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Abstract
Suppose we observe xj = θ + εj , j = 1, ..., n where θ ∈ Rd is an unknown parameter and εj
are i.i.d. random noise vectors satisfying some general distribution. We study the estimation of
f(θ) :=

∑d
i=1 fi(θi) when f : Rd → R is a given smooth additive function and d is large. Inspired

by a recent work on studying the estimation of f(θ) under Gaussian shift model via a Fourier
analytical approach, we propose a new estimator that can be implemented easily and computed
fast. We show that the new estimator achieves effective bias reduction universally under minimum
moment constraint. Further, we establish its asymptotic normality which implies the new estimator is
asymptotically efficient. When fi is sufficiently smooth and d is large, such properties make the new
estimator rate optimal. Efficient computation of the new estimator and the minimum requirement of
noise make this work more applicable to real world applications.

Keywords: bias reduction, universality, high dimensional estimation, additive model, asymptotic
normality

1. Introduction

We observe
xj = θ + εj , (1.1)

with xj , j = 1, ..., n being noisy observations of an unknown parameter θ ∈ Rd, and εj ∈ Rd being
i.i.d. copies of a random vector ε that satisfies some general distribution. We study the estimation of
the function value f(θ) when f : Rd → R is a given smooth function with an additive structure:

f(θ) :=

d∑
i=1

fi(θi). (1.2)

The major motivation of this work is the following: when the dimension parameter d is a fixed
constant or relatively small compared with the sample size n, one can use the naive plug-in estimator
f(x̄) with the sample mean x̄ to serve the purpose. Because the overall bias of f(x̄) can be bounded
by the sum of bias of estimation for each fi(θi), which is roughly of the same order due to d being
treated as a constant. However, if d is large and comparable to n, say d = nα for some α ∈ (0, 1),
f(x̄) is no longer a good choice since its large bias makes it sub-optimal (Koltchinskii and Zhilova,
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2021a; Zhou and Li, 2021; Zhou et al., 2021) even for smooth f . As a consequence, to develop an
effective estimator with a high dimensional parameter θ posed a challenge. Recent works are mostly
focused on specific distributions of noise. Though some are claimed to able to apply to other noise
scenarios, generalization of their theoretical guarantee which usually heavily relies on the specific
distribution’s properties is equally hard. So a universal method with theoretical guarantee is still
missing. In this article, we make an attempt to fill this gap.

Model (1.1) is the so-called measurement error model (1.1) (Carroll et al., 2006) and it models the
scenario when the underlying parameter θ always comes with noise either by unintentional machine
measurement error or by intentional add-on noise due to privacy concern. As it’s ubiquitous in real
world applications, early studies on this topic can be dated back to Levit (1976, 1978); Ibragimov
et al. (1986); Bickel and Ritov (1988); Nemirovskii (1991); Birgé and Massart (1995); Laurent
(1996); Lepski et al. (1999); Nemirovskii (2000). Other works related to this model focused on the
estimation of f itself when f is not given, we refer to Fan and Truong (1993); Carroll et al. (2006);
Han and Park (2018) and the references therein. On the other hand, functionals with an additive
structure as in (1.2) are perhaps the most important and widely used ones in statistical learning such
as boosting methods (Friedman, 2001) or generalized additive models (Hastie, 2017). Unlike linear
regression, in those applications the regression function, i.e. the conditional mean is expressed as
nonlinear summation of θ’s variables:

E[y|θ] =
d∑

i=1

fi(θi). (1.3)

Other important examples of additive functions include: the loss function of general machine
learning problems; ∥θ∥pp, the ℓp-norm of θ; or the entropy of a discrete probability distribution:

f(θ) =
d∑

i=1
−θi log θi. Historically, two types of functional estimation with an additive structure are

extensively studied: one is the linear functional, i.e. f(θ) =
∑d

i=1 θi, see Donoho and Liu (1987,
1991); Klemelä and Tsybakov (2001); Cai and Low (2005a) and the references therein. The other
is the quadratic functional, i.e. f(θ) =

∑d
i=1 θ

2
i , see Donoho and Nussbaum (1990); Cai and Low

(2005b); Klemelä (2006); Laurent and Massart (2000) and the references therein. Recently we see a
resurgence of interests in studying minimax theory of those topics under sparsity class in Gaussian
shift model, see Collier et al. (2017); Collier and Comminges (2019). Another line of exciting works
focus on minimax estimation of non-smooth additive models, see Cai and Low (2011); Jiao et al.
(2015); Wu and Yang (2016, 2019); Carpentier and Verzelen (2019); Collier et al. (2020)

Related works: Several methods have been developed recently to study the problem in high
dimensions. One is based on an iterative bootstrap technique with a more statistical flavor see Jiao
and Han (2020); Koltchinskii (2020); Koltchinskii and Zhilova (2021a,b). Jiao and Han (2020) used
this method to study the problem in one dimensional case under binomial model. While Koltchinskii
(2020); Koltchinskii and Zhilova (2021a,b) developed this method into its general form and studied
general smooth functional estimation in Gaussian shift model. Zhou and Li (2021) applied this
iterative bootstrap method to study the Gaussian shift model when f is an additive function with
Hölder smoothness. The key idea is to use bootstrap chain and several rounds of re-sampling to
reduce bias in an iterative way.

Another type of methods is rooted in approximation theory which seeks to replace f by its
approximation to achieve de-biasing. For instance, Jiao and Han (2020) used Taylor expansion of f(x̄)
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at θ to approximate f(θ). Collier and Comminges (2019) used Hermite polynomial approximations
of f and studied the estimation of general additive functional under Gaussian shift model. Zhou
and Li (2019) used approximations from Fourier analysis and Littlewood-Paley theory, which we
will explain in detail in Section 3. In other interesting related works such as Acharya et al. (2017);
Hao and Orlitsky (2019), the authors tried to plug in different MLE of θ such as profile maximum
likelihood estimator other than the sample mean x̄. In Hao and Li (2020a,b), the authors adopted
Bessel smoothing to improve the estimations of a collection of summary statistics, in particular for
estimating the number of unseen species. In Zhou et al. (2021), the authors developed a Taylor
expansion type method and studied the problem when f is a general functional that can be smooth or
non-smooth. In Koltchinskii (2022), the author developed a jackknife type bias reduction method
and studied a similar problem when f is Hölder smooth and θ is the covariance operator of Gaussian
random variables in Banach space.

Major contributions: The works mentioned above are either based on model (1.1) under a
specific distribution and/or requires to know the distribution of the noise in advance which is quite
unrealistic, or are computationally intensive when it comes to implementation as re-sampling is
needed. In this article, we solve this by proposing a new estimator and relaxing the distribution
requirement of noise to its most general form only assuming finite second moment. We use a Fourier
analytical approach originated from a brilliant idea in the seminal work of Kolmogorov (1950) on
unbiased estimation and a recent work (Zhou and Li, 2019) which studied the estimation of f(θ)
with a general smooth function f under Gaussian shift model. Nevertheless, both estimators in Zhou
and Li (2019, 2021) rely heavily on the Gaussian assumption in terms of estimator construction
and theoretical analysis, and can hardly be generalized to a distribution free setting. As a major
contribution, we introduce a new estimator and close the theory gap by developing some new analysis
tools.

