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Abstract

Multiview Self-Supervised Learning (MSSL) is
based on learning invariances with respect to a set
of input transformations. However, invariance par-
tially or totally removes transformation-related in-
formation from the representations, which might
harm performance for specific downstream tasks
that require such information. We propose 2D
strUctured and approximately EquivarianT rep-
resentations (coined DUET), which are 2d rep-
resentations organized in a matrix structure, and
equivariant with respect to transformations acting
on the input data. DUET representations main-
tain information about an input transformation,
while remaining semantically expressive. Com-
pared to SimCLR (Chen et al., 2020) (unstruc-
tured and invariant) and ESSL (Dangovski et al.,
2022) (unstructured and equivariant), the struc-
tured and equivariant nature of DUET representa-
tions enables controlled generation with lower re-
construction error, while controllability is not pos-
sible with SimCLR or ESSL. DUET also achieves
higher accuracy for several discriminative tasks,
and improves transfer learning.

1. Introduction
The field of representation learning has evolved at a rapid
pace in recent years, partially due to the popularity of
Multiview Self-Supervised Learning (MSSL) (Chen et al.,
2020; He et al., 2019; Caron et al., 2020; Grill et al., 2020;
Zbontar et al., 2021). The main idea of MSSL is to learn
transformation-invariant representations by comparing data
views that underwent different transformations. If the trans-
formations alter only task-irrelevant information, and if rep-
resentations of multiple views are similar, then those rep-
resentations should only contain task-relevant information.
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Figure 1. DUET. The backbone f yields a 2d representation for
each transformed image f(τg(x)) (e.g., τg is a rotation by g de-
grees). The group marginal is obtained as the softmax (sm) of the
sum of the rows, and is compared to the prescribed target (red)
with our group loss LG. The content is obtained by summing
the columns, and contrasted (LC) with the other view through a
projection head h. The final representation for downstream tasks
is the 2d one, which has been optimized through its marginals.

However, one can always find a downstream task for which
the chosen transformations are relevant. For example, MSSL
representations which learn to be color invariant are likely
to fail at predicting fruit ripeness where color information is
required (Tian et al., 2020), or at the tasks of generation or
segmentatation (Kim et al., 2021).

One way to maintain information in the representations is
by preserving all possible information from the input, as
pursued by InfoMax (Linsker, 1988) frameworks. However,
it has been shown empirically and theoretically that for tasks
like classification, invariance to nuisance information allows
for greater data efficiency and downstream performance
(Laptev et al., 2016; Tschannen et al., 2019). In an attempt to
simultaneously satisfy the demands of information-rich rep-
resentations (allowing for generalization to different tasks)
and complex invariances (allowing for powerful discrimina-
tive representations), modern machine learning research has
pursued the concept of structured representations. Colloqui-
ally, a representation can be considered structured with re-
spect to a set of transformations if firstly, the transformation
between two inputs can be easily recovered by comparing
their representations, and secondly, there is a known method
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for recovering the representation which is correspondingly
invariant to the transformation set. An example of structured
representations are convolutional feature maps, which allow
for the spatial position (the translation element) to be easily
extracted, while similarly allowing for global translation
invariance through spatial pooling. Given the success of
structured representations, significant work has gone into
expanding the range of transformations for which a struc-
tured representation can be recovered, for example, rotation,
scaling, and other algabraic group symmetries (Cohen &
Welling, 2016; Sosnovik et al., 2020; MacDonald et al.,
2022; Jiao & Henriques, 2021; Cotogni & Cusano, 2022).

In the context of MSSL, equivariance has also been success-
fully used to improve distributional robustness (Dangovski
et al., 2022; Lee et al., 2021; Keller et al., 2022). However,
to date, this equivariance has largely been encouraged at
an informational level rather than a structural level, making
the careful disassociation of the equivariant and invariant
aspects of the representation challenging or impossible. For
example, ESSL (Dangovski et al., 2022) and AugSelf (Lee
et al., 2021) make representations sensitive to a transfor-
mation by regressing the transformation parameter, making
their representations theoretically equivariant, but not in-
terpretably structured, as there is no explicit form of the
transformation at representation level. Such a lack of struc-
ture makes computing invariances or controlled generation
from such representations significantly more challenging.

In this work, we present DUET, a method to learn struc-
tured and equivariant representations with MSSL. Instead of
learning 1-dimensional representations as in SimCLR (Chen
et al., 2020) or ESSL, DUET representations are reshaped
to 2d (see Figure 1). This allows for a richer optimization
through their row- and column-wise marginals, which are
respectively related to the group element (the transformation
parameter, e.g., rotation angle) and content (all the infor-
mation that is invariant to the transformation actions). In
summary, our main contributions are :

• We introduce DUET, a method to incorporate inter-
pretable structure in MSSL representations for both
finite and infinite groups with negligible computational
overhead1. Our approach also performs well for param-
eterized transformations that do not satisfy all algebraic
group axioms (Serre, 1977), making it widely applica-
ble to most transformations used in MSSL.

• We show empirically that DUET representations be-
come approximately equivariant as a by-product of
their predictiveness of a transformation parameter. Im-
portantly, we prescribe an explicit form of transforma-
tion at representation level that enables controllable
generation, not achievable with ESSL or SimCLR.

1Code available at https://github.com/apple/ml-duet

• We shed some light on why certain symmetries (e.g.,
horizontal flips, color transformations) are harder to
learn from typical computer vision datasets, due to
inherent ambiguity in the data with respect to a trans-
formation. For example, cars appear in both left and
right directions, hence making it difficult to define what
a non-flipped car is.

• We provide extensive experiments on several datasets,
comparing with SimCLR and ESSL. We show that
DUET representations are suitable for discriminative
tasks, transfer learning and controllable generation.

2. Related Work
Structured and Equivariant Representations. In the un-
supervised learning domain, existing works like (Stühmer
et al., 2020) have extensively explored structured latent
priors for the Variational Autoencoder (VAE) (Kingma &
Welling, 2014), while the recent Topographic VAE (Keller &
Welling, 2021) aims to induce topographic organization of
the observed set of transformations. The idea of structured
representations has also been connected to unsupervised
learning of disentangled representations (Higgins et al.,
2017; Kumar et al., 2018). Another closely related line of
work focuses on learning equivariance (Cohen & Welling,
2016; Sosnovik et al., 2020; MacDonald et al., 2022; Jiao
& Henriques, 2021; Cotogni & Cusano, 2022) as a more
general form of structured representations. For example,
(Sosnovik et al., 2020) propose to use a basis of transformed
filters to learn equivariant features, which generally leads to
improved model robustness and data efficiency. NPTN (Pal
& Savvides, 2018) follows on (Sosnovik et al., 2020) and
proposes to use a completely learnt basis of filters, learning
unsupervised invariances.

