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Abstract

Biomedical concept normalization involves linking entity mentions in text to stan-
dard concepts in knowledge bases. It aids in resolving challenges to standardising
ambiguous, variable terms in text or handling missing links. Therefore, it is one of
the essential tasks of text mining that helps in effective information access and finds
its utility in biomedical decision-making. Pre-trained language models (e.g., BERT)
achieve impressive performance on this task. It has been observed that such models
are insensitive to word order permutations and vulnerable to adversarial attacks on
tasks like Text Classification, Natural Language Inference. However, the effect of
such attacks is unknown for the task of Normalization, especially in the biomedical
domain. In this paper, we propose heuristic-based Input Transformations (word
level modifications and word order variations) and Adversarial attacks to study the
robustness of BERT-based normalization models across various datasets consisting
of different biomedical entity types. We conduct experiments across three datasets:
NCBI disease, BCSCDR Disease, and BC5SCDR Chemical. We observe that for
Input Transformations, pre-trained models often fail to detect invalid input. On the
other hand, our proposed Adversarial attacks that add imperceptible perturbations
result in affecting the ranking of a concept list for a given mention (or vice versa).
We also generate natural adversarial examples that lead to performance degradation
of ~30% in the F1-score. Additionally, we explore existing mitigation strategies to
help a model recognize invalid inputs.

1 Introduction

Biomedical concept normalization aims to map an entity mention occurring in free-form text to a
unique concept in a knowledge base or an ontology [Xu and Bethard| 20211Ji et al.,[20204D’ Souza
and Ng| 2015]. In the biomedical domain, concepts exhibit different surface forms, that include
various morphological and orthographic variations [Zhou et al.| 2004]. A concept can be linked to
different mentions, e.g., the following entity mentions {breast cancer, breast tumor, breast carcinoma}
are linked to the same concept breast neoplasm with a unique ID "D001943" in the MeSH ontology
[Zieman and Bleichl [1997|]. This makes it crucial to link mentions with their standard canonical
forms present in an ontology or a knowledge base, rich with semantic structure.
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Figure 1: A Fine-tuned Clinical BERT model assigns high probability to invalid mention names that
does not have correspondence to the candidate in an Ontology. Green : Original Concept/Mention;
Red : Transformed Concept/Mention; Grey: Mention in a text/Concept in an Ontology.

Normalization is one of the fundamental tasks of data mining, that is utilized in automated medical
decision making which is directly responsible for the well-being of patients [Matheson, 2019].
The robustness of such models is therefore crucial to maintain. Biomedical normalization models
[Xu and Bethard, 2021Ji et al.l [2020;Li et al., 2019]] achieve impressive results using pre-trained
contextualized models like BERT [Devlin et al.| 2018]]. However, recent studies reveal BERT being
vulnerable to adversarial attacks [Szegedy et al., [2013};|Goodfellow et al.,[2014]] and insensitive to
certain textual transformations that permute the word order [Gupta et al., 2021; Hessel and Schofield)
2021]]. Figure|l|shows a BERT-based normalization model that retains the same predictions, for three
different examples consisting of invalid transformed inputs as for a valid term, with extremely high
agreement scores. This can lead to the linking of wrong invalid inputs to a concept in an ontology.
In the biomedical domain, [[Araujo et al.|[2020] proposes adversarial attacks that introduces natural
spelling errors and typos made by humans to analyze the robustness for Named Entity Recognition
and Semantic Textual Similarity tasks. [Mondal, |2021] utilizes BERT to generate adversaries that
constitute domain specific synonym replacement, spelling variations and number replacement for the
task of biomedical Text Classification. To the best of our knowledge we are the first to study the effect
of input transformations and adversarial attacks for the task of biomedical concept normalization.

