŷ and
qt,a = 0 for a ̸∈ Π. Combining the above inequality and (7) completes the proof.

B.7. Proof of Lemma 11

Proof We first bound the stability term. Using Lemma 15, for any a′ ∈ A it holds that

⟨ŷt, qt − qt+1⟩ −Dt(qt+1, qt) = ⟨ŷt − ŷta′1, qt − qt+1⟩ −Dt(qt+1, qt)

≤ βt
k∑

a=1

qt,aξ

(
ŷta − ŷta′

βt

)
.

We evaluate the RHS of this inequality. As we define pt by (18), we have pt,a ≥ γt/k for any
a ∈ [k]. We first show that |(ŷta − ŷta′)/βt| ≤ 1 for all a, a′ ∈ [k]. Let τ = ∥G∥∞. Recall that
cG = max{1, kτ}. Then we have

ŷt
βt

=
G(a,Φax)

βt pt,At

≥ − τ

βt pt,At

1 ≥ −1

2
1 ,

where the inequalities here are element-wise, the first inequality follows from the definition of τ ,
and in the last inequality we used pt,a ≥ γt/k ≥ cG/(2βtk) ≥ τ/(2βt) for all a ∈ [k]. In a similar
manner we have

ŷt
βt

=
G(a,Φax)

βt pt,At

≤ τ

βt pt,At

1 ≤ 1

2
1 .
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These arguments conclude that |(ŷta − ŷta′)/βt| ≤ |ŷta/βt| + |ŷta′/βt| ≤ 1 for all a, a′ ∈ [k].
Hence, we have

⟨ŷt, qt − qt+1⟩ −Dt(qt+1, qt) ≤ min
a′∈[k]

βt

k∑
a=1

qt,a

(
ŷta − ŷta′

βt

)2

=
1

βt
min
a′∈[k]

k∑
a=1

qt,a (ŷta − ŷta′)2

=
1

βt
min
a′∈[k]

∑
a̸=a′

qt,a (ŷta − ŷta′)2 , (37)

where the inequality follows from (24). Now, for any a ∈ A we have

E
[
ŷ2ta
]
= E

[(
G(At,ΦAtxt)

pt,At

)2
]
≤ E

[
k∑

a=1

pt,a
∥G∥2∞
p2t,a

]
≤

k∑
a=1

k∥G∥2∞
γt

=
c2G
γt
, (38)

where the last inequality follows from pt,a ≥ γt/k. Hence, using (38) it holds that

E

 1

βt
min
a′∈[k]

∑
a̸=a′

qt,a (ŷta − ŷta′)2
 ≤ E

 2

βt
min
a′∈[k]

∑
a̸=a′

qt,a
c2G
γt


= E

[
2mina′∈[k](1− qta′)c2G

βtγt

]
= E

[
2c2Gbt

βtγt

]
. (39)

Combining (37) and (39) yields

E[⟨ŷt, qt − qt+1⟩ −Dt(qt+1, qt)] ≤ E

[
2c2Gbt

βtγt

]
,

which completes the proof.

B.8. Proof of Proposition 13

Proof Note that the penalty term can be rewritten as

T∑
t=1

(ψt(qt+1)− ψt+1(qt+1)) + ψT+1(ea∗)− ψ1(q1)

=
T∑
t=1

(βt − βt+1) (−H(qt+1)) + β1H(q1) =
T∑
t=1

(βt+1 − βt) at+1 + β1a1 ,

where we recall that the definition of at in (17). Combining this with Lemmas 10 and 11, we have

RT ≤
T∑
t=1

(
γ′t +

cG
2βt

)
︸ ︷︷ ︸

transformation term

+

T∑
t=1

2c2Gbt

βtγt︸ ︷︷ ︸
stability term

+

T∑
t=1

((βt+1 − βt)at+1) + β1a1︸ ︷︷ ︸
penalty term

, (40)
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where the first, second, and remaining terms correspond to the transformation, stability, and penalty
terms, respectively. We bound each term of the RHS in (40) in the following.