Structure in MSSL. Modern MSSL is based on discard-
ing task-irrelevant information via image augmentations.
Contrastive and non-contrastive approaches achieve this re-
spectively by comparing augmented views of different data
(Chen et al., 2020; He et al., 2019; Caron et al., 2020), or
by only comparing views from the same datum (Grill et al.,
2020; Zbontar et al., 2021). Several authors have explored
the comparison of spatially structured representations (Bach-
man et al., 2019) (exploiting the InfoMax principle (Linsker,
1988)) or using variants of the NCE (Gutmann & Hyvärinen,
2010) loss (Löwe et al., 2019; Oord et al., 2018; Hjelm et al.,
2019). Some works have studied the impact objectives have
on the distributions of representations (Wang & Isola, 2020),
and how these representations may be identifiable with the
latent factors of the data generative process (Zimmermann
et al., 2021). Recent works have tackled the preservation
of information in MSSL representations. ESSL (Dangovski
et al., 2022) supplements SimCLR (Chen et al., 2020) by
predicting the parameter of a transformation of choice, and
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Table 1. Transformations considered with their associated parame-
ters. Column g shows the corresponding parameters for the group-
marginal definition in DUET, and Target shows the recommended
target distribution. Note that flips are mapped to { 1

4
, 3
4
}, turning

them into cyclic groups.

Transform. Finite Parameter g Target

Rot. (4-fold)
√

{0, 90, 180, 270} { 1
8
, 3
8
, 5
8
, 7
8
} vM

Rot. (360) [−180, 180] [0, 1] vM
H. Flip

√
{0, 1} { 1

4
, 3
4
} vM

V. Flip
√

{0, 1} { 1
4
, 3
4
} vM

Grayscale
√

{0, 1} {0, 1} N
Brightness [0.6, 1.4] [0, 1] N
Contrast [0.6, 1.4] [0, 1] N
Saturation [0.6, 1.4] [0, 1] N
Hue [−0.1, 0.1] [0, 1] N
RRC [0.2W,W ] [0, 1] N

obtaining theoretically equivariant representations. Simi-
larly, although not focused on equivariance, AugSelf (Lee
et al., 2021) predicts the difference in transformation pa-
rameters between two views. PCL (Li et al., 2020) adds
a reconstruction loss to preserve information about the in-
put. Concurrent work (Huang et al., 2023) disentangles the
feature space with masks learned via augmentations.

3. Preliminary Considerations
3.1. Groups and Equivariance

Let f : X 7→ Z be a mapping from data to representations.
Such mapping is equivariant to the algebraic group G =
(G, ·) if there exists an input transformation τ : G×X 7→ X
(noted τg(x)) and a representation transformation T : G×
Z 7→ Z (noted Tg(z)) so that

Tg(f(x)) = f(τg(x)), ∀g ∈ G, ∀x ∈ X. (1)

If τg and Tg form algebraic groups in the input and repre-
sentation spaces respectively, then the mapping f preserves
the structure of the input group in the representation space
(homomorphism). Recall that for (G, ·) to form a group, the
properties of closure, associativity, and existence of neutral
and inverse elements must be satisfied (Serre, 1977). Here
we consider both finite and infinite groups.

3.2. On MSSL Input Transformations

In MSSL, τg is defined by a parameterized transformation
applied to the input. For example, rotation is parameterized
by a real angle (g ∈ R, infinite group). If g ∈ [0, 2π] then
it forms a cyclic group. One can also use discrete rotations
which form a finite group where g ∈ {0◦, 90◦, 180◦, 270◦}.
However, not all input transformations form a group. For ex-

ample, a change in image contrast moves some pixel values
out of range, thus clipping is applied which invalidates the
associativity property (e.g., τ2.0(τ0.5(x)) ̸= τ0.5(τ2.0(x))).
We also include RandomResizedCrop (RRC) in our study
using the relative cropped width W as a proxy for scale (as-
suming loss of information about location and aspect ratio).
All transformation parameters are mapped in [0, 1] by min-
max normalization as shown in Table 1. Although some
transformations do not form a group (e.g., RRC, color trans-
formations), the concept of equivariance is often relaxed to
embrace transformations which do not form groups. Note
that this assumption does not invalidate our methodology
for exact groups, and helps understand how our method is
suitable for non-exact groups.

4. DUET Representations
In this section we describe how we can use DUET to learn
representations that are structured with respect to an alge-
braic group G = (G, ·). The overall DUET architecture is
shown in Figure 1. A training input image x is transformed
twice by sampling 2 group actions from the same group
g1, g2 ∈ G (e.g., two angles of rotation). We obtain the trans-
formed images xk = τgk(x) with k = 1, 2. Let f be a deep
neural network backbone such that zk = f(xk) ∈ RC×G,
where C and G are the number of rows and columns in the
representation, as shown in Figure 1. This 2-dimensional
representation zk models the joint (discretized and unnor-
malized) distribution P (c, g|xk) where c ∈ RC and g ∈ G
are two random variables defined in the content and group el-
ement domains. Our joint interpretation allows to marginal-
ize P (c|xk) by summing the columns of zk, and P (g|xk)
by summing the rows. Rather than imposing a certain
dependence (or independence) structure between c and g,
(conditioned on xk), we only impose our objectives on the
marginals P (c|xk) and P (g|xk) and let the model learn
such dependencies from the data. Note that a final Batch
Normalization (BN) (Ioffe & Szegedy, 2015) layer in f will
make the mean of zk to be approximately β (bias term in
BN). This is important for equivariance as shown in Sec-
tion 4.5. Although we focus on a single group, DUET’s
formulation is suited to handle multiple groups as discussed
in Appendix C, which we leave as future work.

4.1. The Group Marginal Distribution

As we marginalize zk over the content dimension (C) we
get {µj}Gj=1, the sum of each column in zk. We obtain
our discretized group marginal P (g|xk) by softmaxing µj .
Since the parameters gk sampled during training are known,
we can design a target distribution for P (g|xk) (red dis-
tribution in Figure 1). We use a von-Mises (vM) target
q(g|xk) = vM(gk, κ) for cyclic groups, and a Gaussian
(N ) target q(g|xk) = N (gk, σ) for all other groups. Both
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targets are chosen because of the simplicity by which we can
encapsulate parameter information in their structure (their
mean), and the controllability of the uncertainty about g via
σ (or κ). For readability, we refer to the uncertainty as σ for
both vM and N targets, where σ ≈ 1√

2πκ
.

To be comparable to P (g|xk), we also discretize our target
in [0, 1] obtaining Q(g|xk). Let Ωj be the intervals of a
G-sized partition, and gj their centers. Then, the discretized
target is obtained by integrating the continous target ac-
cording to the partition: Qj(g|xk) := Q(g = gj |xk) =∫

Ωj
q(g|xk)dg∫ 1

0
q(g|xk)dg

. For the Gaussian target, we assume a slight
boundary effect as we do not integrate the tails beyond Ωj .

We encourage the observed P (g|xk) to match the target by
minimizing the Jensen-Shannon Divergence (DJS) between
the discretized distributions. The group loss for the i-th
image x(i) in a batch is

L
(i)
G =

1

2

2∑
k=1

DJS

(
P (g|x(i)

k ) ∥ Q(g|x(i)
k )
)
. (2)

The choice of σ is key to encourage structure Both very
small and very large values of σ will lead to a loss of struc-
ture in the columns of z. For small σ, the target takes a
form close to a δ distribution. This results in an invariant
discretized target (as δ moves inside interval Ωj) or abrupt
target changes (as δ moves from Ωj to Ωj+1), which pre-
vents learning proper structure. Conversely, for large σ, the
target will be close to a uniform distribution, thus remov-
ing all information about the group element (all columns
contribute equally). In Appendix H.1 we find empirically
that σ ≈ 0.2 is optimal in our setting. Note that this value
corresponds to a normal distribution N (·, 0.2) that covers
the [0, 1] domain within approximately its 3σ span (when
centered at 0.5), being a good trade-off in terms of structure.
Interestingly, since our group elements are bounded in [0, 1],
the value of σ can be kept constant for all transformation
groups and data sets.