In this paper, we study the responses of BERT-based normalization models to Input Transformations
(word-level modifications and word-order variations). The word-level modifications are inspired from
hand-crafted rules that were used to compose a multi-pass sieve in order to find a match between a
candidate and mention [D’Souza and Ngj,2015]. While these kinds of transformations lead to changes
detectable by a human, modifications that are adversarial in nature lead to imperceptible changes
[Michel et al.||2019]]. Adversarial attacks confuse the models and lead to performance degradation. In
our work, we also focus on generating natural-looking adversarial examples to study the response of
normalization models. Moreover, it has been observed for the task of image classification, adversarial
ranking attacks can alter the ranks of a candidate by adding perturbation to a candidate list [Zhou
et al.,[2020]. We adopt this approach to study the effect of candidate ranking, on adding imperceptible
perturbations, of existing normalization approaches that consist of a two-step framework: a candidate
generator (produces potential candidates from an ontology) and a supervised candidate ranker (ranks
potential candidates) [Xu and Bethard, 202131 et al., 2020]. Finally, we also explore mitigation
strategies with the aim of helping the model in identifying invalid inputs that result in the application
Input transformations.

To demonstrate the efficacy of the proposed input transformations and adversarial attacks, we select
ranking-based normalization models [Ji et al., | 2020]. Based on this model we perform experiments
on 4 types of BERT models : BERT [Devlin et al.| 2018]], BioBERT [Lee et al.,[2019], ClinicalBERT
[Alsentzer et al.,|2019], PubMed BERT [Gu et al.,[2021]]. Additionally we consider a separate model
that performs a triplet-search based ranking for normalization and trains the candidate generator space
unlike the previous model [Xu and Bethard, 2021]]. The evaluation of the task was performed on three



datasets: NCBI [Dogan et al., 2014]], BCSCDR-Disease [Li et al.,|2016|], and BCSCDR-Chemical [Li
et al., 2016].

Our experiments and observations reveal that most of the individual input transformations that involve
word-level modifications and word-order variations, go undetected by a model. However, when
transformations are chained or certain important words are affected we find the model starts detecting
invalid input. For adversarial attacks, our experiments reveal that the best-performing models are
brittle on imperceptible perturbations and natural-looking adversaries. Summarily, we make the
following contributions in this papelﬂ

1. We systematically study the effect of input transformations to understand the sensitivity of
the model to word-level modifications and word order variations for biomedical concept
normalization. We apply thirteen individual transformations for effective analysis.

2. We propose Adversarial Attacks that lead to a significant drop in model performance (86.0
to 58.05 in F1-score) on NCBI [Dogan et al.,2014] dataset, revealing the brittle nature of
top-performing Normalization models.

3. Finally, we explore existing mitigation strategies to make models sensitive to invalid input
transformations for the task of Normalization.

2 Task Formulation

Given a corpus H and an Ontology O, the aim of concept normalization is to find a mapping function
f, that maps a mention m in a free-form text corpus H to a concept ¢ which is a unique identifier in
Ontology O, i.e., ¢ = f(m). A concept c is part of a set C' consisting of all concepts in an Ontology.

In the following section [3]and [d] we describe each Input transformations and Adversarial Attacks in
details, that we apply to analyze the robustness of biomedical concept normalization.

3 Input Transformations

For the given task consisting of an input z ¢ X and a function f that maps inputs to y € Y which
corresponds to a label space. An input transformation is a function o : X — X that acts on input
x to produce z such that f(:c') is not defined. For each of the transformations defined below there
is a high probability that one can map to the original candidate. In that case we remove it from the
list. While this is a single instance of such a case to appear, the remaining combinations can serve as
invalid mention entities that are formed through the following transformations.

Hyphenation A mention term undergoes hyphenation if it does not consist of hyphens whereas it
undergoes dehyphenation if it consists of hyphens in the original term by considering consecutive pairs
at a time. E.g., a mention "hereditary breast and ovarian cancer" will form the following variations:
{"hereditary-breast and ovarian cancer"”, "hereditary breast-and ovarian cancer", "hereditary breast
and-ovarian cancer", "hereditary breast and ovarian-cancer"}. This is performed only with multiword
mentions.

Number Replacement We perform this transformation only on those mentions that consist of a
pre-existing numeral while the other mentions devoid of any numeral retain their original form. The
numbers are replaced as their equivalent form of the roman, cardinal, or multiplicative numeral. E.g.,

non

"c9 deficiency" has the following forms {"cnine deficiency", "cix deficiency"}.

Disorder Synonym/Mention Term Concatenation Given an entity mention m we generate samples
of the form (m + ¢) where ¢ is a disorder synonym or a frequently appearing modifier for chemicals
(depends on the domain usage). We collected a list of roughly fifteen disorder synonyms from
[D’Souza and Ng,|2015] and concatenated this at the end of every mentions where these terms are
absent. So for each mention there are fifteen different variants. Similarly, for chemicals we manually
enlist fourteen terms and concatenate those at the end of every mention.