Roadmap: In Section 3, we explain the ideas and intuitions of the construction of our estimator,
which has a simple expression and is faster to compute compared with other approaches such as iter-
ative bootstrap. In Section 4, we establish an upper bound on bias of the new estimator. Our analysis
is distribution free and only requires finite second moment of the noise. The bound indicates the
new estimator achieves an effective bias reduction and is quite different from that of general smooth
function f without an additive structure. In Section 5, we show the estimator scaled by the inverse
of the Fisher information for estimation of f(θ) is normally distributed around the ground truth
f(θ), indicating the estimator has optimal asymptotic variance implied by Cramér-Rao bound and is
asymptotically efficient. Thanks to f ’s additive structure, the asymptotic normality can be achieved
under much looser constraint on smoothness compared with the general smooth function case. In
Section 6, simulations are presented to validate our theory. The new estimator is not only effective
in bias reduction but also maintains near optimal variance, which eventually leads to its optimal
performance on MSE for large d. To summarize, the simple explicit expression of the new estimator
and the minimum requirement of noise setting implies universality of the proposed estimator.

2. Preliminaries

Notation: Boldface uppercase letter X ∈ Rd×n denotes the data matrix, and boldface lowercase
letter x denotes a vector. We use ∥ · ∥ to denote the ℓ2-norm of a vector. We use F and F−1 to
denote the Fourier transform (FT) and inverse Fourier transform (IFT) respectively. The conventional
notation “⇒" denotes weak convergence, i.e. convergence in distribution and use “

p−→" to denote
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convergence in probability. We use S ′ to denote the set of all complex-valued tempered distributions
on R and Lp(R) to denote the Lp spaces. Given nonnegative numbers a and b, a ≲ b means
a ≤ Cb for a numerical constant C, and a ≍ b means a ≲ b and b ≲ a. a ∧ b = min{a, b} and
a ∨ b = max{a, b}.

2.1. Minimum assumptions on noise

Assumption 1 Let ε be a random vector in Rd, assume that E[ε] = 0.

Assumption 2 Let ε = (ϵ1, . . . , ϵd)
T be a random vector in Rd, assume that the variance of each

component ϵi is uniformly bounded by some constant σ2 independent of d and n, i.e. E[ϵ2i ] ≤ σ2, ∀
i = 1, ...d.

2.2. A Besov-type norm and the function class

Before we get into the function class of our interest, we introduce a Besov-type norm to characterize
smoothness of f . Given ψ : R → R, we define∥∥ψ∥∥

s,∞,1
:=

1√
2π

∫
R

∣∣Fψ(ζ)∣∣(1 ∨ |ζ|s
)
dζ, (2.1)

and we are interested in functions that residing in the following function class

Fs(M) :=
{
ψ ∈ S ′ :

∥∥ψ∥∥
s,∞,1

< M
}
. (2.2)

The norm defined in (2.1) is similar as the definition of Sobolev norm or Bessel-Potential norm,
see Chap. 2.2 Triebel (1983). Clearly, the parameter s characterizes the smoothness of ψ as it
controls how fast Fψ would decay when ζ approaches infinity. Note that the smoothness index s
can be related to classical Sobolev smoothness or Hölder smoothness through embedding theorems
Sec. 2.5.7 Triebel (1983). Except for these two classical classes of functions, analytical and entire
functions also satisfy (2.2). Another example in (2.2) is the mixture model, one can check that with
some distribution function G(x) and absolute constant C:

ψ :=

∫
e−(θ−x)2/2dG(x),

∥∥ψ∥∥
s,∞,1

≤ C. (2.3)

We assume that f is equipped with a homogeneous additive structure, i.e.

f =
d∑

i=1

fi, fi ∈ Fs(M). (2.4)

Especially, we use Fs
d(M) := Fs(M)

⊕
· · ·

⊕
Fs(M) to denote the function class. Then an

example of (1.2) of mixture model with coefficients πi and candidate distributions Gi(x) follows as

f(θ) =

d∑
i=1

πi

∫
e−(θi−x)2/2dGi(x). (2.5)
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3. Construction of the estimator

As we have mentioned, the plug-in estimator’s large bias can make it sub-optimal for both smooth (Koltchin-
skii and Zhilova, 2021a). The main purpose of our new estimator is to effectively reduce the bias and
make it controllable. Our idea is based on a Fourier analytical approach developed by Kolmogorov
(1950); Zhou and Li (2019) to study the Gaussian case, and exploit the smoothness property of f to
reduce the bias of estimation of each component fi(θi) to the order O(n−(s∧2)/2).

In a recent work (Zhou and Li, 2019), the authors proposed an estimator under Gaussian noise as
follows

g(x̄) :=
1

(2π)d/2

∫
Ω
Ff(ζ)e⟨Σζ,ζ⟩/2neiζ

T x̄dζ. (3.1)

where Ω := {ζ : ∥ζ∥ ≤ R}
denotes the truncated regime of the support of Ff . The key point of this estimator is that the

factor e⟨Σζ,ζ⟩/2n in (3.1) exactly cancels the characteristic function E
[
eiζ

T ε̄
]

of the noise which
makes g(x̄) an unbiased estimator of the analytical part of f , i.e.

Eθ

[
g(x̄)

]
= fN (θ); fN (θ) :=

1

(2π)d/2

∫
Ω
Ff(ζ) · eiζ

T θdζ. (3.2)

On the other hand, they showed the remainder f̃N of the decomposition f := fN + f̃N

f̃N (θ) :=
1

(2π)d/2

∫
Rd\Ω

Ff(ζ) · eiζ
T θdζ (3.3)

is uniformly small when f is sufficiently smooth. So the overall bias of g(x̄) is small. However,
when ε is non-Gaussian, (3.2) no longer holds and its theoretical analysis can hardly be generalized.
Inspired by this approach, we construct a new estimator with modifications to realize the idea
above. Firstly, we introduce some critical ingredients. We consider the one-dimensional case
where xj = θ + ϵj , j = 1, . . . , n, and ϵj’s are i.i.d. copies of a random variable ϵ. Given ζ ∈ R,
we denote by

gζ,n(xj , x̄) :=
(ζxj − ζx̄)2

2n2
. (3.4)

Then we define the following operator on a given function f1 : R → R:

T (f1) :=
1√
2π

∫
Ω
Ff1(ζ)