Note that bt ≤ 1 and

bt = 1−max
a∈[k]

qt,a ≤ −max
a∈[k]

qt,a log

(
max
a′∈[k]

qt,a′

)
≤ −

∑
a∈[k]

qt,a log qt,a = at ≤ log kΠ , (41)

where the first inequality follows from the inequality 1 − x ≤ −x log x for x > 0. We define
zt =

at+1bt
γ′
t

and Zt =
∑t

s=1 zs.

(Bounding the penalty term) From the definition of γ′t, we can bound zt from below as

zt =
at+1bt
γ′t

=
4at+1

c1

(
c1 +B

1/3
t

)
≥ 4at+1 ≥ 4bt+1 , (42)

where the second inequality follows from bt ≤ at in (41). Further, we can bound zt from above as

zt =
4at+1

c1

(
c1 +B

1/3
t

)
≤ 4

(
c1 +B

1/3
t

)
≤ 4

c1 +
(
b1 +

t−1∑
s=1

zs

)1/3
 ≤ 8 (c1 + Zt−1) ,

(43)

where the first inequality follows from at+1 ≤ log kΠ and c1 ≥ log kΠ, and the second inequality
follows from Bt = b1 +

∑t−1
s=1 bs+1 ≤ b1 +

∑t−1
s=1 zs, and the last inequality follows from b1 ≤

1 ≤ c1. From this, since βt satisfies βt+1 − βt = zt
at+1

c2
(c1+Zt−1)1/2

, we can bound the penalty term
in (40) as

T∑
t=1

(βt+1 − βt)at+1 = c2

T∑
t=1

zt√
c1 + Zt−1

= 5c2

T∑
t=1

Zt − Zt−1

4
√
c1 + Zt−1 +

√
c1 + Zt−1

< 5c2

T∑
t=1

Zt − Zt−1√
c1 + Zt +

√
c1 + Zt−1

= 5c2

T∑
t=1

(√
c1 + Zt −

√
c1 + Zt−1

)
≤ 5c2

√
ZT , (44)

where the first equality follows from the definitions of βt and zt, and the first inequality follows
since √

c1 + Zt ≤
√
c1 + Zt−1 +

√
zt < 4

√
c1 + Zt−1 ,

where the last inequality follows from (43).

(Bounding the stability term and transformation terms) We definewt =
bt
γ′
t

andWt =
∑t

s=1ws.
From the definition of γ′t, we have

wt =
bt
γ′t

= 4

(
1 +

1

c1
B

1/3
t

)
≥ 4 . (45)

Using bt ≤ 1, we can confirm that wt satisfies

w1 ≤ 8 , wt+1 = 4

(
1 +

1

c1
B

1/3
t+1

)
≤
(
1 +

1

c1
(Bt + 1)1/3

)
≤ 2wt , wt ≤ 4(1 + t1/3) .

(46)
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Then βt can be bounded as

βt ≥ c2 + c2

t−1∑
s=1

ws√
c1 + Zs−1

≥ c2√
c1 + Zt

(
1 +

t−1∑
s=1

ws

)
=

c2√
c1 + Zt

(1 +Wt−1) (47)

≥ c2t√
c1 + Zt

, (48)

where the second inequality follows from (45).
Using the above inequalities, we can bound the stability term in (40) as

T∑
t=1

bt
γtβt

≤
T∑
t=1

bt
γ′tβt

≤
T∑
t=1

√
c1 + Zt

c2

wt

1 +Wt−1
≤
√
c1 + ZT

c2

T∑
t=1

wt

1 +Wt−1

≤ O
(√

c1 + ZT

c2
log (1 +WT )

)
≤ O

(√
c1 + ZT

c2
log T

)
, (49)

where the first inequality follows from (47), the last inequality follows from (46), and the fourth
inequality can be shown by taking the sum of the following inequality:

log(1 +Wt)− log(1 +Wt−1) = log
1 +Wt

1 +Wt−1
= log

(
1 +

wt

1 +Wt−1

)
≥ 1

2
· wt

1 +Wt−1
,

where the inequality follows from the fact that log(1 + x) ≥ 1
2x holds for any x ∈ [0, 2] and that