'Our code is available at https://github.com/deepwizai/robust-normalization



Table 1: Agreement scores on Transformations for three datasets on finetuned-BioBERT model

Transformations NCBI BC5CDR BC5CDR
disease disease chemical
Unperturbed 0.93 0.92 0.94
Hyphenation (H) 0.89 0.88 0.92
Subject Object Conversion (SOC) 0.90 0.89 0.93
Number Replacement (Num-R) 0.88 0.89 0.91
Disorder Synonym/Mention Term Concatenation (C) 0.90 0.89 0.91
Stemming (S) 0.87 0.87 0.92
H + SOC 0.89 0.90 0.94
H + SOC + Num-R 0.87 0.89 0.93
H+SOC + Num-R +C+S 0.86 0.87 0.92
Copy-Sort 0.91 0.90 0.14
Sort 0.90 0.89 0.92
Reverse 0.91 0.89 0.92
Shuffle 0.91 0.89 0.92
Drop 0.85 0.85 0.88
Repeat 0.84 0.84 0.88
Replace 0.83 0.82 0.89
Copyone 0.76 0.77 0.87

Stemming Using Porter Stemmer [Porter, |1980] from the NLTK library [Bird, [2006]], the words
of the mentions are stemmed and are then replaced with the corresponding occurrence. E.g., the
mention of the term "chromosomal fragmentation during meiosis" changes to "chromosom fragment
during meiosi". The stems are hard to interpret since they do not form actual words, thus altering the
meaning of the mention terms.

Subject Object Conversion We generate examples for Subject-Object conversion using the steps
detailed in [D’Souza and Ng|, 2015|]. There are four ways to generate samples for Subject-Object
conversion. Given a mention m that contains a preposition: 1) Replacing with other prepositions; 2)
Deleting the preposition and swapping surrounding token; 3) Shifting last token to the front and then
inserting a preposition while shifting the other remaining tokens; 4.) Shifting first token to the end
and adding a preposition as the second last token followed by shifting remaining tokens to the rest.

In the above transformations, the first four are word-level transformations that make changes in
the word level or append additional terms to the neighboring words. The transformation- Subject
Object Conversion- leads to change in word order. Following [Gupta et al., 2021] we perform
two classes of additional transformations which are: 1.) Lexical-overlap based transformations
retains the bag of word collection but it changes the word order in four different ways which are
as follows: Sort - sorting input tokens; Reverse - reversing the token sequence; Shuffle - shuffling
tokens randomly; Copy Sort - transforming a candidate c as a copy of the mention m with the words
sorted alphabetically. The transformations Reverse and Copy Sort are part of Lexical overlap based
transformations which exhibit random word order. 2.) Gradient level transformations consider change
in the loss for i’th input token in a given mention m to measure the token importance. Based on this
calculation four operations are defined: Drop - this drops the least important token in a mention;
Repeat - least important token is repeated ; Replace - Least important token is replaced by random
tokens; Copy One - The most important token is copied from the mention m and put as the only token
in the candidate c . These transformations target to destroy the semantic meaning entirely conveyed
in the phrase. In FigurdI] we see Example 3 as the transformation Drop is being applied, where a
pre-trained model is unable to catch the transformation and treating it as correct input.

Each of these transformations are performed individually as well as we perform chained evaluations.
The second example in Figure[I]is based on chaining three transformations: Subject-Object Conver-
sion followed by Number Replacement and finally Hyphenation. Since the task of normalization
involves pair of texts as input constituting the mention level text and candidate concepts, performing
transformations on any one of these should suffice in order to carry out robustness analysis.



4 Adversarial Attacks

We perform two types of Ranking Attacks for the task of normalization. Both of these attacks are
adversarial in nature thus involving imperceptible changes to form an adversary.