(
1 +

n∑
j=1

gζ,n(xj , x̄)
)
eiζx̄dζ, (3.5)

where Ω := {ζ ∈ R : |ζ| ≤ R} is a truncated region of the support of Ff1. As a result, we apply T
to each component function fi with noisy observations of each coordinate θi and introduce our new
estimator as

g∗(X) :=

d∑
i=1

T (fi). (3.6)

Here X ∈ Rd×n denotes the observation data matrix under model (1.1) with xj being its j-th
column. T is applied to fi using the i-th row of X.
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To understand the effectiveness of g∗(X) on bias reduction on a single component fi, we compare
it with its plug-in counterpart. Recall that the plug-in estimate of f1 can be written as

f1(x̄) =
1√
2π

∫
Ff1(ζ) · eiζx̄dζ =

1√
2π

∫
Ff1(ζ) · eiζ(ϵ̄+θ1)dζ. (3.7)

Take a closer look at its bias through the expansion of eiζϵ̄, one can check that the bias E[f1(x̄)]−
f1(θ1) can be written as

1√
2π

∫
Ω
Ff1(ζ) · eiζθ1 · E

[
− (ζϵ̄)2

2

]
dζ +R1. (3.8)

The remainder R1 shall be of a smaller order when f1 is sufficiently smooth. On the other hand, as
for the bias of T (f1), one can check that E

[
T (f1)

]
− f1(θ1) can be written as

1√
2π

∫
Ω
Ff1(ζ) · eiζθ1 · E

[
− (ζϵ̄)2

2n

]
dζ +R2, (3.9)

where again R2 is the remainder and shall be of a smaller order. By comparing (3.8) and (3.9),
roughly speaking, T (f1) reduces the bias of leading term of fN1 (x̄) by a scaling factor n−1 if
everything else is well controlled.

Remark 1 Another interpretation of our estimator is that we are using a data-driven approach to
eliminate the effect caused by the first term appeared in (3.8). To be more specific, the expectation
appeared in the first term of (3.8) is exactly the variance of ϵ̄ multiplied by a scaling factor. What
we do in (3.5), i.e.

∑n
j=1 gζ,n(xj , x̄), is to use the data to estimate the expectation term in (3.8) and

cancel it by adding it to the integral. The estimator (3.6) corrects the bias only up to the second
order of the expansion of eiζϵ̄ due to Assumption 2. Ideally, higher orders of bias correction can be
achieved if higher moments of ε are assumed to be finite. Such process can be done by carefully
enumerating and matching the terms in the expansion of eiζϵ̄. Similar process are described in
detail by Jiao and Han (2020) when the authors used the Taylor series to approximate f to achieve
bias-reduction. Note that the recent work by Zhou et al. (2021) developed this Taylor expansion
method into its general form, they also reduced the distribution constraint to minimum momentum
requirement.

In next section, we will give a theoretical justification of this observation and prove an upper
bound on its bias. As shown in Section 6, simulation results show that our estimator (3.6) has a clear
advantage over the plug-in estimator on bias reduction. Meanwhile, the simple expression of (3.5)
makes it easy to implement and the use of FT makes it fast to compute which is an advantage over
the computationally-intensive bootstrap approach (Koltchinskii and Zhilova, 2021a; Zhou and Li,
2021) which needs to re-sample the noise.

4. Bias reduction

We now provide a theoretical justification of our intuition explained in Section 3 by proving an upper
bound on the bias of the proposed estimator (3.6). As we shall see, when we choose the cut-off
radius R ≍

√
n as defined in the operator T in (3.5), the upper bound is of the order O(d · n(s∧2)/2).
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Unlike the previous works (Koltchinskii and Zhilova, 2021a; Zhou and Li, 2019, 2021; Collier et al.,
2017) in which the analysis relies heavily on the Gaussian assumption, Theorem 2 is established by
only requiring finite second moment of each coordinate of εj . This not only introduces new ideas in
the analysis but also opens the door for the estimator to a much wider range of applications since
Gaussian assumption is often inaccurate and limited in practice.

Theorem 2 Under model (1.1), suppose that the noise vector εj , j = 1, ..., n are i.i.d. copies of a
random vector ε satisfying Assumption 1-2. For any given f ∈ Fs

d(M), take R ≍
√
n in (3.5). Then

for some numerical constant C∗
1 , the estimator in (3.6) satisfies∣∣Eθ

[
g∗(X)

]
− f(θ)

∣∣ ≤ C∗
1Mσ2

(
d · n−1 ∨ d · n−s/2

)
. (4.1)

Remark 3 Bound (4.1) indicates the bias of g∗(X) is of the order O(d · n−(s∧2)/2) given σ,M are
fixed constants. Firstly, it differs from the bound on the bias O((d/n)s/2) for general functional
estimation without an additive structure (Koltchinskii and Zhilova, 2021a; Zhou and Li, 2019). The
additive structure does help to improve the rate on bias by decoupling the dependence between s and
d. Meanwhile, under Gaussian noise the bound on bias achieved by the previous methods (Zhou and
Li, 2021) in additive models is O(d · n−s/2) for all s > 1 uniformly. For the case s > 2, the new
estimator pays the price for universality by sacrificing some reduction on bias. In fact, one shall
achieve higher order bias-reduction if we assume higher finite moments of ε, say the bound would
be O(n−(3∧s)/2) if third moment is finite. This can be done by replacing (3.4) with higher order
approximations of eiζϵ̄ while the analysis is more complicated.

As shown in Section 6, compared with f(x̄), the new estimator is effective in bias reduction which
achieves optimal performance on MSE for large d while f(x̄) fails.

Proof [Proof of Theorem 2] Due to page limit, we outline the key steps of this proof. Detailed proofs
of ancillary lemmas are deferred to supplementary material. Given the additive structure of f , we
have ∣∣Eθ

[
g∗(X)

]
− f(θ)

∣∣ = ∣∣∣ d∑
i=1

(
Eθ

[
T (fi)

]
− fi(θi)

)∣∣∣ ≤ d∑
i=1

∣∣∣Eθi

[
T (fi)

]
− fi(θi)

∣∣∣. (4.2)

In the following, we will focus on bounding
∣∣Eθi

[
T (fi)

]
− fi(θi)

∣∣. When considering a single

component fi, we abuse the notation a little bit. We use ϵ(i)j or ϵj (xj), j = 1, ..., n to denote the i.i.d.
noise of θi and it shall not cause any ambiguity. Given the decomposition fi(θ) = fNi (θi) + f̃Ni (θi),
with fNi (θi) := (2π)−1/2

∫
ΩFfNi (ζ)eiζθidζ, we have∣∣Eθi

[
T (fi)

]
− fi(θi)

∣∣ ≤ ∣∣Eθi

[
T (fi)

]
− fNi (θi)

∣∣+ ∣∣f̃Ni (θi)
∣∣. (4.3)

Based on definition (3.5), we replace fNi by F−1[FfNi (ζ)] in the first term on the right hand side in
(4.3) and get

