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Abstract
We uncover how SGD interacts with batch nor-
malization and can exhibit undesirable training
dynamics such as divergence. More precisely,
we study how Single Shuffle (SS) and Random
Reshuffle (RR)—two widely used variants of
SGD—interact surprisingly differently in the pres-
ence of batch normalization: RR leads to much
more stable evolution of training loss than SS.
As a concrete example, for regression using a
linear network with batch normalized inputs, we
prove that SS and RR converge to distinct global
optima that are “distorted” away from gradient
descent. Thereafter, for classification we charac-
terize conditions under which training divergence
for SS and RR can, and cannot occur. We present
explicit constructions to show how SS leads to
distorted optima in regression and divergence for
classification, whereas RR avoids both distortion
and divergence. We validate our results empiri-
cally in realistic settings, and conclude that the
separation between SS and RR used with batch
normalization is relevant in practice.

1. Introduction
Recent work in deep learning theory attempts to uncover
how the choice of optimization algorithm and architecture
influence training stability and efficiency. On the optimiza-
tion front, stochastic gradient descent (SGD) is the de facto
workhorse, and its importance has correspondingly led to
the development of many different variants that aim to in-
crease the ease and speed of training, such as AdaGrad
(Duchi et al., 2011) and Adam (Kingma & Ba, 2014).

In reality, practitioners often do not use with-replacement
sampling of gradients as required by SGD. Instead they use
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without-replacement sampling, leading to two main vari-
ants of SGD: single-shuffle (SS) and random-reshuffle. SS
randomly samples and fixes a permutation at the beginning
of training, while RR randomly resamples permutations at
each epoch. These shuffling algorithms are often more prac-
tical and can have improved convergence rates (Haochen &
Sra, 2019; Safran & Shamir, 2020; Yun et al., 2021b; 2022;
Cho & Yun, 2023; Cha et al., 2023).

Architecture design offers another avenue for practitioners
to train networks more efficiently and encode salient induc-
tive biases. Normalizing layers such as BatchNorm (BN)
(Ioffe & Szegedy, 2015), LayerNorm (Ba et al., 2016), or In-
stanceNorm (Ulyanov et al., 2016) are often used with SGD
to accelerate convergence and stabilize training. Recent
work studies how these scale-invariant layers affect training
through the effective learning rate (Li & Arora, 2019; Li
et al., 2020; Wan et al., 2021; Lyu et al., 2022).

Motivated by these practical choices, we study how SS and
RR interact with batch normalization at training time. Our
experiments (Fig. 1) suggest that combining SS and BN can
lead to surprising and undesirable training phenomena:

(i) The training risk often diverges when using SS+BN
to train linear networks (i.e. without nonlinear activa-
tions) on real datasets (see Figure 1a), while using SS
without BN does not cause divergence (see Figure 10).

(ii) Divergence persists after tuning the learning rate and
other hyperparameters (Section 4.3) and also manifests
more quickly in deeper linear networks (Figure 1a).

(iii) SS+BN usually converges slower than RR+BN in non-
linear architectures such as ResNet18 (see Figure 1b).

1.1. Summary of our contributions

In light of these experimental findings, we seek to develop a
theoretical and experimental understanding of how shuffling
SGD and BN collude to create divergence and other unde-
sirable training behavior. Since these phenomena manifest
themselves on the training risk, our results are not strictly
coupled with generalization.

Put simply, the aberrant training dynamics stem from BN
not being permutation invariant across epochs. This simple
property interacts with SS undesirably, although a priori
it is not obvious whether it should. More concretely, one
expects SGD+BN to optimize the gradient descent (GD)
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(b) Finetuned ResNet18.

Figure 1. Surprising training phenomena using SS/RR+BN.

risk in expectation. However, due to BN’s sensitivity to
permutations, both SS+BN and RR+BN implicitly train
induced risks different from GD, and also from each other.

• In Section 3.2, we prove that the network f(X; Θ) =
WΓBN(X) which batch normalizes the input features
converges to the optimum for the distorted risk induced
by SS and RR (Theorems 3.2.2 and 3.2.3); the diagonal
matrix Γ denotes the trainable scale parameters in the
BN layer. Our proof requires a delicate analysis of the
evolution of gradients, the noise arising from SS, and the
two-layer architecture. Due to the presence of Γ, our
results do not assume a fully-connected linear network,
which distinguishes them from prior convergence results.
In Section 3.3, we present a toy dataset for which SS is dis-
torted away from GD with constant probability while RR
averages out the distortion to align with GD. We validate
our theoretical findings on synthetic data in Section 3.4.

• In Section 4.1, we connect properties of the distorted
risks to divergence of training risk, gaining insights into
which regimes can lead to divergence (Theorems 4.1.3
and 4.1.4). We show that in certain regimes, SS+BN
can diverge, whereas RR+BN provably avoids divergence.
These results motivate us to construct a toy dataset where
SS diverges with constant probability, while RR avoids
divergence (Section 4.2). In Section 4.3, we empirically
validate our results on deeper linear+BN networks on a
variety of datasets and hyperparameters. Our experiments
also demonstrate that SS trains more slowly than RR in

more realistic nonlinear settings, including ReLU+BN
networks and ResNet18. In doing so, we extend the rel-
evance of our theoretical results to more complex and
realistic settings.

It is worth noting that to obtain our results, our analysis had
to overcome complications due to the non-i.i.d. stochastic
gradients, the non-i.i.d. data X (Assumption 2), and the
intricacies introduced by BN’s permutation sensitivity.

1.2. Related work

Theoretical understanding of BN. Since the introduction
of BN by Ioffe & Szegedy (2015), there has been a long line
of work investigating the theoretical properties of BN; see
e.g. (Bjorck et al., 2018; Kohler et al., 2018; Arora et al.,
2018; Li & Arora, 2019; Kohler et al., 2019; Daneshmand
et al., 2020; Li et al., 2020; Lobacheva et al., 2021). Much
attention has been devoted to studying how BN can bene-
fit optimization (Arora et al., 2018; Santurkar et al., 2018;
Kohler et al., 2018), for example by implicitly tuning the
learning rate or smoothing the loss function. The effect of
BN on the intermediate representations of random networks,
such as orthogonality or rank collapse, has also been studied
(Daneshmand et al., 2020; 2021). We study the general
setting with nonrandom linear activations. The scale invari-
ance induced by BN also interacts with other optimization
choices such as weight decay, which can lead to instability
phenomena (Lobacheva et al., 2021; Wan et al., 2021; Lyu
et al., 2022). However, these phenomena have a different
origin than the distorted risks studied in this paper.

Interplay between BN and SGD. Prior theoretical work
primarily studied how BN interacts with GD or with-
replacement SGD (Arora et al., 2018; Santurkar et al., 2018;
Li & Arora, 2019; Cai et al., 2019; Wan et al., 2021; Lyu
et al., 2022). Arora et al. (2018); Wan et al. (2021) assumed
global bounds on the smoothness with respect to network
parameters and the SGD noise to analyze convergence to sta-
tionary points. We instead prove convergence to the global
minimum of the SS distorted risk Lπ with no such assump-
tions (Theorem 3.2.2). Li & Arora (2019) assumed the
batch size is large enough to ignore SGD noise, whereas we
explicitly exhibit and study the separation between shuffling
SGD and GD. For fully scale-invariant networks trained
with GD, Lyu et al. (2022) identified an oscillatory edge of
stability behavior around a manifold of minimizers. Our BN
network has trainable scale-variant parameters W and Γ,
and we train with shuffling SGD instead of GD. Hence, the
noise that leads to distorted risks is fundamentally different.

BN’s effect on risk function. Previous work identified the
distortion of risk function due to noisy batch statistics in
BN. Yong et al. (2020) studied the asymptotic regulariza-
tion effect of noisy batch statistics in expectation for with-
replacement SGD. In contrast, we characterize this noise
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nonasymptotically w.h.p. over π for SS and a.s. with respect
to the data for RR. Wu & Johnson (2021) studied the diffi-
culty of precisely estimating the population statistics at train
time, especially when using an exponential moving average.
We avoid these issues altogether by evaluating directly on
the GD risk. Moreover, we prove concentration inequalities
for without-replacement batch statistics (Proposition C.2.4).

Ghost batch normalization. In the presence of BN, it
is common practice to use ghost batch normalization, a
scheme which break up large batches into virtual “ghost”
batches, as this tends to improve the generalization of the
network (Hoffer et al., 2017; Shallue et al., 2019; Summers
& Dinneen, 2020). Minibatch statistics are calculated with
respect to the ghost batches, and each gradient step is com-
puted by summing the gradient contributions from the ghost
batches. This algorithm is closely related to our method of
analysis for SS+BN/RR+BN. Indeed, in our setup we also
break up the full batch into mini-batches, and our analysis re-
duces to showing that SS+BN and RR+BN trajectories track
those obtained by following the aggregate gradient signal
from summing over mini-batches. We comment more on the
similarities between ghost BN and our setup in Section 3.1.

Shuffling and optimization. Outside SGD, the effect of ran-
dom shuffling has also been studied for classical nonlinear
optimization schemes such as coordinate gradient descent
(CGD) and ADMM (see Sun et al. (2020); Gürbüzbalaban
et al. (2020) and references therein). On convex quadratic
optimization problems, they demonstrate separations in con-
vergence rates between SS, RR, and with-replacement sam-
pling. Our main focus is the optimum that the algorithms
converge to rather than their convergence rates.

Implicit bias. Our work is also motivated by a burgeon-
ing line of work which studies the implicit bias of different
optimization algorithms (Soudry et al., 2018; Gunasekar
et al., 2018; Ji & Telgarsky, 2018; 2019; 2020; Yun et al.,
2021a; Jagadeesan et al., 2022). These results establish
how optimization algorithms such as gradient flow (GF),
gradient descent (GD) or even with-replacement SGD are
biased towards certain optima. For example, in the inter-
polating regime, GD converges to the min-norm solution
(Gunasekar et al., 2018; Woodworth et al., 2020) for linear
regression and the max-margin classifier for classification
(Soudry et al., 2018; Nacson et al., 2019b;a). While our
work does not focus on generalization, it is connected in
spirit to implicit bias. Indeed, our analysis centers the study
of how the risk functions and optima are affected by choices
of the optimizer (SS/RR) and the architecture (BN).

2. Problem setup
For n ∈ Z+ we use the notation [n] ≜ {1, . . . , n}. We write
π to denote a permutation of [n], and Sn is the symmetric

group of all such π. For any matrix A ∈ Rd×n, π ◦A ∈
Rd×n is result of shuffling the columns of A according
to π. Also, ∥A∥2 and ∥A∥F refer to the spectral norm
and Frobenius norm, respectively. We write σmin(A) ≜
inf∥v∥=1 ∥Av∥ to denote minimum singular value of A.
We use Span(A) to denote the span of A’s columns. The
(coordinatewise) sign function sgn(·) : R→ {−1, 0, 1} is
defined as sgn(x) = x/|x| for x ̸= 0 and sgn(0) = 0.

Data. Let Z = (X,Y ) be the given dataset, with X =[
x1 · · · xn

]
∈ Rd×n representing the feature matrix

and corresponding labels Y =
[
y1 · · · yn

]
∈ Rp×n. In

the classification setting we will assume Y ∈ {±1}1×n.

Prediction model. A batch normalization (BN) layer can be
separated into a normalizing component BN and a scaling
component Γ; we ignore the bias parameters for analysis.
Given any matrix B =

[
x1 · · · xq

]
∈ Rd×q (here,

q ≥ 2 is arbitrary), the normalizing transform BN(·) maps
it to BN(B) ∈ Rd×q by operating coordinatewise on each
xi in B. In particular, for the kth coordinate of xi, denoted
as xi,k, the transform BN sends xi,k 7→ xi,k−µk√

σ2
k+ϵ

where µk

and σ2
k are the batch empirical mean and variance of the

kth coordinate, respectively, and ϵ is an arbitrary positive
constant used to avoid numerical instability. For technical
reasons, we omit ϵ in our analysis. The scaling matrix
Γ ∈ Rd×d is a diagonal matrix which models the tunable
coordinatewise scale parameters inside the BN layer.

Throughout the paper, we consider neural networks of the
form f(·; Θ) = WΓBN(·)1. We use Θ = (W ,Γ) to de-
note the collection of all parameters in the network. With
the presence of batch normalization layers, the output of f
is a function of the input datapoint as well as the batch it
belongs to. Even changing one point of a batch B can affect
the batch statistics (i.e., µk’s and σ2

k’s) and in turn change
the outputs of f for the entire batch.

Loss functions. We study regression with squared loss
ℓ(ŷ,y) ≜ ∥ŷ − y∥2 and binary classification with logistic
loss ℓ(ŷ, y) ≜ − log(ρ(yŷ)), where ρ(t) = 1/(1 + e−t).
Let Ŷ ,Y ∈ Rp×q denote network outputs and true la-
bels for a mini-batch of q datapoints, respectively. Define
the mini-batch risk as the columnwise sum L(Ŷ ,Y ) ≜∑q

i=1 ℓ(Ŷ:,i,Y:,i), where Y:,i denotes the ith column of Y .

Optimization methods. We consider shuffling-based vari-
ants of SGD, namely single-shuffle (SS) and random-
reshuffle (RR). These algorithms proceed in epochs, i.e.,
full passes through shuffled dataset. As the names suggest,
SS randomly samples a permutation π ∈ Sn at the begin-
ning of the first epoch and adheres to this permutation. RR

1We can readily generalize to arbitrary learned (but frozen)
feature mappings under suitable changes to the assumptions.
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randomly resamples permutations πk ∈ Sn at each epoch k.

Throughout, the (mini-)batch size will be denoted as B. For
simplicity, we assume that the n datapoints can be divided
into m batches of size B. With a permutation π ∈ Sn, the
dataset Z = (X,Y ) is thus perfectly partitioned into m
batches (X1

π,Y
1
π ), . . . , (X

m
π ,Y m

π ), where Xj
π ∈ Rd×B

and Y j
π ∈ Rp×B consist of the (j(B − 1) + 1, . . . , jB)th

columns of the shuffled π ◦X and π ◦ Y , respectively.

For a parameter Θ optimized with SS or RR, we denote
the jth iterate on the kth epoch by Θk

j . The starting iterate
of the kth epoch is Θk

0 which is equal to the last iterate of
the previous epoch Θk−1

m . For each j ∈ [m], SS and RR
perform a mini-batch SGD update with stepsize ηk > 0:

Θk
j ← Θk

j−1 − ηk∇ΘL(f(Xj
πk
; Θk

j−1),Y
j
πk
).

3. Main regression results: convergence to
optima of distorted risks

In this section, we introduce the framework of distorted risks
to elucidate the distinction between SS+BN and RR+BN.
For ease of theoretical analysis, we consider the simpli-
fied setup where BN is applied only to the input features,
although we note that the framework can be readily gener-
alized to any learned but frozen features. This framework
also applies to classification; we continue to study it in Sec-
tion 4. We then present our global convergence results (The-
orems 3.2.2 and 3.2.3) for the distorted risks induced by SS
and RR for squared loss regression. In the one-dimensional
case, we uncover an averaging relationship between the SS
and RR optima (Proposition 3.3.1) which can help RR re-
duce distortion. We exemplify this averaging relationship
with a simple example and extend it to higher dimensions
with experiments on synthetic data.

3.1. Framework: the idea of distorted risks

We now formally introduce the notion of a distorted risk.
Distorted risks are crucial to our analysis, as they encode the
interaction between shuffling SGD and BN. We show that
these distorted risks Lπ and LRR are respectively induced
by certain batch normalized datasets Xπ and XRR obtained
by batch normalizing the input features.

The undistorted risk we actually want to minimize is the risk
that corresponds to full-batch GD. Define the GD features
XGD ≜ BN(X), which induces the GD risk:

LGD(Θ) ≜ L(f(X; Θ),Y ) = L(WΓXGD,Y ).

However, during epoch k, SS or RR optimize a distorted
risk dependent on πk. To see why, define the SS dataset

Xπ ≜ BNπ(X) ≜
[
BN(X1

π) · · · BN(Xm
π )
]

Yπ ≜
[
Y 1
π · · · Y m

π

]
,

for every permutation π ∈ Sn. Similarly, form the RR
dataset (XRR,YRR) ∈ Rd×(n·n!) × Rp×(n·n!) by concate-
nating the SS datasets (Xπ,Yπ) across all π.

Crucially, the SS data Xπ encodes the distortion due to the
interaction between SS with permutation π and BN; the RR
data XRR does the same for RR and BN. Indeed, since SS
uses a fixed π, it implicitly optimizes the SS distorted risk

Lπ(Θ) ≜
m∑
j=1

L(f(Xj
π; Θ),Y j

π ) = L(WΓXπ,Yπ).

Likewise, by collapsing the epoch update into a noisy “SGD”
update, we observe that RR over epochs implicitly optimizes
the RR distorted risk

LRR(Θ) ≜
1

n!

∑
π∈Sn

Lπ(Θ) =
1

n!
L(WΓXRR,YRR).

We reiterate that SS and RR distortions originate from using
both shuffling and batch normalization: shuffling alters the
batch-dependent affine transforms that BN applies. With
this notation, the connection between SS+BN/RR+BN and
ghost BN becomes more evident: one can view the full batch
as the batch in ghost BN and the mini-batches as the virtual
ghost batches. Moreover, the proofs of Theorems 3.2.2
and 3.2.3 demonstrate that ghost BN would witness the
same type of distortion as SS+BN/RR+BN.

To aid clarity, we adopt the convention that overlines con-
note batch normalization with some batching, and vice versa.
For example, the SS dataset Xπ ≜ BNπ(X) is normalized,
while the shuffled dataset Xπ = π ◦X is not.

3.2. Convergence results for regression

We now present our main regression results: SS+BN and
RR+BN converge to the global optima of their respective
distorted risks encoded by the SS dataset Xπ and the RR
dataset XRR. We require the following rank assumptions.
Assumption 1 (Full rank assumption).
(a) Xπ ∈ Rd×n satisfies rank(Xπ) ≥ d. In particular,

σmin(XπX
⊤
π ) > 0.

(b) XRR ∈ Rd×(n·n!) satisfies rank(XRR) ≥ d. In par-
ticular, σmin(XRRX

⊤
RR) > 0.

It is natural to ask when Assumption 1 holds. We demon-
strate that the following mild assumption implies it; the
assumption states that the feature matrix X is drawn from a
joint density on matrices in a potentially non-i.i.d. fashion.
Assumption 2. X is drawn from a density with respect to
the Lebesgue measure on Rd×n.

Since BN centers the mini-batch features, we have
rank(Xπ) ≤ min

{
d, (B − 1) n

B

}
and rank(XRR) ≤
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min
{
d, (B − 1)

(
n
B

)}
.2 We now show that if B > 2 these

upper bounds are achieved almost surely. Thus, we iden-
tify reasonable conditions under which Assumption 1 holds
almost surely over the draw of data, irrespective of shuffling.

Proposition 3.2.1. Assume Assumption 2 and B > 2.
Then we have rank(Xπ) = min

{
d, (B − 1) n

B

}
and

rank(XRR) = min
{
d, (B − 1)

(
n
B

)}
a.s.. Consequently,

if (B − 1) n
B ≥ d, Assumption 1(a) holds a.s. for Xπ, and

if (B − 1)
(
n
B

)
≥ d, Assumption 1(b) holds a.s. for XRR.

Although we could have just assumed Assumption 1, the
nonlinearity introduced by BN makes it nontrivial to identify
mild sufficient conditions on the original features to control
the rank of SS and RR datasets. Furthermore, controlling
the rank of these datasets is crucial to our analysis of GD
risk divergence in the classification setting (see Section 4).

Next, we present our main SS convergence result: SS con-
verges for appropriate stepsizes. We defer the proof and
explicit convergence rates to Appendix A.1.

Theorem 3.2.2 (Convergence of SS). Let f(·; Θ) =
WΓBN(·) be a linear+BN network initialized at Θ1

0 =
(W 1

0 ,Γ
1
0) = (0, I). We train f using SS with permutation

π and suppose that Assumption 1(a) holds for this π. SS uses
the following decreasing stepsize, which is well-defined:

ηk =
1

kβ
·min

{
O
(

1

σmin(XπX
⊤
π )

)
,
√
2β−1 poly(σmin(X

⊤
π ))

poly(n,d,∥Y ∥F )

}
,

where 1/2 < β < 1. Then the risk Lπ(Θ
k
0) converges to

the global minimum L∗
π as k →∞.

Theorem 3.2.2 shows that using both SS and BN induces
the network to converge to the global optimum of the SS
distorted risk instead of the usual GD risk. The proof pro-
ceeds by aggregating the epoch-wise gradient updates on the
collapsed matrix WΓ. The main difficulty lies in carefully
bounding the accumulation of various types of noise.

We now turn to RR convergence. For the sake of analysis,
we make the following compact iterates assumption which is
common in the RR literature (Haochen & Sra, 2019; Nagaraj
et al., 2019; Ahn et al., 2020; Rajput et al., 2020).

Assumption 3. For all (i, k), the iterates Θk
i = (W k

i ,Γ
k
i )

satisfy
∥∥W k

i Γ
k
i

∥∥
2
≤ ARR for some absolute constant ARR.

Finally, we can show that RR converges in expectation to
the global optimum of the RR distorted risk LRR. We defer
the proof and explicit convergence rates to Appendix A.2.

Theorem 3.2.3 (Convergence of RR). Assume Assump-
tion 1(b) and Assumption 3. Using the same f and initializa-
tion as in Theorem 3.2.2. we train training f using RR with

2Note that XRR contains many duplicate batches; only
(
n
B

)
of

them are unique, up to permutations of B columns inside a batch.

the following decreasing stepsize, which is well-defined:

ηk =
1

kβ
·min

{
O
(

1

σmin(XRRX
⊤
RR)

)
,

√
2β−1

poly(n,d,∥Y ∥F ,ARR)

}
,

where 1/2 < β < 1. Then the risk LRR(Θ
k
0) converges in

expectation to the global minimum L∗
RR as k →∞.

The proof of Theorem 3.2.3 is similar to the SS case; the
main subtlety is using Assumption 3 to handle expectations.

The main takeaway of Theorems 3.2.2 and 3.2.3 is that
SS+BN and RR+BN converge to the optima of the SS and
RR distorted risks, respectively. These distorted optima may
differ from optimum of the GD risk. Moreover, the required
stepsize for convergence is usually smaller for SS (where
the requirement depends on π) compared to RR.

3.3. RR averages out SS distortion

Having shown that the two different algorithms drive the
network parameters to global optima of two different dis-
torted risks, it behooves us to study these optima. By
collapsing the final layers W and Γ into a single matrix
M = WΓ ∈ Rp×d, we can study the global optima M∗

π

and M∗
RR on the normalized datasets Xπ and XRR. These

global optima naturally correspond to the global optima
of Lπ and LRR. In this section we illustrate how RR can
average out SS distortion in the one-dimensional case.

We first relate the SS optima M∗
π to the RR optimum

M∗
RR. A simple gradient calculation reveals M∗

RR =∑
π YπX

⊤
π (
∑

π XπX
⊤
π )

−1. Since BN enforces the unit

variance constraint, XπX
⊤
π = n if d = 1. Simple alge-

braic manipulation then implies the following proposition.

Proposition 3.3.1. If d = 1, M∗
RR = 1

n!

∑
π∈Sn M∗

π .

Proposition 3.3.1 identifies an explicit averaging relation-
ship between RR and SS in the one-dimensional case. This
motivates the following simple construction where RR’s
averaging behavior removes SS distortion.

Dataset: SS distorted with constant probability, RR av-
erages out distortion. We visualize our toy dataset with
16n datapoints where d = p = 1, B = 2, and n = 3 in
Figure 2a, along with the possible SS optima M∗

π . The
dataset is comprised of four clusters of 4n points in the
square [−1, 1]2. By vertical symmetry of the clusters and
Proposition 3.3.1, the RR and GD optima coincide at zero.
However, SS is distorted away from GD. An anticoncentra-
tion calculation shows M∗

π ̸= 0 with probability 1−O( 1√
n
)

and |M∗
π | = Ω( 1√

n
) with constant probability. The key in-

sight is linking SS distortion to breaking symmetry in the
SS dataset (see Proposition E.1.1 for details).
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3.4. Regression experiments

For our regression experiments, we used synthetic data with
n = 100, B = 10, and d = 10. For i ∈ [n], we sampled
xi ∼ N(0, Id) and generated yi = Mtruexi + ϵi ∈ R
with Mtrue ∼ U [−1, 1]d and ϵi ∼ N(0, 1). We trained
the network WΓBN(X) using SS and RR with an inverse
learning rate schedule initialized at η = 0.01. We observed
convergence to near optimal values on the SS and RR risks
(Figure 7), which supports the convergence results (Theo-
rems 3.2.2 and 3.2.3).