Adversarial Ranking Attack (Adv-Rank) For a set of chosen candidate X = {cy, ¢s, ..., ¢, } with
respect to a specific mention from the set M = {my, ma, ..., m,, } we perform two types of Adversarial
Ranking Attacks: 1) Mention Attack (MA): Attack targeted to mention m and 2) Candidate Attack
(CA) : Attack targeted to candidate c. We define MA+ and MA- as variants of Mention Attacks to
raise or lower the rank of a candidate set C by perturbing a single mention m. Similarly, we define
CA+ and CA- as variants of Candidate Attacks to raise or lower the rank of a single candidate ¢ with
respect to the mention set M. The ranks are altered by adding universal perturbation r. The final
ranking order for a Deep Neural Network is defined by the sample positions in a common embedding
space so adding an adversarial perturbation to it can lead to potential alteration in ranking. This is
performed using a surrogate loss in the form of Triplet loss. For CA+ it is defined as:

Leas (6, M3 X) =" " [d( )], (1)

qeM zeX

where X denotes set of all candidates; M denotes set of all mentions; c is the candidate whose rank is
raised w.r.t mention q € M. In the same way the Triplet loss is defined for CA-, MA+ and MA-. We
refer the reader to consult the original work for a detailed overview on Adversarial Ranking [Zhou
et al.| 2020]]. In our work we can utilize any one of the shifts (CA+ or CA-; MA+ or MA-) to make
imperceptible changes to the ranking order.

Table 2: Adversarial Ranking Attack on BERT based ranking model. The "+" in MA indicates that
the rank of the chosen candidate is raised. The changes in average rank using Cosine Distance Triplet
Loss is reported with (%) omitted. Emb Shift: Embedding Shift.

Emb Clinical Bio
Dataset Shifp ~ Attack BERT BERT
NCBI 13 MA+ ~50 5518 ~50 — 44.2
BCSCDR 13 MA+ ~50 5 42.6  ~50 — 50.9
Chemical

Least Similar Entity Concatenation (LSEC) We present Least Similar Entity Concatenation
(LSEC) that modifies the candidate set by concatenating the most dissimilar entity belonging to a
parent class same as the original candidate, corresponding to an ontology or a knowledge base. In the
following steps we lay down the approach taken by LSEC attack. Given a mention m and a candidate
c:

Step 1: Find the concept identifier of c that links it to an ontology.

Step 2: Access the immediate root which corresponds to the parent concept and find the set of
existing siblings.

Step 3: Find pair-wise cosine similarity between the concept and the existing set of candidates.

Step 4: Select the most dissimilar entity and append it with the candidate ¢ to form ¢’.

"non

For example, given a mention-candidate pair - ("meningitis”, "encephalomeningitis") - the identifier
for the candidate c, "encephalomeningitis" is MESH:D008590 corresponding to MEDIC Ontology
[Davis et al.l 2012]. The immediate parent is tracked and the most dissimilar sibling based on cosine
similarity, corresponding to the candidate under the same parent ID is determined, in this case, it
s "Pseudorabies". Finally, the modified candidate ¢’ is formed by appending both the terms as a
composite mention: "encephalomeningitis and pseudorabies”. The attacks consisting of entities
belonging to the same class corresponding to an Ontology or a Knowledge Base are considered to be
adversarial in nature [Lin et al.,[2021]]. Since both ¢ and ¢’ belong to the same parent class, hence
we tag instances generated from LSEC attack as natural adversarial examples. Furthermore, the



adversarial examples obtained are natural since it consists of real and valid entities, devoid of any
grammatical disfluency.

5 Experimental Setup

Datasets: We evaluate transformation on three different biomedical normalization datasets : 1) NCBI
[Dogan et al., 2014]] 2) BC5CDR-Disease [Li et al.,2016] and 3) BCSCDR-Chemical [Li et al.,
2016]).

Models: For evaluating transformations we perform experiments on BERT-based Ranking [Ji et al.,
2020]] . We use the following BERT models for reporting the results on BERT-based Ranking :
BioBERT |[Lee et al.,2019]], Clinical-BERT [Alsentzer et al.,[2019], PubMed BERT [Gu et al., 2021]]
and BERT [Devlin et al.| 2018]]. We perform fine-tuning on the training data using Adam Optimizer
[Kingma and Ba, [2014]]. For evaluating Ranking Attacks we only use BERT-base-uncased models.
We set a threshold « of 0.75 for cosine similarity for LSEC attack. We provide more details in the
Appendix.