∣∣Eθi

[
T (fi)

]
− fNi (θi)

∣∣ = ∣∣∣ 1√
2π

∫
Ω

FfNi (ζ)E
[(

1 +

n∑
j=1

gζ,n(xj , x̄)
)
eiζϵ̄ − 1

]
eiζθidζ

∣∣∣ ≤ I + II + III
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with gj := gζ,n(xj , x̄), goj := gζ,n(ϵj , 0) and

I :=
1√
2π

∫
Ω

∣∣∣FfNi (ζ)
∣∣∣ · E∣∣∣(1 + n∑

j=1

gj

)
−

n∏
j=1

(
1 + goj

)∣∣∣dζ
II :=

1√
2π

∫
Ω

∣∣∣FfNi (ζ)
∣∣∣ · E∣∣∣ n∏

j=1

(
1 + goj

)
eiζϵ̄ −

n∏
j=1

(
1 +

iζϵj
n

)∣∣∣dζ
III :=

∣∣∣ 1√
2π

∫
Ω

FfNi (ζ) · E
[ n∏
j=1

(
1 +

iζϵj
n

)
− 1

]
eiζθidζ

∣∣∣.
Then, we will bound I, II and III respectively. Firstly, we bound the first term I through a comparison
between gζ,n(xj , x̄) and gζ,n(ϵj , 0). Observe that gζ,n(xj , x̄) can be written as gζ,n(ϵj , ϵ̄):

gζ,n(xj , x̄) =
(ζxj − ζx̄)2

2n2
=

(ζϵj − ζϵ̄)2

2n2
= gζ,n(ϵj , ϵ̄).

We use the following lemma which plays a key role in bounding the first term I.

Lemma 4 Given ϵj , j = 1, ..., n be i.i.d. copies of a random variable ϵ satisfying E[ϵ] = 0 and
E[ϵ2] = σ2. Then the following bound holds

E
∣∣∣(1 + n∑

j=1

gζ,n(xj , x̄)
)
−

n∏
j=1

(
1 + gζ,n(ϵj , 0)

)∣∣∣ ≤ 2ζ2σ2

n

(
1 ∨ ζ2σ2

n

)
. (4.4)

For the second term II, by a standard swapping argument we have

E
∣∣∣ n∏
j=1

(
1 + goj

)
eiζϵj/n −

n∏
j=1

(
1 +

iζϵj
n

)∣∣∣ ≤ n∑
j=1

(
E
∣∣1 + goj

∣∣)(j−1)+
E
[∣∣goj e iζϵj

n − iζϵj
n

∣∣](E∣∣∣1 + iζϵj
n

∣∣∣)(n−j)+
.

where x+ = max(0, x). We use the following lemma to handle the term E
[∣∣goj eiζϵj/n − iζϵj/n

∣∣].
Lemma 5 For any x ∈ R, the following bound holds∣∣(1 + x2/2)eix − (1 + ix)

∣∣ ≤ min{|x|2, |x|3}. (4.5)

Note that by Lemma 5, we replace x by ζϵj/n, it gives

E
[∣∣goj eiζϵj/n −

iζϵj
n

∣∣] ≤ E|ζϵj/n|2 ∧ E|ζϵj/n|3 ≤ ζ2σ2/n2. (4.6)

Similarly, by Lyapunov’s inequality

E
∣∣∣1 + iζϵj/n

∣∣∣ ≤ (
E
[∣∣1 + iζϵj/n

∣∣2])1/2
≤

√
1 + 1/n (4.7)

and
E
∣∣1 + goj

∣∣ ≤ 1 + ζ2σ2/2n2 ≤ 1 + 1/2n. (4.8)

Then (4.6), (4.7) and (4.8) implies that

E
∣∣∣ n∏
j=1

(
1 + goj

)
eiζϵj/n −

n∏
j=1

(
1 +

iζϵj
n

)∣∣∣ ≤ n · eζ
2σ2

n2
≤ eζ2σ2

n
. (4.9)
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For the third term III, due to independence and E[ϵj ] = 0, it naturally holds

E
[ n∏
j=1

(
1 +

iζϵj
n

)
− 1

]
=

[ n∏
j=1

E
(
1 +

iζϵj
n

)
− 1

]
= 0. (4.10)

Combining (4.4), (4.9) and (4.10), we get

∣∣Eθi

[
T (fi)

]
− fNi (θi)

∣∣ = ∣∣∣ 1√
2π

∫
Ω

FfNi (ζ)E
[(

1 +

n∑
j=1

gj

)
eiζϵ̄ − 1

]
eiζθidζ

∣∣∣
≲

1√
2π

∫
Ω

∣∣∣FfNi (ζ)
∣∣∣ · σ2ζ2

n
dζ

(4.11)

Here we consider two cases: 1. when 1 < s < 2, in this case, one can check that given |ζ| <
√
n

(4.11) implies for some numerical constant C2

∣∣Eθi

[
T (fi)

]
− fNi (θi)

∣∣ ≤ C2

∥∥fi∥∥s,∞,1

n
·
( |ζ|2−s

n(2−s)/2

)
≤ C2

∥∥fi∥∥s,∞,1

n
;

2. when s ≥ 2, in this case, one can check that similarly for some numerical constant C3∣∣Eθi

[
T (fi)

]
− fNi (θi)

∣∣ ≤ C3

∥∥fi∥∥s,∞,1
/n. (4.12)

On the other hand, as for the term f̃N (θi), this can be bounded by

∣∣f̃N (θi)
∣∣ ≤ 1√

2π

∫
R\Ω

∣∣∣Ffi(θi)∣∣∣ · |ζ|s
Rs

dζ ≤
∥∥fi∥∥s,∞,1 ·R

−s

As a consequence, combining the above analysis and (4.2), we get∣∣Eθ

[
g∗(X)

]
− f(θ)

∣∣ ≤ C∗(d/n ∨ dR−s),

which completes the proof of Theorem 2.

5. Asymptotic normality

In this section, we establish the asymptotic normality of the proposed estimator g∗(X). Especially,
we show that g∗(X) is normally distributed around the true parameter f(θ) as sample size n goes to
infinity. Such results are very meaningful in practice and provide theoretical guarantee when one
intends to build confidence intervals of the true parameter using the estimator. In the last section,
we showed that the bias of g∗(X) is well controlled. Aside from that, we still need to show that
the variance of g∗(X) is still well controlled. As there is the bias-variance trade-off phenomenon in
statistical learning theory, we want to make sure that the new estimator doesn’t simply sacrifice its
variance to reduce its bias. According to the well-known Cramér-Rao bound, σ2∥∇f(θ)∥2/n is the
best possible variance for any unbiased estimator of f(θ). In the following Theorem 6, we show that
the asymptotic variance of g∗(X) is indeed σ2∥∇f(θ)∥2/n. In other words, the new estimator does
not only achieve effective bias-reduction, it also achieves the best variance in asymptotic sense. This
further implies that the new estimator is asymptotically efficient.
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Theorem 6 Under model (1.1), suppose that the noise vector εj , j = 1, ..., n are i.i.d. copies of a
random vector ε satisfying Assumption 1-2. Let g∗(X) be the estimator defined in (3.6) by taking
R ≍

√
n. Assume that for a given f ∈ Fs

d(M) with s > 1, ∥∇f(θ)∥ ≍
√
d and d = nα, α ∈ (0, 1).