4.2. The Content Marginal Distribution

As we marginalize zk by summing over the group dimension
(G), we obtain P (c|xk), the probability of observing the
content c given xk. Such distribution is invariant to the
group actions, and contains all relevant information of xk

not related to the group G. For example, the content of an
image of a horse is still a horse regardless of is rotation.
We maximize the agreement between the content of two
views of an image (x1,x2). Our content representation is
defined directly by the values of P (c|xk), noted as ck ∈
RC . Following the recent trends in MSSL, both content
representations are projected with a network h. Then we
use the NTXent loss (Chen et al., 2020) in form of LC =

NTXent(h(c1), h(c2)) for a SimCLR-based architecture.

4.3. The DUET Loss

Our final loss for a full batch of N images is

LDUET =
1

N

N∑
i=1

L
(i)
C + λL

(i)
G . (3)

LC encourages similarity between the content representa-
tions of 2 views, explicitly made invariant to the group ac-
tion, as opposed to SimCLR which contrasts representations
to achieve invariance to the group action. The parameter λ
controls how strongly the group structure is imposed.

4.4. Recovering the Transformation Parameter

An interesting property of DUET representations is the abil-
ity to recover the transformation parameter of a test image
without relying on extra regression heads. This property is
useful to transform representations equivariantly (see Sec-
tion 4.5). It also enables interpretability, since one can
analyze the default transformation parameters associatied
to an image or a dataset. Assuming optimal training of
LG, the group marginal will resemble the imposed target.
Therefore, the transformation parameter g̃ of an arbitrary
image xk for a Gaussian target is directly recoverable as
g̃ = E[g|xk] ≈

∑G
j=1 Pj(g|xk)gj . In practice, for im-

proved robustness, we fit a Gaussian (or vM) function to the
values Pj(g|xk), and we estimate g̃ as is argmax.

4.5. Equivariance in DUET

Similarly to the approach of ESSL, DUET encourages equiv-
ariance by making the neural network sensitive to the trans-
formation parameter g. However, in our method this sensitiv-
ity is defined explicitly via Equation (2), such that applying
a transformation τg(x) in input space results in shifting by
g the mean of the group marginal distribution correspond-
ing to their representation z = f(x). In practice, we pre-
scribe a-priori a form for the feature-space transformation
Tg corresponding to the input-space transformation τg in
Equation (1), with the advantage of gaining additional con-
trollability over such transformations (see also Section 5.2).

Specifically, we design Tg according to the following con-
siderations. Assuming optimal training of LG, we have
that the recovered group marginal distribution P (g|xk) for
a given input x transformed by τgk resembles the target
Q(g|xk). For Equation (1) to hold, we need to design
Tg such that applying the column sum and softmax op-
erations used to derive P (g|xk) (see Section 4.1) to Tgk(z)
also resembles Q(g|xk). We can ensure this by changing
the column sums of z (denoted as {µj}Gj=1) with values
{µ̂j}Gj=1 that after applying the softmax yield Q(g|xk), i.e.
µ̂j = softmax−1(Q̂j) with Q̂j = Qj(g|xk) for ease of no-
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tation. There are infinitely many solutions for µ̂j , so we
choose the µ̂j that satisfies

∑
j µ̂j = βj . This choice comes

from the fact that the final BN layer in f will make the mean
of z close to the BN bias terms βj .

Therefore,

µ̂j = ln Q̂j + ln
∑
j

eµ̂j with
∑
j

µ̂j = βj . (4)

The solution to this equation is given by

µ̂j = ln Q̂j + βj −
1

G

∑
j

ln Q̂j . (5)

Finally, we define Tg so that it swaps the mean µj with µ̂j

Tg(z) = z −M + M̂g, (6)

where all elements of each column j of M (or M̂g) take
the value µj (or µ̂j). As such, applying the column sum
and softmax operations to Tgk(z) yields the same values as
applying them to zk (at optimality), which is a necessary
condition for Equation (1) to hold. Furthermore, defined in
this way, Tg satisfies the group axioms (Appendix B, again
assuming LG is minimized).

In practice, as it also happens in other works such as ESSL
or TVAE, we cannot expect Equation (1) to hold always (i.e.
for all x and g), as that would require perfect generalization
of the learned equivariance. However, for our method, we
can bound the equivariance generalization error w.r.t. un-
seen g (Appendix A), and furthermore demonstrate that it is
small in practice in Section 5.1.

On predictiveness and equivariance. It is key to differen-
tiate between predictiveness and equivariance. While pre-
dictiveness implies equivariance, the opposite is not always
true (e.g., invariance is a specific case of equivariance that
does not imply predictiveness). Therefore, we emphasize
that the approximate equivariance in DUET is a by-product
of the predictiveness of g at group marginal level.

5. Experimental Results
5.1. Empirical Proof of Equivariance

We start with an empirical validation of equivariance by
measuring how Equation (1) holds for real data. To do this,
we use the transformation Tg from Equation (6) and com-
pute representations f(τg1(x)) and Tg2(f(x)) ∀g1, g2 ∈ G.
An equivariant map should result in a minimal L2 distance
ℓg1,g2 = ∥f(τg1(x))−Tg2(f(x))∥22 when g1 = g2 . To ver-
ify this, we plot the pairwise ℓg1,g2 for all elements g1, g2
and different transformations. More precisely, we sweep
100 values of g1, g2 in [0, 1] for 1000 randomly selected

CIFAR-10 (Krizhevsky, 2009) test images and we show the
average pairwise L2 distance in Figure 2.

For infinite groups (i.e. color transformations and rotation
(360)), there is a strong similarity along the diagonal, vali-
dating Equation (1). For finite groups (rotation 4-fold, flips
and grayscale) we also see a strong similarity at the ob-
served group elements. For example, rotation 4-fold shows
4 minima at the observed (normalized) angles. These plots
also help to understand how the model generalizes to unseen
group elements. Interestingly, equivariance for horizontal
flip is only mildly learnt due to its ambiguity in the dataset
(see Section 6 for extended discussion). Indeed, flipped
images appear naturally in CIFAR-10 (e.g., cars looking to
the right or left), and thus there is more ambiguity about
the meaning of image flipping. Vertical flips are nicely
learnt, since they do not naturally appear in data. Another
interesting observation is that grayscale yields a constant
representation as we reduce the saturation (horizontal axis)
and then shows a sudden jump close to 1 (grayscale image).
The model has learnt that, as soon as the image presents
some hint of color, it is not grayscale, unless it is purely
grayscale. Note also that grayscale does not form an alge-
braic group, yet DUET is still able to learn its structure.

5.2. DUET Representations for Group Conditional
Generation

In Figure 3 we showcase the benefit of equivariance in
DUET representations to conditioning generation on spe-
cific group elements. To this end, we train a decoder on
frozen pre-trained DUET representations. In this work we
do not aim to obtain state-of-the-art generation quality, but
rather use a decoder for visual validation of our hypotheses.
Note that group conditional generation is not feasible with
MSSL methods like SimCLR or ESSL since there is no
explicit transformation at representation level.