6 Metrics

6.1 Input Transformations

We use Agreement and Confidence scores following [Gupta et al., [2021]] for all the Transformations
defined over the input.

Agreement: It is defined as the percentage of examples that retains the same prediction after applying
transformations.

Confidence: The average probability scores of the predicted level gives the Confidence score.This
depends on the number of classes N (in our case N=2).

A low confidence score and an agreement score close to random suggests that a model is reliable that
is successfully able to detect invalid input.

6.2 Adversarial attacks

We perform two types of Adversarial attacks: 1) Adversarial Ranking (Adv-Rank) 2) Least Similar
Entity Concatenation (LSEC). Below are the metrics that are used to evaluate these attacks.

Adversarial Ranking Attack (Adv-Rank) The effectiveness of the attack is calculated by the
magnitude of change in normalized rank. Given a candidate c the normalized rank is given as follows:

_ Rankx(m,c)

R(m,c) = X x 100% 2)

where ¢ € X; | X is the length of full ranking list and R(q, ¢) € [0,1]

Least Similar Entity Concatenation (LSEC) We report the F1-score on the original test set and
the Fl-score after the attack . In addition, we also report the average confidence with which the
predictions are performed.

7 Results and Analysis

This section discuss the results for Input Transformations and Adversarial Attacks. We also investigate
through various analyses: 1) How do the model performance change for a varying percentage
of invalid inputs? 2) Does invalid examples go undetected for a different approach? 3) Using
existing strategies to make a model performing the normalization task, sensitive to invalid input
transformations.



7.1 Main results

Input Transformations We apply various morphological, lexical and gradient-based transformations
to the input belonging to three different datasets. Table[T|shows that the model exhibits high agreement
scores. This is indicative of the fact that the model maintains its original predictions. CopySort and
CopyOne are the transformations for which the model can identify invalid output, since those consists
of a repetition of a single selected word lacking of other terms in a mention/candidate. The agreement
scores are comparatively lower for Gradient-based perturbations where the important tokens are
altered. A similar drop in scores is observed for Chained Transformations. On the contrary, for each
individual transformation (except for stemming which leads to a meaning change in the input) the
agreement scores are much higher. The model might pick up spurious correlations related to the
common representation of biomedical entity names or phrases during training. Also, high agreement
scores on lexical transformations confirm that the model is insensitive to word order.

Adversarial Ranking Attack (Adv-Rank) As shown in Table 2| for a designated embedding shift
there is a considerable shift in the average rank for Mention Attack (MA+). The default value without
the attack is 50%. The target of this attack is to make random changes in the ranked candidates after
the model generates it. This is a black-box attack and significant shifts lead to 4% to 5% dip in
model performance for BERT based ranking attacks.

Least Similar Entity Concatenation (LSEC) Table[3|shows the performance of the attack performed
for Least Similar Entity Concatenation (LSEC). Compared to Adv-Rank this is a better attack that
confuses the model and its performance is degraded.

Table 3: F1 scores before and after LSEC attack for two variants of BERT based ranking models on
NCBI. Confidence : The average confidence with which the predictions are made after an attack is
reported

Models Before Attack  After Attack Confidence
PubMed BERT 0.853 0.580 0.986
Bio BERT 0.859 0.582 0.990

7.2 Varying transformation of input (%)

Table E] shows the results when 20%, 60% and 80% of the test data undergo transformations. We
report the scores for transformations that include individual Input transformations, chained Input
transformations and destructive transformations including Lexical-overlap and Gradient-based
perturbations. The highlighted values of the accuracy scores denote instances where the model
learns to detect the invalid inputs successfully, due to which there is a dip in the score. We observe a
considerable change in the reported accuracy for every Chained Transformations and Gradient-based
transformations this suggests that when there is a considerable transformation, like in the case of
Chained Transformations (where the modifications leading to invalid changes in the input become
more detectable), and for Gradient level transformations (where the most important token is affected),
the model does a better job in classifying the invalid inputs.