Then when s ≥ 2 √
n
(
g∗(X)− f(θ)

)
σ
∥∥∇f(θ)∥∥ ⇒ N (0, 1), as n→ ∞. (5.1)

where N (0, 1) is the standard normal distribution. Moreover, when 1 < s < 2, if s > 1 + α
√
n
(
g∗(X)− f(θ)

)
σ
∥∥∇f(θ)∥∥ ⇒ N (0, 1), as n→ ∞. (5.2)

Remark 7 Theorem 6 shows that aside from the benefit of bias reduction, the proposed estimator’s
variance is still reasonable. In fact, it shows that the asymptotic variance of the proposed estimator
is optimal. Meanwhile, Theorem 6 indicates that our estimator g∗(X) is asymptotically normally
distributed around the true parameter f(θ) with an asymptotic variance σ2∥∇f(θ)∥2/n. This
indicates the new estimator is asymptotically efficient and validates its effectiveness in bias-reduction.
On the other hand, when s ≥ 2, asymptotic normality holds for all dimensions without any smoothness
constraint. This is due to f ’s special additive structure and is different from the result for general
smooth function without any specific structure, see Koltchinskii and Zhilova (2021a); Zhou and Li
(2019, 2021). As Koltchinskii and Zhilova (2021a) recently discovered that the smoothness has to
be above certain dimension related threshold in order to achieve asymptotic normality. As for the
case 1 < s < 2, it still requires s > 1 + α which is also needed to achieve asymptotic normality for
additive models via other methods such as iterative bootstrap under Gaussian shift model. Currently,
we don’t know whether this requirement is essential or just a technical barrier.

Remark 8 Together with (4.1), Theorem 6 shows that when s ≥ 2

E
[
g∗(X)− f(θ)

]2
≲ σ2d/n. (5.3)

This is the optimal rate on estimation of f(θ) with additive structure for sufficiently smooth f and
non-sparse θ. As we shall see in Section 6, thanks to its effective bias reduction, our estimator’s
performance aligns well with this rate while f(x̄)’s derails when d becomes large.

Proof [Proof of Theorem 6.] Due to page limit, we outline the key steps of this proof. Detailed
proofs of the key lemmas are deferred to supplementary material. By the definition of (3.6), we have
the following decomposition

g∗(X)− f(θ) =

d∑
i=1

(
T (fi)− fNi (θi)− f̃Ni (θi)

)
.

Recall that from the proof of Theorem 2 we showed

g∗(X)− f(θ) =

d∑
i=1

(
1√
2π

∫
Ω

FfNi (ζ) ·
( n∏

j=1

(
1 +

iζϵ
(i)
j

n

)
− 1

)
eiζθidζ + R̃ (5.4)

where R̃ denotes the remainder and ϵ(i)j denotes the i-th coordinate of εj .
The first step is to show that under the condition of Theorem 6,

√
nR̃/σ∥∇f(θ)∥ converges to 0

in probability. It follows directly from Theorem 2 and we state it in the following lemma.

10
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Lemma 9 Under the condition of Theorem 6, if 1. s ≥ 2 or 2. 1 < s < 2 and s > 1 + α, then
√
n · R̃

σ
∥∥∇f(θ)

∥∥ p−→ 0. (5.5)

The rest will be dealing with the first term in (5.4). We expand the product inside the integral as

n∏
j=1

(
1 + iζϵj/n

)
= 1 + S1(ζ) + · · ·+ Sn(ζ) (5.6)

with Su(ζ) =
∑

{j1,...,ju}⊂[n]

∏
1≤j1 ̸=···̸=ju≤n(iζϵjk/n). Therefore,

d∑
i=1

(
1√
2π

∫
Ω

FfNi (ζ) ·
( n∏

j=1

(
1 +

iζϵ
(i)
j

n

)
− 1

)
eiζθidζ

=

d∑
i=1

1√
2π

∫
Ω

FfNi (ζ)
(
S1(ζ) + · · ·+ Sn(ζ)

)
eiζθidζ.

(5.7)

The next major step is to show that the term associated with S1(ζ) in (5.7) scaled by σ
∥∥∇f(θ)∥∥/√n

converges in distribution to the standard normal N (0, 1). We claim it as the following lemma.

Lemma 10 Under the condition of Theorem 6, we have when n→ ∞
√
n ·

(∑d
i=1

1√
2π

∫
Ω
FfNi (ζ) · S1(ζ) · eiζθidζ

)
σ
∥∥∇f(θ)

∥∥ ⇒ N (0, 1). (5.8)

The final step is to show that the sum of remaining terms (5.7) except for S1(ζ) scaled by
σ
∥∥∇f(θ)∥∥/√n converges in probability to 0 under the condition of Theorem 6. This is done by the

key observation that Sk k ≥ 2 are completely degenerate U-statistic of order k. We claim this result
in the following lemma.

Lemma 11 Under the condition of Theorem 6, suppose that 1. if s ≥ 2 or 2. if 1 < s < 2 and
s > 1 + α. Then as n→ ∞

√
n ·

(∑d
i=1

1√
2π

∫
Ω
FfNi (ζ)

∑n
k=2 Sk(ζ)e

iζθidζ
)

σ
∥∥∇f(θ)

∥∥ p−→ 0. (5.9)

Combine the results of (5.5), (5.8) and (5.9), by Slutsky’s Theorem we get
√
n ·

(
g∗(X)− f(θ)

)
σ
∥∥∇f(θ)

∥∥ ⇒ N (0, 1), as n → ∞, (5.10)

which completes the proof of Theorem 6.
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6. Numerical simulation

We present numerical simulation results of our estimator (3.6) (denoted as Adaptive) and compare it
with plug-in estimator f(x̄) (denoted as Plug-in) and the estimator (3.1) introduced for Gaussian case
(denoted as EXP). The difference between Adaptive and EXP is that the latter replaces gζ,n(xj , x̄)
by the exponential term eζ

2σ2
. Note that to implement EXP, one has to know the underlying variance

σ2 of noise, while Adaptive doesn’t need that. This automatically makes our estimator adaptive
and data-driven. The unknown parameters θ ∈ Rd are randomly generated that θi is uniformly
distributed over [0.4, 0.6]. We set σ = 1 and n = 103. For the dimension factor, we set d = nα

and α ranges from 0.5 to 0.95 with an incremental size 0.05. The noise ε we use is an isotropic
random vector satisfying multivariate Student’s t-distribution with degree of freedom ν = 3, 4. Note
that when ν = 4, the forth moment does not exist respectively. The additive function we use has a
homogeneous Hölder smoothness structure: f(θ) :=