Here we exploit the equivariant property of DUET repre-
sentations for controlled generation. We first obtain the
representation of a test image z = f(x) (leftmost images
in Figure 3), then we create multiple transformed represen-
tations {Tg(z)} using Equation (6), by sweeping g between
0 and 1, and finally we decode all {Tg(z)}. In Figure 3 we
show the decoded images for different datasets and groups.
Notice how we can recover the input transformation by
only transforming the representations, which provides yet
an additional visual proof of equivariance in DUET. In Ap-
pendix F we show that the reconstruction error of DUET
is up to 66% smaller than with SimCLR (rotation (4-fold))
and up to 70% smaller than with ESSL (grayscale).
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Figure 2. Empirical validation of equivariance in DUET. We measure the L2 distance between the representations of a transformed image
f(τg(x)) and the transformed representations of that image Tg(f(x)), varying g ∈ [0, 1] along both axes. The plots show the average
L2 distance for 1000 CIFAR-10 test images. Note the strong similarity for the same group element (diagonal), and the cyclic nature of
rotations or flips when using a vM target (top row), as opposed to the Gaussian target (bottom row). More results in Appendix E.

Figure 3. Equivariance in DUET. We encode a test image (leftmost
images), transform its representation using Tg (Equation (6)) for
several g, and then decode the transformed representations. See
how transforming the representations exposes the input transfor-
mation learnt by the model, empirically proving equivariance.

(a) MNIST with Rot. (360) (left) and horizontal flip (right).

(b) CIFAR-10 for Rot. (360) and color transformations.

5.3. DUET Representations for Classification

5.3.1. RRC+1 EXPERIMENTS

In this section we analyze how DUET representations per-
form for discriminative tasks. Following the procedure in
the ESSL work, where a single transformation is applied
on top of RandomResizedCrop (RRC), we carry out the
set of RRC+1 experiments. We compare our method with
SimCLR and ESSL2. We also compare with a variant of our
method (coined DUETλ=0) optimized without the group
loss, that is with λ = 0 in Equation (3). Notice that in
DUETλ=0 we still reshape the features to 2d and sum over
the columns to obtain the content representation (that is con-

2ESSL representations are implicitly equivariant but do not
guarantee interpretable structure with respect to the transformation.

trasted), which is a fundamental difference with SimCLR.
DUETλ=0 learns unsupervised invariances very similarly to
what NPTN (Pal & Savvides, 2018) does, but does not guar-
antee equivariance. For RRC+1, DUET uses λ = 10, except
for rotations and vertical flip for which we use λ = 1000
according to the empirical study in Appendix H.1. The re-
maining parameters are set to σ = 0.2 and G = 8. The full
training procedure is provided in Appendix H.

In Figure 4 we show the accuracy of a linear tracking head
for the RRC+1 experiment on CIFAR-10. The horizon-
tal dashed line shows the baseline performance of SimCLR
with only RRC. For all considered transformations, we show
results from training with a N target group-marginal. For
cyclic transformations (rotations and flips), we further spe-
cialize the target and consider a (periodic) vM distribution
instead, reporting results for this case also. It is impor-
tant to point out that, for DUET, the tracking head receives
our 2d representation flattened, and as such is of the same
dimensionality as in compared methods.

Our method outperforms SimCLR for all transformations,
and even improves over SimCLR with RRC only by learn-
ing structure with respect to scale. Note that, by construc-
tion, ESSL cannot improve over the RRC-only baseline. A
prominent result is the performance of DUET with color
transformations. For the discrete transformation grayscale,
ESSL degrades performance by 12.8% with respect to Sim-
CLR with grayscale, while DUET improves it by 1.75%.
For continuous color transformations, DUET improves over
SimCLR between 3-5%, while ESSL degrades the perfor-
mance by up to 4.3% (brightness). This shows that the
implicit equivariance in ESSL is not sufficient in this case.

We also observe in Figure 4 that ESSL does not improve
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Figure 4. Test top-1 performance of a linear tracking head on CIFAR-10. It can be observed that DUET improves over SimCLR and ESSL
for all transformations. Notably for continuous color transformations, ESSL significantly degrades performance unlike DUET.

over SimCLR for horizontal flips, while DUET (vM) im-
proves by 2.8%. In general, for ambiguous transformations
like horizontal flip (see Section 6), we find that learning
unsupervised structure with DUETλ=0 is beneficial. We
also see that structure (and equivariance) is strongly helpful
for vertical flips. For the more complex cyclic transforma-
tions, DUETλ=0 underperforms by a large margin, since
such complex structure is harder to learn in a completely
unsupervised way. This result shows that accounting for
the topological structure of the transformation (as studied
by Falorsi et al. (2018)) is of great importance, and opens
the door to further research in this direction. Surprisingly,
DUETλ=0 outperforms SimCLR. We speculate that the un-
supervised structure learnt by DUETλ=0 might induce a
more discriminative organization of the embedding space.

Table 2 benchmarks the more complex tasks CIFAR-100
(Krizhevsky, 2009) and TinyImageNet (Li et al., 2017). We
report the average across the cyclic groups and the color-
related groups for better readability. DUET achieves the
highest accuracy compared to all algorithms tested, includ-
ing DUETλ=0, and across all groups but horizontal flip.
DUET also improves under color transformations with re-
spect to SimCLR with the same transformations, while
ESSL shows a degradation. Indeed, the datasets used in
Table 2 present higher data scarcity per class than CIFAR-
10. In such setting, the structure learnt by DUET shines
over unstructured methods like ESSL.

5.3.2. FULL AUGMENTATION STACK EXPERIMENTS

In this section we use the full augmentation stack as in
SimCLR (see details in Appendix G). We learn structure
for one group at a time, while applying the full stack on
input images. Note that in the full stack setting, we use
a fixed λ = 10 for DUET3. We observed in this case that
extremely large λ can harm performance since multiple
transformations add ambiguity to the group being learnt.

3We did not perform an extensive hyper-parameter tuning, the
focus of this work being an exploration of structured representa-
tions in MSSL.

Table 3 reports the test top-1 accuracy on CIFAR-10, CIFAR-
100 and TinyImagenet. One interesting observation is that
DUET becomes better than the compared methods as the
dataset complexity increases, achieving the best average
accuracy for all sets of transformations on TinyImageNet.
For smaller and simpler datasets like CIFAR-10, DUET
outperforms ESSL for color transformations, but ESSL is
better for cyclic transformations. Still, DUET outperforms
the SimCLR baseline for cyclic transformations.

Interestingly, neither DUET nor ESSL outperform SimCLR
by becoming equivariant to horizontal flips, as discussed in
Section 6. Nevertheless, DUET still outperforms ESSL for
horizontal flips by 0.86%, 4.4% and 4.18% on CIFAR-10,
CIFAR-100 and TinyImageNet respectively. Similarly, as
the dataset complexity increases, DUET performs better
than ESSL for vertical flips. Another interesting result is the
effectiveness of ESSL with rotations, where DUET remains
subpar but better than the SimCLR baseline. The RRC
column shows that DUET, by just learning structure to scale
(approximately, as explained in Section 3.2), can improve
accuracy using the vanilla SimCLR augmentation stack.

It is surprising how well DUETλ=0 performs in the full
stack setting, surpassing DUET for simpler datasets. Indeed,
DUETλ=0 learns an unsupervised structure, thus account-
ing for the interdependencies between the transformations
applied. However, as observations of the transformation of
interest are scarcer (e.g., more complex datasets or less data
per class) optimizing for a known structure is beneficial.

