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Abstract

Existing work on generalization in Text-to-SQL semantic parsing has been re-
stricted to a zero-shot cross-domain setting. In this paper, we introduce Spider-
Gen: a Text-to-SQL benchmark to develop a paradigm of transfer learning across
distinct dimensions of generalization in Text-to-SQL semantic parsing. The Spider-
Gen benchmark focuses on few-shot adaption for Cross-domain, Lexical, and
Structural generalization of Text-to-SQL models. Through our experiments with
the Spider-Gen dataset, we show that Seq2Seq language models struggle to gener-
alize against change in data distribution, lexical changes in database schema, and
changes in SQL query complexity. Our experiments also reveal that performing
few-shot fine-tuning helps Text-to-SQL models to generalize across these changes.
However, such few-shot adaptation comes with a negative effect on the knowledge
learnt during training. Hence, we also explore Parameter-efficient Fine-tuning
methods to overcome the limitations of Seq2Seq Text-to-SQL models. We release
the Spider-Gen dataset publicly to facilitate further research in generalization and
transfer learning across various dimensions in Text-to-SQL semantic parsing.

1 Introduction

The Text-to-SQL semantic parsing task involves translating a Natural Language query (NL) into its
corresponding SQL query logical form for a given database. Recent development in Text-to-SQL has
brought in significant advances in methods and their downstream performance on various versions
of the task. Within a span of five years, the performance on Text-to-SQL leaderboards like Spider
[Yu et al., 2018] has moved from an accuracy of mere 8% (2018) to 75% (2022).1. Under the current
evaluation paradigm for Text-to-SQL, benchmarks like Spider and WikiSQL [Zhong et al., 2017]
require: (i) In-domain pre-training of a model on a large number of databases; (ii) Evaluating the
trained model against Cross-domain novel unseen databases from the same dataset distribution. While
this evaluation paradigm shows an ever increasing performance on leaderboards, it poses several
limitations.

Firstly, datasets following such an evaluation paradigms only focus on a single axis of generalization:
cross-domain generalization. This involves a low-granular change in terms of introduction of entirely
new databases. However, there are other important high-granular axes of generalization like changes

1https://yale-lily.github.io/spider
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in the database schema and changes in the nature of querying for existing databases. Under a realistic
setting, generalizing to such changes is relatively more frequent and equally important as performing
cross-domain generalization. The current datasets do not offer evaluation settings for generalization
over such high-granular changes. Further, the In-domain training and Cross-domain test databases
from such datasets belong to the same data distribution with respect to the data annotation and
normalization protocols (for the databases and the SQL queries) followed during the creation of
the datasets [Yu et al., 2018]. Hence, even with changes in the domain, the cross-domain test
databases share a certain degree of similarity with the training databases - leading to a relatively
higher cross-domain performance of benchmarked models. However as soon as the data distribution
of the evaluation databases diverges from that of the training databases, the model performance
decreases significantly [Lee et al., 2021].

Annotating samples of NL-SQL pairs is a resource heavy task, requiring supervision from database
administrators and experts. Hence, most of the existing work in Text-to-SQL focuses on a zero-shot
inference setting. While a zero-shot evaluation setting does show great improvements on Text-to-
SQL leaderboards, recent work has shown that zero-shot inference fails for certain generalization
dimensions like the ones discussed above [Suhr et al., 2020, Lee et al., 2021]. In order to overcome
such limitations, one needs to follow a transfer learning approach with adaptation data from the target
generalization. While annotating large amounts of new adaptation data for such a transfer learning
approach might not always be feasible, recent work by Lee et al. [2021] has shown that even few-shot
adaptation can show significant improvement in performance over zero-shot inference. However, it
has not yet been explored how adapting large Text-to-SQL models under a few-shot settings affects
their existing knowledge captured during training.

In this work, we aim to introduce a new paradigm of modeling and evaluation for Text-to-SQL, with
multiple axes of generalization and a few-shot adaptation-based transfer learning setting to overcome
these generalization issues. We do so by:

1. Introducing a new benchmark based on Spider and related datasets: Spider-Gen for few-shot
transfer learning and evaluation of Text-to-SQL models with respect to multiple axes of
generalization.2

2. Exploring the limitations of standard Seq2Seq language model architectures under zero-shot,
as well as a few-shot evaluation settings for Text-to-SQL semantic parsing.

3. Exploring Parameter-efficient fine-tuning (PEFT) methods to overcome the limitations faced
by the vanilla Seq2Seq architectures.

