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Abstract

Budget management strategies in repeated auc-
tions have received growing attention in online
advertising markets. However, previous work on
budget management in online bidding mainly fo-
cused on second-price auctions. The rapid shift
from second-price auctions to first-price auctions
for online ads in recent years has motivated the
challenging question of how to bid in repeated
first-price auctions while controlling budgets. In
this work, we study the problem of learning in
repeated first-price auctions with budgets. We
design a dual-based algorithm that can achieve a
near-optimal Õ(

√
T ) regret with full information

feedback where the maximum competing bid is
always revealed after each auction. We further
consider the setting with one-sided information
feedback where only the winning bid is revealed
after each auction. We show that our modified
algorithm can still achieve an Õ(

√
T ) regret with

mild assumptions on the bidder’s value distribu-
tion. Finally, we complement the theoretical re-
sults with numerical experiments to confirm the
effectiveness of our budget management policy.

1. Introduction
Recent years have witnessed the explosive growth of the
online advertising market. It is estimated that worldwide
online advertising spending will reach 681 billion dollars in
2023, accounting for nearly 70% of the entire advertising
market spending (eMarketer, 2022). In practice, a huge
amount of online ads are sold via real-time auctions imple-
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mented on advertising platforms and advertisers participate
in such repeated online auctions to purchase advertising
opportunities. An advertiser typically aims to maximize her
cumulative payoffs during a specific time horizon (e.g., a
day or a week) subject to a budget constraint, which reflects
her monetary limit throughout this period. The presence
of budgets constitutes an important operational challenge
for online bidding algorithm design since there will be con-
siderable financial losses whether depleting the budget too
early or reaching the end of the period with unused funds.
Therefore, budget management is a fundamental issue for
designing practical online bidding algorithms.

There has been a flourishing line of literature on budget man-
agement strategies in repeated second-price auctions (Bal-
seiro & Gur, 2019; Balseiro et al., 2022b; Chen et al., 2022).
However, a major industry-wide shift has occurred recently
towards using first-price auctions as the preferred auction
format of selling digital ads (Despotakis et al., 2021), as
opposed to the earlier prevalent practice of using second-
price auctions (Lucking-Reiley, 2000; Klemperer, 2004;
Lucking-Reiley et al., 2007). Google Ad Exchange, the
largest online auction platform, announced its shift to the
first-price auction in September 2019 (Bigler, 2019). On
the one hand, the difference in the nature of first-price auc-
tions and second-price auctions implies that the algorithms
proposed by the above work may not directly apply to the
first-price setting. On the other hand, most previous work
on repeated first-price auctions only considered bidding
without budgets (Balseiro et al., 2019; Han et al., 2020b;a;
Badanidiyuru et al., 2021; Zhang et al., 2022). The shift thus
leads to a pressing question of how should an advertiser bid
in repeated first-price auctions to maximize the cumulative
payoffs while controlling the expenditures.

In this paper, we study the design of online bidding algo-
rithms in repeated first-price auctions with budgets. We
focus on a stochastic setting where both the bidder’s val-
ues and the maximum competing bids are i.i.d. sampled
over auctions. The goal is to optimize the bidder’s expected
cumulative rewards while keeping her budget constraint
satisfied for any realization of values and competing bids.
We provide online bidding algorithms for the bidder in two
different feedback models: (1) the full information feedback,
where the maximum competing bid is always revealed after
each auction; (2) the one-sided information feedback, where
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only the winning bid is revealed after each auction.

Our Results. Our main contribution is to propose two
near-optimal bidding algorithms for each of the two feed-
back models. For the full information feedback, Algorithm 1
can achieve an Õ(

√
T ) regret where T is the total number of

auctions (Theorem 3.2). For the the one-sided information
feedback, Algorithm 2 can achieve an Õ(

√
T ) regret under

mild assumptions on value distributions (Theorem 3.7).

Our algorithms follow a primal-dual framework and update
a dual variable via online gradient descent to adjust the rate
at which the bidder depletes her budget. The framework
is similar to those used by previous work on second-price
auctions (Balseiro & Gur, 2019; Balseiro et al., 2022b; Feng
et al., 2022; Chen et al., 2022). However, its application to
repeated first-price auctions presents new challenges:

1. First, due to the non-truthful nature of first-price auc-
tions, we cannot compute the bid that maximizes the
cost-adjusted reward without knowing the highest com-
peting bid. One can only expect to maximize the objec-
tive in expectation by learning the hidden distribution
of the maximum competing bids. However, estimates
using historical samples may not be sufficiently accu-
rate. Even worse, with one-sided feedback, the bidder’s
observations are actually biased.

2. Second, the dynamic update of the dual variable im-
plies that the cost-adjusted reward function differs in
different rounds. This causes failure in previous bandit
algorithms like Balseiro et al. (2019) and Han et al.
(2020b), as future rounds may suffer from exploitation
when objectives are misaligned.

This work overcomes the two challenges and provides theo-
retical performance guarantees for our proposed algorithms.
We start with the full information feedback and design an
algorithm (Algorithm 1), which sketches the high-level com-
bination of online optimization methods and distribution
estimation techniques. We then refine the algorithm for the
one-sided information feedback, where we introduced value
shading (i.e., scaling down the value by a factor) to align the
objectives of different rounds so as to balance exploration
and exploitation. We maintain a high-reward bid set for each
shaded value and leverage the graph-feedback and partial-
order properties in first-price auctions, which in essence
follows the approach developed in Han et al. (2020b). As
the bidder’s observations are biased in this feedback model,
the estimation errors are bounded via a martingale argument.
The sum of estimation errors is shown to be upper bounded
by Õ(

√
T ) with an assumption on the bidder’s value distri-

bution. In the experimental part, we demonstrate that our
algorithms outperform those without budget management

under various distributions in terms of the long-run average
performance.

1.1. Related Work

Learning in repeated auctions with constraints has been ex-
tensively studied in literature but most studies focused on
only second-price auctions. Balseiro & Gur (2019) pro-
posed an optimal online bidding algorithm known as adap-
tive pacing in repeated second-price auctions with budget
constraints. Balseiro et al. (2022b) extended the above work
by relaxing some model assumptions and using a more
general dual approximation scheme. Feng et al. (2022);
Golrezaei et al. (2021) considered repeated second-price
auctions with both budget and return-on-spend (RoS) con-
straints. Chen et al. (2022) studied another important class
of budget management strategies, called throttling, and pro-
posed a near-optimal throttling algorithm. Our work con-
siders budget management strategies in repeated first-price
auctions instead but we use some dual-based techniques
similar to those in the above papers.

For repeated first-price auctions, most previous work only
considered bidding without constraints. Balseiro et al.
(2019) first considered learning in repeated first-price auc-
tions with binary feedback. They adopted a cross-learning
approach to achieve an Õ(T 2/3) regret and showed that the
lower bound on regret is Ω(T 2/3). Han et al. (2020b) consid-
ered repeated first-price auctions with one-sided feedback.
They leveraged the graph-feedback and partial-order proper-
ties in first-price auctions to achieve an Õ(

√
T ) regret and

proved that the lower bound on regret is Ω(
√
T ) even under

full feedback. Han et al. (2020a) considered the setting with-
out the i.i.d. assumption of the maximum competing bids
but with a Lipschitz assumption on competing strategies.
Badanidiyuru et al. (2021) studied contextual first-price auc-
tions where the values and the maximum competing bids
depend on public contexts. Zhang et al. (2022) studied the
setting where the bidder has access to some hint relevant to
the maximum competing bid. The main difference between
the above papers and ours is that the bidder has a budget
constraint in our model.

Technically, our setting is closely related to the Bandits
with Knapsacks (BwK) literature (Badanidiyuru et al., 2018;
Agrawal & Devanur, 2019; Castiglioni et al., 2022; Immor-
lica et al., 2022), among which Castiglioni et al. (2022)
considered first-prices auctions with budgets, as an applica-
tion of the BwK framework. Given a finite value set of size
nv and a finite bid set of size nb, their algorithm can achieve
an O(

√
Tnv log(nb)) regret in various feedback models by

instantiating appropriate regret minimizers. Hence, with
a careful discretization, their result immediately implies
a sublinear regret bound for the setting with continuous
valuations and bids. However, taking into account the dis-
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cretization error of order O(T/nv + T/nb), the best regret
guarantee they can obtain is Õ(T 2/3), while we can achieve
a near-optimal Õ(

√
T ) regret for the continuous setting.