5.4. Transfer to Other Datasets

DUET’s structure to rotations yields a gain of +21% with re-
spect to SimCLR when transferring to Caltech101 (Li et al.,
2022), and between +5.97% and +16.97% when transferring
to other datasets like CIFAR-10, CIFAR-100, DTD (Cimpoi
et al., 2014) or Oxford Pets (Parkhi et al., 2012). Struc-
ture to color transformations also proves beneficial, with a
+6.36% gain on Flowers (Tung, 2020) (grayscale), Food101
(Bossard et al., 2014) (hue) and +7.13% on CIFAR-100
(hue). Horizontal flip is the transformation that sees less
gain due to its ambiguity, as discussed in Section 6.
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Table 2. RRC+1 results: Accuracy of a linear tracking head on CIFAR-100 and TinyImageNet. We also show the average over cyclic (vM
target) and non-cyclic (N target) transformations. DUET improves over SimCLR for all groups, while ESSL worsens performance for
color transformations. We report the meanstd over 3 runs.

Dataset Method RRC Rot. (360) Rot. (4-fold) H. Flip V. Flip Avg. Grayscale Brightness Contrast Saturation Hue Avg.

CIFAR-100

SimCLR 38.890.26 32.170.14 35.520.33 39.850.13 36.680.27 36.060.18 47.410.40 45.000.26 44.510.04 42.270.70 43.610.19 44.560.26
ESSL - 38.030.36 44.360.72 38.780.54 42.170.87 40.840.51 34.200.60 38.330.25 38.660.02 38.920.08 37.640.39 37.550.22
DUETλ=0 42.630.11 34.770.72 38.280.19 43.540.67 40.100.82 39.170.49 48.870.18 48.120.19 47.740.57 45.390.34 46.320.61 47.290.31
DUET 45.250.10 42.170.42 47.250.26 41.820.46 45.380.73 44.160.38 50.910.49 50.180.45 49.770.46 48.750.22 48.540.78 49.630.39

TinyImageNet

SimCLR 26.910.13 21.340.08 24.400.24 27.900.37 26.740.30 25.090.20 31.351.29 29.950.14 29.680.18 28.600.29 28.200.40 29.550.38
ESSL - 25.350.10 30.410.25 27.130.14 29.110.27 28.000.16 23.510.18 26.450.07 26.320.61 26.750.72 26.000.11 25.800.28
DUETλ=0 29.570.47 24.220.30 26.960.37 30.780.23 28.980.42 27.730.27 31.550.14 32.540.18 32.230.17 31.430.24 30.450.60 31.640.22
DUET 31.260.21 27.780.24 31.550.28 30.340.59 31.710.53 30.340.33 34.920.24 33.960.16 34.200.34 33.420.35 32.640.03 33.830.18

Table 3. Full Stack results. We show the average accuracy of a linear tracking head over cyclic (vM target) and non-cyclic (N target)
transformations. As the task complexity increases, DUET achieves better accuracy than the compared methods. Columns Rot. (360), Rot.
(4-fold) and V. Flip require an additional transformation. We report the meanstd over 3 runs.

Dataset Method RRC Rot. (360) Rot. (4-fold) H. Flip V. Flip Avg. Grayscale Brightness Contrast Saturation Hue Avg.

CIFAR-10

SimCLR 87.420.01 79.900.50 81.500.44 87.480.06 82.780.23 82.920.22 87.410.03 87.510.11 87.570.19 87.490.08 87.670.34 87.530.11
ESSL - 86.550.13 89.330.32 84.780.40 86.660.21 86.830.22 83.590.43 85.780.25 86.310.16 87.120.30 86.390.44 85.840.26
DUETλ=0 87.500.20 79.050.37 81.320.18 87.730.19 82.660.14 82.690.22 87.690.17 87.470.13 87.340.20 87.540.33 87.630.20 87.530.20
DUET 87.220.10 81.700.30 83.490.16 85.640.08 83.840.22 83.670.15 87.400.08 86.970.22 87.050.37 87.520.19 87.970.11 87.380.16

CIFAR-100

SimCLR 61.400.17 56.400.30 57.320.03 61.480.28 56.730.48 57.980.19 61.430.21 61.310.05 61.680.57 61.570.41 61.300.03 61.460.18
ESSL - 58.320.06 63.280.28 55.220.29 57.180.18 58.500.17 55.100.47 57.920.38 58.060.58 60.250.34 58.910.30 58.050.34
DUETλ=0 62.130.13 55.490.22 57.790.40 62.250.34 56.880.18 58.100.29 62.320.26 62.390.27 62.470.16 62.540.20 62.290.29 62.400.24
DUET 62.170.28 55.660.39 58.010.31 59.620.11 57.400.15 57.670.20 62.180.51 62.240.31 61.900.72 62.670.19 63.310.21 62.460.32

TinyImageNet

SimCLR 42.160.16 37.350.19 39.230.15 42.310.06 39.350.09 38.500.09 42.110.23 42.320.08 42.340.10 42.270.01 42.460.27 42.300.10
ESSL - 37.530.21 42.860.29 36.250.13 37.180.77 38.460.29 35.500.30 37.940.13 38.660.50 40.550.74 40.490.05 38.630.28
DUETλ=0 43.070.11 36.280.95 39.540.41 42.430.33 38.870.40 39.280.52 42.790.16 42.610.34 42.980.08 42.860.30 42.900.46 42.830.27
DUET 43.560.54 38.060.06 40.030.28 40.430.21 39.360.50 39.470.18 42.551.27 43.410.01 43.710.07 44.130.57 44.610.10 43.680.29

6. Discussion and Limitations
On the Dimensionality of DUET Representations. We
reshape the output of the backbone (RD) to z ∈ RC×G. The
final representation used for downstream tasks is a flattened
(RD) version of z. For a fair comparison, SimCLR and
ESSL also yield RD representations.

Trading off Structure and Expressivity. By increasing
G we reduce the effective dimensionality of the content
representations (RC ) contrasted through LC. This implies a
trade-off between structure (improves generation, transferra-
bility) and expressivity (improves discrimination). Such
effect is visible in the transfer learning results, where learn-
ing structure to rotation is not useful when transferring to
the Flowers dataset. Indeed, such dataset contains many
circular flowers, which are rotation (and flip) invariant.

Transformation Ambiguity. A dataset containing exam-
ples related by input transformations results in transfor-
mation ambiguity, and the distribution over group actions
P (g|xk) becomes multi-modal. This is shown in Figure 5
where the weight of each mode corresponds to the observed
probability in the dataset, i.e., P (g|xk) reflects the bias of
the dataset with respect to the transformation. Additional
results in Appendix J show ambiguity also for color trans-

Figure 5. Observed P (g|x) for horizontal (left) and vertical (right)
flips, obtained from 1000 CIFAR-10 images. Note the inherent
ambiguity for horizontal flips. Also, see that the modes of the
distributions correspond to the mapped points specified in Table 1.

formations, e.g., natural images may present a different
default hue, yielding a spread P (g|xk). This phenomenon
is also observed in Section 5.3.2 and Section 5.4, where
the notion of a left-flipped image is ambiguous, whereas a
vertically flipped image is not, and only the latter transfor-
mation yielded a performance gap between equivariant and
invariant methods.