∑d
i=1 h(θi) =

∑d
i=1 θ

s
i . More experiments are

in the supplement.
Firstly, we compare the performance of Adaptive, EXP and Plug-in on bias-reduction, variance

and MSE with h(θ) of two different smoothness. We simulated the bias, variance and MSE from
1000 independent runs.The simulation results are presented in the first and the second row of Figure 1.
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Figure 1: Comparison on bias, variance, and MSE.
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As we can see, both EXP and Adaptive have clear bias-reduction compared with Plug-in. The black
dash line is the upper bound we show in Theorem 2. The simulation results validate Theorem 2.
Meanwhile, the similar performance of EXP and Adaptive on bias reduction also verifies that our
idea of using gζ,n as an approximation of the exponential term is very effective. As for the variance
comparison, we plot σ2∥f(θ)∥2/n as black dash lines. It is supposed to be the optimal variance.
Plug-in and Adaptive almost have the same variance that matches the black dash lines while EXP’s
is bigger in the case h(θ) = θ4.75. This validates our Theorem 6 which shows that our estimator has
the optimal asymptotic variance. Given this and its advantages over Plug-in on bias reduction, it
shows Adaptive is superior. This is further reflected in the comparisons of MSE which show that
when the dimension d is large, Adaptive has very obvious reduction in MSE thanks to its small bias.
The black dash lines in MSE comparisons are of the order O(d/n) which is the optimal rate. As
we can see, Plug-in is far from optimal while our estimator Adaptive matches it well. In terms of
comparison with EXP, the advantage of Adaptive is evident: 1. the first two figures in the middle
column shows that EXP’s variance can be unstable when s is larger for heavy-tailed noise, while
Adaptive’s performance is consistent; 2. To implement Adaptive, we don’t need to know the variance
of the noise. Moreover, there is no theoretical guarantee for EXP when it applies to heavy-tailed
noise, while we provide it with Adaptive, which is a major contribution of this work.

7. Conclusion

We proposed a new estimator to study the estimation of f(θ) =
∑d

i=1 fi(θi) based on noisy
observations of θ when f is a given smooth additive function and d is large. Our major contribution
is that we not only introduced a new estimator that can be efficiently computed and has good
performance in practice, but also introduced new analysis to provide theoretical justification of
its performance in a distribution free setting under minimum moment constraint of noise whereas
previous methods are either under a specific noise distribution or computationally intensive.

As we have mentioned in Remark 3.1 and 4.2, the current approach is based on the second order
Taylor expansion of eiζϵ̄. This is due to only the second moment of noise are assumed. When higher
moments of noise exist, one can seek to achieve better bias reduction by approximation of higher
order terms in expansion of eiζϵ̄ as what we did using

∑n
j=1 gζ,n(xj , x̄). In short, our method can be

easily generalized to a moment adaptive approach to achieve sharp bias correction for such problems.
However, theoretical analysis of such generalization can be more complicated and beyond the scope.
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8. Proofs of Key Lemmas in the Main Paper

8.1. Proof of Lemma 4

Proof [Proof of Lemma 4.] According to our definition in (3.4), we have

n∏
j=1

(
1 + gζ,n(ϵj , 0)

)
= 1 +

n∑
j=1

gζ,n(ϵj , 0) + R̃1, (8.1)

where we use R̃1 to denote the remainder. Then we can write the left hand side of (4.4) as

E
∣∣∣(1 + n∑

j=1

gζ,n(xj , x̄)
)
−

n∏
j=1

(
1 + gζ,n(ϵj , 0)

)∣∣∣
≤ E

∣∣∣ n∑
j=1

(gζ,n(ϵj , ϵ̄)− gζ,n(ϵj , 0)
∣∣∣+ ER̃1.

(8.2)

To bound the first term on the right hand side of (8.2), we have

E
∣∣∣ n∑
j=1

(gζ,n(ϵj , ϵ̄)− gζ,n(ϵj , 0)
∣∣∣ = E

∣∣∣ n∑
j=1

((ζϵj)2
2n2

− (ζϵj − ζϵ̄)2

2n2

)∣∣∣
= E

[(ζϵ̄)2
n

]
=
ζ2σ2

n2
.

(8.3)

Next, we bound the second term on the right hand side of (8.2). Observe that

R̃1 :=
∑
j1 ̸=j2

gζ,n(ϵj1 , 0)gζ,n(ϵj2 , 0) + · · ·+ gζ,n(ϵ1, 0)gζ,n(ϵ2, 0) · · · gζ,n(ϵn, 0).

Due to independence and under the condition σ2R2 < n, we have

ER̃1 =
n∑

k=2

(
n

k

)(
E
[
gζ,n(ϵk, 0)

])k
≤

n∑
k=2

(
n

k

)(ζ2σ2
2n2

)k
≤

n∑
k=2

1

k!

(ζ2σ2
2n

)k
≤ ζ4σ4

4n2
(8.4)

8.2. Proof of Lemma 5

Proof [Proof of Lemma 5] Integrating by parts gives∫ x

0
(x− s)neisds =

xn+1

n+ 1
+

i

n+ 1

∫ x

0
(x− s)n+1eisds. (8.5)

Set n = 0, we have ∫ x

0
eisds = x+ i

∫ x

0
(x− s)neisds. (8.6)
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By rearranging the terms, we get

eix = 1 + ix+ i2
∫ x

0
(x− s)eisds. (8.7)

Now, one can check that

(1 + x2/2)eix − (1 + ix) = x2eix/2 + i2
∫ x

0
(x− s)eisds

=

∫ x

0
i
(
x(x− u)− (x− u)2

2

)
ei(x−u)du.

(8.8)

When |x| ≤ 1, (8.8) implies that

(1 + x2/2)eix − (1 + ix) ≤ |x|3. (8.9)

On the other hand, when |x| > 1, integration by parts gives∣∣(1 + x2/2)eix − (1 + ix)
∣∣ = ∣∣ ∫ x

0
i
(
x(x− u)− (x− u)2

2

)
ei(x−u)du

∣∣
=

∣∣i(x2 − x2

2

)
eix +

∫ x

0
i
(
x− (x− u)

)
ei(x−u)du

∣∣
≤ 2 · |x|2/2 ≤ |x|2.

(8.10)

Combine (8.9) and (8.10), this completes the proof of Lemma 5.