Ai et al. (2022) studied a variant problem of repeated first-
price auctions with budgets. Their model additionally in-
volves a discount factor γ < 1 in the objective function and
the “optimal” strategy is defined with respect to this variant
problem. Their algorithm will abort if γ = 1 so our results
are not directly comparable with theirs.

Balseiro et al. (2022a) studied the equilibrium bidding
strategies for first-price auctions with budgets. Their value-
pacing-based strategies are similar to our second algorithm,
but note that we are investigating a dynamic setting from the
view of a single budget-constrained bidder. The equilibrium
characterization of the first-price market cannot provide
regret guarantees for dynamic bidding, especially consider-
ing the learning process with respect to different feedback
models.

2. Model and Benchmark
In this work, we consider the problem of online learning in
the first-price auction market. We focus on a single bidder
in a large population of bidders during a time horizon T .

In each round t = 1, . . . , T , there is an available ad slot
auctioned by the seller (e.g. an advertising platform). The
bidder receives a private value vt ∈ [0, v̄], and then submits
a bid bt ∈ R+ based on vt and all historical observations
available to her. We denote the maximum bid of all other
bidders by dt ∈ R+. The auction outcome depends on the
comparison between bt and dt. Let xt := 1 {bt ≥ dt} be
the binary variable indicating whether the bidder wins the ad
slot at round t. Here we assume that ties are broken in favor
of the bidder we concern to simplify exposition. We note
that this choice is arbitrary and by no means a limitation of
our approach. Let rt := xt(vt − bt) be her reward and let
ct := xtbt be the corresponding cost for a first-price auction.
As usual, we use the bold symbol v without subscript t
to denote the vector (v1, . . . , vT ); the same goes for other
variables in the present paper.

The bidder has a budget B that limits the payments she
can make over T rounds of auctions, and her maximum
expenditure rate is denoted by ρ := B/T . We assume
that ρ ∈ (0, v̄]; otherwise, it becomes a problem without
constraints as the bidder would never deplete her budget.

We consider a stochastic setting where vt is i.i.d. sampled
from a distribution F and dt is i.i.d. sampled from a distri-
bution G. The latter assumption follows from the standard
mean-field approximation (Iyer et al., 2014; Balseiro et al.,
2015) and is a common practice in literature. The main
rationale behind this assumption is that when the number

of other bidders is large, on average their valuations and
bidding strategies are static over time. Note that both F and
G are unknown to the bidder.

Information structure. In repeated first-price auctions,
the bidder can receive different feedback after each round
depending on the information released by the seller. In
particular, the ability of this bidder to observe the maximum
competing bid dt varies to the information structure. In this
paper, we investigate two different information structures:

1. Full information feedback. The bidder can observe the
maximum competing bid dt at the end of each round
t. This information structure makes sense in many
current online auction platforms. For example, in the
Google Ad Exchange, at the end of an auction, bidders
will receive back the minimum value they would have
had to bid to win the auction, whether they lose or win
(Google Ad Exchange, 2022).

2. One-sided information feedback. The bidder can ob-
serve the maximum competing bid dt only if she loses
the auction. Thus, the feedback available to her in-
cludes 1{bt ≥ dt} and dt1{bt < dt}. This can be
viewed as an informational version of the winner’s
curse (Capen et al., 1971) where the winner learns less
information. And this is a common feedback model
in previous studies on repeated first-price auctions
(Esponda, 2008; Han et al., 2020b; Ai et al., 2022).
Compared to the full information feedback, the one-
sided information feedback is more complicated to deal
with as the bidder can observe less information.

We denote the historical observations available to the bidder
before submitting a bid in round t by Ht. For the full
information feedback, we define

HF
t := (vs, xs, ds)

t−1
s=1 .

At the end of each round s, the bidder can append a tu-
ple (vs, xs, ds) to the available history. For the one-sided
information feedback, we define

HO
t := (vs, xs, (1− xs)ds)

t−1
s=1 .

At the end of each round s, the bidder knows her value
and whether she wins, but the winner can only observe
(1− xs)ds = 0.

Bidding strategy and regret. A bidding strategy maps
(Ht, vt) to a (possibly random) bid bt for each t. We say
π is budget feasible if it generates expenditures that are
constrained by the budget for any realizations of values and
maximum competing bids, i.e. ∀v,d,

T∑
t=1

cπt =

T∑
t=1

1 {bπt ≥ dt} bπt ≤ B = ρT.
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We denote by Π0 the set of all budget feasible strategies.
For a strategy π ∈ Π0, we denote by R(π) the performance
of π, defined as follows:

R(π) =Eπ
v,d

[
T∑

t=1

rπt

]

=Eπ
v,d

[
T∑

t=1

1 {bπt ≥ dt} (vt − bπt )

]
,

where the expectation is taken with respect to the values, the
maximum competing bids and any possible randomness em-
bedded in the strategy. The bidder’s optimization problem
can be written as

max
π

Eπ
v,d

[
T∑

t=1

1 {bπt ≥ dt} (vt − bπt )

]

s.t.
T∑

t=1

1 {bπt ≥ dt} bπt ≤ ρT, ∀v,d.

(1)

The regret of the bidder is defined to be the difference in the
expected cumulative rewards of the bidder’s strategy and
the optimal budget feasible bidding strategy, which has the
perfect knowledge of F and G:

Reg(π) = max
π′∈Π0

R(π′)−R(π).

3. Bidding Algorithms and Analysis
In this section, we first design and analyze an algorithm for
Problem (1) with full information feedback, which reveals
our high-level idea on budget management in repeated first-
price auctions. We prove that the algorithm can achieve an
Õ(
√
T ) regret. Then we modify our algorithm to accommo-

date the setting with only one-sided information feedback
by using value shading and leveraging a special partial order
property possessed by first-price auctions. The modified
algorithm can still achieve an Õ(

√
T ) regret under mild

assumptions. All omitted proofs in this section can be found
in the appendix.

3.1. Full Information Feedback

Our bidding algorithm for full information feedback is de-
picted in Algorithm 1. The bidder first conducts a one-round
exploration to make an appropriate initialization (Line 2).
After observing the value vt in each round t = 2, . . . , T , the
bidder constructs estimates of empirical rewards and costs
based on all historical observations and submits a bid that
maximizes a cost-adjusted reward (Lines 4 to 6). Then the
bidder updates λt using the empirical cost of the submitted
bid c̃t(b) and her average budget ρ (Line 7). The variable
λt plays a key role in adjusting the pace at which the bidder

Algorithm 1 Bidding Algorithm for First-Price Auctions
with Budgets under Full Information Feedback

1: Input: Time horizon T ; budget B = ρT ; update step
ϵ > 0; failure probability δ > 0.

2: Initialization: The bidder bids b1 = 0 and set B2 =
B, λ2 = 0.

3: for t ∈ {2, · · · , T} do
4: The bidder receives the value vt ∈ [0, v̄].
5: The bidder estimates the rewards and costs:

r̃t(vt, b) =
1

t− 1

t−1∑
s=1

1 {b ≥ ds} (vt − b) , (2)

c̃t(b) =
1

t− 1

t−1∑
s=1

1 {b ≥ ds} b. (3)

6: The bidder submits a bid:

bt ∈ argmax
b

(r̃t(vt, b)− λtc̃t(b)) . (4)

(Taking the smallest if there are ties.)
7: The bidder updates the parameter

λt+1 = Projλ>0 (λt − ϵ (ρ− c̃t(bt))) . (5)

8: The bidder observes the maximum competing bid dt.

9: The bidder update the remaining budget

Bt+1 = Bt − ct. (6)

10: if Bt+1 < v̄ then
11: break
12: end if
13: end for

depletes her budget. By the choice of bt, we must have
bt ≤ vt/(1 + λt). If the bidder bids too high in past rounds,
λt tends to be larger, thereby controlling the bids in future
rounds.