2 Spider-Gen Benchmark

In order to facilitate research towards the development of transfer learning based Text-to-SQL
methods, we design a new evaluation paradigm for Text-to-SQL: Spider-Gen, which covers three
dimensions of generalization as discussed further in Section 2.1. The Spider-Gen dataset differs from
existing Text-to-SQL benchmark datasets by: (i) Providing distinct evaluation splits for different
types of generalizations; (ii) Providing a set of few-shot adaptation samples for transfer learning
over target generalizations.; (iii) Providing a set of held-out samples to inspect the negative effect
of such transfer learning. Unlike the existing zero-shot cross-domain evaluation settings, under this
evaluation paradigm, a given model is first fine-tuned on a set of few-shot samples for the given
generalization setting (cross-domain or otherwise), and then tested under a few-shot inference setting
as shown in Figure 1.

2.1 Generalization

Most of the state-of-the-art (SOTA) Text-to-SQL semantic parsing systems are built upon large
sequence-to-sequence (Seq2Seq) language models. Seq2Seq architectures usually struggle with
compositional generalization Kim and Linzen [2020] that is required to generalize in Cross-domain
and In-domain settings. The most coarse form of generalization faced by Text-to-SQL system
in a realistic setting is that of cross-domain generalization with novel databases. This setting is
captured extensively by existing work in Text-to-SQL semantic parsing. While such Cross-domain

2The Spider-Gen dataset is publicly available here: https://github.com/ManasiPat/Spider-Gen
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Figure 1: The classic Text-to-SQL modeling and evaluation paradigm with zero-shot inference (top).
Various types of generalizations required in Text-to-SQL (bottom-left). Few-shot adaptation for
transfer learning over unseen generalizations during training (bottom-middle). Parameter-efficient
fine-tuning (PEFT) for generalization in Text-to-SQL (bottom-right).

evaluation covers compositional generalization on a broader scale, subtle sub-types of compositional
generalizations are required with respect to the more frequent and specific changes in the In-domain
training databases and querying. Hence, we additionally introduce two other forms of generalizations
which cover finer high-granular changes for the In-domain databases.

Structural Generalization: Any change in the intended querying usage results in a change in the
compositions and the complexity of the required SQL queries. Adapting to such change requires
models to generalize to structurally more difficult queries. We use the query complexity measure
defined by [Yu et al., 2018] to annotate SQL query complexity as - easy, medium, hard, or extra-hard.
Under this setting, for a given particular database - the model is only exposed to SQL queries of lower
complexity during training, and then evaluated against SQL queries of higher complexity during
testing. We cover two levels of SQL query complexity in Spider-Gen: hard and extra-hard.

Lexical Generalization: Any modification to the existing databases like addition or deletion of
tables, columns and rows, or change in naming conventions and database constraints can result
in significant lexical changes in the database schema - which is an important part of the input to
Text-to-SQL models. Adapting to such frequent database modifications requires models to generalize
lexically to new unseen lexical items from the database schema and content (tables, columns, values,
etc.). Under this setting, for a given particular database - the model is only exposed to SQL queries of
all - but one held-out database table during training, and then evaluated against SQL queries for the
held-out unseen table during testing.

2.2 Dataset

We construct a new dataset for the Spider-Gen benchmark by modifying and combining several
existing Text-to-SQL datasets as shown in Table 1. The Spider Train and Development databases
are sourced from Yu et al. [2018]. Whereas, the KaggleDBQA databases are sourced from Lee
et al. [2021]. We also include several old Text-to-SQL benchmark databases which are compiled
by Finegan-Dollak et al. [2018]. Using databases from different datasets in such a manner ensures
that the models are evaluated for robustness against a change in data distribution. Based on their
intended use-case, the databases in the Spider-Gen dataset are classified in five categories as shown in
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Database Category Description Source Dataset Train
split

Held-out
split

Adapt
split

Test
split

Training
Databases used to train the model,

whose schema and query complexity
remain unchanged post-training

Spider Train Y Y N N

Validation
Databases used to validate the model,
whose schema and query complexity

remain unchanged post-training
Spider Dev Y N N N

Cross-domain
Generalization Databases not seen during the training

Spider Dev
KaggleDBQA N N Y Y

Lexical
Generalization

Databases seen during training
whose schema is modified post-training

Spider Train
Old datasets Y Y Y Y

Structural
Generalization

Databases seen during training
whose queries become more complex

post-training

Spider Train
Old datasets Y Y Y Y

Table 1: The details of various categories of databases and data sample splits that are used in the
Spider-Gen dataset. {Y: Yes, N: No}

Table 1. While the first two categories (Training and Validation) are used to train the base Text-to-SQL
model, the final three categories are used to evaluate the trained model against the three types of
generalizations discussed in Section2.1 under a zero-shot as well as few-shot setting. For each type
of generalization, we source databases from both Spider and non-Spider datasets to ensure diversity
in data distributions.