Are c and g Dependent? To better understand the de-
pendency between c and g (conditioned on xk) quantita-
tively, we measure the difference ∆P = ∥P (c, g|xk) −
P (c|xk)P (g|xk)∥22. In Table 4 we report the average dif-
ference for the DUET representations of 100 images from
CIFAR-10, for 100 images with independent and identically
distributed (iid) pixels and for 100 random representations
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Table 4. Dependence of c and g conditioned on xk. The learnt
marginal representations for content (c) and group element (g) are
dependent. This is a core strength of DUET, where group structure
and content are not assumed independent, but rather with specific
dependencies learnt from data.

∆P

DUET w/ CIFAR-10 178.17
DUET w/ iid pixels 0.015
iid representations 0.00075

(iid features). Note that such difference is expected to be 0
for the random representations (independent) and close to 0
for the iid pixels (no symmetries in the data).

Computational Requirements The training time of
SimCLR and DUET are practically the same. DUET’s extra
requirements suppose a negligible overhead, namely: are
a sum over rows and cols of z and the computation of the
Jensen-Shannon Divergence in LC. Interestingly, the projec-
tion head h in DUET is smaller than in SimCLR, since the
content features are of lower dimension, effectively reducing
the model parameters with respect to SimCLR.

Compared to ESSL, DUET shows an important computa-
tional gain. Indeed, the time required for ESSL to train
depends on the group chosen. Taking the implementation in
(Dangovski et al., 2022) for 4-fold rotations, the backbone
consumes 2 + 4 versions of each image, resulting in an
overall training time 2.01× longer than that of DUET. For
other transformations, ESSL requires 2 + 2 images being
consumed (e.g., flips) or 2+1 (e.g., contrast); thus resulting
in longer training time than DUET in all cases.

7. Conclusion
We introduce DUET, a method to learn structured and equiv-
ariant representations using MSSL. DUET uses 2d repre-
sentations that model the joint distribution between input
content and the group element acting on the input. DUET
representations, optimized through the content and group el-
ement marginal distributions, become structured and equiv-
ariant to the group elements. We design an explicit form of
transformation at representation level that allows exploiting
equivariance for controlled generation. Our results show
that DUET representations are expressive for generative
purposes (lower reconstruction error) and also for discrimi-
native purposes. Overall, this work shows that accounting
for the topological structure of input transformations is of
great importance to improve generalization in MSSL.
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Weiler, M., Forré, P., and Cohen, T. S. Explorations in
homeomorphic variational auto-encoding. arXiv preprint
arXiv:1807.04689, 2018.

Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond,
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Löwe, S., O’Connor, P., and Veeling, B. Putting an end to
end-to-end: Gradient-isolated learning of representations.
In NeurIPS, 2019.

MacDonald, L. E., Ramasinghe, S., and Lucey, S. Enabling
equivariance for arbitrary lie groups. pp. 8183–8192,
2022.

Oord, A. v. d., Li, Y., and Vinyals, O. Representation
learning with contrastive predictive coding. NeurIPS,
2018.

Pal, D. K. and Savvides, M. Non-parametric transformation
networks, 2018.

Parkhi, O. M., Vedaldi, A., Zisserman, A., and Jawahar,
C. V. Cats and dogs. In CVPR, 2012.

Serre, J.-P. Linear representations of finite groups., vol-
ume 42 of Graduate texts in mathematics. Springer, 1977.

Sosnovik, I., Szmaja, M., and Smeulders, A. Scale-
equivariant steerable networks. In International Con-
ference on Learning Representations, 2020.

Stühmer, J., Turner, R., and Nowozin, S. Independent sub-
space analysis for unsupervised learning of disentangled
representations. In AISTATS, 2020.

Tian, Y., Sun, C., Poole, B., Krishnan, D., Schmid, C., and
Isola, P. What makes for good views for contrastive
learning? NeurIPS, 2020.

Tschannen, M., Djolonga, J., Rubenstein, P. K., Gelly, S.,
and Lucic, M. On mutual information maximization for
representation learning, 2019.

Tung, K. Flowers Dataset, 2020. URL https://doi.
org/10.7910/DVN/1ECTVN.

Wang, T. and Isola, P. Understanding contrastive repre-
sentation learning through alignment and uniformity on
the hypersphere. In ICML, volume 119, pp. 9929–9939.
PMLR, 2020.

Wu, Y. and He, K. Group normalization. In ECCV, pp.
3–19, 2018.

Zbontar, J., Jing, L., Misra, I., LeCun, Y., and Deny, S.
Barlow twins: Self-supervised learning via redundancy
reduction. ICML, 2021.

10

https://www.kaggle.com/c/tiny-imagenet
https://www.kaggle.com/c/tiny-imagenet
https://doi.org/10.7910/DVN/1ECTVN
https://doi.org/10.7910/DVN/1ECTVN


DUET: 2D Structured and Approximately Equivariant Representations

Zimmermann, R. S., Sharma, Y., Schneider, S., Bethge, M.,
and Brendel, W. Contrastive learning inverts the data
generating process. In Meila, M. and Zhang, T. (eds.),
ICML, volume 139 of Proceedings of Machine Learning
Research, pp. 12979–12990. PMLR, 2021.

11



DUET: 2D Structured and Approximately Equivariant Representations

A. Bounding the Equivariance Error
To introduce some notation, let us assume that, for an input data point x0, the training procedure has “seen” the augmentations
xi = τgi(x0), generating the respective representations zi = f(xi) in feature space. Notice that, with some abuse of
notation , in this scenario we consider z to be the column reduction of the feature space, since that is the only part dedicated
to guaranteeing equivariance. Since we are at the optimum, these must produce group marginal distributions Qj(zi) ≡ Q̂gi ,
where Q̂gi represents the discretization of the target distribution with mean gi. At the end of training, if exact equivariance
is reached (i.e. if LG is minimized), a newly generated augmentation x = τg(x0) for a given transformation parameter g,
would be mapped by our neural network to the feature vector z, such that Q(z) ≡ Q̂g. Since this augmentation was not
seen during training time, however, this is not guaranteed. We are interested in providing a bound on the error between
the representation actually recovered, and the ideal one, which gives us an indication of how much our neural network can
violate equivariance for unseen transformation parameters g. This is given by the following theorem.
Theorem A.1. For a training point x0, at the optimum of LG = 0, the equivariance error of a neural network f trained
with loss Equation (2) is bounded by

∥f(τg(x0))− Tg(f(x0))∥ ≤ (LfLτg + LTg
)min

i
|g − gi|, (7)

where LTg
, Lτg and Lf are the Lipschitz constants associated with the transformations Tg, τg, and the network f ,

respectively.

Proof. Using triangular inequality, we get

∥f(τg(x0))− Tg(f(x0))∥ ≤ ∥f(τg(x0))− f(τgi(x0))∥+ ∥f(τgi(x0))− Tg(f(x0))∥ (8)

for any given augmentation xi = τgi(x0) seen during training time. At the optimum, we have by construction that
f(τgi(x0)) = Tgi(f(x0)), which allows us to rewrite the second term as

∥f(τgi(x0))− Tg(f(x0))∥ = ∥Tgi(f(x0))− Tg(f(x0))∥ ≤ LTg
|g − gi| (9)

Notice LTg depends on the target discretization chosen: for the Gaussian target and ∞-norm, we recover it analytically in
Lemma A.3. The first term, instead, becomes

∥f(τg(x0))− f(τgi(x0))∥ ≤ Lf∥τg(x0)− τgi(x0)∥ ≤ LfLτg |g − gi|. (10)

Combining these results together, we recover the target bound.