Table 4: Accuracy Scores (%) for the BioBERT model undergoing transformations with different
data coverage. H: Hyphenation; SOC: Subject Object Conversion; NR: Number Replacement; C:
Disorder Synonym /Mention Term Concatenation; S: Stemming

Transformations
H+ H+
Input H+ SOC+ Copy Copy
(%) H SOC NR C S SOC IS\]?{C+ NR+  Sort Shuffle Drop One
C+S

20% 0.87 0.88 0.88 0.87 0.88 0.88 0.87 0.87 0.87 0.79 0.88 0.87
60% 0.88 0.88 0.87 0.88 0.87 0.88 0.85 0.84 0.87 0.81 0.87 0.80
80% 0.89 0.89 0.87 0.89 0.88 0.84 0.82 0.81 0.87 0.77 0.86 0.77




7.3 Are the transformations undetectable across different approaches?

To better understand the effect of the transformations, we conduct the experiments on a different
model that performs the task of normalization which is Triplet-search ConNorm [Xu and Bethard,
2021]]. Table[5|shows the results on the Input Transformations. Compared to the BERT-based ranking
model in TabldI] we find that this model shows a considerable accuracy drop for NCBI dataset on
individual transformations apart from the lexical based transformation. For BC5CDR-Disease and
BCS5CDR Chemical the model performance is almost similar to BERT based ranking model. For
detecting Gradient level perturbation, Triplet Search based Concept Normalization model does a
better job.

Table 5: Accuracy Scores (%) of Triplet Search based Concept Normalization model across three
datasets NCBI, BC5CDR disease, BCSCDR chemical. The "None" value is on untransformed training
set. H: Hyphenation; SOC: Subject Object Conversion; NR: Number Replacement; C: Disorder
Synonym /Mention Term Concatenation; S: Stemming; Rev: Reverse

Transformations
Dataset None H SOC NR C S Sort Rev Shuffle Drop Repeat Replace
NCBI 095 0.64 063 087 066 055 094 087 087 087 0.79 0.88

BCS5CDR
disease 094 092 094 094 094 0.79 093 093 092 048 046 0.46

BCS5CDR
chemical 099 0.97 097 093 0.75 095 097 098 098 024 0.25 0.21

7.4 Analysis of mitigation strategies for Input Transformations

We explore two strategies to enhance the ability of the model to recognize invalid input transforma-
tions.

Augmented Training : We follow a straightforward approach wherein we randomly select 50% of
training data which then undergoes all possible transformations mentioned in Section 4. This set of
invalid examples is augmented with the original training data, and the final version of the training set
is obtained.

Entropic Regularization : This approach helps in training the model to be less certain on invalid
inputs [Feng et al.| [2018]]. Given an original dataset D and the dataset constituting invalid examples
D’. This method adds a loss term for the invalid examples weighted by the additions of a new
hyperparameter.

Table [6] shows a comparative analysis between Augmented Training (Aug-Data) and Entropic Reg-
ularization (Ent Reg). The experiment is conducted for the NCBI dataset for the BERT-based
Ranking model consisting of PubMed BERT and Bio-BERT. We observe that the Data Augmentation
(Aug-Data) reports a marginally better performance when compared to Entropic Regularization.

Table 6: Comparative Analysis of Mitigation Strategies reported on NCBI for BERT-based ranking
model. Aug-Data: Agreement on Augmented Training; Ent Reg: Agreement after Entropic Regular-
ization

Model Aug-Data Ent Reg
PubMed-BERT 0.828 0.826
Bio-BERT 0.769 0.759

8 Conclusions and Future Work

In this paper, we study the effect of Input Transformations and Adversarial Attacks on the task
of biomedical concept normalization. The Input transformations include word level modifications



and word order variations. A part of our proposed input transformations is motivated by surface
form variations in the biomedical domain. Our work shows surprising results on invalid Input
transformation, wherein BERT-based normalization models find it hard to identify such samples. The
models are seen to be invariant to random word order permutations. In addition, we propose two
types of Adversarial attacks, one of which form natural looking adversaries while the other affect
the ranking of candidate/mention sets on adding imperceptible perturbations. These attacks lead to
model performance degradation. We conduct this empirical study considering different BERT-based
normalization models that operates on a ranking-based approach. We explore mitigation strategies
and techniques to increase model sensitivity to input transformations. For future work, we plan
to incorporate better mitigation strategies to increase sensitivity to invalid samples and defence
mechanisms to reduce the brittleness of the model to adversarial attacks.
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A Appendix

A.1 Reproducibility

Model Used. We performed the attacks on two types of entity normalization methods, a ranking
based normalization [Ji et al.,[2020] and Triplet Search ConNorm [Xu and Bethard, [2021]] which is
trained via a triplet objective. For both methodologies we took a set of pretrained BERT models,
namely - “bio-clinical-bert”, “pubmed-bert* and “bio-bert-cased” to base our experiments. These are
BERT like models but are trained on biomedical specific dataset. For such pretrained models, we

used Huggingface’s transformers repository [Wolf et al., 2020].