We also extended the toy dataset to the synthetic setup de-
scribed above. As Figure 2b makes apparent, SS is con-
sistently distorted away from the GD optimum, whereas
RR averages out this distortion effect. We generated 500
datasets and evaluated the distortion for each one with the
normalized distance d(M) ≜ ∥M−M∗

GD∥
∥MGD∗∥ . For SS, we com-

puted the mean d(M∗
π) for 1000 random draws of π. For

RR, we approximated d(M∗
RR) as follows. We sampled

1000 fresh random permutations to approximate the RR
dataset XRR, which we then used to approximate M∗

RR

(since it is intractable to average over all n! permutations).
We see that d(M∗

π) > 1 for all of the SS experiments while
d(M∗

π) ≈ 0.1 for all of the RR experiments.

4. Main classification results: divergence
regimes based on distorted risks

We now turn to analyzing linear+BN binary classifiers
f(X; Θ) = sgn(WΓBN(X)) trained with the logistic risk.
To characterize divergence, we identify salient properties
of the distorted risks first introduced in Section 3.1. These
properties identify regimes where the SS+BN classifier can
diverge on the GD risk (Theorem 4.1.3) yet the RR+BN
classifier does not diverge (Theorem 4.1.4). This motivates
the construction of a toy dataset (Section 4.2) where the
optimal SS classifier diverges on the GD risk with constant
probability. In Section 4.3 we extend our results to more
realistic networks and datasets, demonstrating that these
phenomena are not an artifact of our theoretical setup. Our
theoretical results offer some justification for the empirical
phenomenon of divergence when SS SGD is combined with
BN for classification.

We briefly remark on why we analyze divergence conditions
instead of directional convergence. The main difficulty lies
in analyzing SGD instead of GD. One could hope to extend
the techniques for directional convergence for homogeneous
networks in Lyu & Li (2019) to the stochastic setting, but
this is outside the scope of our paper. Furthermore, the
analyses for deep linear networks such as Ji & Telgarsky
(2020) rely on invariants which do not hold for us due to the
diagonal Γ and the BN layers for deeper networks.
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(a) Dataset with 48 datapoints demonstrat-
ing distortion of SS optima M∗

π .
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Figure 2. Top: toy dataset for regression, showing how RR can
average out the distortion of SS. Bottom: histogram of distortion
of SS and RR optima on synthetic data for d = 10. The SS
optima significantly deviate from the GD optima, whereas the RR
optima are relatively close. This supports the intuition that RR can
nontrivially smooth out the bias of SS in higher dimensions.

Throughout, we use v = (WΓ)⊤ ∈ Rd to refer to the
vector that determines the decision boundary of our classi-
fier f . We remind the reader of the datasets which induce
the different distorted risks (Section 3.1). Given dataset
Z = (X,Y ), the GD dataset is ZGD ≜ (XGD,YGD) =
(BN(X),Y ). Similarly define the SS dataset Zπ ≜
(Xπ,Yπ) = (BNπ(X), π ◦Y ) and the RR dataset ZRR ≜
(XRR,YRR) by concatenating Zπ over all permutations π.
If the labels are clear from context, we occasionally abuse
terminology and refer to the features as the dataset.

4.1. Analysis of problem structure for classification

To analyze the optima of the distorted risks, we introduce rel-
evant concepts from Ji & Telgarsky (2019). Given a dataset
Z = (X,Y ) = {(xi, yi)}ni=1, with labels yi ∈ {±1},
greedily define a maximal linearly separable subset SLS ≜
(XLS,Y LS) as follows. Include (xi, yi) in SLS if there ex-
ists a classifier ui ∈ Rd with yiu

⊤
i xi > 0 and yju

⊤
i xj ≥ 0

for all j. For reasons that will be clear shortly, denote the
complement of SLS in Z by SSC ≜ (XSC,Y SC).
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In particular, there exists a classifier u such that: (1) SLS

is perfectly separated by u (2) the datapoints XSC in SSC

are orthogonal to u, so they are on the decision boundary.
We can choose u to be the max-margin classifier uMM on
SLS. The notation SSC is chosen because the logistic risk
is strongly convex when restricted to bounded subsets of
Span(XSC), meaning there is a unique finite minimizer
vSC in this subspace. Ji & Telgarsky (2019) show that
linear classifiers trained on the logistic risk with GD are
implicitly biased towards the ray vSC + t · uMM for t > 0.

We now identify a salient property of the distorted risks.

Definition 1 (Separability decomposition). The separability
decomposition of dataset Z refers to Z = SLS ⊔ SSC.

If SLS = Z, we say Z is linearly separable (LS). If both
SLS and SSC are nonempty, we say Z is partially linearly
separable (PLS). Finally, if SSC = Z, we slightly abuse
terminology and say Z is strongly convex (SC).3

Because the logistic loss does not always have finite infima,
we now introduce the notion of an optimal direction.

Definition 2 (Optimal direction). Given dataset Z =
(X,Y ), we say a sequence of iterates v(t) infimizes L if
L(v(t)⊤X,Y )→ infw∈Rd L(w⊤X,Y ). We call v ∈ Rd

an optimal direction if there exists u ∈ Rd such that
{u+ tv}t≥1 infimizes L.4

Definition 1 is motivated by the following results which
identify how the separability decomposition affects optimal
directions. Their proofs are deferred to Appendix B.4.

Lemma 4.1.1. Let Z = SLS ⊔ SSC. If v is an optimal
direction for L, then v⊤x = 0 for all x ∈ Span(XSC) and
yiv

⊤xi > 0 for every (xi, yi) ∈ SLS.

Combining the above lemma and the definitions yields the
following proposition, which characterizes SS and RR di-
vergence using the separability decomposition.

Proposition 4.1.2. Suppose Assumption 1(a) holds, the
iterates vπ(t) infimize Lπ, and their projections onto
Span(X

SC

π )⊥ converge in direction to some optimal direc-
tion v∗

π for Lπ . Then the GD risk LGD diverges if and only
if Zπ is PLS or LS and there exists some (xi, yi) ∈ ZGD

such that yiv∗⊤
π xi < 0. The analogous statement holds

true for ZRR under Assumption 1(b). Furthermore, the “if”
part holds true for SS and RR without Assumption 1.

In particular, Proposition 4.1.2 implies that if the RR dataset
is SC and rank d, the GD risk does not diverge. Moreover,

3Here, PLS refers to the “general case” discussed in Ji & Tel-
garsky (2019), but we chose to use this alternative terminology
because we found the term “general” can lead to confusion.

4This definition is catered towards the SC+full rank X or
PLS/LS case. However, since Proposition 3.2.1 provides suffi-
cient conditions for full-rank data, this subtlety is unimportant.

it naturally leads to the question of understanding ranks and
separability decompositions of the SS and RR datasets; the
former question is already answered by Proposition 3.2.1.

To analyze the separability decomposition with high proba-
bility or almost surely, we assume the labels are balanced.

Assumption 4 (Balanced classes). The data Z either has
(a) an equal number of positive and negative examples; or

(b) at least B positive and B negative examples.

Finally, we informally state our main classification result:
SS+BN can diverge in some regimes (see Theorem B.2.1
for details).

Theorem 4.1.3 (SS+BN can diverge (informal))). Assume
Assumption 2, Assumption 4(a), and B > 2. If d ≤
(B − 1) n

B , SS can diverge if B = Ω(log n) and ZGD’s
separability decomposition can change with small pertur-
bations. Otherwise, SS can diverge regardless of the batch
size and the separability decomposition of ZGD.

Whereas Theorem 4.1.3 establishes regimes where SS+BN
can diverge, we can show that RR+BN prevents divergence
in a much larger regime (see Theorem B.3.1 for details).

Theorem 4.1.4 (RR+BN does not diverge (informal)). As-
sume Assumption 2, Assumption 4(b), and B > 2. If
d ≤ (B − 1)

(
n
B

)
, RR does not diverge almost surely.

Theorem 4.1.3 implies that one cannot prevent SS diver-
gence by simply increasing the batch size B; it is also
necessary for the GD dataset to be “robustly” LS or SC.
Moreover, as soon as d > (B − 1) n

B , SS can diverge. In
stark contrast, Theorem 4.1.4 establishes that even for small
B, RR is almost surely robust to divergence as long as
d ≤ (B − 1)

(
n
B

)
. Although our theorems do not prove that

SS+BN necessarily diverges, they offer some theoretical
explanation for why SS+BN appears to be less stable than
RR+BN for classification.

4.2. RR prevents divergence while SS diverges

We present a toy dataset where SS drastically distorts the
optimal direction, leading to divergence with constant prob-
ability. Meanwhile, RR does not diverge on this dataset. We
use d = B = 2 to simplify the construction.5

Dataset: SS often diverges; RR does not. We describe
our construction (Figure 3a) at a high level; see Proposi-
tion E.2.1 for details. The GD dataset is PLS with unique
optimal direction v∗

GD (its decision boundary is the purple
dash-dotted line). Moreover, with constant probability the
SS dataset is PLS with unique optimal direction v∗

π (green
dotted line) distorted away from v∗

GD. Also, v∗
π misclassi-

fies points in the GD dataset (X
+

err and X
−
err). Under the

5Since B = 2, there is no contradiction with Theorem 4.1.3.
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(a) Toy classification dataset showing di-
vergence of SS with constant probability.
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(b) 3 layer linear+BN networks trained with varying stepsizes.

Figure 3. Top: Toy dataset demonstrating divergence of GD risk
with constant probability. The dashed lines trace out the convex
hulls of the positive and negative points. Bottom: divergence of
GD risk for a variety of stepsizes on CIFAR10. Note that there
was eventually a separation for η = 10−4 (see Figure 8).

additional assumptions in Proposition 4.1.2, the GD risk
diverges. Finally, since the RR dataset is SC and rank d, RR
does not diverge on the GD dataset.

4.3. Experiments on linear and nonlinear networks

We now verify our theoretical classification results on lin-
ear+BN and extend them to nonlinear networks on a va-
riety of real-world datasets. This demonstrates that the
separation between SS, RR, and GD is relevant in realis-
tic settings and not merely an artifact of the linear setting.
We refer to the linear+BN network WΓBN(X) as 1-layer
linear network, and also consider deeper linear networks
with tunable parameters inside BN layers. We observe
strikingly different training behaviors in the shallow and
deep linear networks. The networks are formally defined in
Appendix D; see https://github.com/davidxwu/
sgd-batchnorm-icml for the experiment code.

As a motivating example, we ran an experiment on synthetic
data (Figure 4) with the 2-layer linear network f(X) =
WΓBN(AX). Note that the tunable matrix A acts be-
fore BN. Intriguingly, we observe that the SS dataset with
features Xπ = BNπ(AX) is SC at initialization, but up-

dating A with SS makes it LS after training. Moreover,
the batch size is large relative to n, so this dataset satisfies
the necessary conditions for divergence in Proposition 4.1.2
and Theorem 4.1.3.

More specifically, Figures 4a and 4c plot the 2-dimensional
GD and SS datasets, respectively, which are SC at initial-
ization. However, after training with SS, we can see from
Figures 4b and 4d that SS updates A to make the SS dataset
LS, whereas the GD dataset stays SC. Hence, by Propo-
sition 4.1.2, the GD risk diverges. This example partially
explains the discrepancy in training behavior between the
1-layer and deeper networks. Indeed, whereas the 1-layer ar-
chitecture has static Zπ , the deeper networks have evolving
weights inside BN which can push Zπ to be LS/PLS.

To exhibit the above divergence on real data, we conducted
experiments on the CIFAR10. Using SS and RR, we trained
linear+BN networks of depths up to 3 for T = 103 epochs
using stepsize η = 10−2, batch size B = 128, and 512
hidden units per layer (see Appendix D for precise details).

As depicted in Figure 1a, we consistently observed SS
divergence for the deeper networks (see Figure 9 for
more evidence of divergence). As predicted by Theo-
rem 4.1.4, RR did not exhibit divergence behavior. These
phenomena persisted despite ablating the learning rate in
{0.01, 0.001, 0.0001}, momentum in {0, 0.9, 0.99}, and
batch size in {32, 64, 128}. The learning rate ablation is
shown in Figure 3b; see Appendix D for the rest.

For the nonlinear experiments, we extended to the CIFAR10,
MNIST, and CIFAR100 datasets. We used SS and RR to
train 3-layer 512 hidden unit MLPs with BN and ReLU ac-
tivation for T = 103 epochs, and also to finetune pretrained
ResNet18 for T = 50 epochs. We consistently observed that
in the final stages of training (i.e., relatively small training
risk), SS trained slower than RR across all of the datasets,
even after tuning the learning rate (see Figures 5 and 6).

5. Conclusion
This paper established that training BN networks with SS
can lead to undesirable training behavior, including slower
convergence or even divergence of the GD risk. However,
RR provably mitigates this divergence behavior, and experi-
mental evidence suggests that using RR usually converges
faster than SS. This separation in training behavior between
SS, RR, and GD is because data shuffling directly affects
how BN operates on mini-batches. Our theoretical results
establish a separation for the special case where BN is ap-
plied to the input features. The more general and realistic
case where BN is applied to dynamically evolving layers is
left as an important direction for future work. We also ob-
served in preliminary experiments that a similar separation
manifested for generalization, and we hope that adopting
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Figure 4. Snapshots of GD dataset ZGD and SS dataset Zπ before and after running SS for T = 104 epochs with 32 positive and negative
synthetic examples. While the GD dataset remains SC, the SS dataset become LS. Here B = 16, η = 10−2, and ϵ = 10−5 for BN.
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Figure 5. 3 layer ReLU+BN MLP on (left to right): CIFAR10, CIFAR100, and MNIST. Note the slower convergence for SS versus RR in
the final stages of training for CIFAR10 and MNIST, and the early stages of training for CIFAR100.
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Figure 6. ResNet18 finetuned on (left to right): CIFAR10, CIFAR100, and MNIST. Note the slower convergence for SS versus RR across
datasets in the final stages of training for CIFAR10 and MNIST, and the early stages of training for CIFAR100. For the smallest learning
rate η = 10−3, we observed a separation after 200 epochs.

a similar perspective will prove fruitful in pursuing this
direction. We remark that similar surprising phenomena
may arise when using other design choices that are imple-
mented in a mini-batch fashion such as mixup (Zhang et al.,
2017) and Sharpness-Aware Minimization (SAM) (Foret
et al., 2020). For these reasons, we generally recommend
that practitioners use RR instead of SS. Further future di-
rections include establishing directional convergence for
homogeneous classifiers trained with shuffling SGD and
theoretically understanding conditions under which deeper
networks diverge faster.
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Training Instability of Shuffling SGD with Batch Norm

A. Proofs for regression results
In this appendix, we provide the full details for the proof of convergence for SS and RR in the regression case.

Additional notation. We introduce some additional notation which we will use throughout the proof of Theorems 3.2.2
and 3.2.3. For a matrix A, we use Ai,: and A:,j to denote the ith row and jth column of A, respectively. We also use
Ai,j to denote the (i, j)th entry of A. The Hadamard product of two matrices A,B ∈ Rm×n is denoted by A⊙B, with
(A⊙B)i,j = Ai,jBi,j . The diagonal operator diag : Rm×m → Rm×m is defined by diag(A) = I ⊙A. We denote the
Frobenius inner product ⟨A,B⟩F =

∑
i,j Ai,jBi,j and its induced norm by ∥A∥F .

Also recall from Section 2 that when Θ is optimized with SS or RR, the ith iterate on the kth epoch is denoted by Θk
i . For

simplicity, we will often say the (i, k)th iterate to refer to Θk
i . Denote the collapsed parameter matrix defined in Section 3

by M ≜ WΓ. We will abuse notation and sometimes denote the (i, k)th iterate by Mk
i ≜ W k

i Γ
k
i .

Recall that the mini-batch risk used for updating the (i, k)th iterate of SS or RR is given by L(f(Xi+1
π ; Θk

i ),Y
i+1
π ) =∥∥Y i+1

π −W k
i Γ

k
i BN(X

i+1
π )

∥∥2
F

where π denotes the permutation chosen for the kth epoch and Xj
π ∈ Rd×B and Y j

π ∈
Rp×B consist of the (jB −B +1, . . . , jB)th columns of π ◦X and π ◦Y , respectively. Since this notation is a bit lengthy,
we simplify it to L(Xj

π; Θ) ≜ L(f(Xj
π; Θ),Y j

π ) for any j ∈ [m]. Here, we can also view the mini-batch risk as a function
of M = WΓ, so we will sometimes abuse notation and write

L(Xj
π;M) ≜

∥∥Y j
π −MBN(Xj

π)
∥∥2
F
,

∇ML(Xj
π;M) ≜ −(Y j

π −MBN(Xj
π))BN(X

j
π)

⊤.

For SS, we work with a fixed permutation π ∈ Sn and input dataset (X,Y ). Recall that we defined Xπ ≜ BNπ(X) from
Section 3, i.e., the column-wise concatenation of all batches after batch normalization: Xπ = [BN(X1

π) · · · BN(Xm
π )].

When the context of parameters Θ = (W ,Γ) and permutation π ∈ Sn chosen by SS are clear, we denote the collection of
outputs over the dataset by Ŷπ ≜ WΓXπ . Also recall that the distorted SS risk Lπ(Θ) we set out to optimize is defined to
be Lπ(Θ) = Lπ(W ,Γ) =

∥∥Yπ −WΓXπ

∥∥2
F

. With M ≜ WΓ, we also abuse notation and write

Lπ(M) ≜
∥∥Yπ −MXπ

∥∥2
F
,

∇MLπ(M) ≜ −(Yπ −MXπ)X
⊤
π .

We will use big–O notation throughout to simplify the presentation of the proofs. When we write O(ηtk) for some exponent
t ≥ 1, we hide constants that depend on m,

∥∥Xπ

∥∥
F

, and various absolute constants defined explicitly below. These
constants have at most polynomial dependence on these parameters and absolute constants.

A.1. Proof of convergence for SS

Let us first prove Theorem 3.2.2. First, we draw the reader’s attention to some standard properties in optimization theory
that allow us to prove global convergence. We then sketch out the proof in Appendix A.1.2 and flesh out the details in
subsequent sections.

A.1.1. OPTIMIZATION PROPERTIES

It is profitable to keep in mind the general idea behind proving global convergence of SGD for a function L(Θ), which has
been exploited in Ahn, Yun, and Sra (2020); Zhou and Liang (2017); Nguyen, Tran-Dinh, Phan, Nguyen, and van Dijk
(2021). The following two properties of the optimization problem are critical in such approaches:

Property 1 (Smoothness). G-smoothness of L, i.e., the gradients of L are G-Lipschitz. In particular, it implies the following
two standard properties:

(i) L(Θ) ≤ L(Θ′) + ⟨∇ΘL(Θ′),Θ−Θ′⟩+ G
2 ∥Θ

′ −Θ∥2 for all Θ,Θ′ in the domain of L.

(ii) The Hessian H = ∇2
ΘL(Θ) satisfies ∥H∥2 ≤ G for all Θ in the domain of L.

13



Training Instability of Shuffling SGD with Batch Norm

Property 2 (PŁ condition). The loss function L satisfies the α-Polyak-Łojasiewicz condition, i.e., ∥∇L(Θ)∥2 ≥ 2α(L(Θ)−
L∗) for all Θ in the domain of L.

In our case, we can use global smoothness and strong convexity (which implies the PŁ condition) of Lπ with respect to
M = WΓ, but these global properties do not hold with respec to our optimization variables Θ = (W ,Γ). Importantly,
unlike the analyses of Ahn, Yun, and Sra (2020); Nguyen, Tran-Dinh, Phan, Nguyen, and van Dijk (2021), we cannot
directly leverage the global smoothness and strong convexity as is, because we do not directly perform gradient updates on
M . Instead, we effectively use a “dynamic” PŁ condition which depends on Γ. The subtlety in the analysis is to show that
such behavior can be controlled to ensure convergence in the end.

Finally, a third property — which is often exploited to prove convergence results for linear neural networks — is the notion
of an (approximate) invariance property satisfied by the layers of the neural network. Indeed, in the continuous time case,
i.e., when we minimize Lπ(Θ(t)) with gradient flow Θ̇(t) = −∇ΘLπ(Θ(t)), such an invariance can be directly shown by
the differential equations, see Wu, Wang, and Ma (2019) for instance. To that end, define the following quantity

D ≜ I + diag(W⊤W − Γ2), (1)

which we refer to as the invariance matrix. For each iterate Θk
i of SS, the corresponding Dk

i can also be naturally defined.
In gradient flow, D(t) actually remains invariant with time t ∈ [0,∞). We quickly prove this property here, and later prove
that an approximate version holds in the discrete and stochastic case, although the bounds are messier.
Fact A.1.1. In the gradient flow formulation, we have d

dtD(t) = 0. Moreover, in both the gradient flow and discrete time
formulation, we have

diag(W⊤∇WLπ) = (∇ΓLπ)Γ. (2)

Proof. For the proof, we write out the (full) gradients of Lπ with respect to W and Γ for reference:

∇WLπ = −(Yπ − Ŷπ)X
⊤
πΓ, (3)

∇ΓLπ = −diag(W⊤(Yπ − Ŷπ)X
⊤
π ). (4)

A direct calculation shows that diag(W⊤∇WLπ) = (∇ΓLπ)Γ. Due to the gradient flow formulation Θ̇(t) =
−∇ΘLπ(Θ(t)) we have d

dtW (t) = −∇WLπ and d
dtΓ(t) = −∇ΓLπ, so it follows from Equation (2) that d

dtD(t) =
0.

We now formally state the smoothness and PŁ guarantees for our setup.
Lemma A.1.2 (Smoothness with respect to M ). The SS risk Lπ is Gπ–smooth with respect to M = WΓ, where

Gπ ≜
∥∥Xπ

∥∥2
2
.

Proof. We directly check the Lipschitz gradient condition. Indeed, we have

∥∇MLπ(M)−∇MLπ(M
′)∥2

=
∥∥∥(Yπ −MXπ)X

⊤
π − (Yπ −M ′Xπ)X

⊤
π

∥∥∥
2

=
∥∥∥(M −M ′)XπX

⊤
π

∥∥∥
2
≤
∥∥Xπ

∥∥2
2
∥M −M ′∥2,

Note that the same inequality holds (with the same value of Gπ) if we instead used the Frobenius norm, due to the fact that
∥AB∥F ≤ ∥B∥2∥A∥F in the last line.

Lemma A.1.3 (Strong convexity with respect to M ). Under Assumption 1(a), SS risk Lπ is απ–strongly convex with
respect to M = WΓ, where

απ ≜ σmin(XπX
⊤
π ).

Hence, Lπ is also απ–PŁ with respect to M .

Proof. Take the Hessian of Lπ(M) with respect to the vectorized version vec(M) of M to obtain ∇2
vec(M)Lπ(M) =

XπX
⊤
π ⊗ Ip, where ⊗ denotes the Kronecker product. Then evidently ∇2

vec(M)Lπ(M) ⪰ σmin(XπX
⊤
π )Ip. Owing to

Assumption 1(a), this proves the claim.
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A.1.2. PROOF SKETCH OF CONVERGENCE

Proof sketch of Theorem 3.2.2. The high level idea is this: we want to prove that Lπ(M
k
0 ) → L∗

π as k → ∞. However,
we will instead show the much stronger statement that Lπ(M

k
i ) → L∗

π for all i ∈ [m]. Our high level approach is
heavily inspired by the proof strategies in Wu et al. (2019); Ahn et al. (2020). Indeed, many of the technical lemmas in
Appendix A.1.4 are analogous to ones proved in Wu et al. (2019), and the motivation for unrolling shuffling mini-batch
updates to an epoch update with additional noise comes from Ahn et al. (2020).

As a necessary ingredient of the proof, we will demonstrate that for sufficiently small chosen ηk, we have an update equation
that roughly looks like (modulo constants and noise terms)

Lπ(M
k+1
i )− L∗

π ≲ (1− ηk)(Lπ(M
k
i )− L∗

π) +O(η2k) for all 0 ≤ i ≤ m− 1. (5)

Remark A.1.4. Note that it is not necessarily the case that

Lπ(M
k
i+1)− L∗

π ≲ (1− ηk)(Lπ(M
k
i )− L∗

π) +O(η2k)

That is, the SS excess risk Lπ does not necessarily “decrease” from one iterate to the next; however, we can instead
guarantee that the per-epoch progress bound (Equation (5)) holds for any fixed iteration index i ∈ [m] after every epoch.