Notice that for a discrete group, instead, it is possible to train f(x) so that it achieves exact equivariance:
Corollary A.2. Given a discrete group G, a neural network f(x) trained with loss Equation (2) achieves equivariance at
the optimum, if it is exposed to all group transformations.

Proof. The proof follows directly from Theorem A.1 by noticing that g − gi = 0 necessarily, if all group transformations
have been seen during training time.

Theorem A.3. For a Gaussian target, Q̂i(g) =

∫
Ωi

N (g,σ)(g̃) dg̃∫
[0,1]

N (g,σ)(g̃) dg̃
, the Lipschitz continuity constant for Tg in ∞-norm is

given by µ̂′
G−1(0), with µ̂j defined in Equation (5).

Proof. Starting from the definition of Tg(z) in Equation (6), and using the mean-value theorem, we get

∥Tg(z)− Tĝ(z)∥∞ = ∥M̂g − M̂ĝ∥∞ = max
j

|µ̂j(g)− µ̂j(ĝ)| = max
j

|µ̂′
j(g̃j)||g − ĝ| (11)

for some (possibly different for different j) g̃j ∈ [g, ĝ]. We remind that µ̂j(g) is defined in equation 5 as

µ̂j(g) = ln Q̂j(g)−
1

G

∑
i

ln Q̂i(g) = ln

(
∆Φj+1

j (g)

∆ΦG
0 (g)

)
− 1

G

∑
i

ln

(
∆Φi+1

i (g)

∆ΦG
0 (g)

)
= ln∆Φj+1

j (g)− 1

G

∑
i

ln∆Φi+1
i (g), with ∆Φj

i =

∫ gj

gi

N (g, σ)(x) dx, and gi =
i

G
,

(12)
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so that its derivative can be compactly written as

µ̂′
j(g) = hj(g)−

1

G

∑
i

hi(g), where hi(g) =
(∆Φi+1

i )′(g)

∆Φi+1
i (g)

. (13)

Our goal is to bound µ̂′
j(g), which can be quantified starting from considerations on the various hj(g). It can be proven that

these are:

• equivalent modulo translations: hj(g) = hj−i(g − i/G);

• antisymmetric with respect to g around the centerpoint g∗j = (gj+1 + gj)/2: hj(g
∗
j + g) = −hj(g

∗
j − g);

• antisymmetric with respect to j: hj(g
∗
j + g) = −hG−j(g

∗
G−j − g);

• decreasing: h′
j(g) ≤ 0;

• convex for g < g∗j : g ≶ g∗j =⇒ h′′
j (g) ≷ 0.

We can gain a better intuition about how to effectively bound µ̂′(g) by rewriting equation 13 using the equivalence under
translations of hj(g):

µ̂′
j(g) =

1

G

∑
i

(
hj(g)− hj

(
g +

j − i

G

))
(14)

this shows that for each j we are averaging the differences between hj(g) and the same function evaluated at G equispaced
points g − (i− j)/G. Since hj(g) is decreasing, we deduce that this difference is positive whenever i < j, and negative
otherwise. We have then that the maximum absolute value of µ̂′

j(g) is always attained for the most extreme j, since that
guarantees that the largest number of terms share the same sign. Without loss of generality (by symmetry), we can consider
j = G− 1, and we have

max
j

|µ̂′
j(g)| = µ̂′

G−1(g) ∀g ∈ [0, 1]. (15)

It suffices now to bound this quantity in [0, 1]. Due to the concavity of hj(g), its maxima will be at the boundary, and
specifically at g = 0. This can be shown by simply comparing the values at 0 and at 1 (we drop the subscript G− 1 and
consider hG−1(g) = h(g) from now on):

µ̂′
G−1(0)− µ̂′

G−1(1) =
1

G

G−1∑
i=0

(
h(0)− h

(
G− 1− i

G

))
− 1

G

G−1∑
i=0

(
h(1)− h

(
1 +

G− 1− i

G

))

=
1

G

G−1∑
i=0

(
h(0) + h

(
G− 1

G

)
− 2h

(
i

G

))

=
1

G

G−1∑
i=0

(
h(0) + h

(
G− 1

G

)
−
(
h

(
i

G

)
+ h

(
G− 1− i

G

)))
≥ 0

(16)

where we exploited the antisymmetry of hG−1(g) around g∗G−1 = 1− 1/(2G) to aptly change the inner arguments, as well
as the convexity of h(g) for g < g∗G−1 to state that h(0) + h

(
G−1
G

)
≥
(
h
(

i
G

)
+ h

(
G−1−i

G

))
, for each i. This allows us to

explicitly write the Lipschitz constant for the transformation Tg(z) as

∥Tg(z)− Tĝ(z)∥∞ ≤ µ̂′
G−1(0)|g − ĝ|. (17)

B. Proof of Axioms for Tg in Equation (6)
Notice that Tg , thus defined, satisfies the group axioms at proper training (LG is minimized). In fact:

• Neutral: g = 0 s.t. T0(z) = z. Easily proven since Mg0 = M̂g0+0.
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• Inverse: g−1 = −g s.t. Tg−1 ◦Tg(z) = z. Let z′ = Tg(z), then Tg−1(z′) = z′−Mg′
0
+M̂g′

0−g . Since g′0 = g0+g,
then Tg−1 ◦ Tg(z) = z −Mg0 + M̂g0+g −Mg0+g + M̂g0+g−g = z.

• Associativity: Similar reasoning as for the inverse property with 2 different elements.

• Closure: We work in RD at representation level, so closure is verified.
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C. DUET for Multiple Groups
Modern MSSL frameworks use complex augmentation stacks that compose several transformations. While learning structure
with respect to a single group is interesting, one could benefit from learning such structure for a set of groups. For readability,
we focus on the two group case (GA and GB); but the following reasoning can easily be extended to more groups.

In order to model the interdependencies between groups and content, one can learn the joint distribution P (c, gA, gB |xk),
where gA ∈ GA and gB ∈ GB are 2 random variables representing the respective group elements. Such approach implies
that our backbone f maps to RC×|GA|×|GB |. The marginal distributions are now obtained by summing over the non-desired
dimensions (e.g., over C and GA to obtain P (gB |xk)). Using these new marginals, we define the multi-group loss as

LMulti-G =
1

2

∑
l={A,B}

LGA
+ LGB

. (18)

However, as the number of groups increases, modelling the joint distribution becomes intractable. In practice, keeping C
constant, the dimensionality of z increases in O(Gn) with the number of groups.

To address scalability, we propose to relax the formulation and let our backbone f map into RC×(|GA|+|GB |), so that the
dimensionality of z increases in O(nG) with the number of groups. Using this relaxation we actually consider GA and GB

independent, although their structure is learnt jointly during training. In practice, z is divided into two blocks, with |GA|
and |GB | columns each. In this scenario, P (gA|xk) is obtained by summing over columns of the GA block, and P (gB |xk)
by summing over the columns of the GB block. The content marginal P (c|xk) is obtained by concatenating the sum over
the rows of each group block.

D. Recovering the Transformation Parameter for a Von-Mises Distribution
Let xi be samples of a vM(x|µ, κ) with unknown parameters µ and κ. We want to recover the parameter µ, which
corresponds to the group element that yields such vM prior. Let r =

∑
i xi be the baricenter of the samples with respect to

the origin, then g̃ = µ̃ = angle(r).