To provide more intuition on the choice of bt and the update
procedure of λt, we consider an alternative optimization
problem with a soft budget constraint:

max
π

Eπ
v,d

[
T∑

t=1

1 {bπt ≥ dt} (vt − bπt )

]

s.t. Eπ
v,d

[
T∑

t=1

1 {bπt ≥ dt} bπt

]
≤ ρT.

(7)
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The Lagrangian dual objective of Problem (7) is

Eπ
v,d

[
T∑

t=1

(1 {bπt ≥ dt} (vt − (1 + λ)bπt ) + λρ)

]

=

T∑
t=1

(
Eπ
Ht,vt

[
(vt − (1 + λ)bπt )G (bπt )

]
+ λρ

)
,

where the equality holds since bπt is independent of dt as
well as other future values and maximum competing bids.
For a fixed λ, the dual objective is maximized by bidding
bt ∈ argmaxb(vt − (1 + λ)b)G(b), which is irrelevant to
the historical observationsHt.

We denote by Π1 the set of all strategies that satisfy the soft
budget constraint in Problem (7). By weak duality, we have

max
π∈Π1

R(π)

≤min
λ≥0

T

(
Ev

[
max

b
(v − (1 + λ)b)G (b)

]
+ λρ

)
. (8)

Our algorithm adopts an online gradient descent scheme
to approximate the right hand side of (8), which is also an
upper bound on the optimal value of Problem (1) since Π0 ⊆
Π1. A crucial challenge here is that the bidder does not know
the prior distribution G so she cannot calculate the exact
maximum point of (v − (1 + λ)b)G(b). To deal with this
issue, we adopt the distribution estimation method and use
r̃t(vt, b), c̃t(b) in place of (v − b)G(b), bG(b). As t grows,
the estimates become more accurate. The following lemma
shows that ∀vt, b, r̃t(vt, b) and c̃t(b) are good estimates of
r(vt, b) := (vt − b)G(b) and c(b) := bG(b) respectively.
Lemma 3.1. Under Algorithm 1, with probability at least
1− δ, we have for all t ≥ 2 and b ≤ v̄,

|r̃t(vt, b)− r(vt, b)| ≤v̄ ·

√
ln (2T/δ)

2(t− 1)
, (9)

|c̃t(b)− c(b)| ≤v̄ ·

√
ln (2T/δ)

2(t− 1)
. (10)

Theorem 3.2. For repeated first-price auctions with budget
constraints and full information feedback, Algorithm 1 can
achieve

Reg(π) = O
(√

T lnT
)
.

In the proof of Theorem 3.2, we first we perform a standard
analysis of the online gradient descent method to show the
sequence of λt is not much worse than a hindsight λ with
respect to gain function ht(λt) = λt (c̃t(b)− ρ). This,
together with Lemma 3.1 implies that with high probability,
the bid bt chosen in each round is close to the bid chosen by
the best strategy for Problem (7), i.e., argmaxb(vt − (1 +
λ∗)b)G(b) where λ∗ is the optimal dual variable. Finally,
the proof is concluded by showing that the time at which
the budget is depleted under Algorithm 1 is close to T .

Lower bound. As previous work has proved, the lower
bound on regret for this problem is Ω(

√
T ) even without

constraints (i.e., ρ = v̄).

Lemma 3.3 (Han et al. (2020b)). For repeated first-price
auctions and full information feedback, there exists a posi-
tive constant C > 0 independent of T such that

inf
π

sup
F,G

Reg(π) ≥ C
√
T . (11)

This previous result implies that our algorithm can achieve
a near-optimal learning performance in first-price auctions
with budget constraints.

Discretization. In Algorithm 1, Line 5 requires estimat-
ing rewards and costs for all possible bids but the bid
space might be continuous. In practice, we can resolve
this issue by a simple discretization, which will cause lit-
tle performance degradation. Let B = {b1, · · · , bK} with
bk = (k − 1)/K · v̄. We then change Line 6 to that the
bidder submits a bid

bt ∈ argmax
b∈B

(r̃t(vt, b)− λtc̃t(b)) . (12)

When K = Ω(
√
T ), the discretization error is of order

O(
√
T ). In the next subsection, we will discretize both

values and bids in Algorithm 2 and more formally analyze
the additional regret caused by the discretization.

3.2. One-sided Information Feedback

This subsection provides a modified algorithm for the sce-
nario with one-sided information feedback. We show an
Õ(
√
T ) regret can still be achieved with an assumption on

the bidder’s value distribution.

As the bidder can only observe the highest competing bid
ds after losing at round s under one-sided information feed-
back, she can no longer estimate the expected rewards and
costs in each round using all past rounds as in Algorithm 1.
Specifically, given value vt and bid b, if b < bs and bs ≥ ds,
she cannot determine 1{b ≥ ds}, so that she cannot calcu-
late r̃t(vt, b), c̃t(b) as in (2), (3). Therefore, we need new
estimators for the expected rewards and costs.

For this purpose, we first discretize the value space into a set
of size M , V = [v1, · · · , vM ] with vm = (m − 1)/M · v̄,
and the bid space into a set of size K, B = {b1, · · · , bK}
with bk = (k−1)/K · v̄. Then, we denote by nk

t the number
of observed bids lower than bk before round t:

nk
t :=

t−1∑
s=1

1
{
bs ≤ bk

}
. (13)

Given vm and bk, we define two estimators under one-sided
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information feedback as

r̃t(v
m, bk) =

1

nk
t

t−1∑
s=1

1
{
bs ≤ bk

}
1
{
bk ≥ ds

} (
vm − bk

)
,

(14)

c̃t(b
k) =

1

nk
t

t−1∑
s=1

1
{
bs ≤ bk

}
1
{
bk ≥ ds

}
bk. (15)

Note that the equations (14) and (15) are measurable with
respect to the available history HO

t . If bs ≥ ds, we have
1
{
bs ≤ bk

}
1
{
bk ≥ ds

}
= 1

{
bs ≤ bk

}
; if bs ≤ ds, the

bidder can observe the exact ds to determine 1
{
bk ≥ ds

}
.

Since (ds)
t−1
s=1 are not mutually independent conditioned

on (bs)
t−1
s=1, r̃t(vm, bk) and c̃t(b

k) are actually not unbiased
estimators. However, we can still prove via a martingale
argument that they approximate well to the expected reward
r(vm, bk) = (vm−bk)G(bk) and the expected cost c(bk) =
bkG(bk) with high probability, which is formalized as the
following lemma.

Lemma 3.4. Under Algorithm 2, with probability at least
1− δ, we have ∀t ≥ 2,m ∈ [M ], k ∈ [K],

|r̃t(vm, bk)− r(vm, bk)| ≤v̄ ·

√
4 lnT ln (KT/δ)

nk
t

, (16)

|c̃t(bk)− c(bk)| ≤v̄ ·

√
4 lnT ln (KT/δ)

nk
t

. (17)

By Lemma 3.4, we know that the more bids that are lower
than bk, the more accurate the estimation of r(vm, bk) and
c(bk). However, bidding low in order to benefit future esti-
mates may cause great loss in the current round. The exis-
tence of the budget constraint further increases the difficulty
of balancing present and future rewards.

We depict our modified algorithm for one-sided information
feedback in Algorithm 2. The main difference with Algo-
rithm 1 is that the bidder maintains an active set of high
reward bids for each m ∈ [M ]. After observing the value
vt in round t, the bidder shades it by (1 + λt) (Line 11)
and rounds it to vm(t) ∈ V . Then the bidder submits a
bid among the active bid set Bm(t)

t (Line 12). The value-
shading step essentially aligns the objectives of different
rounds. Observe that

r(vt, b
k)− λtc(b

k) =
(
vt − (1 + λt) b

k
)
G(bk)

=(1 + λt)

(
vt

1 + λt
− bk

)
G(bk)

=(1 + λt) · r(vt/(1 + λt), b
k).