We impose an ordering relation on pairs (a, b) in the natural way: we say (a, b) ≤ (i, k) if k = b and a ≤ i, or if b < k.
This is just tracking whether the iteration index (a, b) (the ath iterate of the bth epoch) is seen before the iterate (i, k). To
complete the induction on an iterate (i, k + 1) we need three inductive hypotheses L[a, b], D[a, b], and R[a, b] to hold for
all (a, b) < (i, k + 1). We define them formally below.

Hypothesis 1 (Loss stays bounded by an absolute constant). For all a, b satisfying 0 ≤ a ≤ m− 1 and b ≥ 1, the inductive
property L[a, b] states Lπ(Θ

b
a) ≤ CL, for some appropriately chosen absolute constant CL.

In particular, we can set CL ≜ max
{
Lπ(Θ

1
t ) : 0 ≤ t ≤ m− 1

}
. Since we only look at the loss values for the first epoch,

CL is indeed an absolute constant depending on π.

Hypothesis 2 (Loss satisfies one-epoch inequality). For all a, b satisfying 0 ≤ a ≤ m− 1 and b > 1, the inductive property
R[a, b] states that

Lπ(M
b
a)− L∗

π ≤
(
1− απηk

2

)
(Lπ(M

b−1
a )− L∗

π) +O(η2k),

where the constant hidden in the O(η2k) does not depend on k.

Hypothesis 3 (Approximate invariances hold). For all a, b satisfying 0 ≤ a ≤ m− 1 and b ≥ 1, the inductive property
D[a, b] states that ∥∥Db

a

∥∥
2
≤

{
CD

∑b−1
t=1 η

2
t ≤ 1

2 if a = 0,
CD

∑b
t=1 η

2
t ≤ 1

2 otherwise,

where CD is an appropriately chosen absolute constant which does not depend on a or b.

Since the first iterate of the kth epoch Θk
0 is the same as the last iterate of the (k − 1)th epoch Θk

m, the same convention
applies to inductive hypotheses; for example, by L[m, k − 1] we mean L[0, k].

In particular, the inductive hypotheses imply the following claims.

(i) By Corollary A.1.8, L[a, b] implies that
∥∥M b

a

∥∥
2
≤ C

1/2
L +∥Yπ∥F

σmin(X
⊤
π )

≜ ξ.

(ii) Also by Corollary A.1.8, D[a, b] and L[a, b] together imply that we have
∥∥W b

a

∥∥2
2
≤ d2( 12+ξ) and

∥∥Γb
a

∥∥2
2
≤ 3

2+d2( 12+

ξ). For the sake of notational convenience we will write Cw ≜
√

3
2 + d2( 12 + ξ), so that max

{∥∥W b
a

∥∥
2
,
∥∥Γb

a

∥∥
2

}
≤

Cw.

(iii) By Corollary A.1.13, D[a, b] implies that σmin(Γ
b
a)

2 ≥ 1/2.
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(iv) By Proposition A.1.23, if R[a, b] holds for all (a, b), then for appropriately chosen ηk, the risk Lπ(M
b
a) converges to

L∗
π at a sublinear rate.

We will explain at a high level how these statements together allow us to conclude that L[i, k+1], D[i, k+1], and R[i, k+1]
hold. The idea, as in Ahn, Yun, and Sra (2020), is to accumulate the gradient updates in each epoch and isolate the signal
and noise components of each gradient update. For clarity of exposition, we assume for now that i = 0. Here are a couple
subtleties which we spell out explicitly, including how to generalize to i > 0.

• We are not directly performing gradient updates on M ; we instead perform gradient updates on W and Γ. Nevertheless,
the effective gradient signal for M can still be extracted, and we term the remaining noise the mismatched gradient
noise. For every iterate (j, k), this will formally be denoted by qk

j .

• We are not taking a full batch gradient step from Mk
0 to Mk+1

0 . Rather, we are taking mini-batch updates which induce
path dependency. Nevertheless, as previous works have shown, even at iterate (j, k), we can still extract the full-batch
gradient signal evaluated at Mk

0 , and we term the remaining noise the path dependent noise. For every iterate (j, k),
this will formally be denoted by ekj .

• If i > 0, then the stepsize changes from ηk to ηk+1 in the middle of our pass through the entire dataset. Nevertheless,
it’s not hard to see that this noise should be relatively small, of order ηk+1 − ηk — which is O(η2k), as ηk = Ω(1/k).
We will call this the stepsize noise, the accumulation of which for an epoch update starting from iterate (i, k) to
(i, k + 1) will be denoted by s

(i,k)
(i,k+1).

We can accumulate these noise terms across the update across epoch k to form a composite noise term rk. The full-batch
update signal for M starting from Mk

0 will be denoted by g̃k. We emphasize that g̃k ̸= ∇MLπ(M
k
0 ) because we only

perform direct gradient updates on the component layers W and Γ. Then as we will show in Appendix A.1.3, we can write

Mk+1
0 = Mk

0 − ηkg̃
k + η2kr

k. (6)

Next, as seen in Lemma A.1.2, Lπ is globally Gπ–smooth with respect to M for some absolute constant Gπ which depends
on π. Thus, using the smoothness inequality as in Property 1, we obtain

Lπ(M
k+1
0 )− Lπ(M

k
0 ) ≤

〈
∇MLπ(M

k
0 ),M

k+1
0 −Mk

0

〉
F
+

Gπ

2

∥∥Mk+1
0 −Mk

0

∥∥2
F
.

The main idea is that we have the following inequality (proved in Lemma A.1.14) that shows that even though g̃k ̸=
∇MLπ(M

k
0 ), it is nonetheless correlated to the “correct” gradient update ∇MLπ(M

k
0 ):〈

∇MLπ(M
k
0 ), g̃

k
〉
F
≥ σmin(Γ

k
0)

2
∥∥∇MLπ(M

k
0 )
∥∥2
F
≥ 1

2

∥∥∇MLπ(M
k
0 )
∥∥2
F
,

due to the inductive hypothesis D[0, k].

For the stated stepsizes ηk, one can then plug in the gradient update Equation (6) and massage the inequalities a bit to obtain
that

Lπ(M
k+1
0 )− Lπ(M

k
0 ) ≤ −

ηk
4

∥∥∇MLπ(M
k
0 )
∥∥2
F
+O(η2k), (7)

where the constant hidden by the big–O notation is poly(m,Cw, CL,
∥∥Xπ

∥∥
F
).

We now use απ-strong convexity of Lπ with respect to M (and hence απ-PŁ) shown in Lemma A.1.3 to obtain

Lπ(M
k+1
0 )− L∗

π ≤
(
1− απηk

2

)
(Lπ(M

k
0 )− L∗

π) +O(η2k). (8)

Note that this is precisely the statement of R[0, k + 1].

Provided that we can appropriately bound the noise terms rk to get the asserted O(η2k) term above, this will imply R[0, k+1].
For sufficiently small stepsizes ηk, we can also use Equation (8) to prove L[0, k + 1].
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On the other hand, to prove D[0, k + 1], we can directly bound the update
∥∥Dk+1

0 −Dk
m−1

∥∥
2
≤ O(η2k) and combine this

with the inductive hypothesis D[m − 1, k] using the triangle inequality. If the stepsize ηk = O(1/kβ) for 1/2 < β < 1,
then

∑
k≥1 η

2
k <∞, so the absolute constant CD can be picked such that

∥∥Dk+1
0

∥∥
2
≤ 1

2 .

Hence, R[0, k], as stated in Equation (8), holds for all k by induction. We can thus unroll the inequality and conclude that
Lπ(M

k
0 ) converges to L∗

π under the stated stepsize assumptions, as desired.

We now outline the structure of the proceeding sections, which fill in the details of the above proof sketch. In Appendix A.1.3,
we explicitly write out the accumulation of gradient updates across an entire epoch, decomposing into signal and noise
components. In Appendix A.1.4, we prove some technical lemmas controlling the singular values and norms of various
weight matrices and gradients via the approximate invariance matrix D and the inductive hypotheses. In Appendix A.1.5
we leverage the norm bounds developed in Appendix A.1.4 to demonstrate that the accumulated noise terms defined in
Appendix A.1.3 are negligible. Using these results, we are able to establish the R[i, k+1] and L[i, k+1] in Appendix A.1.6.
We then turn to bounding the approximate invariances to establish D[i, k + 1] in Appendix A.1.7. The stray details of the
induction are spelled out in Appendix A.1.8.

A.1.3. REWRITING SS EPOCH GRADIENT UPDATES

To show that L[0, k + 1] holds, we need to accumulate gradients from Mk
0 to Mk+1

0 .

First, we look at a single iterate update. For every j < m we have

Mk
j+1 = (W k

j − ηk∇WL(Xj+1
π ; Θk

j ))(Γ
k
j − ηk∇ΓL(Xj+1

π ; Θk
j )) (9)

= Mk
j − ηkg

k
j + η2kq

k
j , (10)

where we have defined
gk
j ≜ ∇WL(Xj+1

π ; Θk
j )Γ

k
j +W k

j ∇ΓL(Xj+1
π ; Θk

j ), (11)

which is the gradient of the (j + 1)th batch of Xπ evaluated on the jth iterate on epoch k, and

qk
j ≜ ∇WL(Xj+1

π ; Θk
j )∇ΓL(Xj+1

π ; Θk
j ), (12)

which is the mismatched gradient noise term associated with the fact that we performed gradient updates on W and Γ rather
than M directly.

The key observation here is that

gk
j = ∇ML(Xj+1

π ;Mk
j )(Γ

k
j )

2 +W k
j diag((W k

j )
⊤∇ML(Xj+1

π ;Mk
j )).

In other words, gk
j is correlated to the “true” mini-batch gradient ∇ML(Xj+1

π ;Mk
j ) with respect to M through the

“interaction terms” Γk
j and W k

j .

We show in Lemma A.1.16 that we can control the size of the noise terms qk
j which arise from the fact that we are not truly

taking gradient updates with respect to M . More specifically, Lemma A.1.16 implies that
∥∥qk

j

∥∥
F
= O(1).

Next, we actually accumulate gradients. The main obstacle we have to deal with is that the mini-batch updates prevent the
gradient accumulation from being exactly equal to the full-batch update starting at Mk

0 . Inspired by the approach in Ahn
et al. (2020, Theorem 1), we separate out the gradient update gk

j into a signal term g̃k
j and noise term ekj . Specifically, we

write
Mk

j+1 = Mk
j − ηkg̃

k
j + η2ke

k
j + η2kq

k
j , (13)

where
g̃k
j ≜ ∇WL(Xj+1

π ; Θk
0)Γ

k
0 +W k

0 ∇ΓL(Xj+1
π ; Θk

0), (14)

is the signal of the gradient update of the (j + 1)th batch evaluated with parameter values Θk
0 (instead of Θk

j ) and

ekj ≜
g̃k
j − gk

j

ηk
. (15)
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In particular, in Lemma A.1.18 below we show that
∥∥ekj∥∥F = O(1), so that indeed the noise term is negligible with respect

to the true gradient signal.

Taking this as given for now, when we accumulate the gradient updates across epoch k, we see that we can define

g̃k ≜
m−1∑
j=0

g̃k
j = ∇WLπ(Θ

k
0)Γ

k
0 +W k

0 ∇ΓLπ(Θ
k
0), (16)

so that the accumulation reads

Mk+1
0 = Mk

0 − ηkg̃
k + η2k

m−1∑
j=0

(ekj + qk
j ) (17)

= Mk
0 − ηkg̃

k + η2kr
k, (18)

where we have additionally defined the composite noise term:

rk ≜
m−1∑
j=0

(ekj + qk
j ), (19)

Note that if we instead start from i > 0, then the composite noise term rk will have an additional noise term s
(i,k)
(i,k+1), which

we will address in Appendix A.1.5. In particular, we show there that the norm of s(i,k)(i,k+1) is O(1). Combining this with
Lemmas A.1.16 and A.1.18, we can conclude that

∥∥rk∥∥
F
= O(1).

A.1.4. NORM AND SINGULAR VALUE BOUNDS BASED ON APPROXIMATE INVARIANCES

In this section, we prove several helper lemmas which help us bound noise terms in Appendix A.1.5 and the approximate
invariances in Appendix A.1.7.

Upper bounds on the norms of W and Γ. Much of Wu, Wang, and Ma (2019) is dedicated towards showing that the
approximate invariances control the weight norms. The trouble with directly extending their strategy lies in the fact that in
our setting the invariance D is diagonal, which complicates the process of bounding various matrix norms. We first state the
following technical lemma which involves the operator norm of Hadamard products.

Lemma A.1.5 (3.1f in Johnson (1990)). Let A,B ∈ Rd×d be matrices such that A is positive definite. Then ∥A⊙B∥2 ≤
∥A∥2∥B∥2

We leverage Lemma A.1.5 to prove the following useful helper lemma that relates bounds on
∥∥I ⊙W⊤W

∥∥
2

to ∥W ∥2.

Lemma A.1.6. Suppose
∥∥I ⊙W⊤W

∥∥
2
≤ β, where W ∈ Rp×d. Then ∥W ∥2 ≤

√
dβ. Conversely, if ∥W ∥2 ≤ β, then∥∥I ⊙W⊤W

∥∥
2
≤ β2.

Proof. Note that I ⊙W⊤W is a diagonal matrix with diagonal entries W⊤
:,1W:,1,W

⊤
:,2W:,2, . . . ,W

⊤
:,dW:,d, where W:,i

denotes the ith column of W . Hence Tr
(
I ⊙W⊤W

)
= ∥W ∥2F . Hence ∥W ∥2F ≤ dβ (or tighter by replacing d with

the rank of W ), from which it follows that ∥W ∥2 ≤
√
dβ. For the other direction, we set A = I and B = W⊤W in

Lemma A.1.5, so
∥∥I ⊙W⊤W

∥∥
2
≤ ∥W ∥22 ≤ β2, as desired.

With Lemma A.1.6 in hand, we prove the following technical lemma which gives a uniform bound on the norms of Γ and
W based on ξ = ∥WΓ∥2.

Lemma A.1.7. If ∥D∥2 ≤ ϵ < 1 and ∥WΓ∥2 ≤ ξ, we have

∥W ∥2 ≤ d
√
1− ϵ+ ξ,

and ∥∥Γ2
∥∥
2
≤ 1 + ϵ+ d2(1− ϵ+ ξ).
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Proof. We have from ∥WΓ∥2 ≤ ξ that ∥∥WΓ2W⊤∥∥
2
≤ ξ2.

Next, our hypothesis that ∥D∥2 =
∥∥I + diag(W⊤W )− Γ2

∥∥
2
≤ ϵ implies that

WΓ2W⊤ ⪰W ((1− ϵ)I + diag(W⊤W ))W⊤.

Taking norms of both sides and applying the reverse triangle inequality, we obtain that

ξ2 ≥
∥∥W diag(W⊤W )W⊤∥∥

2
− (1− ϵ)∥W ∥22.

We now lower bound
∥∥W diag(W⊤W )W⊤

∥∥
2
. In particular, we expand out the matrix product. Note here that

diag(W⊤W )i,i = ∥W:,i∥22. Thus we can write W diag(W⊤W )W⊤ as

W:,1 W:,2 · · · W:,d



∥W:,1∥22

∥W:,2∥22
. . .

∥W:,d∥22




W⊤
:,1

W⊤
:,2
...

W⊤
:,d

,
from which we observe that the ith diagonal entry of W diag(W⊤W )W⊤ is

(W diag(W⊤W )W⊤)i,i =

d∑
j=1

∥W:,j∥22W
2
i,j .

It follows that Tr
(
W diag(W⊤W )W⊤) =∑d

j=1 ∥W:,j∥42. Note that ∥A∥2 ≥ maxi,j |Ai,j | (the RHS is also known as
the max norm). For our case we set A = W diag(W⊤W )W⊤ and note that the diagonal is nonnegative. So in fact in our
case we obtain ∥∥W diag(W⊤W )W⊤∥∥

2
≥ 1

d

d∑
j=1

∥W:,j∥42.

Now notice that
∑

j ∥W:,j∥42 =
∑

j(
∑

i W
2
i,j)

2. Applying Cauchy-Schwarz to the outer sum we find that

∑
j

∥W:,j∥42 ≥
(
∑

j

∑
i W

2
i,j)

2

d
,

but the RHS is equal to ∥W ∥4F . Since ∥W ∥F ≥ ∥W ∥2, we conclude that

∥∥W diag(W⊤W )W⊤∥∥
2
≥
∥W ∥42
d2

.

In summary, we have
∥W ∥42
d2

− (1− ϵ)∥W ∥22 − ξ2 ≤ 0.

Applying the quadratic formula, we find that

∥W ∥2 ≤ d
√
1− ϵ+ ξ.

For the bound on ∥Γ∥2, we start from the definition of D and apply the reverse triangle inequality to obtain∣∣1 + ∥∥diag(W⊤W )
∥∥
2
−
∥∥Γ2

∥∥
2

∣∣ ≤ ϵ,

so we obtain ∥∥Γ2
∥∥
2
≤ 1 + ϵ+ ∥W ∥22,

where we used
∥∥I ⊙W⊤W

∥∥
2
≤ ∥W ∥22 from Lemma A.1.6. From this, the conclusion directly follows.
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Under the inductive hypotheses, Lemma A.1.7 implies that we can uniformly bound max
{∥∥W k

j

∥∥
2
,
∥∥Γk

j

∥∥
2

}
. This is

spelled out in the following corollary.

Corollary A.1.8 (Norms stay bounded). Suppose that L[j, k] and D[j, k] hold. Define

Cw ≜

√
3

2
+ d2

(
1

2
+ ξ

)
,

with

ξ ≜
C

1/2
L + ∥Yπ∥F
σmin(X

⊤
π )

.

Here CL was defined in Hypothesis 1. Then ∥∥Mk
j

∥∥ ≤ ξ,

and
max

{∥∥W k
j

∥∥
2
,
∥∥Γk

j

∥∥
2

}
≤ Cw.

Proof. We have by triangle inequality that∥∥Mk
j Xπ

∥∥
2
≤
∥∥Mk

j Xπ

∥∥
F
≤
∥∥Yπ −Mk

j Xπ

∥∥
F
+ ∥Yπ∥F ≤ Lπ(M

k
j )

1/2 + ∥Yπ∥F .

Since L[j, k] holds, we have have
∥∥Yπ −Mk

j Xπ

∥∥2
F
≤ CL. Furthermore, as n ≥ d, we know that

∥∥Mk
j Xπ

∥∥
2
≥

σmin(X
⊤
π )
∥∥Mk

j

∥∥
2

and by Item Assumption 1(a) we have σmin(X
⊤
π ) > 0. Hence we obtain

∥∥Mk
j

∥∥
2
≤

C
1/2
L + ∥Yπ∥F
σmin(X

⊤
π )

= ξ.

It follows that ξ works as a bound on
∥∥Mk

j

∥∥
2

for the application of Lemma A.1.7. Since D[j, k] holds by assumption, this
means that the hypothesis on Dk

j is satisfied with ϵ = 1/2. In summary, all the hypotheses of Lemma A.1.7 are satisfied.
We can thus conclude that

max
{∥∥W k

j

∥∥
2
,
∥∥Γk

j

∥∥
2

}
≤ Cw,

as desired.

The importance of these upper bounds on weight norms is that they allow us to upper bound the norms of gradients of L
with respect to various parameters.

Upper bounding the norms of gradients. The following lemma gives an upper bound on the norms of various gradients.

Lemma A.1.9. For any a ∈ [m] and Θ = (W ,Γ) we have

∥∇WL(Xa
π ; Θ)∥2F ≤ ∥Γ∥

2
2∥BN(X

a
π)∥

2
2L(X

a
π ; Θ)

∥∇ΓL(Xa
π ; Θ)∥2F ≤ ∥W ∥

2
2∥BN(X

a
π)∥

2
2L(X

a
π ; Θ)

∥∇ML(Xa
π ;M)∥2F ≤ ∥BN(X

a
π)∥

2
2L(X

a
π ;M)

Proof. First, we have by definition
L(Xa

π ; Θ) = ∥WΓBN(Xa
π)− Y a

π ∥
2
F .

Hence, the mini-batch gradients can be computed explicitly as

∇ML(Xa
π ;M) = −(Y a

π −MBN(Xa
π))BN(X

a
π)

⊤, (20)
∇WL(Xa

π ; Θ) = ∇ML(Xa
π ;M)Γ, (21)

∇ΓL(Xa
π ; Θ) = diag(W⊤∇ML(Xa

π ;M)). (22)
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Since L(Xa
π ;M) = ∥Y a

π −MBN(Xa
π)∥

2
F and ∥AB∥F ≤ ∥A∥2∥B∥F , Equation (20) gives

∥∇ML(Xa
π ;M)∥2F ≤ ∥BN(X

a
π)∥

2
2L(X

a
π ;M).

It thus follows from Equation (21) that

∥∇WL(Xa
π ; Θ)∥2F ≤ ∥Γ∥

2
2∥∇ML(Xa

π ; Θ)∥2F ≤ ∥Γ∥
2
2∥BN(X

a
π)∥

2
2L(X

a
π ; Θ).

Similarly, inspecting Equation (22), since ∥diag(A)∥2F ≤ ∥A∥
2
F , we have

∥∇ΓL(Xa
π ; Θ)∥2F ≤

∥∥W⊤∇ML(Xa
π ; Θ)

∥∥2
F
≤ ∥W ∥22∥BN(X

a
π)∥

2
2L(X

a
π ; Θ).

As a consequence of Corollary A.1.8, under the inductive hypotheses we can also bound the gradient norms by absolute
constants.

Corollary A.1.10. Assume D[j, k] and L[j, k] hold. Then, for any a ∈ [m], we have∥∥∇ML(Xa
π ;M

k
j )
∥∥2
F
≤ CL∥BN(Xa

π)∥
2
2,∥∥∇WL(Xa

π ; Θ
k
j )
∥∥2
F
≤ C2

wCL∥BN(Xa
π)∥

2
2,∥∥∇ΓL(Xa

π ; Θ
k
j )
∥∥2
F
≤ C2

wCL∥BN(Xa
π)∥

2
2,

where Cw was previously defined in Corollary A.1.8.

We now turn from upper bounds to lower bounds. The crux here is to start with bounding the minimum singular value of Γ
away from zero. This in turns allows us to lower bound the correlation between g̃k and ∇MLπ(M

k
0 ) away from zero. As

we will see, we can also show similar correlation lower bounds for the cases i > 0.

Bounding the minimum singular value of Γ2. In order to bound σmin(Γ
k
i ) away from zero, we need to show that the

approximate invariances prevent Γ from vanishing on any coordinate. To do so, we appeal to an alternate formulation of the
Courant-Fisher theorem for singular values, which we restate below for completeness.

Theorem A.1.11 (Courant-Fisher). Let A,B ∈ Rm×n. Then |σk(A)− σk(B)| ≤ ∥A−B∥2 for k ∈ [min{m,n}].

With this in mind, we formally prove that the minimum singular value of Γ2 is bounded away from zero.

Lemma A.1.12. Suppose that ∥D∥2 =
∥∥I + diag(W⊤W − Γ2)

∥∥
2
≤ ϵ. Then we have

σmin(Γ
2) ≥ 1− ϵ.

Proof. Setting A ≜ I + diag(W⊤W ) and B ≜ Γ2 in Courant-Fisher yields∣∣σd(I + diag(W⊤W ))− σd(Γ
2)
∣∣ ≤ ∥∥I + diag(W⊤W )− Γ2

∥∥
2
.

Since the RHS is just D, we obtain that

σmin(Γ
2) ≥ 1 + σmin(diag(W

⊤W ))− ∥D∥2.

The conclusion easily follows.

Under the inductive hypothesis D[i, k], i.e.
∥∥Dk

i

∥∥
2
≤ 1

2 , this immediately implies the following corollary. We will see in the
following section (in Corollary A.1.15) that this minimum singular value bound for Γk

i can be interpreted in the following
manner. Although the effective PŁ condition evolves dynamically, the associated PŁ constant always stays bounded away
from zero.

Corollary A.1.13 (PŁ bounded away from zero). Assume D[i, k] holds. Then we have

σmin(Γ
k
i )

2 ≥ 1

2
.
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The accumulated gradient signal is correlated with the full-batch gradient signal.
Lemma A.1.14 (Correlation of g̃k and ∇MLπ(M

k
0 )). For all k, we have〈

∇MLπ(M
k
0 ), g̃

k
〉
F
≥ σmin(Γ

k
0)

2
∥∥∇MLπ(M

k
0 )
∥∥2
F
.