8.3. Proof of Lemma 9

Proof [Proof of Lemma 9.] By Theorem 2, we have

E
∣∣∣ √

n · R̃
σ
∥∥∇f(θ)∥∥

∣∣∣ ≲ 1

∥∇f(θ)∥
·
( d√

n

∨ d
√
n

Rs

)
. (8.11)

Apparently, under condition d = nα, α ∈ (0, 1) and R ≍
√
n and ∥∇f(θ)∥ ≍

√
d, we have case 1:

if s ≥ 2:

E
∣∣∣ √

n · R̃
σ
∥∥∇f(θ)∥∥

∣∣∣ ≲ √
d

n
→ 0, as n→ ∞; (8.12)

or case 2: if 1 < s < 2 and s > 1 + α:

E
∣∣∣ √

n · R̃
σ
∥∥∇f(θ)∥∥

∣∣∣ ≲ √
d

n(s−1)/2
→ 0, as n→ ∞. (8.13)

(8.12) and (8.13) imply that under the condition of Theorem 6 and by Lemma 2.2.2 in Durrett (2019),
√
n · R̃

σ
∥∥∇f(θ)∥∥ p−→ 0. (8.14)
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8.4. Proof of Lemma 10

Proof [Proof of Lemma 10.] Note that for the term associated with S1(ζ), we have

d∑
i=1

1√
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∫
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FfNi (ζ) · S1(ζ) · eiζθidζ =
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∫
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(
iζϵ

(i)
j /n

)
eiζθidζ

(8.15)

and for each fixed i and j, a single term on the right hand side is a zero mean random variable with
the following variance

1

2π

∫
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∫
Ω
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2ζ1ζ2
n2

dζ1dζ2

=
1

2π

∫
Ω

∫
Ω
FfNi (ζ1)FfNi (ζ2)e
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(fNi )′(θi)

)2
.

(8.16)

As a consequence, (8.15) is a sum of n i.i.d. random variables with variance σ2n−1
∥∥∇fN (θ)

∥∥2. By
standard Central Limit Theorem,

√
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i=1

1√
2π

∫
ΩFfNi (ζ) · S1(ζ) · eiζθidζ
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σ
∥∥∇fN (θ)

∥∥ ⇒ N (0, 1). (8.17)

Next, we still need to replace the variance σ2n−1
∥∥∇fN (θ)

∥∥2 by σ2n−1
∥∥∇f(θ)∥∥2. We use the

following lemma.

Lemma 12 For a given f ∈ Fs
d(M), we denote by fN (θ) :=

∑d
i=1 f

N
i (θi). Then we have∣∣σn−1/2
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Observe that
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(8.19)

According to Lemma 12, under the condition of Theorem 6 we have
∥∥∇fN (θ)

∥∥/∥∥∇f(θ)∥∥ → 0 as
n→ ∞ . Together with (8.17), we have
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8.5. Proof of Lemma 12

Proof [Proof of Lemma 12.] By triangle inequality,∣∣σn−1/2
∥∥∇fN (θ)

∥∥− σn−1/2
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By the analysis in (8.16),
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8.6. Proof of Lemma 11

Proof [Proof of Lemma 11.] As for the case u ≥ 2 for a fixed i,

E
∣∣∣ 1√

2π

∫
Ω
FfNi (ζ)

n∑
u=2

Su(ζ)e
iζθidζ

∣∣∣ ≤ 1√
2π

∫
Ω

∣∣∣FfNi (ζ)
∣∣∣E∣∣∣ n∑

u=2

Su(ζ)
∣∣∣dζ

≤ 1√
2π

∫
Ω

∣∣∣FfNi (ζ)
∣∣∣
√√√√E

∣∣∣ n∑
u=2

Su(ζ)
∣∣∣2dζ =

1√
2π

∫
Ω

∣∣∣FfNi (ζ)
∣∣∣
√√√√ n∑

u=2

E
∣∣Su(ζ)∣∣2dζ

≲
1√
2π

∫
Ω

∣∣∣FfNi (ζ)
∣∣∣ ·

√√√√ n∑
u=2

(σ2ζ2)u

nuu!
dζ ≤ 1√

2π

∫
Ω

∣∣∣FfNi (ζ)
∣∣∣ · σ2ζ2

n
dζ

≲ 2σ2
∥∥fi∥∥s,∞,1

· n−(2∧s)/2.

(8.23)

The second line is due to Jensen’s inequality; the third inequality is due to the fact that Su are
completely degenerate U -statistics of order u, orthogonal to each other, and with variance

E
[
|Su(ζ)|2
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(
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u

)(
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[
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])u ≤
(
E
[
|ζϵ1/n1/2|2

])u
/u! = (σ2ζ2/n)u/u!, (8.24)

and ζ2/n ≤ 1. As a result, we get
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One can check that for s ≥ 2, and ∥∇f(θ)∥ ≍
√
d, d = nα with α ∈ (0, 1) when n→ ∞,
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When 1 < s < 2, and ∥∇f(θ)∥ ≍
√
d, d = nα with α ∈ (0, 1), and s > 1 + α
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Both (8.26) and (8.27) imply that under the condition of Theorem 6,∑d
i=1

1√
2π

∫
ΩFfNi (ζ)

∑n
k=2 Sk(ζ)e

iζθidζ
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Appendix A. Additional Experiments and More Discussion

A.1. Analytical approximation of f(θ)

In this section, we compare how well f : R → R can be approximated by the Fourier analytical
approximations developed in Zhou and Li (2019) and in this paper through MATLAB FFT imple-
mentations. By doing this, on one hand, we would like to give the readers a concrete understanding
of the approximation analysis we did in Section 3 and Section 4; and on the other, we show how this
can be related to the choice of the tuning parameter R appeared in our estimator. We denote by f(θ)
as a single component function in the additive model (1.2) and

g(θ) :=
1√
2π

∫
Ω
Ff(ζ)eσ2ζ2/2neiθζdζ; h(θ) :=

1√
2π

∫
Ω
Ff(ζ)

(
1 +

n∑
j=1

gζ,n(xj , x̄)
)
eiζθdζ,

Here Ω := {ζ ∈ R : |ζ| ≤ R}. g(θ) is exactly the estimator used in Zhou and Li (2019) for
one-dimensional case while h(θ) is the implementation of T (fi) as in (3.5). In other words, g(θ)
and f(θ) are the analytic approximations of f(θ).

We compare g(θ) and h(θ) with f(θ) in Figure 2 using different R and different range of θ. The
true function f(θ) is plotted as the red curve and g(θ) as black and h(θ) as blue. As we can see, both
approximations work well in the middle of the range of θ. In the first row of Figure 2, we used the
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Figure 2: Analytical approximation of f(θ) with different R
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range θ ∈ [0, 1], and both approximations work the best around 0.5. In the second row, we used the
range of θ ∈ [0, 2], and they work the best around 1. This gives us an important practical instruction
when implementing such estimators, to get the best performance, one needs to figure out a proper
range of θ to implement such analytical approximations first. For instance, if θ is close to 1, clearly
using range [0, 1] will give poor results as these approximations itself are far from accurate. Although
such phenomena are due to numerical implementations and not reflected in the analysis.