Dataset. We used 3 benchmark datasets in the biomedical domain for biomedical normalization,
namely, NCBI [Dogan et al.,|2014]], BCSCDR-Disease [Li et al.,[2016], BCSCDR-Chemical [Li et al.,
2016]. The hyperparameters were kept the same irrespective of the data used.

The NCBI disease corpus contains 17324 manually annotated disorder mentions from 792 PubMed
abstracts. The disorder mentions are mapped to 750 MEDIC lexicon [Davis et al.,|2012]]) concepts.
We split the released training set in 5134 training mentions and 787 development mentions, and
keep the 960 mentions from the original test set as evaluation. We use the 2012 version of MEDIC
ontology which contains 11915 concepts and 71923 synonyms.

BC5CDR-Disease and BCSCDR-Chemical corpora were used in the BioCreative V chemical-induced
disease (CID) relation extraction challenge ﬂ BC5CDR-Disease and BCSCDR-Chemical contain
12850 disease mentions and 15935 chemical mentions, respectively. The annotated disease mentions
are mapped to 1075 unique concepts out of 11915 concepts in the 2012 version of MEDIC ontology
[Davis et al.,|2012]]. The chemical mentions are mapped to 1164 unique concepts out of 171203
concepts from the 2019 version of Comparative Toxicogenomics Database (CTD) chemical ontology
We use similar train-dev-test splits as outlined in the BioCreative V challenge.

Hyperparameters

BERT-based Ranking for Entity Normalization: For the text encoder we used 3 pretrained models,
namely, BioBERT [Lee et al.,[2019]], Clinical-BERT [Alsentzer et al., [2019]], PubMed BERT [Gu
et al.}2021] and BERT [Devlin et al.,|2018]]. For fine-tuning the sentence-pair classifier, same model
hyperparameters were used as those saved in the pre-trained model, with the exception of the batch
size, learning rate, and number of training epochs. In this study, we fixed the learning rate at 1e=5,
weight decay to 1e~2, tuned the batch size to 16 and 32, tuned the number of training epochs from 1
to 10, and saved the model with the best performance.

Triplet Search ConNorm: For the text encoder we used 3 pretrained models, namely, BioBERT
[Lee et al.l 2019]), Clinical-BERT [Alsentzer et all, 2019], PubMed BERT [Gu et al., 2021]]
and BERT [Devlin et al.l 2018|]. We used the Pytorch implementation of sentence-transformers
E] to train the Triplet Network for concept normalization [Xu and Bethard, 2021]. We used
the following hyper-parameters during training of the triplet network: max_sequence_length
= 16, train_batch_size = 1024, epoch_size = 3, optimizer = Adam, learning_rate
= 3¢5, warmup_steps = 0.

Regularization Parameter in Entropic Regularization. The parameter A in Entropic regularization
provides a trade-off between the amount of regularization and original cross-entropy loss (refer to
sub-section Entropic Regularization in section [7.4). It was found via multiple experiments with
different values that large values of \ tend to decrease accuracy on the original validation set. We
thus fix A = 0.1 for all our experiments. Set of values tried: {0.01,0.1,0.2,0.3,0.5,0.7,1.0,5.0}.

Compute Infrastructure Most of our experiments (except most Input Transformations other than
gradient-based transformations) required access to GPU accelerators. We primarily ran our experi-
ments on 2 machines: NVIDIA Quadro P5000 (16GB VRAM) and NVIDIA Quadro RTX4000 (8GB
VRAM). We used Paperspace E] and Google ColabE] platforms to run our experiments.

Zhttps://biocreative.bioinformatics.udel.edu/tasks/biocreative-v/
3URL: http://ctdbase.org/

*https://www.sbert.net/

Shttps://www.paperspace.com/
Shttps://colab.research.google.com/
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