Proof. Recall that we previously defined

g̃k ≜ ∇WLπ(Θ
k
0)Γ

k
0 +W k

0 ∇ΓLπ(Θ
k
0).

Note that if we have A,Λ ∈ Rn×n, with Λ = diag(λ1, . . . , λn) a diagonal matrix with nonnegative entries, then

⟨A,AΛ⟩F =
〈
AΛ1/2,AΛ1/2

〉
F
=
∥∥∥AΛ1/2

∥∥∥2
F
≥ min

i
λi∥A∥2F .

Also, we have
⟨A,diag(A)⟩F = ⟨diag(A),diag(A)⟩F = ∥diag(A)∥2F ≥ 0.

Hence combining Equations (20) and (22) and the above inequalities, we have〈
∇MLπ(M

k
0 ), g̃

k
〉
F
=
〈
∇MLπ(M

k
0 ),∇WLπ(Θ

k
0)Γ

k
0

〉
F

+
〈
∇MLπ(M

k
0 ),W

k
0 ∇ΓLπ(Θ

k
0)
〉
F

=
〈
∇MLπ(M

k
0 ),∇MLπ(M

k
0 )(Γ

k
0)

2
〉
F

+
〈
(W k

0 )
⊤∇MLπ(M

k
0 ),diag((W

k
0 )

⊤∇MLπ(M
k
0 ))
〉
F

≥ σmin(Γ
k
0)

2
∥∥∇MLπ(M

k
0 )
∥∥2
F
.

We obtain the following corollary of the above lemma and Corollary A.1.13.

Corollary A.1.15. Assume D[0, k] holds. We have〈
∇MLπ(M

k
0 ), g̃

k
〉
F
≥ 1

2

∥∥∇MLπ(M
k
0 )
∥∥2
F
. (23)

More generally, assume D[i, k] holds. We have〈
∇MLπ(M

k
i ), g̃

(i,k)
〉
F
≥ 1

2

∥∥∇MLπ(M
k
i )
∥∥2
F
, (24)

where g̃(i,k) is the analogous quantity to g̃k for accumulating gradients starting at iterate (i, k) rather than (0, k). It is
defined more formally in Equation (26).

A.1.5. BOUNDING NOISE TERMS

We now turn to bounding the composite noise term rk. This is crucial to ensure the global convergence via Equation (8) and
also to control the approximate invariances.

Mismatched gradient noise is negligible. As promised, we show that the mismatched gradient noise terms qk
j are

negligible when we accumulate gradients from Mk
0 to Mk+1

0 .

Lemma A.1.16. Assume that L[j, k] and D[j, k] hold for j < m. Then we have∥∥qk
j

∥∥
F
≤ C2

wCL

∥∥BN(Xj+1
π )

∥∥2
2
.

Furthermore, for any t < m we have
t∑

j=0

∥∥qk
j

∥∥
F
≤ C2

wCL

∥∥Xπ

∥∥2
F
.
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Proof. Recall the definition of qk
j , reproduced here for reference:

qk
j ≜ ∇WL(Xj+1

π ; Θk
j )∇ΓL(Xj+1

π ; Θk
j ).

Since L[j, k] and D[j, k] hold for (j, k), we can apply Corollary A.1.10 to conclude that∥∥qk
j

∥∥
F
≤ C2

wCL

∥∥BN(Xj+1
π )

∥∥2
2
.

Since the inductive hypotheses hold for every j < m, when we accumulate the noise terms from (0, k) to (t, k), we can
apply the above bound to conclude that

t∑
j=0

∥∥qk
j

∥∥
F
≤

t∑
j=0

∥∥BN(Xj+1
π )

∥∥2
2
C2

wCL

≤ C2
wCL

m−1∑
j=0

∥∥BN(Xj+1
π )

∥∥2
F

= C2
wCL

∥∥Xπ

∥∥2
F
,

where the last equality used the definition of Xπ .

Path dependent noise arising from mini-batch updates is negligible. In order to bound the noise term coming from
mini-batch updates, we first prove the following auxiliary lemma that shows that the iterates don’t move far within an epoch.

Lemma A.1.17. Fix t ≤ m and assume D[j, k] and L[j, k] hold for all j < t. Then we have∥∥W k
t −W k

0

∥∥
2
≤
√
tηkCwC

1/2
L

∥∥Xπ

∥∥
F
.

The same inequality holds true if we replace W with Γ.

We also have ∥∥Mk
t −Mk

0

∥∥
2
≤ 2
√
tηkC

2
wC

1/2
L

∥∥Xπ

∥∥
F
+ η2kC

2
wCL

∥∥Xπ

∥∥2
F
.

Proof. We have by definition that

W k
t = W k

0 − ηk

t−1∑
j=0

∇W ℓ(Xj+1
π ; Θk

j ).

Now, we have

∥∥W k
t −W k

0

∥∥
2
≤ ηk

t−1∑
j=0

∥∥∇W ℓ(Xj+1
π ; Θk

j )
∥∥
2

≤ ηkCwC
1/2
L

t∑
j=0

∥∥BN(Xj+1
π )

∥∥
2

≤
√
tηkCwC

1/2
L

∥∥Xπ

∥∥
F

where in the first line we have applied the triangle inequality, in the second line we have applied Corollary A.1.10, and in the
last line we have applied Cauchy-Schwarz.

The same proof holds for Γ.

For M , Equation (10) gives

Mk
t = Mk

0 − ηk

t−1∑
j=0

gk
j + η2k

t−1∑
j=0

qk
j .
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Combining Equation (11) and Corollaries A.1.8 and A.1.10 yields∥∥gk
j

∥∥
2
≤
∥∥Γk

j

∥∥
2

∥∥∇WL(Xj+1
π ; Θk

j )
∥∥
2
+
∥∥W k

j

∥∥
2

∥∥∇ΓL(Xj+1
π ; Θk

j )
∥∥
2

≤ 2C2
wC

1/2
L

∥∥BN(Xj+1
π )

∥∥
2
.

Hence, summing up over j, using Cauchy-Schwarz, and applying the noise bound Lemma A.1.16, it follows that∥∥Mk
t −Mk

0

∥∥
2
≤ 2
√
tηkC

2
wC

1/2
L

∥∥Xπ

∥∥
F
+ η2kC

2
wCL

∥∥Xπ

∥∥2
F
.

Now we show that the noise term
∥∥ekj∥∥2 is O(1).

Lemma A.1.18. If L[j, k] and D[j, k] both hold for all j < m then we have for each j that∥∥ekj∥∥2 ≤ 4
√
jC2

wC
1/2
L

∥∥Xπ

∥∥2
F
(C

1/2
L + C2

w

∥∥Xπ

∥∥
F
) +O(ηk).

Hence, we also have

m−1∑
i=0

∥∥ekj∥∥2 ≤ 4m3/2C2
wC

1/2
L

∥∥Xπ

∥∥2
F
(C

1/2
L + C2

w

∥∥Xπ

∥∥
F
) +O(ηk).

Proof. Inspecting the definition of ekj (Equation (15)), let us bound the quantity

ηke
k
j = ∇WL(Xj+1

π ; Θk
0)Γ

k
0 −∇WL(Xj+1

π ; Θk
j )Γ

k
j︸ ︷︷ ︸

(I)

+W k
0 ∇ΓL(Xj+1

π ; Θk
0)−W k

j ∇ΓL(Xj+1
π ; Θk

j )︸ ︷︷ ︸
(II)

.

First, we have by triangle inequality and the identity Equation (21) that the norm of (I) is at most∥∥∇WL(Xj+1
π ; Θk

0)Γ
k
0 −∇WL(Xj+1

π ; Θk
0)Γ

k
j

∥∥
2

+
∥∥∇WL(Xj+1

π ; Θk
0)Γ

k
j −∇WL(Xj+1

π ; Θk
j )Γ

k
j

∥∥
2

≤
∥∥Γk

0(Γ
k
j − Γk

0)
∥∥
2

∥∥∇ML(Xj+1
π ;Mk

0 )
∥∥
2

+
∥∥Γk

j

∥∥
2

∥∥∇ML(Xj+1
π ;Mk

0 )Γ
k
0 −∇ML(Xj+1

π ;Mk
j )Γ

k
j

∥∥
2

≤
∥∥Γk

0(Γ
k
j − Γk

0)
∥∥
2

∥∥∇ML(Xj+1
π ;Mk

0 )
∥∥
2

+
∥∥Γk

j

∥∥
2

(∥∥∇ML(Xj+1
π ;Mk

0 )Γ
k
0 −∇ML(Xj+1

π ;Mk
0 )Γ

k
j

∥∥
2

+
∥∥∇ML(Xj+1

π ;Mk
0 )Γ

k
j −∇ML(Xj+1

π ;Mk
j )Γ

k
j

∥∥
2

)
≤ (
∥∥Γk

0

∥∥
2
+
∥∥Γk

j

∥∥
2
)
∥∥Γk

j − Γk
0

∥∥
2

∥∥∇ML(Xj+1
π ;Mk

0 )
∥∥
2

+
∥∥Γk

j

∥∥2
2

∥∥∇ML(Xj+1
π ;Mk

0 )−∇ML(Xj+1
π ;Mk

j )
∥∥
2
.

Applying the weight bounds in Corollaries A.1.8 and A.1.10 and Lemma A.1.17 to the first term yields an upper bound of

2Cw · (
√

jηkCwC
1/2
L

∥∥Xπ

∥∥
F
) · (
∥∥BN(Xj+1

π )
∥∥
2
C

1/2
L ) ≤ 2

√
jηkC

2
wCL

∥∥Xπ

∥∥2
F
.

Turning to the second term, we can apply the smoothness bound in Lemma A.1.2 and the inductive bounds in Corollar-
ies A.1.8 and A.1.10 and Lemma A.1.17 to obtain an upper bound of

C2
w

∥∥BN(Xj+1
π )

∥∥2
2

∥∥Mk
j −Mk

0

∥∥
2
≤ 2
√

jηkC
4
wC

1/2
L

∥∥Xπ

∥∥3
F
+ η2kC

4
wCL

∥∥Xπ

∥∥4
F
.
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Putting it together, we have

(I) ≤ 2
√
jηkC

2
wC

1/2
L

∥∥Xπ

∥∥2
F
(C

1/2
L + C2

w

∥∥Xπ

∥∥
F
) + η2kC

4
wCL

∥∥Xπ

∥∥4
F
.

Similarly, for (II) we have the exact same bound since we can apply Lemma A.1.5 to remove the diagonal operator and
uniformly bound

∥∥W k
j

∥∥
2

and
∥∥Γk

j

∥∥
2

by Cw.

Finally, combining (I) and (II) and dividing through by ηk, we can conclude that∥∥ekj∥∥2 ≤ 4
√
jC2

wC
1/2
L

∥∥Xπ

∥∥2
F
(C

1/2
L + C2

w

∥∥Xπ

∥∥
F
) +O(ηk).

Summing up
∥∥ekj∥∥2 over all j and crudely bounding

∑m−1
j=0

√
j ≤ m3/2, we see that

m−1∑
i=0

∥∥ekj∥∥2 ≤ 4m3/2C2
wC

1/2
L

∥∥Xπ

∥∥2
F
(C

1/2
L + C2

w

∥∥Xπ

∥∥
F
) +O(ηk).

Stepsize noise is negligible for i > 0. We now quickly show that the effect of generalizing the induction to i > 0 is
negligible. In particular, we can carry out the same proof, except we will have to redefine the per-epoch update so it can
account for gradient updates starting at an arbitrary iterate (i, k) rather than (0, k). We explicitly redefine these terms below
by quickly revisiting the signal-noise decomposition in Appendix A.1.3. Recall that a single-iterate update at iteration (a, b)
can be written as (Equation (10))

M b
a+1 = M b

a − ηbg
b
a + η2bq

b
a,

where we defined

gb
a ≜ ∇WL(Xa+1

π ; Θb
a)Γ

b
a +W b

a∇ΓL(Xa+1
π ; Θb

a),

qb
a ≜ ∇WL(Xa+1

π ; Θb
a)∇ΓL(Xa+1

π ; Θb
a).

Consider carrying out the same accumulation as in Appendix A.1.3, but this time choosing (i, k) instead (0, k) as the “pivot.”
For this purpose, we will change our notational convention a little bit and use superscripts to denote the pivot or the starting
point (i, k). As the redefinitions of the “signal” g̃b

a (Equation (14)) and path dependent noise eba (Equation (15)), we define

g̃(i,k)
a ≜ ∇WL(Xa+1

π ; Θk
i )Γ

k
i +W k

i ∇ΓL(Xa+1
π ; Θk

i ),

e
(i,k)
(a,b) ≜

g̃
(i,k)
a − gb

a

ηk
,

for indices (a, b) satisfying (i, k) ≤ (a, b) ≤ (i− 1, k + 1).

This way, the accumulation of updates on M from iteration (i, k) to (i− 1, k + 1) can be represented as

Mk+1
i = Mk

i − ηk

m−1∑
j=i

gk
j + η2k

m−1∑
j=i

qk
j − ηk+1

i−1∑
j=0

gk+1
j + η2k+1

i−1∑
j=0

qk+1
j

= Mk
i − ηk

(i−1,k+1)∑
(a,b)=(i,k)

gb
a + η2k

(i−1,k+1)∑
(a,b)=(i,k)

qb
a

− (ηk+1 − ηk)

i−1∑
j=0

gk+1
j + (η2k+1 − η2k)

i−1∑
j=0

qk+1
j

= Mk
i − ηkg̃

(i,k) + η2k

(i−1,k+1)∑
(a,b)=(i,k)

(
e
(i,k)
(a,b) + qb

a

)
+ η2ks

(i,k)
(i,k+1) (25)
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where in the last equality we used gb
a = g̃

(i,k)
a − ηke

(i,k)
(a,b) and also defined the accumulated signal g̃(i,k) (a redefinition of

g̃k from Equation (16)) and the stepsize noise s
(i,k)
(i,k+1) as

g̃(i,k) ≜
(i−1,k+1)∑
(a,b)=(i,k)

g̃(i,k)
a = ∇WLπ(Θ

k
i )Γ

k
i +W k

i ∇ΓLπ(Θ
k
i ), (26)

s
(i,k)
(i,k+1) ≜ −

ηk+1 − ηk
η2k

i−1∑
j=0

gk+1
j +

η2k+1 − η2k
η2k

i−1∑
j=0

qk+1
j . (27)

As a sanity check, we can quickly see that the stepsize noise s
(i,k)
(i,k+1) is zero if i = 0.

Now notice that Equation (25) can be thought of as a generalization of the per-epoch update (Equation (17)) originally
obtained for i = 0. For now, suppose we ignore the last term of Equation (25) involving the stepsize noise s(i,k)(i,k+1). Then, if
we carry out the above analysis for bounding the remaining terms in Equation (25), there is no difference in the argument up
to reindexing; we can consider this as using ηk for the stepsize even for the iterates (a, b) where b = k+ 1. In particular, the
lemmas of the previous sections all hold up to reindexing notation.

Therefore, it now suffices to show that the stepsize noise s
(i,k)
(i,k+1) is of the same order as the other noise terms; in particular,∥∥∥s(i,k)(i,k+1)

∥∥∥
F
= O(1).

Lemma A.1.19. Assume L[j, k + 1] and D[j, k + 1] hold for all j ≤ i− 1. Suppose that

ηk = O

(
1

kβ

)
,

for some 1/2 < β < 1. Then the stepsize noise ∥∥∥s(i,k)(i,k+1)

∥∥∥
F
= O(1).

Proof. Since D[j, k + 1] holds, Lemma A.1.16 demonstrates that
∥∥qk+1

j

∥∥
2
= O(1). On the other hand, Corollaries A.1.8

and A.1.10 show that
∥∥gk+1

j

∥∥
2
= O(1). Since ηk = O(1/kβ) and β ≤ 1, we have ηk+1 − ηk = O(1/kβ+1) = O(η2k).

Similarly η2k+1 − η2k = O(1/k2β+1) = O(η3k). Plugging these into Equation (27), we conclude that
∥∥∥s(i,k)(i,k+1)

∥∥∥
F
= O(1),

as desired.

Composite noise term is negligible. Now that we have formally defined the stepsize noise that arise for i > 0, we also
redefine the composite noise term rk (Equation (19)) originally defined for i = 0. The updated definition is simply

r(i,k) ≜
(i−1,k+1)∑
(a,b)=(i,k)

(
e
(i,k)
(a,b) + qb

a

)
+ s

(i,k)
(i,k+1), (28)

which allows us to rewrite the epoch update spelled out in Equation (25) as

Mk+1
i = Mk

i − ηkg̃
(i,k) + η2kr

(i,k)., (29)

which is a generalization of Equation (18).

It is left to show formally that the composite noise term r(i,k) defined in Equation (28), obtained from combining the
mismatched gradient noise terms qb

a, the path dependent noise e
(i,k)
(a,b) for (i, k) ≤ (a, b) ≤ (i− 1, k + 1), and the stepsize

noise s
(i,k)
(i,k+1), is indeed O(1).

Proposition A.1.20 (Composite noise term). Suppose L[a, b] and D[a, b] hold for (i, k) ≤ (a, b) ≤ (i − 1, k + 1), and
ηk = O(1/kβ) for some 1/2 < β < 1. Then the composite noise term r(i,k) satisfies∥∥∥r(i,k)∥∥∥

F
≤ poly(m,Cw, CL,

∥∥Xπ

∥∥
F
) +O(ηk).
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Proof. Combining Lemmas A.1.16, A.1.18 and A.1.19, taking care to analyze the constants (which are all
poly(m,Cw, CL,

∥∥Xπ

∥∥
F
)) hidden by the big–O notation, yields the desired result.

A.1.6. ACCUMULATED LOSS UPDATE

In this section, we formally account for the noise terms and prove that an accumulated loss inequality holds. More precisely,
we can use the gradient update spelled out in Equation (29) and the noise bounds in Appendix A.1.5 to obtain a single epoch
loss update. In other words, this section prove the inductive step that the hypotheses R[i, k + 1] and L[i, k + 1] holds. For
the sake of simplicity, in this section we focus on the case i = 0. However, as discussed above, the case i > 0 only adds a
negligible stepsize error and the same arguments go through.

We start with the following proposition, which proves the hypothesis R[0, k + 1].

Proposition A.1.21. Assume that L[j, k] and D[j, k] hold for all j < m. Consider optimizing the linear+BN network with
stepsize satisfying

ηk ≤
1

2kβ
,

for 1/2 < β < 1.

Then
Lπ(M

k+1
0 )− L∗

π ≤
(
1− απηk

2

)
(Lπ(M

k
0 )− L∗

π) + poly(m,Cw, CL,
∥∥Xπ

∥∥
F
)η2k, (30)

where the poly(m,Cw, CL,
∥∥Xπ

∥∥
F
) term is independent of k and has constant degree.

Proof. First, we use the Gπ-smoothness of Lπ with respect to M guaranteed by Lemma A.1.2 to obtain

Lπ(M
k+1
0 )− Lπ(M

k
0 ) ≤

〈
∇MLπ(M

k
0 ),M

k+1
0 −Mk

0

〉
F
+

Gπ

2

∥∥Mk+1
0 −Mk

0

∥∥2
F
.

Using the gradient update Equation (18) and Cauchy-Schwarz, we can upper bound the RHS by〈
∇MLπ(M

k
0 ),−ηkg̃k + η2kr

k
〉
F
+

Gπ

2

∥∥Mk+1
0 −Mk

0

∥∥2
F

≤ −ηk
〈
∇MLπ(M

k
0 ), g̃

k
〉
F
+ η2k

∥∥rk∥∥
F

∥∥∇MLπ(M
k
0 )
∥∥
F
+

Gπ

2

∥∥Mk+1
0 −Mk

0

∥∥2
F
.

Next, we can use Lemma A.1.17, with t = m, together with the inequality (a+ b)2 ≤ 2a2 + 2b2, to obtain an upper bound
of

≤ −ηk
〈
∇MLπ(M

k
0 ), g̃

k
〉
F
+ η2k

∥∥rk∥∥
F

∥∥∇MLπ(M
k
0 )
∥∥
F

+
Gπ

2
(4mη2kC

4
wCL

∥∥Xπ

∥∥2
F
+ η4kC

4
wC

2
L

∥∥Xπ

∥∥4
F
).

Then, because the inductive hypotheses apply we can apply Corollary A.1.10 to bound gradients, Corollary A.1.15 to bound
the inner product

〈
∇MLπ(M

k
0 ), g̃

k
〉
F

. Moreover, since ηk = O(1/kβ), we can use Proposition A.1.20 to bound
∥∥rk∥∥

F
.

This yields an upper bound of

− ηk
2

∥∥∇MLπ(M
k
0 )
∥∥2
F
+ η2k

∥∥∇MLπ(M
k
0 )
∥∥
F

∥∥rk∥∥
F
+ poly(m,Cw, CL,

∥∥Xπ

∥∥
F
)η2k

≤
(
−ηk

2
+

η2k
2

)∥∥∇MLπ(M
k
0 )
∥∥2
F
+ poly(m,Cw, CL,

∥∥Xπ

∥∥
F
)η2k

≤ −ηk
4
∥∇MLπ(k)∥2F + poly(m,Cw, CL,

∥∥Xπ

∥∥
F
)η2k

In the second line, we have used ab ≤ 1
2 (a

2 + b2), and throughout, we have used the assumption ηk ≤ 1
2 to reduce higher

order terms of ηk.

Putting it together, we find that

Lπ(M
k+1
0 )− Lπ(M

k
0 ) ≤ −

ηk
4

∥∥∇MLπ(M
k
0 )
∥∥2
F
+ poly(m,Cw, CL,

∥∥Xπ

∥∥
F
)η2k
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We now use απ–strong convexity with respect to M (and hence απ-PŁ) guaranteed by Lemma A.1.3 to obtain

Lπ(M
k+1
0 )− L∗

π ≤
(
1− απηk

2

)
(Lπ(M

k
0 )− L∗

π) + poly(m,Cw, CL,
∥∥Xπ

∥∥
F
)η2k.

One consequence of Proposition A.1.21 is that if the stepsize ηk is small enough, we can guarantee that the loss decreases
from Lπ(M

k
i ) to Lπ(M

k+1
i ).

Next, from Proposition A.1.21, we can prove the other inductive hypothesis, namely L[0, k + 1].

Corollary A.1.22. Suppose L[j, k] and D[j, k] hold for all j < m and the stepsize satisfies

ηk ≤
1

kβ
min

{
1

2
,

απCL

poly(m,Cw, CL,
∥∥Xπ

∥∥
F
)

}
,

for some 1/2 < β < 1.

Then L[0, k + 1] holds, i.e.
Lπ(M

k+1
0 ) ≤ CL.

Proof. Since ηk ≤ 1
2kβ , we can apply Proposition A.1.21 to conclude that Equation (30) holds. Then, for the bound

Lπ(M
k+1
0 ) ≤ CL to hold, it suffices to show that(

1− απηk
2

)
CL + poly(m,Cw, CL,

∥∥Xπ

∥∥
F
)η2k ≤ CL.

Equivalently,
poly(m,Cw, CL,

∥∥Xπ

∥∥
F
)ηk ≤

απ

2
CL.

Clearly this holds for the stated assumption on ηk.

Finally, we show that by inductively unrolling the inequality in Proposition A.1.21, we can show that Lπ(M
k
i ) converges to

L∗
π at a sublinear rate.

Proposition A.1.23. Assume we are in the same setup as Proposition A.1.21. Suppose that the stepsize satisfies

ηk =
c

kβ
,

for some absolute constant c such that c ≤ min
{

1
2 ,

2
απ

}
and 1/2 < β < 1. Further suppose that R[0, b] holds for every

b ∈ [k + 1]. Then if β < 1 we have

Lπ(Θ
k+1
0 )− L∗

π ≤ (Lπ(Θ
1
0)− L∗

π) exp

(
cαπ

2(1− β)
(2− k1−β)

)
+

c2 poly(m,Cw, CL,
∥∥Xπ

∥∥
F
) log k

kβ
,

Proof. Note that by inspecting the proof of Proposition A.1.21 and Proposition A.1.20, the term poly(m,Cw, CL,
∥∥Xπ

∥∥
F
)

has no dependence on k. So for simplicity we will assume that this term is bounded by some absolute constant A. Since
ηk ≤ 1

2kβ , Proposition A.1.21 implies that

Lπ(M
k+1
0 )− L∗

π ≤
(
1− απηk

2

)
(Lπ(M

k
0 )− L∗

π) +Aη2k (31)

We can unroll the recurrence to obtain

Lπ(M
k+1
0 )− L∗

π ≤ (Lπ(M
1
0 )− L∗

π)

k∏
t=1

(
1− απηt

2

)
+A

k∑
t=1

η2t

 k∏
j=t+1

(
1− απηj

2

). (32)
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We have for any ct ≤ 1 that

b∏
t=a

(1− ct) ≤ exp

(
b∑

t=a

log(1− ct)

)

≤ exp

(
−

b∑
t=a

ct

)
,

where we have used log(1− x) ≤ −x for x ≤ 1. For 1/2 < β < 1 we have

b∑
t=a

1

tβ
≥
∫ b

a

1

tβ
dt =

b1−β − a1−β

1− β
.