Thus, with vm ≈ vt/(1+λt), maximizing r(vt, b)−λtc(b)
is approximately equivalent to maximizing the reward

Algorithm 2 Bidding Algorithm for First-Price Auctions
with Budgets under One-Sided Information Feedback

1: Input: Time horizon T ; budget B = ρT ; value set
V = [v1, · · · , vM ] with vm = (m− 1)/M · v̄; bid set
B = {b1, · · · , bK} with bk = (k − 1)/K · v̄; update
step ϵ > 0; failure probability δ ∈ (0, 1).

2: Initialization: The bidder bids b1 = 0 and set B2 =
B, λ2 = 0. Set Bm0 ← B for each vm ∈ V .

3: for t ∈ {2, · · · , T} do
4: The bidder receives the value vt ∈ [0, 1];
5: The bidder counts the observations by (13), and esti-

mates the rewards and costs by (14) and (15).
6: for m ∈ {1, 2, · · · ,M} do
7: The bidder eliminates bids by:

Bmt−1 =

{
bk ∈ Bmt−1 : bk ≥ max

s<m
inf Bst

}
. (18)

8: The bidder computes the confidence bound:

wm
t = v̄ ·

√
4 lnT log(KT/δ)

Nm
t

, (19)

where Nm
t = minbk∈Bm

t−1
nk
t .

9: The bidder eliminates bids by:

Bmt ←
{
bk ∈ Bmt−1 : r̃t(v

m, bk)

≥ max
bk′∈Bm

t−1

r̃t(v
m, bk

′
)− 2wm

t

}
. (20)

10: end for
11: The bidder chooses

vm(t) = max{u ∈ V : u ≤ vt/(1 + λt)}. (21)

12: The bidder submits a bid bt = inf Bm(t)
t ;

13: The bidder updates the parameter

λt+1 = Projλ>0 (λt − ϵ (ρ− c̃t(bt))) . (22)

14: The bidder observes xt and (1− xt)dt;
15: The bidder update the remaining budget

Bt+1 = Bt − ct. (23)

16: if Bt+1 < v̄ then
17: break
18: end if
19: end for
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r(vm, b) as if the bidder is participating in a first-price auc-
tion without any budget constraint and the value is vm.

Instead of submitting the bid with the highest estimated
reward r̃t(v

m, bk), the algorithm chooses the smallest bid
in Bmt in order to make future estimates as accurate as pos-
sible. In addition to filtering bids according to the expected
rewards and confidence bounds (Line 9), the algorithm also
eliminates some small bids from the active sets in Line 7.
This elimination increases Nm

t so that the bidder can use
smaller confidence bounds to prune the active sets. As long
as the best bid for a value vm remains in the active set Bmt ,
the elimination can further control the regret.

To prove that the best bids are not eliminated, we lever-
age a special partial order property of first price auctions,
i.e., b∗(v) = argmaxb(v − b)G(b) is non-decreasing
in v. In particular, for our scenario with discretization,
b̃(v) = argmaxb∈B(v − b)G(b) is non-decreasing in v.
The property guarantees that with high probability, b̃(vm),
which approximately maximizes r(vm, b), is not eliminated
from the active set Bm

t−1 by Line 7. (See Lemma B.3.)

Assumption 3.5. The cumulative probability distribution
F is continuous with bounded density function f satisfying
0 < f < f(v) < f <∞ for v ∈ [0, v̄].

Assumption 3.5 is a technical assumption required by our
analysis. We note that the existence of positive bounds on
the density function is a common assumption in various
learning problems. For example, Balseiro & Gur (2019)
took it as one of the sufficient conditions for the strong
convexity of the dual objective function.

Lemma 3.6. Suppose that Assumption 3.5 holds. We have

Ev,d

[
T∑

t=2

√
1
/
N

m(t)
t

]
≤ Õ

(√
T
)
.

For full information feedback, the estimation error in round
t is O(

√
lnT/(t− 1)) by Lemma 3.1 so that we are able to

control the sum of errors within Õ(
√
T ). Lemma 3.6 estab-

lishes that for one-sided information feedback, we can get a
similar result given Assumption 3.5 holds, which constitutes
a key part of the proof of the following Theorem 3.7.

Theorem 3.7. Suppose that Assumption 3.5 holds. For
repeated first-price auctions with budget constraints and
one-sided information feedback, there exists constants
C1, C2, C3, such that Algorithm 2 can achieve

Reg(π) ≤ C1

√
T ln (KT 2) lnT + C2

T

M
+ C3

T

K
.

Particularly, when choosing K = M = O(
√
T ), we obtain

that Reg(π) ≤ Õ(
√
T ) when T is sufficiently large. We

note that to prove Theorem 3.7, Assumption 3.5 is sufficient

but may not be necessary. In Section 4, we run numerical
experiments with further discussion.

4. Experiments
In this section, we empirically evaluate the reward obtained
by our proposed algorithms with both full and partial infor-
mation feedback, using data generated from various distribu-
tions. The primary objective of the numerical experiments
is to demonstrate the effectiveness of budget management
in different settings. The performance may be further im-
proved by tuning the parameters according to the amount
of available budgets. The characterization of such optimal
context-dependent parameters is left as an open future prob-
lem.

Setup. We consider repeated first-price auctions with T =
106 rounds, budget amount B = 104 and upper bound on
values v̄ = 1. We generate the sequence of competing
bids by sampling each dt i.i.d. from normal distribution
N (0.4, 0.1). For the sequence of private values, we consider
normal distribution, logarithmic normal distribution and
uniform distribution respectively. Detailed parameters of
the private value distributions can be found in Figure 1.

In each experiment, we simulate T rounds auctions under
both full and one-sided information structure, and compare
our proposed algorithm with ones without budget manage-
ment, i.e., all the same except for omitting multiplier λt and
using true value vt instead of vt/(1+λt). The performance
is evaluated by observing and plotting

∑t
s=1 rs/t, the re-

ward per round as a function of t. For all algorithms, we
uniformly set M = K = 100, failure probability δ = 0.01,
and adopt fixed step size ϵ = 1/

√
T . For each of the graph

we take the average of 20 independent repetitions of the
process.

In the above setup, readers may think ρ/v̄ = 0.01 is a
too tight constraint. However, with an example we show
that a seemingly “tight” constraint is necessary for budget
management to be of even the least use.

Example 4.1. In T -round repeated first price auctions with
vt, dt ∼ U(0, 1), when adopting the optimal strategy for
Problem (7), the soft budget constraint is not binding if
ρ ≥ 1/12.

We note that the study on budget management is only needed
when budget is relatively tight, such as ρ < 1/12 in the
above example. Otherwise, a bidder can simply “forget”
B, adopt unconstrained strategies, without expecting her
budget to run out.

Results and Discussions. The results of three parallel
experiments are plotted in Figure 1, with both full and one-
sided information feedback considered. Notably, in all in-
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(a) Normal vt , full feedback.
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(b) Log-normal vt, full feedback.
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(c) Uniform vt, full feedback.
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(d) Normal vt, one-sided feedback.

0.00 0.25 0.50 0.75 1.00
Time Horizon 1e6

0.00

0.01

0.02

0.03

0.04

0.05

0.06
re

w
ar

d 
pe

r 
ro

un
d

with control
without control

(e) Log-normal vt, one-sided feedback.

0.00 0.25 0.50 0.75 1.00
Time Horizon 1e6

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

re
w

ar
d 

pe
r 

ro
un

d

with control
without control

(f) Uniform vt, one-sided feedback.

Figure 1. Performance of bidding algorithms with and without budget control, under full (Upper) and one-sided (Lower) feedback,
evaluated with respect to the reward per round. In three columns, private values are respectively sampled from: (Left) normal distribution
vt ∼ N (0.6, 0.1), (Middle) logarithmic normal distribution log vt ∼ N (−0.4, 0.1), and (Right) uniform distribution vt ∼ U(0.25, 1).

stances, our proposed algorithm outperforms the one with
no budget control, with respect to the total reward. The
latter algorithm gains remarkable rewards in the beginning
rounds, yet tends to deplete its budget in an early phase.
The reward per round is then inversely proportional to t,
and is eventually exceeded by algorithms with budget con-
trol. Meanwhile, for algorithms with budget control, the
budget can also be depleted in some instances, but only at
the very ending phase, with a delicate turning in the tail of
each curve. This coincides our argument that the algorithm
has its expected time of budget depletion close to T . We
also note that for the bidding algorithm under one-sided
information feedback with budget control,

∑t
s=1 rs/t holds

steady in most rounds, which indicates that the algorithm
manages to achieve stable per-round gain as the budget is
diminishing. This further demonstrates the effectiveness of
the proposed algorithms on budget management.