Another key observation of Figure 2 is that when R is relatively small, the approximation using
the exponential function as in g(θ) is very similar to that of using the quadratic terms as in h(θ)
(our estimator). One can hardly notice the difference between them in the first column of Figure 2.
As R increases, one can see the clear difference between g(θ) and h(θ) near the boundary of the
range. However, as the part of the approximation we use is in the middle, the difference reflected
in the estimators’ performance is minor as we have already seen in Figure 1. This validates the
effectiveness of our approximation by replacing the exponential term using gζ,n.

A.2. Choice of the constant matters

As we briefly mentioned in the main paper that our theory suggests the truncation radius R = c∗
√
n

and the choice of the constant c∗ matters. In this section, we show numerical evidence of this. In
Figure 3, we present the performance of our estimator with different choices of c∗ under various

32 64 128 256 512 710

Dimension (d)

10
-2

10
-1

10
0

10
1

|B
ia

s
|

h( ) = 
3.5

, R = 2.0 * n
1/2

  [0.95, 1.05], Bias              

EXP

Plug-in

Adaptive

1.0*d/n

32 64 128 256 512 710

Dimension (d)

10
0

V
a

ri
a

n
c
e

h( ) = 
3.5

, R = 2.0 * n
1/2

  [0.95, 1.05], Var

EXP

Plug-in

Adaptive

C*d/n

32 64 128 256 512 710

Dimension (d)

10
0

10
1

M
S

E

h( ) = 
3.5

, R = 2.0 * n
1/2

  [0.95, 1.05], MSE

EXP

Plug-in

Adaptive

C*d/n

32 64 128 256 512 710

Dimension (d)

10
-1

10
0

|B
ia

s
|

h( ) = 
3.5

, R = 1.5 * n
1/2

  [0.95, 1.05], Bias

EXP

Plug-in

Adaptive

1.0*d/n

32 64 128 256 512 710

Dimension (d)

10
0

V
a

ri
a

n
c
e

h( ) = 
3.5

, R = 1.5 * n
1/2

  [0.95, 1.05], Var

EXP

Plug-in

Adaptive

C*d/n

32 64 128 256 512 710

Dimension (d)

10
0

10
1

M
S

E

h( ) = 
3.5

, R = 1.5 * n
1/2

  [0.95, 1.05], MSE

EXP

Plug-in

Adaptive

C*d/n

64 128 256 512 710

Dimension (d)

10
-2

10
-1

10
0

|B
ia

s
|

h( ) = 
3.5

, R = 1.5 * n
1/2

  [0.4, 0.6], Bias

EXP

Plug-in

Adaptive

0.5*d/n

64 128 256 512 710

Dimension (d)

10
-1

V
a

ri
a

n
c
e

h( ) = 
3.5

, R = 1.5 * n
1/2

  [0.4, 0.6], Var

EXP

Plug-in

Adaptive

C*d/n

64 128 256 512 710

Dimension (d)

10
-1

10
0

M
S

E

h( ) = 
3.5

, R = 1.5 * n
1/2

  [0.4, 0.6], MSE

EXP

Plug-in

Adaptive

C*d/n

Figure 3: Different choices of R lead to different performance
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settings. The difference between the first row and the second row in Figure 3 is that we use c∗ = 2.0
in the first and c∗ = 1.5 in the second, and we keep everything else the same. As we can see,
c∗ = 1.5 in the second row leads to smaller variance but larger bias compared with the first row
with c∗ = 2.0. As we have explained in Section 6, the black dash line in variance comparison shall
be the optimal asymptotic variance and it matches that of Plug-in. Although both give the same
and optimal performance on MSE, clearly R = 2

√
n shall be a better choice. However, when we

change the range of θ to [0.4, 0.6] as shown in the third row, one can see R = 1.5
√
n leads to quite

different performance compared with that of when θ ∈ [0.95, 1.05] with R = 1.5
√
n. This time the

variance of both EXP and Adaptive matches that of Plug-in. It behaves similarly to the case when
θ ∈ [0.95, 1.05] with R = 2

√
n. Clearly, the choice of c∗ matters with different θ. Currently, we

don’t know whether there is an optimal choice of c∗ for each setting or not. If yes, a data driven
procedure to determine this constant can be meaningful.

A.3. Experiments with heavy-tailed distribution
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Figure 4: Experiments with different distributions of noise

As we have already shown in Section 6, our estimator works well with Student’s t-distribution
with 4-degrees of freedom. It is well-known that such distributions only have finite third moment. In
this section, we explore more different noise distributions to test our estimator. In Figure 4, we test
our estimator with Student’s t-distribution with 3-degrees of freedom. In this case, the noise has only
finite second moment. As we can see, in the first row of Figure 4, our estimator still works well and
its performance aligns with our theory. In fact, in the second row of Figure 4, we change to Gaussian
noise and keep everything else the same. The performance of our estimator under Gaussian noise is
similar to that in the first row. This validates the distribution-free feature of our estimator. One should
notice that under Gaussian noise, EXP typically has better performance compared with Adaptive. In
Figure 4, the performances are similar due to the fact that we used the same truncation parameter R
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for both and the best choice of R for EXP is not necessarily the best choice for Adaptive. In general,
one can tune this R to make EXP achieve its best performance. But according to our experience, the
difference is not that big.

A.4. Bias reduction leads to better confidence intervals

Table 1: Classification accuracies for naive Bayes and flexible Bayes on various data sets.

α d f(θ) f(x̄) g∗(X)

0.50 100 9.4025 [9.4179, 9.4261] [9.3999,9.4086]

0.55 158 14.3505 [14.611, 14.622] [14.345,14.355]

0.60 251 46.363 [46.588, 46.616] [46.348,46.376]

0.65 398 36.2775 [36.326, 36.341] [36.271,36.287]

0.70 631 57.2348 [57.319, 57.340] [57.235,57.257]

0.75 1000 89.5941 [89.735, 89.760] [89.593,89.619]

0.80 1585 141.3395 [141.54, 141.57] [141.33,141.42]

In the main paper, we proved two major theorems: Theorem 2 says our estimator is universally
effective in bias reduction when, and Theorem 6 says our estimator as a random variable is normally
distributed around the true parameter when n is large. A direct application of such results is that we
can use our estimators to build confidence intervals of the true parameter. In this section, we compare
the 95%-confidence interval built by our estimator Adaptive and that of Plug-in. The data is shown
in Table 1. The noise we use is generated by Student’s t-distribution with 4-degrees of freedom.
The confidence interval is based on 104 i.i.d. copies of g∗(X) by fitting a normal distribution using
MATLAB. As we can see, confidence intervals based on our estimator are accurate and always
better than the ones built based on Plug-in at all levels of dimension. As one can see, the true
parameters always fall outside the ones built based on Plug-in estimators which makes the proposed
estimator meaningful.
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