Hence, since we assumed ηk = c
kβ , and απc

2 ≤ 1, we have

b∏
t=a

(
1− απηt

2

)
≤ exp

(
− cαπ

2(1− β)
(b1−β − a1−β)

)

Now we can bound

A

k∑
t=1

η2t

 k∏
j=t+1

(
1− απηj

2

) ≤ c2A

k2β
+

k−1∑
t=1

c2A

t2β
exp

(
− cαπ

2(1− β)
(k1−β − (t+ 1)1−β)

)

Define T ≜ k − Ckβ log k, where C > 0 is an absolute constant to be picked later. We can split up the sum into t < T and
t ≥ T . For the terms t < T we can use concavity to deduce that

k1−β − (t+ 1)1−β ≥ (1− β)(k − t− 1)k−β ≥ Θ(log k),

where the constant hidden in Θ(log k) increases with C. Hence we pick C so that for t < T we have

cαπ

2(1− β)
(k1−β − (t+ 1)1−β) ≥ β log k.

Then, ∑
t<T

c2A

t2β
exp

(
− cαπ

2(1− β)
(k1−β − (t+ 1)1−β)

)
≤ exp(−β log k)

∑
t<T

c2A

t2β

≤ O

(
c2A

kβ

)
.

On the other hand, for the terms t ≥ T we can naively bound the exponential term by 1 and obtain∑
t≥T

c2A

t2β
exp

(
− cαπ

2(1− β)
(k1−β − (t+ 1)1−β)

)
≤
∑
t≥T

c2A

t2β

≤ Θ(kβ log k)
c2A

T 2β

≤ Θ

(
c2A log k

kβ

)
.

Hence we have that

Lπ(M
k+1
0 )− L∗

π ≤ (Lπ(M
1
0 )− L∗

π) exp

(
cαπ

2(1− β)
(2− k1−β)

)
+Θ

(
c2A log k

kβ

)
, (33)

and the inequality in the proposition statement holds by recalling that A = poly(m,Cw, CL,
∥∥Xπ

∥∥
F
).
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A.1.7. BOUNDING APPROXIMATE INVARIANCES

Armed with Corollaries A.1.8 and A.1.10, we slog through the arduous task of inductively bounding the approximate
invariance. As a reminder, these corollaries tell us that assuming the inductive hypotheses L[j, k] and D[j, k] hold, all
weight norms and losses for iterate (j, k) can be bounded by uniform constants.

Lemma A.1.24. Suppose L[j, k] and D[j, k] hold for some j < m. We have∥∥Dk
j+1 −Dk

j

∥∥
2
≤ 2C2

wCL

∥∥BN(Xj+1
π )

∥∥2
2
η2k.

Hence, if D[t, k] holds for all t ≤ j, we have

∥∥Dk
j+1

∥∥
2
≤ 2C2

wCL

∥∥Xπ

∥∥2
F

k∑
t=1

η2t .

Proof. We have

(W k
j+1)

⊤W k
j+1 = (W k

j − ηk∇WL(Xj+1
π ; Θk

j ))
⊤(W k

j − ηk∇WL(Xj+1
π ; Θk

j ))

= (W k
j )

⊤W k
j − ηk

[
∇WL(Xj+1

π ; Θk
j )

⊤W k
j + (W k

j )
⊤∇WL(Xj+1

π ; Θk
j )
]

+ η2k[∇WL(Xj+1
π ; Θk

j )
⊤∇WL(Xj+1

π ; Θk
j )]

Similarly, we have

(Γk
j+1)

2 = (Γk
j − ηk∇ΓL(Xj+1

π ; Θk
j ))(Γ

k
j − ηk∇WL(Xj+1

π ; Θk
j ))

= (Γk
j )

2 − ηk
[
∇ΓL(Xj+1

π ; Θk
j )Γ

k
j + Γk

j∇ΓL(Xj+1
π ; Θk

j )
]

+ η2k[∇ΓL(Xj+1
π ; Θk

j )∇ΓL(Xj+1
π ; Θk

j )]

The gradient invariance in Fact A.1.1 cancels out the ηk term in Dk
j+1 = I + diag((W k

j+1)
⊤W k

j+1 − (Γk
j+1)

2. Hence, if
we take the operator norm of Dk

j+1 −Dk
j and use Lemma A.1.5, we can ignore the diagonal operator. Then, since the

inductive hypotheses hold, we can apply the inductive gradient bound (Corollary A.1.10) to obtain∥∥Dk
j+1 −Dk

j

∥∥
2
≤ η2k

[∥∥∇WL(Xj+1
π ; Θk

j )
∥∥2
2
+
∥∥∇ΓL(Xj+1

π ; Θk
j )
∥∥2
2

]
≤ 2C2

wCL

∥∥BN(Xj+1
π )

∥∥2
2
η2k.

To conclude, we apply triangle inequality and the inductive hypothesis on D[t, k], yielding

∥∥Dk
j+1

∥∥
2
≤
∥∥Dk

0

∥∥
2
+ 2C2

wCLη
2
k

j∑
t=0

∥∥BN(Xt+1
π )

∥∥2
2

≤
∥∥Dk

0

∥∥
2
+ 2C2

wCLη
2
k

∥∥Xπ

∥∥2
F

≤ 2C2
wCL

∥∥Xπ

∥∥2
F

k∑
t=1

η2t .

As a corollary, we see that for stepsizes of the form ηk = c/kβ for 1/2 < β < 1, we can select c to guarantee that∥∥Dk
j

∥∥
2
≤ 1/2 for all (j, k).

Corollary A.1.25. Assume that D[t, k] holds for all t ≤ j < m and ηk = c
kβ for 1/2 < β < 1. If

c2 ≤ 1

4(1 + 1
2β−1 )C

2
wCL

∥∥Xπ

∥∥2
F

,
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then ∥∥Dk
j+1

∥∥
2
≤ 2C2

wCL

∥∥Xπ

∥∥2
F

k∑
t=1

η2t ≤
1

2
.

In other words, D[j + 1, k] holds.

Proof. Lemma A.1.24 implies that

∥∥Dk
j+1

∥∥
2
≤ 2C2

wCL

∥∥Xπ

∥∥2
F

k∑
t=1

η2t ≤ 2C2
wCL

∥∥Xπ

∥∥2
F

∞∑
t=1

η2t .

For 1/2 < β < 1, we have

∞∑
k=1

1

k2β
≤ 1 +

∫ ∞

1

1

t2β
dt = 1 +

1

1− 2β
t1−2β

∣∣∣∣∞
1

= 1 +
1

2β − 1
.

Hence, if

c2 ≤ 1

4(1 + 1
2β−1 )C

2
wCL

∥∥Xπ

∥∥2
F

,

then evidently
∥∥Dk

j+1

∥∥
2
≤ 1

2 , as desired.

A.1.8. COMPLETING THE INDUCTION

With all the pieces in place, we formally state the theorem for SS convergence.

Theorem A.1.26 (Formal statement of convergence for SS). Let π ∈ Sn be such that Assumption 1(a) holds. Let
f(·; Θ) = WΓBN(·) be a 2-layer linear+BN network initialized at Θ1

0 = (W 1
0 ,Γ

1
0) = (0, I). Consider optimizing f

using SS with permutation π and decreasing stepsize

ηk =
1

kβ
·min

{
1

2
,
2

απ
,

απCL

poly(m,Cw, CL,
∥∥Xπ

∥∥
F
)
,

√
1

4(1 + 1
2β−1 )C

2
wCL

∥∥Xπ

∥∥2
F

}

for any 1/2 < β < 1. Then the SS risk satisfies

Lπ(Θ
k+1
0 )− L∗

π ≤
poly(m, d,CL,

∥∥Xπ

∥∥
F
, 1

σmin(X
⊤
π )

) log k

kβ
.

In particular, the SS risk converges to the global optimal risk L∗
π .

Proof of Theorem A.1.26. We proceed by induction on the epoch. We restate the key inductive statements to prove:(with
appropriate selection of ηk):

• L[j, k]: Lπ(Θ
k
j ) stays bounded above by some uniform constant CL ≥ ∥Yπ∥2F — this is the content of Corol-

lary A.1.22.

• R[j, k]: Lπ(Θ
k
j ) satisfies the per-epoch loss inequality — this is the content of Proposition A.1.21.

• D[j, k]: The approximate invariances stay bounded in norm away from 1. More precisely,
∥∥Dk

j

∥∥
2
≤

2C2
wCL

∥∥Xπ

∥∥2
F

∑∞
t=1 η

2
t ≤ 1

2 — this is the content of Corollary A.1.25.

Notice that the assumptions on ηk exactly satisfy the hypotheses of Corollaries A.1.22 and A.1.25 and Proposition A.1.23.

The base cases follows from the initialization. Recall that we set

CL = max
{
Lπ(Θ

1
t ) : 0 ≤ t ≤ m− 1

}
.
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Since we only look at the loss values for the first epoch, CL is indeed an absolute constant depending on π. So L[j, 1],
as defined in Hypothesis 1, holds for all j < m. Next, we have from the initialization that D1

0 = 0. Then, applying
Lemma A.1.24, we can conclude D[j, 1] also holds for all j < m, so Hypothesis 3 holds. Finally, there is no need to check
Hypothesis 2 because it is only defined for k > 1.

Now our inductive hypotheses are that L[j, k], R[j, k], D[j, k] hold for all j < m. For the inductive step, we want to prove
L[0, k + 1], R[0, k + 1], D[0, k + 1]. By construction of ηk, the hypotheses of Corollary A.1.22 is satisfied, so L[0, k + 1]
holds. Moreover, the hypotheses of Proposition A.1.21 are satisfied, so R[0, k + 1] holds. Finally, the hypotheses of
Lemma A.1.24 are satisfied, so that D[0, k + 1] holds.

As asserted earlier, the above argument is robust up to reindexing if we want to prove the statement for i > 0. In particular,
all of the results of the previous section go through, as we showed in Proposition A.1.20 that the stepsize noise is negligible.
Hence the induction is completed for all (i, k) and so the unrolled update equation in Proposition A.1.23 holds for all k.
This gives the formal rate of convergence for the stated stepsize. In particular, we see that the SS risk Lπ converges to its
global minimum.

Proof of Theorem 3.2.2. All we need to do is convert the stepsizes requirements. Examining the stepsize requirements in
Theorem A.1.26, they depend on CL, Cw, and

∥∥Xπ

∥∥
F

.

Now recall the definition of Cw in Corollary A.1.8:

C2
w ≤

3

2
+ d2

(
1

2
+

C
1/2
L + ∥Yπ∥F
σmin(X

⊤
π )

)
.

Hence Cw = poly(d,CL, ∥Yπ∥F , 1/σmin(X
⊤
π )). Finally, since ∥Xπ∥2F = dn, σmin(XπX

⊤
π ) = σmin(X

⊤
π )

2, and CL is
an absolute constant, we can convert the stepsize requirements into

ηk =
1

kβ
·min

{
1

2
,

2

σmin(XπX
⊤
π )

,

√
2β − 1 poly(σmin(X

⊤
π ))

poly(n, d, ∥Yπ∥F )

}
,

which directly implies the stepsize requirements in Theorem 3.2.2.

A.2. Proof of convergence for RR

In this section, we prove Theorem 3.2.3. With RR, we randomly resample permutation πk ∈ Sn on epoch k. Hence, it is
natural to seek a convergence bound in expectation. We briefly comment on the complications that arise in this setting.

Since we want to prove convergence an expectation, an inductive approach that controls the approximate invariances and loss
evolution is complicated by the necessity for bounds on these quantities that are stronger than merely being in expectation.
This is precisely why we need Assumption 3.

Additional notation. As introduced in Section 2, we can view RR as optimizing the risk

LRR(Θ) ≜
1

n!

∑
π∈Sn

Lπ(Θ)

via with-replacement SGD on an epoch level (i.e., Lπ is sampled uniformly with replacement at every epoch), albeit with
noise terms due to the shuffling algorithm. Motivated by the setup in Section 2, we can also write LRR in an equivalent form
to LGD as follows:

LRR(Θ) ≜
1

n!

∑
π∈Sn

L(f(Xπ; Θ),Yπ) =
1

n!
L(WΓBNRR(X),YRR),

where BNRR(X) ≜
[
Xπ1

. . . · · · Xπn!

]
∈ Rd×(n·n!),

YRR ≜
[
Yπ1

· · · Yπn!

]
∈ Rp×(n·n!).

For notational convenience, we also write XRR ≜ BNRR(X), and reiterate that overlines indicate the presence of batch
normalization.
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Just as in the SS case, we will abuse notation and refer to the RR risk function as a function of M = WΓ by writing
LRR(M) ≜ 1

n!

∑
π∈Sn Lπ(M). Similarly, we will often refer to the gradient of the RR risk with respect to M as

∇MLRR(M) ≜ 1
n!

∑
π∈Sn ∇MLπ(M). We will find it helpful to use the notation Xmax,2 ≜ argmaxπ∈Sn

∥∥Xπ

∥∥
2
.

Similarly we will denote the maximum Frobenius norm batch normalized dataset by Xmax,F ≜ argmaxπ∈Sn
∥∥Xπ

∥∥
F

.
Furthermore, it follows from the unit variance constraint in the definition of BN that

∥∥Xmax,2

∥∥
2
≤
∥∥Xmax,F

∥∥
F
≤
√
dn.

At a high level, the RR proof of convergence closely follows the SS proof of convergence. Indeed, most of the technical
legwork has already been fleshed out in the SS case — most of the results port over immediately, taking care to replace π
with πk. However, we will be careful in accounting for where we need to deviate from the SS logic.

A.2.1. CHECKING OPTIMIZATION PROPERTIES

We first check the smoothness and strong convexity property with respected to the merged matrix M that we heavily relied
on for the proof of convergence for SS.

Fact A.2.1 (Smoothness of RR). Define

GRR ≜
1

n!

∑
π∈Sn

Gπ.

Then LRR(M) is GRR-smooth with respect to M .

Proof. The statement follows from combining Lemma A.1.2 with the fact that if fi are Gi-smooth, then
∑n

i=1 fi is∑n
i=1 Gi-smooth.

As before, we cannot directly use a PŁ inequality on W or Γ; we must instead bootstrap this from the strong convexity of
the risk with respect to M = WΓ.

Fact A.2.2 (Strong convexity). Suppose that Assumption 1(b) holds for some π ∈ Sn. Then the loss function LRR(M) =
1
n!

∑
π∈Sn Lπ(M) is αRR-strongly convex with respect to M with αRR ≜ 1

n!

∑
π σmin(XπX

⊤
π ) =

1
n!

∑
π απ .

Proof. Take the Hessian of LRR with respect to vec(M) to obtain ∇2
vec(M)LRR(M) = 1

n!

∑
π∈Sn XπX

⊤
π ⊗I . Hence we

have ∇2
vec(M)LRR(M) ⪰ 1

n!

∑
π σmin(XπX

⊤
π ). Since we assumed Assumption 1(b) holds, the sum is strictly positive,

so LRR is indeed strongly convex.

A.2.2. PROOF SKETCH OF RR CONVERGENCE

We first state the modified inductive hypothesis for the one-epoch risk update, which replaces R[j, k].

Hypothesis 4. For k > 1, the inductive hypothesis S[k] states that

Eπk−1
[LRR(M

k
0 )|Fk−1]− L∗

RR ≤
(
1− αRRηk−1

2

)
(LRR(M

k−1
0 )− L∗

RR)

+ η2k−1 poly(m,Aw, AL,
∥∥Xmax,F

∥∥
F
),

where Eπk−1
denotes the expectation over random draws of the permutation πk−1.

Proof sketch of Theorem 3.2.3. As before, we start by writing out the smoothness inequality with respect to M :

LRR(M
k+1
0 ) ≤ LRR(M

k
0 ) +

〈
∇MLRR(M

k
0 ),M

k+1
0 −Mk

0

〉
+

GRR

2

∥∥Mk+1
0 −Mk

0

∥∥2. (34)

Next, we have the same gradient update
Mk+1

0 = Mk
0 − ηkg̃

k + η2kr
k,

but now all quantities involving π turn into πk. For example, we redefine

g̃k ≜
m−1∑
t=0

g̃k
t = ∇WLπk

(Mk
0 )Γ

k
0 +W k

0 ∇ΓLπk
(Mk

0 ).
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Since we want to prove convergence in expectation, it is standard to consider the natural filtration Fk of which permutations
we have picked up to (but not including) epoch k. Formally, Fk = σ(π1, . . . , πk−1), where σ(Z) denotes the σ-algebra
generated by the random variable Z.

Noting the identity
Eπ[∇MLπ(M

k
0 )] = ∇MLRR(M

k
0 ),

it follows that if we can apply Corollary A.1.15, then

Eπk

[〈
∇MLRR(M

k
0 ), g̃

k
〉
F

]
=
〈
∇MLRR(M

k
0 ),Eπk

[g̃k]
〉
F
≥ 1

2

∥∥∇MLRR(M
k
0 )
∥∥2
F
.

Hence, we can follow the same argument for upper bounding the smoothness inequality for SS and take a conditional
expectation over πk conditioned on Fk. Assuming for now that the weight norms are bounded by some absolute constant
Aw and the relevant losses are bounded by an absolute constant AL, this yields

Eπk
[LRR(M

k+1
0 )|Fk] ≤ LRR(M

k
0 )−

ηk
4

∥∥∇MLRR(M
k
0 )
∥∥2
F
+ η2k Eπk

[poly(m,Aw, AL, ∥Xπk
∥F )].

Noting that we can upper bound ∥Xπk
∥F uniformly by

∥∥Xmax,F

∥∥
F

, which does not depend on k, this shows that we have

Eπk
[LRR(M

k+1
0 )|Fk] ≤ LRR(M

k
0 )−

ηk
4

∥∥∇MLRR(M
k
0 )
∥∥2
F
+ η2k poly(m,Aw, AL,

∥∥Xmax,F

∥∥
F
).

Next, αRR–strong convexity yields

Eπk
[LRR(M

k+1
0 )|Fk]− L∗

RR ≤
(
1− αRRηk

2

)
(LRR(M

k
0 )− L∗

RR) + η2k poly(m,Aw, AL,
∥∥Xmax,F

∥∥
F
).

This is exactly the statement of S[k + 1]. To proceed, we must fill in the following details. First, we must show that the
relevant losses are bounded by AL — see Corollary A.2.6. Then, we show that the weight norms are bounded by Aw — this
is shown in Corollary A.2.7. Finally, we must show that D[j, k] holds, i.e., bound the approximate invariances — this is the
content of Corollary A.2.9. Once we address these technicalities, an inductive argument similar to the SS version proves the
theorem. Note that the SS inductive hypotheses L[j, k] and R[j, k] are not active in this proof.

A.2.3. WEIGHT BOUNDS

In this section we elucidate the connection between weight norms and the loss evolution. In particular, we show that bounds
on the weight norms confer a bound on the loss function value. First, we state the following inequality, which follows from
a quick application of Cauchy-Schwarz.

Fact A.2.3. We have 1
n!

∑
π∈Sn(Lπ(M))1/2 ≤ LRR(M)1/2.

With this identity in hand, we derive the following corollaries about weight and gradient bounds.

Proposition A.2.4. We have
∥∇MLRR(M)∥ ≤

∥∥Xmax,2

∥∥
2
LRR(M)1/2.

Proof. We have ∥∇MLRR(M)∥2 ≤
1
n!

∑
π ∥∇MLπ(M)∥2 by the triangle inequality. Applying the individual gradient

bounds in Lemma A.1.9 and uniformly bounding
∥∥Xπ

∥∥ by
∥∥Xmax,2

∥∥, we see that

∥∇MLRR(M)∥2 ≤
∥∥Xmax,2

∥∥
2
· 1
n!

∑
π

L1/2
π (M).

Applying Fact A.2.3 yields the desired result.

As promised, we quantify the relationship between LRR, Lπ , and ∥M∥2 with the following proposition.
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Proposition A.2.5. Let σ0 ≜ 1
n!

∑
π σmin(X

⊤
π ). We have

LRR(M)− 2∥Y ∥2F
2
∥∥Xmax,F

∥∥2
F

≤ ∥M∥22 ≤
(
∥Y ∥F + LRR(M)1/2

σ0

)2

.

Similarly, for any π ∈ Sn, we have

Lπ(M)− 2∥Y ∥2F
2
∥∥Xπ

∥∥2
F

≤ ∥M∥22 ≤

(
∥Y ∥F + Lπ(M)1/2

σmin(X
⊤
π )

)2

.

Proof. First, we have

1

n!

∑
π∈Sn

∥∥MXπ

∥∥
2
≤ ∥Y ∥F +

1

n!

∑
π

∥∥Yπ −MXπ

∥∥
F

= ∥Y ∥F +
1

n!

∑
π

Lπ(M)1/2,

where we have used in the first line the fact that ∥Yπ∥F = ∥Y ∥F for all π. Therefore by Fact A.2.3 and using
∥∥MXπ

∥∥
2
≥

σmin(X
⊤
π )∥M∥2, we find that

1

n!

∑
π

σmin(X
⊤
π )∥M∥2 ≤ ∥Y ∥F + LRR(M)1/2.

It follows that

∥M∥2 ≤
∥Y ∥F + LRR(M)1/2

σ0
.

For the other direction, note that

Lπ(M) =
∥∥Yπ −MXπ

∥∥2
F
≤ 2∥Y ∥2F + 2∥M∥22

∥∥Xπ

∥∥2
F
.

Averaging over all π ∈ Sn gives us

LRR(M) ≤ 2∥Y ∥2F +
2∥M∥22

n!

∑
π

∥∥Xπ

∥∥2
F
.

Uniformly bounding
∥∥Xπ

∥∥2
F

by
∥∥Xmax,F

∥∥2
F

and rearranging yields the desired result.

The set of inequalities for π also follow by a similar argument.

As a corollary of Proposition A.2.5, it follows from Assumption 3 that each of the losses Lπ(M
k
i ) stay bounded by an

absolute constant throughout training.
Corollary A.2.6 (Uniform bound on SS losses). Under Assumption 3, for every π ∈ Sn we have

Lπ(M
k
i ) ≤ AL,

where
AL ≜ 2∥Y ∥2F + 2A2

RR

∥∥Xmax,F

∥∥2
F
.

Here, ARR was previously defined in Assumption 3.

Finally, Assumption 3 implies the following inductive statement about the weight norms.
Corollary A.2.7 (Uniform bound on weight norms). Assume Assumption 3 and D[j, k] holds. Then for RR, we have

max
{∥∥W k

i

∥∥
2
,
∥∥Γk

i

∥∥
2

}
≤ Aw,

where

A2
w ≜

3

2
+ d2

(
1

2
+ARR

)
.

Here, ARR was previously defined in Assumption 3.
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A.2.4. BOUNDING APPROXIMATE INVARIANCES

In this section we formally bound the approximate invariances throughout RR training under Assumption 3. In particular, as
a consequence of Corollaries A.2.6 and A.2.7, the following two claims follow almost directly upon inspection of the proofs
of Lemma A.1.24 and Corollary A.1.25.
Lemma A.2.8. Suppose D[j, k] holds for some j < m. We have∥∥Dk

j+1 −Dk
j

∥∥
2
≤ 2A2

wAL

∥∥BN(Xj+1
πk

)
∥∥2
2
η2k.

Hence, if D[t, k] holds for all t ≤ j, we also have

∥∥Dk
j+1

∥∥
2
≤ 2A2

wAL

∥∥Xmax,F

∥∥2
F

k∑
t=1

η2t .

Corollary A.2.9. Assume that D[t, k] holds for all t ≤ j < m and ηk = c
kβ for 1/2 < β < 1. If

c2 ≤ 1

4(1 + 1
2β−1 )A

2
wAL

∥∥Xmax,F

∥∥2
F

,

then ∥∥Dk
j+1

∥∥
2
≤ 2A2

wAL

∥∥Xmax,F

∥∥2
F

k∑
t=1

η2t ≤
1

2
.

In other words, D[j + 1, k] holds.