Further Experiments on Lemma 3.6. We notice that the
proposed algorithm performs well in the third experiment
where vt ∼ U(0.25, 1), which does not satisfies the condi-
tions of Assumption 3.5. This indicates that the proposed
bidding algorithm with one-sided feedback might perform
well on a broader class of private value distributions beyond
the requirement of Assumption 3.5. The following experi-
ment provides numerical evidence that Lemma 3.6 is very

likely to hold for the value distribution U(0.25, 1).
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Figure 2. Numerical evidence for Lemma 3.6 by showing
E
[∑T

t=2(N
m(t)
t )−1/2

]
≤

√
T lnT , in a case where Assump-

tion 3.5 does not hold.

We simulate the bidding algorithm with budget control under
one-sided feedback with different time horizons T = 105τ
where τ = 1, · · · , 10, while fixing K = M = 100. For
each horizon T , we observe the sequence of values and bids
to compute

∑T
t=2(N

m(t)
t )−1/2. We repeat the process 10

times to estimate its expectation, which is compared with√
T lnT . The results are plotted in Figure 2.
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In Figure 2, the growth rate of the blue curve is no-
tably smaller than

√
T lnT , supporting the inequality in

Lemma 3.6. We further conjecture that similar properties
may hold for a larger class of distributions, only a subset of
which is captured by Assumption 3.5. Preciser theoretical
characterization of the distribution class is an interesting
open problem, which we left as a future direction.

5. Conclusion
In this paper, we study the problem of bidding algorithm de-
sign for repeated first-prices auctions with budgets, in both
full and one-sided feedback models. On the theoretical side,
we prove that Algorithm 1 can achieve an Õ(

√
T ) regret

in the case with full information feedback and that with a
technical assumption Algorithm 2 can achieve an Õ(

√
T )

regret in the case with one-sided information feedback. On
the practical side, we show that our algorithms can attain
effective budget management as well as good performance.
The experiments under distributions that do not satisfy the
technical assumption gives evidence that our algorithm can
be more widely applicable.
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A. Missing Proofs in Section 3.1
A.1. Proof of Lemma 3.1

Note that Line 5 in Algorithm 1 essentially estimates r(vt, b) and c(b) using an empirical distribution G̃t:

G̃t(b) =
1

t− 1

t−1∑
s=1

1 {b ≥ ds} .

By Dvoretzky–Kiefer–Wolfowitz (DKW) inequality (Massart, 1990), we have

Pr

(
sup
b
|G̃t(b)−G(b)| ≥

√
ln (2T/δ)

2(t− 1)

)
≤ δ

T
.

Thus with probability at least 1− δ, we have for all t ≥ 2,

|r̃t(vt, b)− r(vt, b)| ≤|vt − b| · |G(b)− G̃t(b)| ≤ v̄ ·

√
ln (2T/δ)

2(t− 1)
,

|c̃t(b)− c(b)| ≤|b| · |G(b)− G̃t(b)| ≤ v̄ ·

√
ln (2T/δ)

2(t− 1)
.

A.2. Proof of Theorem 3.2

We denote by τ := sup{t ≤ T : Bt ≥ v̄} the latest period in which the bidder’s remaining budget is larger than her
maximum private value under Algorithm 1. We consider an alternative framework in which the bidder is allowed to bid even
after budget depletion. Note that the performance of π in both the original and alternative frameworks coincide up to time τ .
Therefore,

R(π) = Ev,d

[
τ∑

t=2

rt

]
≥ Ev,d

[
T∑

t=2

rt

]
− v̄ · Ev,d [T − τ ] . (24)

The inequality holds since rt ≤ vt ≤ v̄. Here rt refers to the reward in the alternate framework where the bidder does not
break the loop even if Bt+1 < v̄.

We first characterize the optimal strategy for Problem (7). The proof of Lemma A.1 is deferred to Appendix A.3.

Lemma A.1. There exists an optimal bidding strategy for Problem (7) that maps the value in each round to a random bid,
discarding all historical information. Denoting the optimal bidding strategy by α∗, we have

R(α∗) = T · Eα∗

v∼F [r(v, α∗(v))] , Eα∗

v∼F [c(α∗(v))] ≤ ρ.

Next we start to lower bound the performance of our strategy. For the first term in the right hand side of (24), we observe that

Eπ
v,d

[
T∑

t=2

rt

]
=

T∑
t=2

Eπ
Ht,vt [r(vt, bt)] =

T∑
t=2

Eπ
v,d [r(vt, bt)] = Eπ

v,d

[
T∑

t=2

r(vt, bt)

]
. (25)

Let α∗ be the optimal bidding strategy characterized in Lemma A.1. By the choice of bt, we have

r̃t(vt, bt)− λtc̃t(bt) ≥ r̃t(vt, α
∗(vt))− λtc̃t(α

∗(vt))

Then according to Lemma 3.1, with probability at least 1− δ, for all t ≥ 2,

r(vt, bt)− λtc̃t(bt) ≥ r(vt, α
∗(vt))− λtc(α

∗(vt))− (2 + λt)v̄ ·

√
ln (2T/δ)

2(t− 1)
.
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Reordering terms and summing up from t = 2 to T , we have

T∑
t=2

r(vt, bt) ≥
T∑

t=2

r(vt, α
∗(vt))−

T∑
t=2

λtc(α
∗(vt)) +

T∑
t=2

λtc̃t(bt)−
T∑

t=2

(2 + λt)v̄ ·

√
ln (2T/δ)

2(t− 1)
.

Notice that the right hand side is upper bounded by 2(T − 1)v̄ since r(vt, α
∗(vt)) ≤ v̄ and c̃t(bt) ≤ 1/(1 + λt) by (31).

Taking expectations, we obtain

Ev,d

[
T∑

t=2

r(vt, bt)

]
(a)
≥Eα∗

v,d

[
T∑

t=2

r(vt, α
∗(vt))

]
− Eα∗

v,d

[
T∑

t=2

λtc(α
∗(vt))

]

+ Ev,d

[
T∑

t=2

λtc̃t(bt)

]
−
(
v̄2

ρ
+ v̄

)√
2T ln (2T/δ)− δ · 2(T − 1)v̄.

(b)
≥R(α∗)− v̄ − Ev,d

[
T∑

t=2

λt (ρ− c̃t(bt))

]
−
(
v̄2

ρ
+ v̄

)√
2T ln (2T/δ)− δ · 2(T − 1)v̄,

where (a) follows from λt ≤ v̄/ρ− 1 by Lemma A.2 and (b) follows from Lemma A.1.

We now apply a standard analysis of the online gradient descent method to show that the sequence of λt is not much
worse than a hindsight λ with respect to gain function ht(λt) = λt (c̃t(b)− ρ). The proof of Lemma A.2 is deferred to
Appendix A.4.
Lemma A.2. For all t ≥ 2, we have λt ∈ [0, v̄/ρ− 1]. Moreover, for any λ > 0, we have

T∑
t=2

(λt − λ) (ρ− c̃t(bt)) ≤
λ2

2ϵ
+

(T − 1)ϵv̄2

2
. (26)

By using Lemma A.2 with λ = 0, we obtain

Ev,d

[
T∑

t=2

r(vt, bt)

]
≥R(α∗)− v̄ − Ev,d

[
T∑

t=2

λt (ρ− c̃t(bt))

]
−
(
v̄2

ρ
+ v̄

)√
2T ln (2T/δ)− δ · 2(T − 1)v̄

≥R(α∗)− v̄ − (T − 1)ϵv̄2

2
−
(
v̄2

ρ
+ v̄

)√
2T ln (2T/δ)− δ · 2(T − 1)v̄, (27)

For the second term in the right hand side of (24), we show that the stopping time τ is close to T . The proof of Lemma A.3
is deferred to Appendix A.5
Lemma A.3. For Algorithm 1, with probability at least 1− 2δ, we have

T − τ ≤ v̄

ρ
·
(

1

ϵρ
+
√
2T ln (2T/δ) +

√
2T ln (1/δ)

)
.