(46) implies wt
1+Wt−1

≤ wt
1+wt/2

≤ 2 for all t ∈ [T ].
Using (48), we can bound the second part of the transformation term in (40) as

T∑
t=1

1

βt
≤

T∑
t=1

√
c1 + Zt

c2t
≤
√
c1 + ZT

c2

T∑
t=1

1

t
= O

(√
c1 + ZT

c2
log T

)
. (50)

In addition, from the definition of γ′t, we can bound the remaining part of the transformation term
in (40) as

T∑
t=1

γ′t =
c1
4

T∑
t=1

bt

c1 +B
1/3
t

≤ 3c1
8

T∑
t=1

(
B

2/3
t −B2/3

t−1

)
≤ 3c1

8
B

2/3
T , (51)
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where the first inequality follows from y2/3−x2/3 ≥ 2
3(y−x)y

−1/3, which holds for any y ≥ x > 0.
Combining (44), (49), (50), and (51), we can bound the right-hand side of (40) as

T∑
t=1

(
γt +

2c2Gbt

γtβt
+ (βt+1 − βt)at+1

)
+ β1a1

=

T∑
t=1

(
γ′t +

cG
2βt

+
2c2Gbt

γtβt
+ (βt+1 − βt)at+1

)
+ β1a1

= O

(
c1B

2/3
T +

(
c2G log T

c2
+ c2

)√
c1 + ZT + β1a1

)

= O

c1B2/3
T +

(
c2G log T

c2
+ c2

)√√√√c1 +
T∑
t=1

at+1

c1

(
c1 +B

1/3
t

)
+ β1a1


= O

(
c1B

2/3
T +

1
√
c1

(
c2G log T

c2
+ c2

)√
c21 + (log kΠ +AT )

(
c1 +B

1/3
T

)
+ β1 log kΠ

)
,

where in the third inequality we used (42) and in the last equality we used aT+1 = O(log kΠ).

B.9. Proof of Theorem 9

Proof We define c1 and c2 by

c1 = Θ
((
c2G log(T ) log(kΠT )

)1/3) and c2 = Θ
(√

c2G log T
)
, (52)

which implies that c̃ = c1/
√

log(kΠT ). We have

BT =

T∑
t=1

(
1−max

a∈Π
qt,a

)
≤

T∑
t=1

(1− qt,a∗) = Q(a∗) . (53)

We first consider the adversarial regime. Since AT ≤ T log kΠ and BT ≤ T , using Proposition 13
we have

RT = O

(
c1T

2/3 + c̃
√
c21 + (log kΠ + T log kΠ)(c1 + T 1/3) + β1 log kΠ

)
= O

((
c1 + c̃

√
log kΠ

)
T 2/3 +

√
log kΠ

log(kΠT )
c
3/2
1 T 1/2 +

c21√
log(kΠT )

+ β1 log kΠ

)
. (54)

We next consider the adversarial regime with a self-bounding constraint. When Q(a∗) ≤ c31 we can
show that the obtained bound is smaller than the desired bound as follows. When Q(a∗) ≤ e ≤ c31,
using Lemma 8 and (53), we have AT ≤ e log(kΠT ) and BT ≤ e. Hence, from Proposition 13, we
have

RT = O

(
c1 + c̃

√
c21 + log(kΠT )c1 + β1 log kΠ

)
= O

(
c21√

log(kΠT )
+ β1 log kΠ

)
= O

(
c31
)
.
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When e < Q(a∗) ≤ c31, using Lemma 8 and (53) we have AT ≤ c31 log(kΠT ) and BT ≤ c31. Hence,
from Proposition 13, we have

RT = O

(
c31 + c̃

√
c21 +

(
log kΠ + c31 log(kΠT )

)
c1 + β1 log kΠ

)
= O

(
c2G log(T ) log(kΠT )

)
= O

(
c31
)
.