A.2.5. COMPLETING THE PROOF

With the connection between the RR loss function and weight bounds in hand, we can complete the proof of convergence
for RR. Finally, we formally state the RR convergence result.
Theorem A.2.10 (Formal statement of convergence for RR). Suppose Assumption 1(b) and Assumption 3 hold. Let
f(·; Θ) = WΓBN(·) be a 2-layer linear+BN network initialized at Θ1

0 = (W 1
0 ,Γ

1
0) = (0, I). Consider optimizing f

using RR with decreasing stepsize

ηk =
1

kβ
·min

{
1

2
,

2

αRR
,

√
1

4(1 + 1
2β−1 )A

2
wAL

∥∥Xmax,F

∥∥2
F

}

for any 1/2 < β < 1. Then the RR risk satisfies

E[LRR(Θ
k+1
0 )]− L∗

RR ≤
poly(n, d,ARR, ∥Y ∥F ) log k

kβ
.

In other words, the RR risk converges to the global optimal risk L∗
RR.

Proof of Theorem A.2.10. We inductively prove that D[j, k] and S[k] hold. There is no need to check S[1] because
Hypothesis 4 is defined for k > 1. The proof that the base cases D[j, 0] all hold follows the same proof as that in the SS
case.

Now suppose for the sake of induction that D[j, k] and S[k] hold. We will show that D[j + 1, k] holds. Once we show that
D[j, k] holds for all j < m, we can then show that S[k + 1] holds.

In particular, by the assumption on ηk, Corollary A.2.9 implies that D[j + 1, k] holds. Hence by induction D[j, k] holds for
all j < m. We see that assuming Assumption 3 simplified the proof strategy significantly, as we did not have to go through
the trouble of proving L[j, k].

Next, let’s understand what happens to the per-epoch loss bound in S[k + 1]. Explicitly, we can follow the same steps as in
the proof sketch — which only required ηk ≤ c

kβ where c ≤ min
{

1
2 ,

2
αRR

}
— to see that

Eπk
[Lπk

(Mk+1
0 )|Fk]− L∗

π ≤
(
1− απηk

2

)
(LRR(M

k
0 )− L∗

RR) + poly(m,Aw, AL,
∥∥Xmax,F

∥∥
F
)η2k.
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Indeed, under Assumption 3 and D[j, k] for j < m, we can apply Corollaries A.2.6 and A.2.7 to rigorously bound all of the
analogous noise terms a.s.. We can then follow the same argument as in Proposition A.1.23 to unroll the recurrence, using
iterated expectation to obtain a total expectation in the end. We can thus conclude that with ηk = c

kβ for 1/2 < β < 1 and
the constant c chosen as the theorem statement that

E[LRR(Θ
k+1
0 )]− L∗

RR ≤ (LRR(Θ
1
0)− L∗

π) exp

(
cαRR

2(1− β)
(2− k1−β)

)
+

poly(m,Aw, AL,
∥∥Xmax,F

∥∥
F
) log k

kβ

≤ (LRR(Θ
1
0)− L∗

π) exp

(
cαRR

2(1− β)
(2− k1−β)

)
+

poly(n, d,ARR, ∥Y ∥F ) log k
kβ

.

In the last line we used the fact that AL = poly(ARR, ∥Y ∥F ,
∥∥Xmax,F

∥∥
F
) from Corollary A.2.6, Aw = poly(d,ARR)

from Corollary A.2.7, and
∥∥Xmax,F

∥∥2
F
= dn. The desired claim immediately follows.

We can also immediately see how the stepsize requirements match that of Theorem 3.2.3.

B. Proofs for classification results
In this section we lay out the groundwork for formally proving our main results Theorems B.2.1 and B.3.1 about the
separability decomposition of SS+BN and RR+BN (cf. Theorems 4.1.3 and 4.1.4). At a high level, we show that the
separability decomposition is closely linked to the presence of monochromatic batches (Lemma B.1.1) and the dimensionality
of the batch normalized dataset (Lemma B.1.2). In Appendix B.4, we formally characterize the optimal directions of
linear+BN classifiers. We defer the proofs of the more technical lemmas to Appendix C.

ADDITIONAL NOTATION AND SETUP

We lay out some additional notation that will aid in our discussion of classification. Division of two vectors should be
interpreted in a coordinatewise fashion, so µ

σ ∈ Rd with kth coordinate µk/σk. For a matrix A ∈ Rd×n, we define
∥A∥2,∞ = maxi∈[n] ∥A:,i∥2, i.e., the maximum Euclidean norm of the columns.

We remind the reader of some notation introduced previously, with an important redefinition for XRR. For a dataset
Z = (X,Y ), we write Z+ = (X+,Y +) and Z− = (X−,Y −) to denote the positive and negative examples, respectively.
Recall that we write the dataset batch normalized under a permutation π as Zπ ≜ (Xπ,Yπ), where Xπ ≜ BNπ(X) ∈
Rd×n and Yπ = π ◦ Y . We also use X

+

π and X
−
π to denote the submatrices of Xπ containing its columns corresponding

to the positive and negative examples, respectively.

For the sake of analyzing the rank of XRR, we will redefine it as follows by throwing out redundant batches. Let
(
[n]
B

)
denote the set of all

(
n
B

)
unique (up to permutation) batches of size B that can be created from choosing the columns of

X ∈ Rd×n. Fix an arbitrary labelling of these
(
n
B

)
batches, and let Bj ∈ Rd×B refer to the jth such batch. Then

XRR ≜ BNRR(X) ≜
[
BN(B1) . . . BN(B(n

B))
]
∈ Rd×B(n

B)

Note that the rank of XRR is the same as the rank of the original definition, since all we did was throw out redundant
batches for the purposes of analyzing the rank.

We now turn to laying down some of the background necessary to introduce our technical results. As a motivating step, recall
Proposition 4.1.2. It states that SS with permutation π can cause divergence of the GD risk if Zπ is PLS or LS, but not if it
is SC. Hence, determining sufficient conditions for when Zπ is SC is of primary interest. Intuitively, Zπ being SC should
be related to some notion of genericity — the convex hulls of positive and negative features should be full dimensional. To
formalize this intuition, we take a quick detour and recall several standard notions in convex analysis, defined for example in
Boyd et al. (2004).

For S ⊆ Rd, its interior int(S) denotes the largest open set contained in S. We say that S is affine if for any x1,x2 ∈ S, the
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line λx1+(1−λ)x2 ⊆ S. An affine combination of k points x1, . . . ,xk ∈ Rd is given by
∑k

i=1 λixi where
∑k

i=1 λi = 1.6

The affine hull of S is the set of all affine combinations of S, and is denoted by aff(S), and clearly aff(S) is an affine
set. Similarly, the relative interior relint(S) denotes the largest open subset of aff(S) contained in S. For a matrix A, we
slightly abuse notation and write aff(A) to denote the affine hull of its columns. Similarly, we use conv(A) to denote the
convex hull of its columns.

Let x0 ∈ aff(S) be any element of the affine hull of S. It is not hard to see that aff(S) = x0 + V , where V is a linear
subspace of Rd. Furthermore, this V is uniquely determined by S. One can think of x0 as an offset and V as the space of
valid directions to move in to stay in aff(S). We define dim(S) ≜ dim(V ).

Definition 3. A set S ⊆ Rd is called full dimensional if dim(S) = d. This definition is equivalent to saying that
int(conv(S)) is nonempty. Similarly, for any matrix A ∈ Rd×n, we say A is full dimensional if the set of its columns is full
dimensional.

This formal definition of full dimensional allows us to identify sufficient conditions for a dataset Z = (X,Y ) to be SC.

B.1. Preliminary results on separability decomposition

In this section, we introduce the technical results that help us analyze the separation between shuffling SGD and GD. A
unifying theme is to understand the effect of monochromatic batches and rank on the separability decomposition — and
thus, divergence. In particular, we show that having monochromatic batches and being full-rank prevents divergence in the
underparameterized regime. In a later section (Appendix B.4), we also show that these properties also significantly influence
the optimal directions under the logistic loss.

The following lemma formalizes how monochromatic batches affect the separability decomposition.

Lemma B.1.1. Given a permutation π, suppose there are two batches Z1
π and Z2

π such that Z1
π consists entirely of positive

examples and Z2
π consists entirely of negative examples. Then, if we consider the resulting Zπ = (Xπ,Yπ), the submatrices

X
+

π and X
−
π of Xπ satisfy

relint(conv(X
+

π )) ∩ relint(conv(X
−
π )) ̸= ∅.

Consequently, Zπ is not LS.

Proof. Batch normalization ensures that the batch normalized features X
1

π and X
2

π are mean-zero. But this implies that 0
is in the convex hulls of each batch, which implies that conv(X

1

π) intersects conv(X
2

π). In fact, 0 is in the intersection
of their relative interiors as well. To see this, we prove that the mean µ of a batch B = {x1, . . . ,xB} lies in the relative
interior of conv(B).

This can be shown via an inductive argument on the batch size. If B = 2, then µ is the midpoint between x1 and x2, which
is in the relative interior of conv(B). Now assume it’s true for all possible batches of size B. When we add xB+1, we
get a new batch B′, with mean µ′ = B

B+1µ+ 1
B+1xB+1. Hence if xB+1 ∈ conv(B), clearly µ′ ∈ relint(conv(B)) by

convexity. If xB+1 ̸∈ conv(B), then xB+1 is one of the vertices of conv(B′). Since µ ∈ relint(conv(B)) and convexity,
the segment between µ and xB+1 must stay in the relative interior of conv(B′) except at the endpoints. Since µ′ is in the
relative interior of this segment, the conclusion follows.

Hence relint(conv(X
1

π)) intersects relint(conv(X
2

π)). Since we have X
+

π ⊇X
1

π and X
−
π ⊇X

2

π , the relative interiors of
the larger convex hulls intersect as well.

Finally, suppose Zπ was LS. By definition there must exist a strict separating hyperplane for the two hulls. But the hulls
intersect, so this is a contradiction. We conclude that Zπ is not LS.

As Lemma B.1.1 establishes, monochromatic batches lead to Zπ being PLS or SC. The following lemma synthesizes nicely
with the above result; it demonstrates that if X is full dimensional, and the relative interiors of the convex hulls of X+ and
X− intersect, then Z is SC.

Lemma B.1.2. Let Z = (X,Y ) be such that

6Here, unlike the definition of a convex combination, the λi’s are allowed to be negative.
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(1) X is full dimensional.

(2) relint(conv(X+)) intersects relint(conv(X−)).

Then Z is SC.

Proof. Consider any halfspace in Rd. First, since the relative interiors of the hull of positive points and negative points
intersect, then so too do the hulls themselves. So there is no hyperplane that separates X+ from X−, i.e. Z is either PLS or
SC.

Suppose that Z is PLS, i.e., there exists a hyperplane v such that yiv⊤xi ≥ 0 for every (xi, yi) ∈ Z. Since X is full
dimensional, the hyperplane orthogonal to v cannot pass through through every point of X — hyperplanes are affine
subspaces of dimension at most d− 1. So yiv

⊤xi > 0 for some i and also yjv
⊤xj = 0 for some i ̸= j; otherwise, Z is LS,

which is a contradiction. Hence conv(X+) and conv(X−) touch only at the hyperplane defined by v, which contradicts
the assumption that the relative interiors intersect. Hence Z is SC.

Lemmas B.1.1 and B.1.2 taken together show that to identify sufficient conditions for Zπ to be SC, one should look for
conditions under which Xπ is full dimensional and monochromatic batches are present. We already answered the former
question in the main text with Proposition 3.2.1, which we restate for reference. Its proof is deferred to Appendix C.3.

Proposition B.1.3. Assume that the original features X ∈ Rd×n satisfies Assumption 2 and B > 2. Then if we batch
normalize and remove one datapoint from each normalized batch, to form a d × (B − 1) n

B matrix in the SS case and a
d× (B − 1)

(
n
B

)
matrix in the RR case, the dataset is full-rank almost surely, regardless of which datapoints we remove. In

particular, we have rank(Xπ) = min
{
d, (B − 1) n

B

}
and rank(XRR) = min

{
d, (B − 1)

(
n
B

)}
almost surely.

Let us now consider the other question about the presence of monochromatic batches. Intuitively, under Assumption 4(a),
there should be many monochromatic batches w.h.p. as long as B is small. The following lemma formalizes this intuition;
its proof is contained in Appendix C.1.

Lemma B.1.4. Assume Assumption 4(a). If B = o(log n) then there are Ω(n) monochromatic batches w.h.p.. If B =
Ω(log n), then there are no monochromatic batches w.h.p..

The upshot of Lemmas B.1.1, B.1.2 and B.1.4 and Proposition B.1.3 is that small batch sizes naturally prevent divergence.
However, there is a natural tradeoff here: small batch sizes also entail significant variance in the batch statistics, so they can
lead to large (but non-diverging) values of the GD risk anyway when we train the network with SS.

Remark B.1.5 (Multiclass classification). In the multiclass case with K > 2 different classes, one can directly generalize
the above analysis to look at all

(
K
2

)
pairwise combinations of classes. Lemma B.1.1 generalizes by requiring the existence

of a monochromatic batch for each class. Hence as K increases the batch size must shrink to ensure that Zπ is SC w.h.p.,
opening up a wider range of batch sizes for SS divergence.

Finally, we formally define a robust notion of the separability decomposition that will prove helpful for quantifying the
effects of increasing the batch size. To do so, we rely on the notion of the margin of a linearly separably dataset and the
so-called penetration depth of overlapping convex hulls.

Definition 4 (Margin and penetration depth). Let Z = (X,Y ) be a dataset, and let X+,X− denote the positive and
negative features, respectively. If Z is linearly separable, then the margin of Z is defined to be the ℓ2 margin corresponding
to the maximum margin classifier for Z.

If Z is not linearly separable, then by definition conv(X+) intersects conv(X−). The penetration depth (Agarwal et al.,
2000) of Z is defined as the smallest Euclidean distance of translation of conv(X+) such that the resulting convex body
still intersects conv(X−). In words, this quantifies the smallest perturbation we need to make Z linearly separable.

Definition 5 (γ-robust separability decomposition). Let Z = (X,Y ) be a dataset and SLS
GD ⊔ SSC

GD be the separability
decomposition of ZGD ≜ (XGD,Y ) ≜ (BN(X),Y ).

For γ > 0, we say that Z is γ-robust if the following conditions hold.

(1) One of the following:
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(a) ZGD is LS and SLS
GD has margin at least γ; or,

(b) ZGD is SC and SSC
GD has penetration depth at least γ.

(2) Let σk, ak, and bk denote the standard deviation, min, and max of the kth feature of X . Then mink∈[d]
σk

bk−ak
= Ω(1).

(3)
∥∥XGD

∥∥
2,∞ = O(

√
d), i.e., the maximum Euclidean norm of datapoints in BN(X) is O(

√
d).

Definition 5 formalizes the informal statement in Theorem 4.1.3 that “ZGD’s separability decomposition can change with
small perturbations.” If a dataset is robust, its separability decomposition cannot change easily by small perturbations (e.g.,
due to batch normalization) on datapoints. Notice here that PLS datasets can never be robust; to see why, note that Z is PLS
whenever ZGD is PLS. It follows that if Z is PLS then it is not γ-robust for any γ > 0.

This definition of robustness is also natural from the perspective of concentration, since it provides an immediate link
between concentration of batch statistics and the separability decomposition of Zπ. In order to estimate XGD well, we
need to estimate σ to within a multiplicative factor, which explains (2). Moreover, the degree to which the SS datapoints
concentrate around the GD datapoints also depend multiplicatively on the size of GD datapoints, which explains (3).

The following proposition provides a sufficient condition for the datapoints concentrating within a distance γ of the GD
datapoints (cf. the definition of γ-robustness); its proof is deferred to Appendix C.2.

Proposition B.1.6. Suppose Z is γ-robust and B = Ω(d log(nd)/γ2). Then with probability at least 1 − 1/poly(n, d)
over the choice of π, we have

∥∥Xπ − π ◦XGD

∥∥
2,∞ = O(γ).

With this setup in hand, we are ready to present our main theorems characterizing the separability decompositions of SS+BN
and RR+BN.

B.2. Separability decomposition for SS

Theorem B.2.1 (Separability decomposition for SS, formal). Throughout this theorem, assume that B > 2 and Assump-
tion 4(a) and Assumption 2 hold.

Suppose that d ≤ (B − 1) n
B . Then the following hold.

(1) Zπ is SC w.h.p. for B = o(log n). If we relax Assumption 2, then Zπ can be PLS as well.

(2) Suppose further that Z is γ-robust. Then Zπ has the same separability decomposition as ZGD w.h.p. for B =
Ω(d log(nd)/γ2).

Now suppose d > (B − 1) n
B . Then the following hold.

(3) Zπ is PLS w.h.p. for B = o(log n).

(4) Zπ is LS w.h.p. for B = Ω(log n).

Proof. We consider cases based on whether the batch size is large or small.

Small batch size. By Lemma B.1.4, when B = o(log n), w.h.p. we get a batch comprised solely of positive examples and
a batch comprised solely of negative examples. By Lemma B.1.1, this implies that Zπ is PLS or SC, and the relative interior
of the positive features intersects the relative interior of the negative features. By Lemma B.1.2, if Xπ is full dimensional,
then Zπ is SC. Hence it suffices to analyze the rank of Xπ .

The maximal rank of Xπ is min
{
d, (B − 1) n

B

}
because of the mean zero constraint enforced in every batch. Because we

assumed that Assumption 2 holds, Proposition 3.2.1 implies that Xπ achieves this upper bound almost surely. Putting it all
together, we conclude that when d ≤ (B − 1) n

B , Xπ is full-dimensional. It follows that Zπ is SC w.h.p. over the choice of
π, which proves (1).

On the other hand, when d > (B − 1) n
B , there always exists a hyperplane that passes through all of the monochromatic

batches of Zπ and perfectly classifies non-monochromatic batches (see Appendix B.4). It follows that Zπ is PLS, which
proves (3).

40



Training Instability of Shuffling SGD with Batch Norm

Large batch size. Now consider when B = Ω(log n). In this regime, Lemma B.1.4 implies there are no monochromatic
batches with high probability. Moreover, Proposition 3.2.1 implies that the features are full rank. It thus follows that when
d > (B − 1) n

B , Zπ is LS, which proves (4). Let us now consider the case d ≤ (B − 1) n
B .

When Z is γ-robust, we can directly apply Proposition B.1.6 to prove (2). Indeed, for B = Ω(d log(nd)/γ2), each SS
datapoint is within distance O(γ) of the corresponding GD datapoint with probability at least 1 − 1/poly(n, d). By
increasing the batch size by at most a constant factor, we can guarantee that each SS datapoint is in fact within distance γ/3
of the corresponding GD datapoint.

If ZGD is LS, γ-robustness implies that the max-margin hyperplane for ZGD has margin at least γ. Since each SS datapoint
moves at most γ/3 from the corresponding GD datapoint, this hyperplane still has margin at least 2γ/3, implying that Zπ is
LS. If ZGD is SC, then γ-robustness implies that we need to translate the convex hulls of positive and negative points by
at least γ to separate them. But we can only translate them by a total of γ/3 + γ/3 = 2γ/3 < γ, so the hulls stay strictly
overlapping. This implies Zπ is also SC. This concludes the proof of (2).

Remark B.2.2. If ZGD is not γ-robust for any γ > 0 (for example if ZGD is PLS), then it is not hard to construct examples
where the separability decomposition of Zπ is LS or PLS, and SS diverges. For a good example of this scenario, see
Figures 4b and 4d. Even if ZGD is γ-robust, if B = o(d log(nd)/γ2), then concentration can fail to hold in the worst case,
and we can find analogous constructions where SS diverges.

B.3. Separability decomposition for RR

Theorem B.3.1 (Separability decomposition for RR, formal). Suppose that B > 2 and Assumption 4(b) and Assumption 2
hold.

If d ≤ (B − 1)
(
n
B

)
, then ZRR is SC and XRR is full-rank almost surely, regardless of the separability decomposition of

ZGD.

Otherwise, if d > (B − 1)
(
n
B

)
, then ZRR is deterministically PLS, regardless of the separability decomposition of ZGD.

Proof. When there are at least B positive and B negative examples, there exists a batch of all positive and a batch of
all negative examples. Hence by Lemma B.1.1, ZRR is PLS or SC. By Proposition B.1.3, under Assumption 2, XRR

attains the maximal rank of min
{
d, (B − 1)

(
n
B

)}
almost surely. So by Lemma B.1.2, if d ≤ (B − 1)

(
n
B

)
, ZRR will be SC

and XRR is full-rank almost surely. On the other hand, if d > (B − 1)
(
n
B

)
, then ZRR is PLS deterministically because

there always exists a hyperplane that passes through all of the monochromatic batches of ZRR and perfectly classifies
non-monochromatic batches.

B.4. Characterizing the optimal direction of classifiers

Thus far, we have primarily considered the separability decomposition of Zπ and ZRR. In fact, we can say more about the
direction of optimal classifiers under the logistic loss. First, we prove Lemma 4.1.1, which constrains optimal directions via
the separability decomposition. Next, we leverage overparameterization and the rank properties shown in Proposition B.1.3
to characterize the optimal direction under the logistic loss for data drawn from a density. Using these insights, we can
prove our main result of this section, Proposition B.4.3.

We first restate and prove Lemma 4.1.1.

Lemma B.4.1. Let Z = SLS ⊔ SSC be the separability decomposition of Z. If v is an optimal direction for L, then
v⊤x = 0 for all x ∈ Span(XSC) and yiv

⊤xi > 0 for every (xi, yi) ∈ SLS.

Proof. By definition of SSC, there exists some (xi, yi) ∈ SSC such that yi ⟨v,xi⟩ ≤ 0. If ⟨v,xi⟩ ≠ 0, then yi ⟨tv,xi⟩ →
−∞ as t → ∞, which contradicts the assumption that v is an optimal direction. Similarly, if yi ⟨v,xi⟩ ≤ 0 for some
(xi, yi) ∈ SLS, then clearly u + tv cannot infimize L, as there exists a hyperplane which strictly separates SLS and is
orthogonal to Span(SSC).

Next, we restate and prove Proposition 4.1.2.
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Proposition B.4.2. Suppose Assumption 1(a) holds. Assume that the iterates vπ(t) infimize Lπ , and their projections onto
Span(X

SC

π )⊥ converge in direction to some optimal direction v∗
π for Lπ . Then the GD risk LGD diverges if and only if Zπ

is PLS or LS and there exists some (xi, yi) ∈ ZGD such that yiv∗⊤
π xi < 0. The analogous statement holds true for ZRR

under Assumption 1(b). Furthermore, the if part holds true for SS and RR without Assumption 1.

Proof. First suppose Assumption 1(a) holds. Then if Zπ is SC, Lemma B.4.1 implies that any optimal direction v∗
π must be

orthogonal to all of Rd, so v∗
π = 0. Hence the iterates vπ(t) converge to a finite optimum, which implies the GD risk cannot

diverge. Note that if Assumption 1(a) doesn’t hold, then the only difference is that being orthogonal to X
SC

π does not imply
that v∗

π = 0.

Now suppose Zπ is PLS or LS. Regardless of whether Assumption 1(a) holds, if vπ(t) infimizes Lπ , we necessarily have
∥vπ(t)∥2 → +∞. Hence any mistake on (xi, yi) ∈ ZGD implies divergence. And clearly, if there is no mistake on any
(xi, yi) then the GD risk does not diverge.

The same proof also goes through for ZRR, so this proves the theorem.

At first glance, one might expect to be able to perfectly classify all the datapoints in the overparameterized regime. However,
under the logistic risk, the optimal direction instead puts monochromatic batches on the decision boundary; the following
proposition formalizes this notion.

Proposition B.4.3. Suppose Assumption 2, B > 2, and d > (B − 1) n
B . Almost surely, for any π ∈ Sn, there exists v ∈ Rd

which satisfies (1) for any non-monochromatic batch Z
j

π we have sgn(v⊤X
j

π) = Y j
π and (2) for any monochromatic batch

Z
k

π we have v⊤X
k

π = 0⊤. Furthermore, any optimal direction v∗
π for the logistic risk Lπ necessarily satisfies both (1) and

(2). The same conclusion holds for RR as well, with the requirement d > (B − 1)
(
n
B

)
.

More precisely, our analysis is motivated by the fact that if d ≥ n and X ∈ Rd×n is full-rank, then given any c ∈ Rn we
can find some halfspace v ∈ Rd such that v⊤X = c⊤. In our binary classification setting, linear separability is implied by
sgn(c⊤) = Y . However, we cannot directly apply this fact because BN actually prevents Xπ from being full-rank due to
the mean zero constraint. However, it turns out that the following slightly weaker statement is true. We can always find a
halfspace v ∈ Rd that perfectly separates all the non-monochromatic batches. The following lemma proves this half of the
proposition.