By Lemma A.3, we have

Ev,d [T − τ ] ≤(1− 2δ) · v̄
ρ
·
(

1

ϵρ
+
√
2T ln (2T/δ) +

√
2T ln (1/δ)

)
+ 2δ · T. (28)

Plugging (27) and (28) into (24), we obtain

R(π) ≥R(α∗)− v̄ − (T − 1)ϵv̄2

2
−
(
v̄2

ρ
+ v̄

)√
2T ln (2T/δ)− δ · 2(T − 1)v̄

− (1− 2δ) · v̄
2

ρ
·
(

1

ϵρ
+
√
2T ln (2T/δ) +

√
2T ln (1/δ)

)
− 2δ · T v̄.

By setting the step size to ϵ ∼ T−1/2 and the failure probability to δ ∼ T−1, Algorithm 1 can obtain a regret of order
O(
√
T log T ).
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A.3. Proof of Lemma A.1

Let α : [0, v̄] 7→ ∆[0, v̄] be a bidding strategy that maps vt to a distribution over [0, v̄]. Consider the following optimization
problem:

max
α

Eα
v,d

[
T∑

t=1

1 {α(vt) ≥ dt} (vt − α(vt))

]

s.t. Eα
v,d

[
T∑

t=1

1 {α(vt) ≥ dt}α(vt)

]
≤ ρT.

Because the sequences of vt and dt are independent samples, the problem can be simplified as

max
α

T · Eα
v∼F [(v − α(v))G(α(v))]

s.t. Eα
v∼F [α(v)G(α(v))] ≤ ρ.

(29)

Let A1 be the set of all feasible solutions to Problem (29). Note that this is a convex optimization problem where Slater’s
condition holds (always bidding 0 is an interior point). As a result, strong duality holds:

max
α∈A1

R(α) =min
λ≥0

T ·
(
Ev

[
max
α

(v − (1 + λ)α(v))G (α(v))
]
+ λρ

)
.

The optimal bidding strategy α∗ maps v to a distribution over the bids that maximize (v − (1 + λ∗)b)G (b), where λ∗

satisfies the complementary conditions

λ∗ ≥ 0 ⊥ Eα∗

v∼F [α∗(v)G(α∗(v))] ≤ ρ.

On the one hand, we have A1 ⊆ Π1 so maxα∈A1
R(α) ≤ maxπ∈Π1

R(π). On the other hand, the performance of strategy
α∗ achieves the right hand side of (8), an upper bound of maxπ∈Π1

R(π). Therefore, α∗ is also an optimal strategy for
Problem (7).

A.4. Proof of Lemma A.2

By the choice of bid in Line 6, we have

r̃t(vt, bt)− λtc̃t(bt) ≥ r̃t(vt, 0)− λtc̃t(0) ≥ 0, (30)

and then,

(1 + λt)c̃t(bt) ≤ r̃t(vt, bt) + c̃t(bt) ≤
1

t− 1

t−1∑
s=1

1 {b ≥ ds} vt ≤ vt ≤ v̄

=⇒ c̃t(bt) ≤
v̄

1 + λt
. (31)

Meanwhile, inequality (30) implies bt ≤ vt/(1 + λt), otherwise r̃t(vt, bt) − λtc̃t(bt) ≤ 0 ≤ r̃t(vt, 0) − λtc̃t(0), which
means that the algorithm should have chosen a smaller bid instead.

According to the update rule of λt, when λt ≤ v̄/ρ− 1, we have

λt − ϵ (ρ− c̃t(bt))
(a)
≤ λt +

ϵv̄

1 + λt
− ϵρ

(b)
≤ max{ϵv̄ − ϵρ,

v̄

ρ
− 1} (c)

=
v̄

ρ
− 1,

where (a) follows from inequality (31), (b) follows from that ϕ(x) = x+ ϵv̄/(1 + x) is convex over R+, and (c) holds since
ϵ = 1/

√
T < 1/ρ. Because we take λ2 = 0 in initialization, by induction, we have λt ∈ [0, v̄/ρ− 1] for all t ≥ 2.

Again by the update rule of λt in Line 7, we have for any λ ≥ 0,

∥λt+1 − λ∥22
(a)
≤∥λt − ϵ(ρ− c̃t(bt))− λ∥22,
=∥λt − λ∥2 − 2ϵ (λt − λ) (ρ− c̃t(bt)) + ϵ2∥ρ− c̃t(bt)∥22
(b)
≤∥λt − λ∥2 − 2ϵ (λt − λ) (ρ− c̃t(bt)) + ϵ2v̄2,

13
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where (a) follows from a standard contraction property of projection operator and (b) holds by ρ ≤ v̄ and (31).

Reordering terms and summing up from t = 2 to T , we have

T∑
t=2

(λt − λ) (ρ− c̃t(bt)) ≤
∥λ2 − λ∥22 − ∥λT+1 − λ∥22

2ϵ
+

(T − 1)ϵv̄2

2
.

which leads to (26) with λ2 = 0.

A.5. Proof of Lemma A.3

Reordering λt+1 ≥ λt − ϵ(ρ− c̃t(bt)) and summing over t = 2, . . . , τ , we have

τ∑
t=2

(c̃t(bt)− ρ) ≤ λτ+1

ϵ
≤ v̄/ρ− 1

ϵ
. (32)

For the left hand side of (32), we use inequality (10). With probability at least 1− δ,

τ∑
t=2

(c̃t(bt)− ρ) ≥
τ∑

t=2

c(bt)− τρ−
τ∑

t=2

v̄ ·

√
ln (2T/δ)

2(t− 1)
(33)

Let Xt :=
∑t

s=2(cs − c(bs)). Because Edt
[ct − c(bt)|Ht] = 0, we know that{X1, X2, . . . , Xτ} is a martingale. Applying

Azuma-Hoeffding inequality, we have the following inequality holds with failure probability at most δ,

τ∑
t=2

(ct − c(bt)) ≤ v̄ ·
√

2T ln(1/δ). (34)

According to the definition of τ , when τ < T ,

Bτ+1 < v̄ =⇒
τ∑

t=2

ct > ρT − v̄. (35)

Combining (32), (33), (34) and (35), we obtain with probability at least 1− 2δ,

ρ(T − τ) ≤ v̄/ρ− 1

ϵ
+

τ∑
t=2

v̄ ·

√
ln (2T/δ)

2(t− 1)
+ v̄ ·

√
2T ln(1/δ) + v̄

≤v̄ ·
(

1

ϵρ
+
√
2T ln (2T/δ) +

√
2T ln (1/δ)

)
, (36)

Note that when τ = T , the inequality holds trivially.

B. Missing Proofs in Section 3.2
B.1. Proof of Lemma 3.4

By definition, we have

r̃t(v
m, bk)− r(vm, bk)

=
(
vm − bk

)
·
∑t−1

s=1 1
{
bs ≤ bk

} (
1
{
bk ≥ ds

}
−G(bk)

)∑t−1
s=1 1 {bs ≤ bk}

.

We denote the above numerator by Xt. As E[Xt+1 − Xt|Ht] = 0, the sequence of Xt is a martingale adapted to the
filtration {H1,H2, . . .}. Next we make use the following two lemmas.

14
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Lemma B.1 (Bercu & Touati (2008)). Let {X1, X2, . . .} be a locally square integrable martingale. Denote

Vt(µ) = exp

(
µXt −

µ2

2
(⟨X⟩t + [X]t)

)
,

where the predictable quadratic variation ⟨X⟩t and the total quadratic variation [X]t are respectively defined by

⟨X⟩t =
t−1∑
s=1

E
[
(Xs −Xs−1)

2 |Hs−1

]
, [X]t =

t−1∑
s=1

(Xs −Xs−1)
2
.