E. Empirical Equivariance: Additional Plots

Figure 6. Empirical validation of equivariance for cyclic groups with a non-cyclic Gaussian prior. Note the difference with the top row of
Figure 2. In the Gaussian case, the cyclic nature of rotation and flip is not observed, and equivariance is less well satisfied.
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Figure 7. Examples of the transformations τg applied on the input images x to obtain the plots in Figure 2 and Figure 6. For flips, we
simulate a gradual flip by alpha-blending the 2 flipped images.

F. Reconstruction Error
In order to verify our hypothesis that structured representations are beneficial for generation, we measure the reconstruction
error obtained with the decoders used in Section 5.2. We use a mean squared error loss for reconstruction: L

(i)
rec =

∥d(f(τg(x(i)))) − τg(x
(i))∥22, where d(·) is a decoder network. In Figure 8 we plot the final test Lrec on CIFAR-10 for

decoders trained on frozen DUET, ESSL and SimCLR representations, for some of the transformations analyzed. The
obtained reconstruction error with DUET is up to 66% smaller than with SimCLR (rotation (4-fold)) and up to 70% smaller
than with ESSL (grayscale).

Figure 8. Reconstruction error (smaller is better) obtained with decoders trained on frozen DUET, ESSL and SimCLR representations.
The horizontal dashed line shows the baseline error of SimCLR with only RRC.

G. Full Stack Augmentations
In Section 5.3.2 we report the performance of DUET and other methods using the full SimCLR augmentation stack. More
precisely, the augmentations used are:

• RandomResizedCrop(scale=(0.2, 1.0))

• ColorJitter(brightness=0.4, saturation=0.4, contrast=0.4, hue=0.1, p=0.8)

• RandomHorizontalFlip(p=0.5)

• RandomGrayscale(p=0.2)

• RandomGaussianBlur(kernel size=(3, 3), sigma=(0.1, 2.0), p=0.5)
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When we learn structure for groups that are not directly parameterized in this stack, we add a specific transformation. For
example, for the vertical flip group we add RandomVerticalFlip(p=0.5). Or for rotations, we add a random rotation
transformation in the stack.

H. Training Procedure
For all our experiments we use as backbone a ResNet-32 (He et al., 2016) architecture with an input kernel of 3× 3 and
stride of 1. The output dimensionality of the ResNet is R512, which we reshape to R64×8 for a group granularity of G = 8.
Note that we do not add parameters, we only reshape the output of a vanilla ResNet to build our DUET representations.
Additional training parameters are shown in Table 5.

The detached decoders in Section 5.2 are also trained using the same procedure. The reconstructed images are RGB with
32× 32 pixels. The decoder architecture is a ResNet-18 with swish activation functions, visual attention and GroupNorm
(Wu & He, 2018) normalization.

Table 5. Training parameters.

Batch size 2048
Epochs 800
Input images RGB of 32× 32
Learning rate 0.0001
Learning rate warm-up 10 epochs
Learning rate schedule Cosine
Optimizer Adam(β = [0.9, 0.95])
Weight decay 0.0001

H.1. Effect of λ, σ and G

We perform a sweeping of λ values between 0 and 1000. The first observation is that adding structure improves over
SimCLR for all transformations (see Figure 10 in the Appendix). However, color transformations and horizontal flips
degrade performance if we strongly impose structure. This result hints that structure for such groups is harder to learn,
or is less learnable from data (e.g., the structure is ambiguous, as in the case of having flipped and non-flipped images
in the dataset). Interestingly, DUETλ=0 also improves slightly over SimCLR, showing that unsupervised structure is still
helpful for the specific case of CIFAR-10. Overall, our results show that λ = 10 is optimal for all transformations but scale,
rotations and vertical flips which can handle up to λ = 1000.

In Figure 9 we show the accuracy of SimCLR and DUET at different σ for all transformations analyzed. The violin plots
show the median accuracy across transformations. We obtain an empirically optimal value of σ = 0.2 for DUET. Note that
σ = 10 is almost equivalent to a uniform target, thus not imposing any structure. In Figure 11 we show the detailed results
per transformation, observing that horizontal flip behaves better with a uniform target. Indeed, as observed in Section 5.1
and Section 5.3, with the datasets used horizontal flip is ambiguous and we cannot learn this symmetry from data.

Lastly, we found DUET is quite insensitive to the choice of parameter G, based on results on CIFAR-10. We sweep
G = 2, 4, 8, 16 and the obtained accuracy changes by less than 1%. We choose to use a reasonable value of G = 8.
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Figure 9. Sweep of DUET’s parameter σ. We find empirically that σ ≈ 0.2 works best.

Figure 10. Sweep of DUET’s parameter λ. Note that different transformations require different optimal λs.

Figure 11. Test top-1 performance on CIFAR-10 as we modify the σ parameter in DUET. We report here the results per group.
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I. Additional Results for Transfer Learning
These results complement those summarized in Section 5.4. We train a logistic regression classifier on the representations of
the training split of each dataset. No augmentations are applied during the classifier training. At test time, we evaluate the
classifier on the test set of each dataset.

In Figure 12 we report the difference in accuracies between DUET and SimCLR. DUET’s structure to rotations yields a gain
of +21% when transferring to Caltech101, and very important gains when transferring to other datasets like CIFAR-10,
CIFAR-100, DTD or Pets. Structure to color transformations also proves beneficial, with a +6.36% gain on Flowers
(grayscale), 7.05% on Food101 (Bossard et al., 2014) (hue) and 7.13% on CIFAR-100 (hue). Horizontal flip is the
transformation that sees less gain, as expected given its ambiguity as shown in Figure 5.

It is interesting to see that DUET achieves slightly worse performance for rotations or flips on the Flowers dataset. Indeed,
this dataset contains many circular flowers, which are rotation (or flip) invariant. In such situation, learning structure for
rotations (or flips) should not give any gain. Actually, in DUET we are trading off content for structure, so if the structure
learnt is not useful, we are actually diminishing the expressivity of the final representations.

Comparing with ESSL Figure 13, DUET achieves better transfer results for most of the datasets and transformations.
Interestingly, ESSL improves over DUET for geometric transformations on Flowers, due to the trade-off inherent in DUET
(see Section 6). For completeness, the results of ESSL compared to SimCLR are shown in Figure 14.

The linear regression for ESSL with grayscale on CIFAR-100 did not converge, thus we removed that result from the plots.

Figure 12. Difference in accuracies between DUET and SimCLR, when transferring representations learnt on TinyImageNet to different
datasets in the RRC+1 setting.
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Figure 13. Difference in transfer accuracies between DUET and ESSL, when transferring representations learnt on TinyImageNet to
different datasets in the RRC+1 setting.

Figure 14. Difference in transfer accuracies between ESSL and SimCLR, when transferring representations learnt on TinyImageNet to
different datasets in the RRC+1 setting.
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J. Additional Results about Transformation Ambiguity

Figure 15. Observed P (g|x) for different transformations, obtained from 100 randomly sampled CIFAR-10 images. Note the inherent
ambiguity for color transformations, in addition to the one observed for horizontal flips in Figure 5.(left). Also, see how the modes of the
distributions correspond to the mapped points in Table 1.
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