Lemma B.4.4. Suppose Assumption 2, B > 2, and d > (B − 1) n
B . Then almost surely there exists v ∈ Rd such that for

every non-monochromatic batch Z
j

π = (X
j

π,Y
j
π ), we have sgn(v⊤X

j

π) = Y j
π . The same conclusion holds for RR as well,

with the requirement d > (B − 1)
(
n
B

)
.

Proof. We denote X
j

π = BN(Xj
π) =

[
x1 · · · xB

]
and Y j

π =
[
y1 · · · yB

]
. Since Assumption 2 holds, it also

follows that Proposition 3.2.1 holds. Hence, within each batch, any B − 1 of the datapoints are linearly independent
almost surely. This implies that we can find v ∈ Rd such that for any batch X

j

π and c ∈ RB−1, we have v⊤xi = ci
for all i ∈ [B − 1]. In particular, we can pick ci such that sgn(ci) = yi. Next, we show that v can be picked such that
sgn(v⊤xB) = yB . The mean zero constraint enforces that v⊤xB = −

∑B−1
i=1 ci. But if the labels are not monochromatic,

we can just increase the absolute value of one of the ci’s so that sgn(−
∑B−1

i=1 ci) = yB , as desired.

Hence, in the overparameterized regime minimizing the logistic risk will lead to a classifier which separates all the non-
monochromatic batches. What happens to the monochromatic batches? It turns out that minimizing the logistic risk will
lead to a classifier whose decision boundary contains all of the monochromatic batches.

Lemma B.4.5. Assuming d > (B − 1) n
B , any optimal direction v∗ ∈ Rd for the logistic risk simultaneously puts all of the

monochromatic batches on the decision boundary. More precisely, for any monochromatic batch Z
j

π = (X
j

π,Y
j
π ) we have

v⊤
∗ X

j

π = 0⊤. Similarly, if d > (B − 1)
(
n
B

)
, the same conclusion holds for the RR dataset.

Proof. Again, we denote the monochromatic batch by Z
j

π by X
j

π =
[
x1 · · · xB

]
and Y j

π =
[
y1 · · · yB

]
. The

logistic loss on a single input xi for classifier v ∈ Rd is ℓ(v⊤xi, yi) = − log ρ(yiv
⊤xi), where ρ(t) = 1/(1 + exp(−t))
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is the sigmoid function. WLOG suppose that yi = 1 for all i ∈ [B]. Hence the minibatch risk is

−
B∑
i=1

log ρ(v⊤xi) = −
B−1∑
i=1

log ρ(v⊤xi)− log ρ

(
−v⊤

B−1∑
i=1

xi

)
.

For each i we can look at the first order optimality condition for si = v⊤xi. This yields ρ(si) = ρ(−
∑B−1

i=1 si).

Note that this is satisfied when si = 0 for all i ∈ [B], and by strict convexity this is the unique minimizer. And because of
overparameterization, we can find a v∗ that will satisfy si = 0 for each monochromatic batch, i.e., the batch entirely lies on
the decision boundary of the classifier defined by v∗.

The proof carries over immediately to the RR setting, except in that setting, being overparameterized means d > (B−1)
(
n
B

)
.

Hence the lemma is proved.

The geometric interpretation of Lemma B.4.5 is that in the overparameterized regime, if the dataset contains any monochro-
matic batches, then any optimal direction v∗ must be orthogonal to the subspace spanned by the monochromatic batches.
Note, however, that the definition of overparameterized here depends on whether we look at Zπ or ZRR. In the former
case, overparameterized means d > (B − 1) n

B , whereas in the latter case, overparameterized means d > (B − 1)
(
n
B

)
.

This insight motivates the construction of the toy datasets in Section 4.2. We conclude our characterization of the optimal
direction in the overparameterized regime by proving Proposition B.4.3.

Proof of Proposition B.4.3. Proposition 3.2.1 implies that for d > (B − 1) n
B and assuming assumption 2, almost surely

we have rank(Xπ) = (B − 1) n
B . We can lower bound the infimum of the SS logistic risk by the sum of the infima of the

mini-batch SS logistic risks. Combining Lemmas B.4.4 and B.4.5, the claim follows. The same argument holds for ZRR

assuming d > (B − 1)
(
n
B

)
.

C. Proofs of technical lemmas
In this section we spell out the formal details of our guarantees for how permutations interact with BN. In Appendix C.1, we
show that given a batch size B = o(log n) and a constant number of classes K, then w.h.p. over the choice of π there exists
(many) monochromatic batches. In other words, for small batch sizes there are many batches consisting solely of positive or
negative examples (in case of K = 2). Conversely, we show that above this threshold such monochromatic batches do not
appear w.h.p.. In Appendix C.2, we show that there is a commensurate threshold above which the batch statistics themselves
concentrate in the without-replacement setting. To do so we will appeal to the recent results of Bardenet & Maillard (2015)
on the concentration of without-replacement estimators. Finally, in Appendix C.3, we prove that assuming the original
features were drawn from a density, the batch normalized features have maximal rank almost surely. In other words, batch
normalization preserves genericity of the original features modulo the mean zero constraint inside each batch.

C.1. Presence of monochromatic batches

In this section we formally prove Lemma B.1.4 via standard concentration arguments. One of the potential pitfalls of any
mini-batch based algorithm is that its batches may not be representative of the entire dataset. More precisely, let’s suppose
we have a dataset Z with labels coming from K classes. Suppose furthermore that the dataset is balanced — each class
contains n = Bm examples (here K is a constant). For any batch size B which is not sufficiently large, i.e. B = o(log n),
then w.h.p. over the permutation π we will have Θ(n) batches which are monochromatic — batches which only consist of
examples in the same class. This is closely related to the classic coupon collector problem, but we restate the guarantees
here for the sake of completeness.

To prove this claim, we appeal to standard martingale concentration inequalities. Consider the batches Z
i

π for i ∈ [Km]

and define the indicator variables Ti = 1[Z
i

π is monochromatic], and set T ≜
∑

i Ti, the total number of monochromatic
batches.

Next, note that the sequence
E[T ],E[T |T1],E[T |T1, T2], . . . ,E[T |T1, T2, . . . , TKm]
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is a Doob martingale. Indeed the martingale property follows from the tower property:

E[E[T |T1:k]|E[T |T1:(k−1)]] = E[T |T1:(k−1)].

Note that E[T |T1, . . . , TKm] = T and E[T1] = K
(
n
B

)
/
(
Kn
B

)
. Hence by linearity E[T ] = K2n

B

(n
B)

(Kn
B )

.

Let us now show that the martingale increments E[T |T1:k] − E[T |T1:(k−1)] are bounded a.s.. In the worst case, the kth
batch can only decrease this conditional expectation by at most K, since for any fixed class we can only remove at most one
monochromatic batch from it. Hence the total number of potential monochromatic batches left can decrease by at most K.
This worst case guarantee still holds under conditional expectation, so

∣∣E[T |T1:k]− E[T |T1:(k−1)]
∣∣ ≤ K a.s..

Azuma-Hoeffding then tells us that for any ϵ > 0 we have

P[|T − E[T ]| ≥ ϵ] ≤ 2 exp

(
− Bϵ2

2nK3

)
.

This gives us the following fact which we use in both the regression and classification setting.

Fact C.1.1. For any δ ∈ (0, 1), and a constant number of classes K with n datapoints each, we have with probability at
least 1− δ that the total number of monochromatic batches T satisfies∣∣∣∣∣T − K2n

B

(
n
B

)(
Kn
B

) ∣∣∣∣∣ ≤
√

2nK3 log(2/δ)

B
.

For K = O(1), we note that the above inequality guarantees that we can get within O(
√
n log n) of the true expectation

with at most 1/ poly(n) failure probability. For the toy regression dataset in Section 3.3, we have K = 2 and B = 2, so
we can use Fact C.1.1 to deduce that there will be Θ(n) monochromatic batches with high probability. We can also use
Fact C.1.1 to prove Lemma B.1.4.

Proof of Lemma B.1.4. In the classification setting, we have K = 2 classes (positive and negative). Using the folklore
inequalities (n

k

)k
≤
(
n

k

)
≤
(en
k

)k
,

we can deduce the lower bound on the expectation of T :

E[T ] ≥ 4n

B(2e)B
.

The lower bound is Ω(n1−ϵ) for any ϵ > 0 whenever B = o(log n), so indeed when when B = o(log n) we have a positive
number of monochromatic batches w.h.p.

Let us now upper bound the probability of obtaining any monochromatic batches. We have

P[T1 = 1] = 2

(
n
B

)(
2n
B

) ≤ 2

∏B−1
k=0 (n− k)∏B−1
k=0 (2n− k)

≤ 2

∏B−1
k=0 (n− k)∏B−1
k=0 2(n− k)

≤ 2−B+1.

Hence by union bound the probability that T > 0 is upper bounded by 4n
B·2B . This is 1/ poly(n) for some B = Ω(log n), so

indeed when B = Ω(log n) we have no monochromatic batches with probability at least 1− 1/ poly(n). This concludes
the proof.

C.2. Concentration of batch statistics for without-replacement sampling

In the following, we are generating B samples of Xi ∈ R without replacement from a population of size n, contained in
[a, b] a.s.. We let µ be the population mean and σ2 be the population variance.
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Lemma C.2.1 (Corollary 2.5 in (Bardenet & Maillard, 2015)). Let µ̂B denote the sample mean for a sample of size B
drawn without replacement from the overall population. For all B ≤ n and δ ∈ (0, 1) we have with probability at least
1− δ that

|µ̂B − µ| ≤ (b− a)

√
log(2/δ)

B
.

Similarly, they prove the following result about concentration of the empirical variance

Lemma C.2.2 (Lemma 4.1 in (Bardenet & Maillard, 2015)). Let σ̂2
B ≜ 1

B

∑B
i=1(Xi − µ̂B)

2 be the (biased) empirical
variance estimator and σ̂B ≜

√
σ̂2
B . Then for all δ ∈ (0, 1) we have with probability at least 1− δ that

σ̂B ≥ σ − 3(b− a)

√
log(3/δ)

2B
.

We now prove the other side of this concentration inequality with a quick application of (Maurer, 2006, Theorem 1),
following the same notation as in Bardenet & Maillard (2015).

Lemma C.2.3. For all δ ∈ (0, 1) we have with probability at least 1− δ that

σ̂B ≤ σ + (b− a)

√
log(1/δ)

2B
.

Proof. We take the self bounded random variable Z = B
(b−a)2 ṼB , where

ṼB ≜
1

B

B∑
i=1

(Xi − µ)2

is computed with the samples Xi sampled with replacement. On the other hand,

VB ≜
1

B

B∑
i=1

(X ′
i − µ)2

is computed with the samples X ′
i sampled without replacement. We can relate the concentration of VB to that of ṼB; the

latter quantity is possible to analyze with the entropy method. Indeed, a routine modification of the proof of Bardenet &
Maillard (2015, Lemma 3.3) (which uses essentially the same definition of Z) implies that

P
[
VB − σ2 ≥ (b− a)2

B
ϵ

]
≤ exp

(
− (b− a)2ϵ2

2Bσ2

)
.

Solving for ϵ in terms of δ yields ϵ =
√

2Bσ2

(b−a)2 log(1/δ), so we obtain

P

[
VB − σ2 ≥ (b− a)σ

√
2 log(1/δ)

B

]
≤ δ.

Since VB = (µ̂B − µ)2 + σ̂2
B ≥ σ̂2

B , we can complete the square to obtain

P

σ̂2
B ≥

(
σ + (b− a)

√
log(1/δ)

2B

)2
 ≤ δ.

So with probability at least 1− δ, we have

σ̂2
B ≤

(
σ + (b− a)

√
log(1/δ)

2B

)2

,

and taking square roots implies the desired result.
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Now, let us return to the question of concentration for batch norm with a randomly selected permutation π. The following
proposition shows that assuming the batch size is large enough, the features of corresponding SS and GD datapoints are
close to each other.
Proposition C.2.4. If

B = Ω

(
log(nd)

mink∈[d](
σk

bk−ak
)2ϵ2

)
,

then with probability at least 1− 1/poly(n, d) we have∥∥Xπ − π ◦XGD

∥∥
2,∞ ≤

ϵ

1− ϵ

∥∥XGD

∥∥
2,∞ +

ϵ
√
d

1− ϵ
.

Here, we remind the reader that for a matrix A ∈ Rd×n, we define ∥A∥2,∞ = maxi∈[n] ∥A:,i∥2, i.e. the maximum
Euclidean norm of the columns.

Proof. WLOG consider the unnormalized first batch X1
π = {x1, . . . ,xB}. We initially handle concentration along its first

coordinate {x1, . . . , xB} for its first datapoint x1. Write µ̂, σ̂ ∈ Rd to denote the mini-batch mean and standard deviation,
respectively, and µ̂k, σ̂k ∈ R for the kth coordinate of these vectors. Similarly let µ,σ ∈ Rd denote the full-batch mean and
standard deviation, and let µk, σk ∈ R to denote the kth coordinate of these vectors, respectively. Finally, let a, b ∈ Rd

denote the coordinate-wise min and max of X , with ak, bk ∈ R denoting the min and max for the kth coordinate of X .

Hence, the first feature of the first datapoint in the normalized first batch X
1

π is x1−µ̂1

σ̂1
, whereas the corresponding quantity

in XGD is x1−µ1

σ1
.

Pick

B = Ω

(
(log(1/δ)

( σ1

b1−a1
)2ϵ2

)
.

Then from Lemmas C.2.1 to C.2.3, we see that |µ̂1 − µ1| ≤ ϵσ1 and |σ̂1 − σ1| ≤ ϵσ1 with probability at least 1− δ for the
first datapoint x1.

Now, we have ∣∣∣∣x1 − µ̂1

σ̂1
− x1 − µ1

σ1

∣∣∣∣ = ∣∣∣∣x1 − µ1

σ̂1
− x1 − µ1

σ1
+

µ1 − µ̂1

σ̂1

∣∣∣∣
≤
∣∣∣∣σ1 − σ̂1

σ̂1

∣∣∣∣∣∣∣∣x1 − µ1

σ1

∣∣∣∣+ |µ1 − µ̂1|
σ̂1

≤ ϵσ1

(1− ϵ)σ1

∣∣∣∣x1 − µ1

σ1

∣∣∣∣+ ϵσ1

(1− ϵ)σ1

≤ ϵ

1− ϵ

∣∣∣∣x1 − µ1

σ1

∣∣∣∣+ ϵ

1− ϵ
.

To aggregate this bound across features, we need to pick B such that |µ̂k − µk| ≤ ϵσk and |σ̂k − σk| ≤ ϵσk for every
feature k ∈ [d]. Indeed, this is achieved via the union bound by picking δ = 1/ poly(d) and

B = Ω

(
log(1/δ)

mink∈[d](
σk

bk−ak
)2ϵ2

)
.

For this batch size, we see that ∥∥∥∥x1 − µ̂

σ̂
− x1 − µ

σ

∥∥∥∥
2

≤ ϵ

1− ϵ

∥∥∥∥x1 − µ

σ

∥∥∥∥
2

+
ϵ
√
d

1− ϵ
.

Note that a similar inequality holds for all of x1, . . . ,xB . Now, recalling the definition of ∥·∥2,∞, by applying union bound
on all the batches, we have ∥∥Xπ − π ◦XGD

∥∥
2,∞ ≤

ϵ

1− ϵ

∥∥XGD

∥∥
2,∞ +

ϵ
√
d

1− ϵ
,
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which occurs with probability at least 1− 1/ poly(n, d) when we appropriately choose B = Ω

(
log(nd)

mink∈[d](
σk

bk−ak
)2ϵ2

)
.

We now use the above proposition to prove Proposition B.1.6.

Proof of Proposition B.1.6. Conditions (2) and (3) in the definition of γ-robustness ensures that mink∈[d](
σk

bk−ak
)2 = Ω(1)

and
∥∥XGD

∥∥
2,∞ = O(

√
d). Hence taking B = Ω( log(nd)ϵ2 ) as in Proposition C.2.4, we conclude that with probability at

least 1− 1/ poly(n, d) we have ∥∥Xπ − π ◦XGD

∥∥
2,∞ ≤ O

(
ϵ
√
d

1− ϵ

)
.

Hence, by taking ϵ = O( γ√
d
), we see that ∥∥Xπ − π ◦XGD

∥∥
2,∞ ≤ O(γ).

Plugging this choice of ϵ back into our definition of B, we conclude that when B = Ω(d log(nd)
γ2 ), Xπ concentrates around

π ◦XGD within distance γ.

C.3. Rank of batch normalized features

In this section we prove Proposition 3.2.1, which states that for batch sizes greater than 2, Assumption 2 implies that the
batch normalized dataset will be full-rank (and hence full-dimensional) almost surely.

One shift in perspective that is fruitful for proving linear independence is to view batch normalization as an operation
that returns functions of the input dataset. Since BN operates independently on each of the d features, we first handle the
case where the input is a batch of scalars. Let

(
[n]
B

)
denote the set of all

(
n
B

)
batches of size B that can be created from n

datapoints contained in X . Fix an arbitrary labelling of these
(
n
B

)
batches, and let Bj refer to the jth such batch. WLOG

suppose that B1 = {x1, . . . , xB} ∈ RB .

Formally, let FB ≜
{
f : RB \

{
x ∈ RB | x1 = x2 = · · · = xB

}
→ R

}
denote the space of real valued functions on

batches of size B where BN is defined. On batch Bj = {xj1 , . . . , xjB}, BN is an operation that maps this batch to the set

of B functions
{
gji (B

j)
}B

i=1
, where

gji (B
j) ≜

xji − µj

σj
∈ FB

where µj and σj are the empirical mean and standard deviation, respectively of Bj . If j is clear from context, we may drop
the superscript j without chance of confusion. We also sometimes abuse notation and write gji as a function of X , since X
contains all datapoints in Bj . From this perspective, BNπ maps a dataset of n datapoints to n functions.

We first show that, within a batch, the functions have rank B − 1 over R.
Lemma C.3.1. Viewed as functions, any subset of B − 1 functions of the batch normalized outputs

{
g1i
}

={
x1−µ

σ , . . . , xB−µ
σ

}
have rank B − 1 over R.

Proof. First, we note that the functions xi are linearly independent over R for i ∈ [n]. WLOG take the subset of B − 1

functions to be
{
g1i
}B−1

i=1
. Suppose that there is a dependence relationship

B−1∑
i=1

ci
xi − µ

σ
= 0.

Rearranging, we see that
B−1∑
i=1

cixi =
1

B

(
B∑
t=1

xt

)(
B−1∑
i=1

ci

)
and because of linear independence of the xi’s as functions over R and only the right-hand side contains xB , the only way
this can happen is if

∑B−1
i=1 ci = 0. But then we have a dependence relationship between the xi’s for i ≤ B − 1. Linear

independence of the xi’s thus implies that ci = 0 for each i.
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With the above lemma in hand, we can show that as functions, any collection of batch normalized outputs are essentially full
rank. The caveat is we need to throw out one function in each batch, as each batch is trivially dependent because of the zero
mean constraint.

Proposition C.3.2. Let B > 2. Consider the B
(
n
B

)
functions that are the batch normalized outputs of all

(
n
B

)
batches

Bj ∈
(
[n]
B

)
. If we take any subset of (B − 1)

(
n
B

)
of these functions obtained by removing one function from each of the

(
n
B

)
batches, then the rank of these functions over R is (B − 1)

(
n
B

)
. In particular, the rank of the functions corresponding to any

π is (B − 1) n
B .

Proof. Consider the batch B1 = {x1, . . . , xB}. By Lemma C.3.1, we know that the functions
{
g1i
}B−1

i=1
=
{

xi−µ
σ

}B−1

i=1

are linearly independent. Consider a dependence relation amongst any subset of the (B − 1)
(
n
B

)
described in the theorem

statement. WLOG we can suppose that this was formed by throwing out gjB from each batch Bj and consider a dependence
relation between the (B − 1)

(
n
B

)
remaining functions. The dependence relation reads

B−1∑
i=1

ci,1
xi − µ

σ
=

B−1∑
i=1

∑
j>1

ci,jg
j
i . (35)

We show that some setting of the input xi for i ∈ [n] yields a contradiction unless ci,1 = 0 for i ∈ [B]. The main insight is
that BN has jump discontinuities at the points where it is undefined, i.e., where the entire batch is equal to the same thing.

More formally, for i > B we set the other datapoints xi to be arbitrary pairwise distinct positive real numbers. Suppose for
the sake of contradiction that ci,1 ̸= 0 for some i ∈ [B]; WLOG we can assume that i = 1. Since the functions on the LHS
are linearly independent by Lemma C.3.1, the LHS is not identically zero. We show that the LHS of Equation (35) exhibits
discontinuous behavior in the punctured neighborhood around (x1, . . . , xB) = 0, whereas the RHS of Equation (35) is
continuous on the same neighborhood; this yields a contradiction.

Indeed, set (x1, x2, x3, . . . , xB) = (ϵ, ϵ2,−ϵ− ϵ2, 0, . . . , 0), where ϵ ̸= 0. We have

x1 − µ

σ
=

√
Bϵ√

ϵ2 + ϵ4 + (ϵ+ ϵ2)2
.

If ϵ → 0+, then the the first normalized coordinate approaches +
√

B
2 . However, if ϵ → 0−, then the first normalized

coordinate approaches −
√

B
2 . This is a contradiction, since the RHS of Equation (35) is continuous as a function of ϵ. We

conclude that ci,1 = 0 for all i ∈ [B − 1].

The same argument holds if we replace the LHS with any batch Bj . Hence, ci,j = 0 for all i ∈ [B − 1] and j ∈ [
(
n
B

)
]. We

conclude the rank of these (B − 1)
(
n
B

)
functions is (B − 1)

(
n
B

)
, as desired. Notice also that this argument also shows that

the functions corresponding to the batches in π also have rank (B − 1) n
B .

Note that the assumption that B > 2 is critical for the construction in the proof. If B = 2, then actually xi−µ
σ ∈ {±1}, and

the proof breaks down. The batch normalized dataset will be a Boolean matrix; hence, its rank cannot be analyzed by using
density arguments.

The following lemma establishes that the zero set of any nontrivial linear combination of the gji ’s is a measure zero subset of
Rn.

Lemma C.3.3. Suppose that ci,j are not identically zero. Then for B > 2, the zero set of
∑B−1

i=1

∑(n
B)

j=1 ci,jg
j
i is a measure

zero subset of Rn.

Proof. Since B > 2, Proposition C.3.2 implies that f(X) ≜
∑B−1

i=1

∑(n
B)

j=1 ci,jg
j
i is not identically zero. Furthermore,

f(X) is real analytic on finitely many connected components of Rn, since each of the functions gji are real analytic on
finitely many connected components of Rn. The claim follows by applying Proposition 0 in Mityagin (2015).

Having established these results, we can finally prove Proposition 3.2.1.
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Proof of Proposition 3.2.1. Denote

X =

X1

...
Xd

 ∈ Rd×n,

and the (B − 1)
(
n
B

)
functions

gj
i (X) =

g
j
i,1(X1)

...
gji,d(Xd)

 ∈ Rd

We can assemble these vector valued functions into a matrix G(X) of size d× (B − 1)
(
n
B

)
with the kth row consisting

of the scalar valued functions gji,k(X). Now consider the determinant of any min
{
d, (B − 1) n

B

}
×min

{
d, (B − 1) n

B

}
submatrix of these scalar functions, which is itself a function of X .

To prove the claim, it suffices to show that this determinant — which is a function of X ∈ Rd×n — is analytic almost
everywhere and not identically zero; then Lemma C.3.3 implies that it vanishes on a measure zero set of Rd×n.

We prove the above claim by induction on d. For d = 1, note that for any i, j, the scalar function gji,1(X) is not identically
zero and is analytic on finitely connected components of Rd×n. Now suppose the claim is true for d, we prove the claim for
d+ 1. When we use cofactor expansion along the first row of G, which has functions gji,1 which crucially only depend on
the X1, we obtain

B−1∑
i=1

(n
B)∑

j=1

(−1)i+jgji,1(X1) det(Mi,j(X)),

where Mi,j denotes the minor corresponding to the the ith function of batch j. Note that these minors are not functions
of X1, so they can be treated as constants with respect to X1. By induction these constants are nonzero almost surely.
Then Proposition C.3.2 implies that the determinant, which is a linear combination of the functions gji,1 is itself is not zero
identically. Also, the determinant is manifestly piecewise analytic on finitely connected components of R(d+1)×n, being a
polynomial of such functions. Hence the induction is completed.