Then, for any µ, the sequence of Vt(µ) is a positive super-martingale with E [Vt(µ)] ≤ 1.
Lemma B.2 (de la Pena et al. (2004)). Let A and B ≥ 0 be two random variables satisfying for any µ,

E
[
µA− µ2

2
B2

]
≤ 1.

The for any x ≥
√
2, y > 0, we have

Pr

(
|A|
/√

(B2 + y)

(
1 +

1

2
ln

(
B2

y
+ 1

))
≥ x

)
≤ exp

(
−x2

2

)

By Lemma B.1, A = Xt and B =
√
⟨X⟩t + [X]t satisfies the conditions of Lemma B.2. Taking x =

√
2 ln (KT/δ) and

y = 1, we obtain

Pr

(
|A|√

(B2 + 1) (2 + ln (B2 + 1))
≥
√

ln (KT/δ)

)
≤ δ

KT
.

Next, it holds that (
B2 + 1

) (
2 + ln

(
B2 + 1

)) (a)
≤
(
2nk

t + 1
) (

2 + ln
(
2nk

t + 1
))

(b)
≤nk

t (6 + 3 ln (2t− 1))

(c)
≤4nk

t lnT.

where (a) holds because B2 = ⟨X⟩t + [X]t ≤ 2nk
t , (b) holds since nk

t ∈ [1, t− 1] (note that b1 = 0), and (c) holds when T
is sufficiently large.

Thus, we have with probability at least 1− δ, ∀t ≥ 2,m ∈ [M ], k ∈ [K],

|r̃t(vm, bk)− r(vm, bk)| ≤ v̄ ·

√
4 lnT ln (KT/δ)

nk
t

.

The same analysis goes for c̃t(bk).

B.2. Proof of Lemma 3.6

We first prove that for any t ≥ 2,

N
m(t)
t ≥ 1 +

t−1∑
s=2

1

{
vs

1 + λs
≤ vt

1 + λt

}
. (37)

Note that the bidder always bid 0 in the first round so N
m(t)
t ≥ 1. For every past round 2 ≤ s < t with vs/(1 + λs) ≤

vt/(1+λt), as vm(s) ≤ vm(t), Line 7 in Algorithm 2 guarantees that inf Bm(s)
s ≤ inf Bm(t)

s . Also notice that Bm(t)
t−1 ⊆ B

m(t)
s

by the bid elimination rule. Therefore, we have for all bk ∈ Bm(t)
t−1 ,

bs = inf Bm(s)
s ≤ inf Bm(t)

t−1 ≤ bk. (38)

15



Learning to Bid in Repeated First-Price Auctions with Budgets

By definition,

N
m(t)
t = min

bk∈Bm(t)
t−1

nk
t = min

bk∈Bm(t)
t−1

t−1∑
s=1

1
{
bs ≤ bk

}
.

The inequality (38) implies that every past value vs with vs/(1 + λs) ≤ vt/(1 + λt) has contributed to the value of Nm(t)
t

by 1, which leads to the result of (37).

Next, due to λt ≤ v̄/ρ− 1 by Lemma A.2, we further have N
m(t)
t ≥ 1 +

∑t−1
s=2 1 {vs ≤ (ρ/v̄)vt}. Then,

Ev,d

[
T∑

t=2

√
1
/
N

m(t)
t

]
≤

T∑
t=2

Ev,d

[√
1

1 +
∑t−1

s=2 1 {vs ≤ (ρ/v̄)vt}

]
≤

T∑
t=2

√√√√Ev,d

[
1

1 +
∑t−1

s=2 1 {vs ≤ (ρ/v̄)vt}

]
,

where the last equality follows from E[y2] ≥ (E[y])2 for any random variable y.

Conditioned on vt, the sum
∑t−1

s=2 1 {vs ≤ (ρ/v̄)vt} follows a binomial distribution Binomial(t− 2, F ((ρ/v̄)vt)). Thus,

Ev1,...,vt−1

[
1

1 +
∑t−1

s=2 1 {vs ≤ (ρ/v̄)vt}

]
=

t−2∑
s=0

1

1 + s

(
t− 2

s

)
F s((ρ/v̄)vt) (1− F ((ρ/v̄)vt))

t−2−s

=

t−2∑
s=0

1

t− 1

(
t− 1

s+ 1

)
F s((ρ/v̄)vt) (1− F ((ρ/v̄)vt))

t−2−s

=
1

t− 1

t−1∑
s=1

(
t− 1

s

)
F s−1((ρ/v̄)vt) (1− F ((ρ/v̄)vt))

t−1−s

=
1

(t− 1)F ((ρ/v̄)vt)

(
1− (1− F ((ρ/v̄)vt))

t−1
)

≤ 1

(t− 1)F ((ρ/v̄)vt)
.

Note that the conditional expectation is also upper bounded by 1 since
∑t−1

s=2 1 {vs ≤ (ρ/v̄)vt} ≥ 0. Consequently, we have

Ev,d

[
1

1 +
∑t−1

s=2 1 {vs ≤ (ρ/v̄)vt}

]
≤Evt

[
min

{
1

(t− 1)F ((ρ/v̄)vt)
, 1

}]
=

∫
(t−1)F ((ρ/v̄)vt)≥1

1

(t− 1)F ((ρ/v̄)vt)
dF (vt) +

∫
(t−1)F ((ρ/v̄)vt)≤1

dF (vt)

=
F (vt)

(t− 1)F ((ρ/v̄)vt)

∣∣∣∣∣
v̄

(v̄/ρ)F−1(1/(t−1))

−
∫ v̄

(v̄/ρ)F−1(1/(t−1))

F (vt) d

(
1

(t− 1)F ((ρ/v̄)vt)

)
+ F ((v̄/ρ)F−1(1/(t− 1)))

=
1

(t− 1)F (ρ)
+

∫ v̄

(v̄/ρ)F−1(1/(t−1))

(ρ/v̄)F (vt)f((ρ/v̄)vt)

(t− 1)F 2((ρ/v̄)vt)
d (vt)

≤ 1

(t− 1)F (ρ)
+

fv̄

(t− 1)fρ
· lnF ((ρ/v̄)vt)

∣∣∣∣v̄
(v̄/ρ)F−1(1/(t−1))

=

(
1

F (ρ)
+

fv̄ lnF (ρ)

fρ

)
︸ ︷︷ ︸

C1

· 1

t− 1
+

fv̄

fρ︸︷︷︸
C2

· ln (t− 1)

t− 1

16
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Summing up the square-roots over t = 2, . . . , T , we have

Ev,d

[
T∑

t=2

√
1
/
N

m(t)
t

]
≤

T∑
t=2

√
C1 ·

1

t− 1
+ C2

ln (t− 1)

t− 1

≤
√
C1

T−1∑
t=1

√
1

t
+
√

C2

T−1∑
t=1

√
ln t

t

≤
(√

C1 +
√
C2 lnT

) T−1∑
t=1

t−1/2

≤2
(√

C1 +
√

C2 lnT
)√

T ,

where the second inequality follows from
√
x+ y ≤

√
x+
√
y.

B.3. Proof of Theorem 3.7

Similar to the proof of Theorem 3.2, we denote by τ := sup{t ≤ T : Bt ≥ v̄} the last round before budget depletion under
Algorithm 2 and consider an alternative framework in which the bidder is allowed to bid even after budget depletion. Then,
we have

R(π) = Ev,d

[
τ∑

t=2

rt

]
≥ Ev,d

[
T∑

t=2

rt

]
− v̄ · Ev,d [T − τ ] =Eπ

v,d

[
T∑

t=2

r(vt, bt)

]
− v̄ · Ev,d [T − τ ] , (39)

where the last equality follows equation (25).

First, we make use of the following lemma, the proof of which is deferred to Appendix B.4

Lemma B.3. Let b̃(v) = argmaxb∈B(v − b)G(b) (taking the smallest b if there are ties). Then for Algorithm 2, with
probability at least 1− δ, ∀t ≥ 2,m ∈ [M ], b̃(vm) ∈ Bm

t .