Hence, we only need to consider the case ofQ(a∗) > c31 in the following. SinceQ(a∗) ≥ e we have
AT ≤ Q(a∗) log(kΠT ). Using Proposition 13 with this inequality, Lemma 8, and (53), we have

RT = O

(
E
[
c1Q(a∗)2/3 + c̃

√
c21 +

(
log kΠ +Q(a∗) log(kΠT )

) (
c1 +Q(a∗)1/3

)]
+ β1 log kΠ

)
≤ O

(
E
[
c1Q(a∗)2/3 + c̃

√
Q(a∗) log(kΠT )Q(a∗)1/3

])
≤ O

((
c1 + c̃

√
log(kΠT )

)
Q̄(a∗)2/3

)
, (55)

where the first inequality follows fromQ(a∗) > c31, and the second inequality follows from Jensen’s

inequality. Hence, by (54) and (55), there exists ĉ = O
(
c1 + c̃

√
log(kΠT )

)
satisfying and RT ≤

ĉ Q̄(a∗)2/3 for the adversarial regime with a self-bounding constraint and RT ≤ ĉ T 2/3 for the
adversarial regime.

Now, by recalling the definitions of c1 and c2 in (52), we have

ĉ = O

((
c2G log(T ) log(kΠT )

)1/3
+

1
√
c1

(
c2G log T

c2
+ c2

)√
log(kΠT )

)
= O

(
(c2G log(T ) log(kΠT ))

1/3
)
, (56)

which gives the desired bounds for the adversarial regime.
For the adversarial regime with a self-bounding constraint, from the above inequality RT ≤

ĉ Q̄(a∗)2/3 and Lemma 4 with c = 1/2 ≤ 1− γt, we have for any λ ∈ (0, 1] that

RT = (1 + λ)RT − λRT ≤ (1 + λ)ĉ · Q̄(a∗)2/3 − λ

2
∆minQ̄(a∗) + λC

≤ O
(
(1 + λ)3ĉ3

λ2∆2
min

)
+ λC = O

((
1 +

1

λ2

)
ĉ3

∆2
min

)
+ λC , (57)

where the first inequality follows from the inequality ax2/3 − b(x/2) ≤ 16a3/(27b2) for a, b >
0, and the last equality follows since λ ∈ (0, 1]. Combining (56) and (57), and taking λ =

O
(
c2
G
log(T ) log(kΠT )

C∆2
min

)
, we have the desired result for the adversarial regime with a self-bounding

constraint.

Appendix C. Regret Bounds when the Optimization Problem is Not Exactly Solved

This section discusses the regret bound when the optimization problem (11) is not exactly solved,
on which a similar discussion is given in Lattimore and Szepesvári (2020a, Chapter 37). We say
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that the optimization problem (11) can be solved with precision ϵ ≥ 0, if we can obtain G ∈ H and
p ∈ P′

k(q) such that

max
x∈[d]

[
(p− q)⊤Lex + biasq(G;x)

η
+

1

η2

k∑
a=1

pa

〈
q, ξ

(
ηG(a,Φax)

pa

)〉]
≤ opt′q(η) + ϵ .

Then if we run Algorithm 1 solving (11) with precision ϵ, one can see that we can obtain the
following regret bounds. For the adversarial regime with a (∆, C, T ) self-bounding constraint, we
have

RT = O

(mk2 + ϵ2/(mk)
)2

log(T ) log(kΠT )

∆min
+

√
C
(
mk2 + ϵ2/(mk)

)2
log(T ) log(kΠT )

∆min

 ,

and for the adversarial regime, we have

RT = O

(
mk3/2

√
T log(T ) log kΠ + ϵ

√
T log(kΠ) log(T )

mk3/2

)
.

Here, we give an overview of the analysis. Considering that the optimization problem in (11)
can be solved with precision ϵ ≥ 0, the RHS of (30) can be replaced with 3m2k3+ϵ. Then a similar
analysis as the proof of Theorem 6 leads to

RT ≤ O

(mk3/2 + ϵ

mk3/2

)√√√√log(T )
T∑
t=1

H(qt)

 .

Using
∑T

t=1H(qt) ≤ T log kΠ gives the bound for the adversarial regime. Replacing m2k4 with(
mk2 + ϵ

mk

)2 in (36) and appropriately choose λ (note that we can take λ depending on ϵ), we
obtain the desired bound for the adversarial regime with a self-bounding constraint.
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