We can now finish off the proof of the proposition. When Assumption 2 holds, the probability that the data falls in measure
zero set is a probability zero event. In other words, almost surely any such d× (B − 1)

(
n
B

)
matrix constructed by batch

normalizing and throwing out one normalized point in each batch is full rank. The same argument holds for the (B − 1) n
B

functions that correspond to the batch normalized outputs for a permutation π. Hence the proposition is proved.

D. Additional experiments on real data
In this section we provide detailed explanations of our experimental setup and present our additional experiments for
regression and classification. All experiments were implemented in PyTorch 1.12.

D.1. Experiment details

We first define the architectures used in our real data experiments outlined in Section 4.3.

For the linear+BN networks, the 1-layer network is

X 7→W1Γ1BN(X),

On the other hand, the 2-layer network is
X 7→W2Γ2BN(W1X)

and the 3-layer network is
X 7→W3Γ3BN(W2Γ2BN(W1X)).

Hence the difference between the 1-layer network and deeper network is that the deeper networks have tunable parameters
inside of BN.
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For the MLP experiments, the 3-layer network is

X 7→W3 ReLU(Γ3BN(W2 ReLU(Γ2BN(W1X)))).

For the ResNet18 experiments, we used the ResNet18 architecture available through PyTorch, using
ResNet18 Weights.DEFAULT pretrained weights.

The linear and BN layers were all initialized using the default PyTorch initialization. For the linear+BN networks, the linear
layers were instantiated with a width of 512 and bias=False. For the 3 layer MLP, the linear layers were instantiated with
a width of 512 and bias=True. The BN layers were instantiated with track running stats=False. As alluded to
in Section 1.2, to evaluate the training GD risk LGD in the eval loop, we passed in the entire dataset as a single batch, thus
avoiding EMA altogether. Except for the ResNet18 experiments, the images in the dataset were flattened into vectors.

Except for in the respective batch size and momentum ablation study (Figures 11 and 12), we used batch size B = 128 and
no momentum. Note that for all of the datasets, log2 n ≈ 16, which suggests that we are in the asymptotic regime where
divergence can happen as stated in Theorem 4.1.3.

We now explain the difference in divergence behavior between the 1-layer and deeper linear+BN networks for SS. As
suggested by Theorem 4.1.3, divergence can happen if the separability decomposition of ZGD is not robust to perturbation.
In the 1-layer case, the data remains far from being linearly separable. Meanwhile, in the deeper case, the network is
incentivized to train the parameters inside BN such that the final features (e.g., BNπ(W1X)) are closer to being LS. But
the nonlinearity of BN is not enough to make BNπ(W1X) robustly LS. This also explains why introducing nonlinear
activations prevents the divergence phenomenon.

We also note that in reality RR is run for T epochs. Thus, if T <
(n
B)
n
B

, the optimization routine only sees a proper subset of

ZRR. However, there are other forces that help ensure that the subset of ZRR actually seen during optimization is SC and
satisfies Assumption 1(b). For example, it is likely that the algorithm sees non-monochromatic batches that also cause the
hulls to overlap. One way this can happen is if 0 is in the relative interiors of the convex hulls of the monochromatic portion
of each batch. Moreover, with extremely high probability we never see a repeat batch, so by Proposition B.1.3 the rank of
the subset of ZRR is w.h.p. equal to T ·min

{
d, (B − 1) n

B

}
. For us, d = 10 · 512, B = 128, and n ≥ 50000, so the rank

of the subset of ZRR we see easily outstrips the dimensionality of the final linear layers. This ensures that Assumption 1(b)
holds.

In Figure 11, we see that divergence on 3 layer linear+BN networks generally occurs for large batch sizes, which corroborates
Theorem 4.1.3. These batch sizes were picked because they are common choices for batch sizes in practice. For the largest
batch size (B = 128), there does not appear to be divergence within 1000 epochs, which we address below.

In Figure 12, we see that the presence of momentum preserves divergence for SS, and in some cases accelerates it. Note that
for each stepsize we used the same permutation. For the η = 10−4 experiment, although the 0 momentum run did not start
to diverge within 1000 epochs, the 0.9 and 0.99 momentum runs started to diverge. This further lends evidence to the claim
that the apparent reason for no divergence for η = 10−4 without momentum is that the small learning rate leads to slower
convergence to an optimal direction for Lπ .
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Figure 7. Loss evolution for ℓπk (M(k)) for experiment described in Section 3.4. Note how SS converges to L∗
π; RR oscillates due to

resampling πk but appears to converge to a value close to L∗
π . This corroborates the convergence results Theorems 3.2.2 and 3.2.3 to

distorted optima.
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Figure 8. Eventual separation between SS and RR for 3 layer linear+BN network for η = 10−4 after around epoch 1200 on CIFAR10.
The color is consistent with the original Figure 3b.
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Figure 9. Evidence that the 2 layer and 3 layer linear+BN actually had diverging GD risks when trained with SS. On the y-axis we plot
the value of Lπ(Θ

k
0); divergence occurs when the SS features Xπ are LS. As the SS risk for both 2 and 3 layer networks continues to

decrease, this supports Xπ being LS. However, the SS risk for the 1 layer network seems to plateau, suggesting Xπ is SC rather than LS.
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Figure 10. No divergence occurs for 1, 2, and 3 layer linear networks without BN trained with SS. This supports the theory that the strange
training behavior occurs when using SS and BN in combination, rather than being an intrinsic failing of SS (cf. Figure 3b). Here we
picked η = 10−2, because we generally observed faster divergence with larger learning rates.
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Figure 11. Batch size ablation. These experiments were done on 3 layer linear+BN networks; each subfigure shows the results of training
with different stepsizes η ∈

{
10−2, 10−3, 10−4

}
. All experiments were performed on CIFAR10. Since logn = log 50000 ≈ 16, all

batch sizes are in the regime where divergence can happen according to Theorem 4.1.3.
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Figure 12. Momentum ablation. These experiments were done on 3 layer linear+BN networks; each subfigure shows the results of training
with different stepsizes η ∈

{
10−2, 10−3, 10−4

}
. All experiments were performed on CIFAR10. For each subfigure, the experiment was

run with the same random permutation. Generally, mmomentum doesn’t prevent divergence, and in some cases even hastens it.

52



Training Instability of Shuffling SGD with Batch Norm

E. Calculations for toy datasets
In this section we do the detailed calculations and provide additional figures to understand the toy datasets we introduced in
Sections 3.3 and 4.2. Since both constructions use B = 2, we remind the reader that the batch normalization of any two
distinct real numbers is (−1, 1). It follows that if we batch normalize with B = 2, we obtain Xπ ∈ {−1, 1}d×n. Recall the
distorted risk Lπ reflects the single-shuffle batch normalized dataset Zπ. This Lπ is a random quantity, and it is over this
source of randomness (the construction of the batches) that we show that there is a gap between SS, RR, and GD.

E.1. Regression toy dataset

Proposition E.1.1. There exists a regression dataset Z = (X,Y ) ∈ [−1, 1]1×16n × [−1, 1]1×16n such that the following
statements hold with batch size B = 2:

(1) M∗
GD = M∗

RR = 0.

(2) M∗
π ̸= 0 with probability at least 1−O( 1√

n
).

(3) |M∗
π | = Ω( 1√

n
) with constant probability.

We first describe the construction and then prove that the dataset satisfies the properties outlined above.

Formal construction of regression dataset: Construct the dataset as follows. Take A ∈ R1×4n to be 4n equally spaced
points in the interval ( 34 , 1). Define

X1 = A; X2 = −A

X3 = −A+
1

2
1⊤; X4 = A− 1

2
1⊤

and

Y 1 = 1⊤; Y 2 = 1⊤

Y 3 = −1⊤; Y 4 = −1⊤.

Notice that the indices also match which quadrant the cluster of points are in. Visually, these four groups of points
Zi ≜ (Xi,Y i) are clusters with the ith cluster in the ith quadrant. For brevity, we also refer to these clusters by their
index i only, so cluster 1 refers to the cluster Z1 = (X1,Y 1), and so on. These definitions are consistent with the clusters
depicted in Figure 13a.

Then take X =
[
X1 X2 X3 X4

]
∈ R1×16n and Y =

[
Y 1 Y 2 Y 3 Y 4

]
∈ R1×16n. After applying BN

with permutation π and batch size 2, we obtain a dataset Xπ with every point being located in one of four SS clusters
Z

i

π ≜ (X
i

π,Y
i
π ) for i ∈ [4] located at (±1,±1) with the same relative labelling: Z

1

π is located at (1, 1) and then labelling
counterclockwise (see Figure 13b).

In Figure 13a, we visualize the construction with n = 3 (so the depicted dataset has 16n = 48 datapoints). We plot the
slopes of the M∗

GD (green solid line), M∗
RR (purple dash-dotted line), and typical values for M∗

π (yellow dotted line). In
Figure 13b, we show what Zπ looks like for a typical permutation π. The sizes of the points represent the number of points
that end up in the corresponding cluster.

E.1.1. ANALYZING THE REGRESSION TOY DATASET

In order to prove this proposition, we will need the following standard technical estimate on the asymptotics of binomial
coefficients (see e.g. Thomas & Joy (2006))

Lemma E.1.2. For all n and k we have√
n

8k(n− k)
2H(k/n)n ≤

(
n

k

)
≤
√

n

πk(n− k)
2H(k/n)n,

where H(p) ≜ −p log2 p− (1− p) log2(1− p) is the binary entropy function.
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(a) Unnormalized toy regression dataset Z demonstrating distor-
tion of SS with constant probability. Notice how the GD and RR
lines are aligned with slope 0, but the SS lines are distorted away
from 0.
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(b) Toy regression dataset after BN with permutation π. The
size of the point corresponding to Z

i
π represents the number of

normalized points in Z
i
π (not to scale), and here we picked π such

that M∗
π = 1

4
.

Now let us prove the prove the proposition.

Proof of Proposition E.1.1. First, it is clear from the symmetry of X that YGDX
⊤
GD = 0, so M∗

GD = 0. This proves the
first half of (1).

Setup: For i ∈ [4], let kiπ denote the number of points that end up in cluster Z
i

π after normalizing with permutation π.
Since we have M∗

π = 1
16nYπX

⊤
π , evidently the kiπ completely determine M∗

π . In fact, more is true: we claim that M∗
π = 0

if and only if k1π = 4n.

To see why this is true, first note that the label Y is unaffected by BN. Hence, there are necessarily 8n points that end up
with y coordinate 1. It follows that if there are k points in Z

1

π , then there are 8n− k points in Z
2

π . Similarly, if there are j

in Z
3

π, then there are 8n − j in Z
4

π. On the other hand, recall that BN with B = 2 and d = 1 always sends one point in
each batch to x = +1 and one point to x = −1. Hence, there are 8n points that end up with x coordinate 1, which means
k + 8n− j = 8n, implying that k = j.

Referring back to the formula for M∗
π , we see that

M∗
π =

1

16n

4∑
i=1

Y i
π (X

i

π)
⊤

=
1

16n
(k − (8n− k) + k − (8n− k))

=
k − 4n

4n
.

Hence M∗
π = 0 if and only if k1π = 4n. Referring back to Figure 13b, we see that the sizes of the clusters represent kiπ , and

the plotted M∗
π with slope 1

4 corresponds to a π where k1π = 5n.

To analyze k1π, for i, j ∈ [4] we introduce the random variables T {i,j}
π to denote the number of batches formed with one

point from cluster i and cluster j with permutation π. Similarly let U ≜ {1, 2} denote the upper clusters and L ≜ {3, 4}
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denote the lower clusters. Define T
{i,L}
π ≜ T

{i,3}
π + T

{i,4}
π , which represents the total number of batches with one point in

cluster i and another point in L when using permutation π. Finally, define T {U,L}
π ≜ T

{1,L}
π + T

{2,L}
π , which represents the

total number of batches with one point in cluster U and another in L with permutation π.

With this notation in hand, let us prove the claim. Evidently, k1π = T
{U,U}
π + T

{1,L}
π . Similarly we have k2π = T

{U,U}
π +

T
{2,L}
π . Because we established earlier that k1π + k2π = 8n, then k1π = 4n if and only if T {1,L}

π = T
{2,L}
π . In words, this

means that M∗
π = 0 if and only if the number of {1, L} batches is the same as the number of {2, L} batches.

RR averages out distortion: For every π we can find π′ such that M∗
π′ = −M∗

π . This is because we can always find
π′ that swap T

{1,L}
π and T

{2,L}
π , by turning all {1, L} batches into {2, L} batches and vice versa. Then Proposition 3.3.1

implies that M∗
RR = 0, which proves the second half of (1).

SS is distorted: Now, let us show that P[k1π = 4n] = O( 1√
n
). The main idea is that conditioned on T

{U,L}
π = 2t, we can

compute the probability that T {1,L}
π = T

{2,L}
π = t exactly. Indeed, of the 4n points in cluster 1, we pick t of them to form

batches with L, and similarly for cluster 2. This gives
(
4n
t

)2
ways for T {1,L}

π = T
{2,L}
π = t. In total, there are 8n points in

U and we picked 2t of them to match with L, which gives a denominator of
(
8n
2t

)
. Hence

P[k1π = 4n|T {U,L}
π = 2t] =

(
4n
t

)2(
8n
2t

) .
In order to obtain the O( 1√

n
) bound we desire, we need to use the fact that T {U,L}

π — the number of batches between U and
L — concentrates tightly. In fact, if we color the 4 clusters corresponding to membership in U and L and slightly generalize
the analysis leading to Fact C.1.1, we obtain that for some absolute constant C, we have

∣∣∣T {U,L}
π − 4n

∣∣∣ ≤ 2C
√
n log n with

probability at least 1− 1/n.

Applying Lemma E.1.2, we obtain for all t such that |t− 2n| ≤ 2C
√
n log n, we have

P[k1π = 4n|T {U,L}
π = 2t] = O

 n
t(4n−t)2

8H( t
4n )n√

n
t(4n−t)2

8H( t
4n )n

 (36)

= O

(√
n

t(4n− t)

)
(37)

= O

(
1√
n

)
. (38)

Hence we have

P[k1π = 4n] =

4n∑
t=0

P[k1π = 4n|T {U,L}
π = 2t]P[T {U,L}

π = 2t]

≤ 1

n
+

∑
|t−2n|≤C

√
n logn

P[k1π = 4n|T {U,L}
π = 2t]P[T {U,L}

π = 2t]

≤ 1

n
+O

(
1√
n

)
≤ O

(
1√
n

)
,

where in the second line we have used the union bound along with the fact that T {U,L}
π concentrates, and in the third line we

have used Equation (38). This proves (2).

55



Training Instability of Shuffling SGD with Batch Norm

Quantitative SS distortion bounds with constant probability: Finally, we show (3). Suppose that k1π = 4n + d for
|d| = O(

√
n). The above analysis for the case of d = 0 immediately generalizes to show that, if t− d > 0,

P[k1π = 4n+ d|T {U,L}
π = 2t− d] =

(
4n
t

)(
4n
t−d

)(
8n

2t−d

) .

Notice that since 2t− d concentrates around 4n, it suffices to only consider the high probability regime where 2t− d =
4n+O(

√
n log n). In particular, since |d| = O(

√
n), we have t− d = O(t).

Thus, if we plug in Lemma E.1.2, we obtain in the regime where t− d = O(t) that(
4n
t

)(
4n
t−d

)(
8n

2t−d

) = O

(
1√
t

)
24n[H( t

4n )+H( t−d
4n )−2H( 2t−d

8n )].

Concavity of binary entropy implies that H( t
4n ) +H( t−d

4n )− 2H( 2t−d
8n ) ≤ 0. It follows that

P[k1π = 4n+ d|T {U,L}
π = 2t− d] = O

(
1√
t

)
.

Following the same argument as in the d = 0 case, we have for |d| = O(
√
n) that

P[k1π = 4n+ d] =

4n∑
2t−d=0

P[k1π = 4n|T {U,L}
π = 2t− d]P[T {U,L}

π = 2t− d]

≤ 1

n
+

∑
|t− d

2−2n|≤C
√
n logn

P[k1π = 4n+ d|T {U,L}
π = 2t− d]P[T {U,L}

π = 2t− d]

≤ 1

n
+O

(
1√
n

)
≤ O

(
1√
n

)
,

From here, it follows that there exists some positive constant c such that

P[
∣∣k1π − 4n

∣∣ > c
√
n] = Ω(1),

which proves (3).

E.2. Classification toy dataset

In this section, we motivate how we constructed our toy classification dataset parameterized by n. We then give a detailed
construction and analysis of the dataset, parameterized by n. We plot the unnormalized Z in Figure 14a and the normalized
ZGD in Figure 14b for n = 10.

The main idea is that since d = 2 and the optimal direction is orthogonal to the SC portion of the separability decomposition
(Lemma 4.1.1), we can fix the optimal directions of Zπ and ZGD by carefully constraining Span(X

SC

π ) and Span(X
SC

GD),
respectively. For, ZGD we carefully select the boundary points Xbdr which define the boundary of conv(X

+

GD) and
conv(X

−
GD) so that dim(Span(X

SC

GD)) = 1. For Zπ , we need to ensure that Span(X
SC

π ) is a one dimensional subspace of
R2 which is close to orthogonal with Span(X

SC

GD). Although we can guarantee dim(Span(X
SC

π )) ≥ 1 w.h.p., the main
subtlety here is ensuring that equality holds with constant probability. Given the above, we are afforded the luxury of adding
datapoints which are misclassified by v∗

π , the optimal direction of Lπ .

Proposition E.2.1. There exists a classification dataset Z = (X,Y ) ∈ [−3, 3]2×(2n+6) × {−1, 1}2n+6 such that the
following statements hold with batch size B = 2:

(1) ZGD is PLS and as n→∞, v∗
GD converges in direction to

[
1 2

]⊤
.
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(2) Zπ is PLS with constant probability. If so, we have v∗
π =

[
1 −1

]⊤
.

(3) There exists points (xi, yi) ∈ ZGD such that yi⟨v∗
π,xi⟩ < 0, i.e., GD points that v∗

π misclassifies.

Hence, the GD risk LGD diverges with constant probability if we train with SS.

Proof. In our construction, we separate out Z = (X,Y ) into several groups of points: X+
cor, X

+
err, X

+
bdr, and their

negative variants. Let the overlined version of these matrices denote the corresponding points after full-batch BN (i.e., after
taking XGD ≜ BN(X)), and the overlined version with an extra π subscript denoting the corresponding points after BN
with permutation π (i.e., Xπ ≜ BNπ(X)). For example, X

+

cor denotes the features for the positive examples in XGD that
are to be classified correctly by v∗

π , whereas X
+

cor,π denotes those same datapoints in Xπ after batch normalization with π.

Setup: Let us first explain the semantic meanings of the different groups of points in our construction.

X+
cor : Unnormalized positive examples correctly classified by v∗

π with positive margin

X+
err : Unnormalized positive example incorrectly classified by v∗

π

X+
bdr : Unnormalized positive examples on the decision boundary of v∗

X
+

cor : full-batch-normalized positive examples correctly classified by v∗
π with positive margin

X
+

err : full-batch-normalized positive example incorrectly classified by v∗
π

X
+

bdr : full-batch-normalized positive examples on the decision boundary of v∗
GD

The semantic meanings of the negative versions of these points are completely analogous. We also define Xbdr =
X+

bdr ∪X−
bdr, and the normalized quantity analogously.

We construct X+
cor, X

+
err, and X+

bdr as follows. Take X+
cor to be n equally spaced points on the line segment of width 1

n

centered at
[
2 2

]⊤
. For the sake of visual clarity, we increase the spacing of the points in the diagram Figure 14a. Define

X+
err to be

[
3 2.5

]⊤
. Next, define X+

bdr to be
[
−3 1
1.5 −0.5

]
, lying on the line y = −0.5x. Finally, define

X−
cor = −X+

cor

X−
err = −X+

cor

X−
bdr = −X

+
bdr.

In Figure 14, we visualize this toy dataset. Note the visual similarity between Z in Figure 14a and ZGD in Figure 14b; this
is a feature of the construction. Indeed, as we’ll see shortly, as n→∞, XGD approaches a uniform rescaling of X in all
coordinates. We also plotted the decision boundaries corresponding to v∗

GD and v∗
π . We highlight the fact that in Figure 14b,

X
+

err and X
−
err are both on the wrong side of the decision boundary for v∗

π .

GD is PLS: Evidently µ = 0 and one can compute that as n→∞ that σ →
[
2 2

]⊤
. Regardless, we see that ZGD is

PLS with Span(X
SC

GD) corresponding to the one-dimensional subspace spanned by Xbdr and v∗
GD correctly classifies all of

the other points. In the limit n→∞, we have that Span(Xbdr) = Span(
[
−2 1

]⊤
) and v∗

GD is in the direction
[
1 2

]⊤
.

This proves (1).

SS is PLS with constant probability: Now, let us compute what happens to Zπ . Because BN with B = 2 sends features
to ±1, this implies that a normalized batch is either mapped to

(1)
[
−1 +1
−1 +1

]
, i.e. the normalized batch lies in the direction

[
+1 +1

]⊤
; or

(2)
[
−1 +1
+1 −1

]
, i.e the normalized batch lies in the direction

[
+1 −1

]⊤
.

57



Training Instability of Shuffling SGD with Batch Norm

3 2 1 0 1 2 3

2

1

0

1

2
Xerr

+Xcor
+

Xerr Xcor

Xbdr

Xbdr

Z

Pos
Neg
(v * ) x = 0

(a) Unnormalized toy classification dataset Z.
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(b) Normalized toy classification dataset Zπ demonstrating diver-
gence of SS with constant probability.

Figure 14. Toy classification dataset (a) before full-batch BN, i.e. Z (b) after full-batch BN, i.e. ZGD.

Note that due to Fact C.1.1, with high probability, there will be a batch drawn from X+
cor and a batch drawn from X−

cor.
These batches necessarily land in situation (1), so

[
1 1

]⊤ ∈ Span(X
SC

π ) with high probability. On the other hand, with
high probability there will be a batch with one point from X+

cor and one from X−
cor, which lands in (2). Hence, as long as

Span(X
SC

π ) = Span(
[
1 1

]⊤
), this implies that Zπ is PLS with optimal direction

[
−1 +1

]⊤
.

By inspection, to ensure that Span(X
SC

π ) = Span(
[
1 1

]⊤
), there are two bad events we need to avoid:

(a) We send a positive example to
[
+1 −1

]⊤
.

(b) We send a negative example to
[
−1 +1

]⊤
.

We will use
P[avoid (a) and (b)] = P[avoid (a) | avoid (b)]P[avoid (b)].

Note that by symmetry, P[avoid (b)] = P[avoid (a)].

A little thought reveals that (a) can happen only if the positive boundary example (i.e. in X+
bdr) located originally

at
[
1 −0.5

]⊤
is batched together with a point in Xbdr ∪ X+

cor. In turn, this event occurs with probability at most
2
3 . So P[avoid (b)] ≥ 1

3 . Also, notice avoiding (a) still happens with probability at least 1
3 even after conditioning on

avoiding (b). Hence, the probability that we avoid both (a) and (b) is at least 1
3

2
= 1

9 . So with constant probability,

Span(X
SC

π ) = Span(
[
1 1

]⊤
). This proves (2).

Putting it all together, we see that with constant probability, Span(X
SC

π ) = Span(
[
1 1

]⊤
), and Zπ is PLS with optimal

direction v∗
π =

[
+1 −1

]⊤
. Recall that v∗

GD →
[
1 2

]⊤
as n→∞. So asymptotically we have

|⟨v∗
π,v

∗
GD⟩|

∥v∗
π∥∥v∗

GD∥
=

1√
10

.

SS misclassifies GD points: On the constant probability event that Zπ is PLS, we have v∗
π is in the direction

[
1 −1

]⊤
.

This misclassifies X
+

err and X
−
err. So this proves (3).

58



Training Instability of Shuffling SGD with Batch Norm

Remark E.2.2. Note that at the cost of visual clarity, we can modify the construction to obtain optimal classifiers v∗
π and

v∗
GD which are asymptotically orthogonal. In this alternate construction, we take X+

bdr =

[
−1 0.5
1 −0.5

]
, lying on the line

y = −x, and X+
cor to be n equally spaced points on the line segment between

[
−2 2

]⊤
and

[
−2 + 1

n 2 + 1
n

]⊤
. Then

v∗
GD →

[
1 1

]⊤
, and v∗

π =
[
1 −1

]⊤
with constant probability, as desired.
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