Then with probability at least 1− δ, for all t,

r(vm(t), bt) ≥r̃t(vm(t), bt)− w
m(t)
t

≥r̃t(vm(t), b̃(vm(t)))− 3w
m(t)
t

≥r(vm(t), b̃(vm(t)))− 4w
m(t)
t , (40)

where the first and third inequalities follows from Lemma 3.4, and the second inequality holds by Lemma B.3.

Next, for the left hand side of (40), we have

r(vm(t), bt) =(vm(t) − bt)G(bt)

=

(
vt

1 + λt
− bt

)
G(bt)−

(
vt

1 + λt
− vm(t)

)
G(bt)

=
1

1 + λt
(r(vt, bt)− λtc(bt))−

(
vt

1 + λt
− vm(t)

)
G(bt). (41)

Let b∗(v) = argmaxb(v − b)G(b) (taking the smallest b if there are ties) and b′(v) = min{b ∈ B : b ≥ b∗(v)}. For the

17
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right hand side of (40), we have

r(vm(t), b̃(vm(t)))
(a)
≥r(vm(t), b′(vm(t)))

=(vm(t) − b′(vm(t)))G(b′(vm(t)))

(b)
≥(vm(t) − b′(vm(t)))G(b∗(vm(t)))

(c)
≥(vm(t) − b∗(vm(t)))G(b∗(vm(t)))− v̄

K

=r(vm(t), b∗(vm(t)))− v̄

K
, (42)

where (a) and (b) hold by the definition of b̃(v), and (c) holds since b′(v) ≤ b∗(v) + v̄/K.

Let α∗ be the optimal bidding strategy characterized in Lemma A.1. By the definition of b∗(v), We have

r(vm(t), b∗(vm(t))) ≥r(vm(t), α∗(vt))

=(vm(t) − α∗(vt))G(α∗(vt))

=

(
vt

1 + λt
− α∗(vt)

)
G(α∗(vt))−

(
vt

1 + λt
− vm(t)

)
G(α∗(vt))

=
1

1 + λt
(r(vt, α

∗(vt))− λtc(α
∗(vt)))−

(
vt

1 + λt
− vm(t)

)
G(α∗(vt)). (43)

Putting (40), (41), (42) and (43) together, we obtain

r(vt, bt)− λtc(bt) ≥r(vt, α∗(vt))− λtc(α
∗(vt))− (1 + λt)

( v̄

K
+ 4wm

t

)
+ (1 + λt)

(
vt

1 + λt
− vm(t)

)
(G(bt)−G(α∗(vt)))

≥r(vt, α∗(vt))− λtc(α
∗(vt))− (1 + λt)

( v̄

K
+

v̄

M
+ 4w

m(t)
t

)
,

where the second inequality holds since vt/(1 + λt)− vm(t) ≤ v̄/M . Reordering terms and summing up from t = 2 to T ,
we have with probability at least 1− δ,

T∑
t=2

r(vt, bt) ≥
T∑

t=2

r(vt, α
∗(vt))−

T∑
t=2

λtc(α
∗(vt))−

T∑
t=2

(1 + λt)
( v̄

K
+

v̄

M
+ 4w

m(t)
t

)
+

T∑
t=2

λtc(bt)

≥
T∑

t=2

r(vt, α
∗(vt))−

T∑
t=2

λtc(α
∗(vt))−

T∑
t=2

(1 + λt)
( v̄

K
+

v̄

M
+ 4w

m(t)
t

)
+

T∑
t=2

λtc̃t(bt)−
T∑

t=2

λtw
m(t)
t ,

where we further apply Lemma 3.4 for the second inequality.

18
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Taking expectations, we obtain

Ev,d

[
T∑

t=2

r(vt, bt)

]
≥Eα∗

v,d

[
T∑

t=2

r(vt, α
∗(vt))

]
− Eα∗

v,d

[
T∑

t=2

λtc(α
∗(vt))

]
− v̄2

ρ
(T − 1)

(
1

K
+

1

M

)

+ Ev,d

[
T∑

t=2

λtc̃t(bt)

]
−
(
5v̄

ρ
− 1

)
Ev,d

[
T∑

t=2

w
m(t)
t

]
− δ · 2(T − 1)v̄

(a)
≥R(α∗)− v̄ − Ev,d

[
T∑

t=2

λt (ρ− c̃t(bt))

]
− v̄2

ρ
(T − 1)

(
1

K
+

1

M

)

−
(
5v̄

ρ
− 1

)
Ev,d

[
T∑

t=2

w
m(t)
t

]
− δ · 2(T − 1)v̄

(a)
≥R(α∗)− v̄ − (T − 1)ϵv̄2

2
− v̄2

ρ
(T − 1)

(
1

K
+

1

M

)
−
(
5v̄

ρ
− 1

)
Ev,d

[
T∑

t=2

w
m(t)
t

]
− δ · 2(T − 1)v̄, (44)

where (a) follows from Lemma A.1 and λt ≤ v̄/ρ− 1 in Lemma A.2, (b) holds by using Lemma A.2 with λ = 0. Remark
that Lemma A.2 still holds for Algorithm 2 under one-sided information feedback.

Next, we provide a result for one-sided information feedback analogous to Lemma A.3.

Lemma B.4. For Algorithm 2, with probability at least 1− 2δ, we have

T − τ ≤ v̄

ρ
·
(

1

ϵρ
+
√
2T ln (1/δ)

)
+

1

ρ
Ev,d

[
T∑

t=2

w
m(t)
t

]
.

The proof is exactly the same to that of Lemma A.3, except that we use Lemma 3.4 rather than Lemma 3.1 to bound the
estimation error. We omit the proof.

By Lemma B.4, we have

Ev,d [T − τ ] ≤(1− 2δ) · v̄
ρ
·
(

1

ϵρ
+
√
2T ln (1/δ)

)
+ (1− 2δ) · 1

ρ
Ev,d

[
T∑

t=2

w
m(t)
t

]
+ 2δ · T (45)

Plugging (44) and (45) into (39), we obtain

R(π) ≥R(α∗)− v̄ − (T − 1)ϵv̄2

2
− v̄2

ρ
(T − 1)

(
1

K
+

1

M

)
− δ · 2(T − 1)v̄ − (1− 2δ) · v̄

2

ρ
·
(

1

ϵρ
+
√
2T ln (1/δ)

)
− 2δ · T v̄

−
(
5v̄2

ρ
− v̄ + (1− 2δ)

v̄2

ρ

)√
4 lnT log(KT/δ)Ev,d

[
T∑

t=2

√
1

N
m(t)
t

]
.

By setting the step size to ϵ ∼ T−1/2 and the failure probability to δ ∼ T−1, together with Lemma 3.6, we can obtain the
desired regret bound.
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B.4. Proof of Lemma B.3

We first prove that b̃(v) is non-decreasing in v. Let vs and vm be two values with vs ≤ vm. Then for any b ∈ B with
b ≥ b̃(vm), we have

r(vs, b) =(vs − b)G(b) = (vm − b)G(b)− (vm − vs)G(b)

≤(vm − b̃(vm))G(b∗(vm))− (vm − vs)G(̃b(vm))

=(vs − b̃(vm))G(̃b(vm)) = r(vs, b̃(vm)).

Thus, it holds that b̃(vs) ≤ b̃(vm) by the definition of b̃(v).

Next, we prove the result by induction. Suppose that for all s < m, b̃(vs) ∈ Bs
t in round t. By the non-decreasing property

of b̃(v), we have

b̃(vm) ≥ b̃(vs) ≥ inf Bs
t .

Thus, b̃(vm) is not eliminated by Line 7. As for Line 9, we have for any k ∈ Bmt−1,

r̃t(v
m, b̃(vm))

(a)
≥r(vm, b̃(vm))− wm

t

(b)
≥ r(vm, bk)− wm

t

(c)
≥ r̃t(v

m, bk)− 2wm
t ,

where (a) and (c) follows from Lemma 3.4, and (b) holds by the definition of b̃(v). Thus, b̃(vm) is also not eliminated by
Line 9 for all t and m with probability at least 1− δ, which finishes the proof.
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