The Cross-domain generalization setting is covered by using the databases from the KaggleDBQA
dataset and half the databases from the Spider Development dataset.3 This gives us a total of 10
cross-domain generalization databases for Spider, and 8 databases from a different data distribution of
the KaggleDBQA dataset. Within the In-domain databases (seen during training) that undergo certain
changes, we focus on Lexical and Structural generalization. The databases for Lexical generalization
are carefully chosen by sampling the top-2 databases each from the Spider and the Old datasets
according to the maximum number of samples per table. Similarly, the databases for Structural
generalization are chosen by sampling the top-2 databases according to the maximum number of SQL
queries for the target complexity. Such filtering of databases ensures an availability of a high number
of samples for few-shot adaptation as well as test evaluation. This results in two Spider databases,
and two databases from a different data distribution of old datasets for Lexical, Structural - Hard,
and Structural - Extra Hard generalization settings. This leaves us with a total of 12 generalization
databases from the In-domain training data. Example SQL queries for the newly introduced Lexical
and Structural Generalization settings can be found in Appendix B.

2.3 Evaluation

We cover three important types of evaluation settings in the Spider-Gen benchmark:

Zero-shot (Test data): Under this setting, a given Text-to-SQL model is directly tested without
any adaptation or transfer learning for the target generalization. This setting is equivalent to the
existing standard Cross-domain evaluation settings in Text-to-SQL, additionally extended to Lexical
and Structural generalizations.

Few-shot (Test data) : Under this setting, a given Text-to-SQL model is fine-tuned on a set of
few-shot samples for the target generalization. Here, we use a setting equivalent to that of the recently
released KaggleDBQA dataset [Lee et al., 2021], where 30% of samples are used for adaptation. The
few-shot samples are used to adapt the model for unseen databases, unseen tables, and unseen query
complexity for Cross-domain, Lexical, and Structural generalization respectively.

3The Spider Test dataset is not publicly available. Hence, we split the Development set into Test and
Validation, where the other Spider Development databases are used as Validation databases (Table 1).
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Few-shot (Held-out data) : The pre-training on the data from the In-domain databases provides
us a base Text-to-SQL model for transfer on the target generalization databases. While few-shot
fine-tuning can improve the performance of this base model on the target test generalization samples,
this might show a negative effect on the knowledge captured during the In-domain training - affecting
performance on the In-domain training databases which don’t need models to generalize. Ideally post
fine-tuning, a model should expand it’s knowledge to target generalization while retaining the existing
knowledge of the task and databases. In order to inspect this possible negative effect during transfer
learning, we introduce an additional Held-out split. Under this setting, the model is evaluated on
samples within the generalizations seen during training, both before and after few-shot fine-tuning on
samples from target unseen generalizations.

In order to conduct experiments with the proposed few-shot adaptation based transfer learning with
the above evaluation settings, the samples from each database are divided into two or four splits
according to the database category. The Train split includes samples which are used to train and
validate the Text-to-SQL model. Whereas, the samples from the Held-out split are used to record the
possible negative effects of few-shot transfer. The samples from the Adapt split and Test split are
used to fine-tune and evaluate the model on target generalizations respectively. Here, the samples
from the Train split and Held-out split belong to the same data distributions, covering samples for
the database tables and SQL query complexities seen during training. Similarly, the samples from the
Adapt split and Test split belong to the same data distributions, covering samples for the database
tables and SQL query complexities that are NOT seen during training.

For the generalization databases, 30% of the generalization samples (samples from unseen tables for
lexical generalization, and samples from higher query complexity for structural generalization) are
used as Adaptation samples, and the rest 70% samples are used for Testing purposes. These samples
are split uniformly with respect to SQL query lengths to avoid any unnecessary latent biases with
respect to length generalization. All the non-generalization samples are used as training samples. The
training samples from every database are further divided into actual training and held-out training set
in the same split of 70%-30% respectively.

Seq2Seq Prefix Tuning Prompt Tuning
Data Source Samples Zero-shot Few-shot Zero-shot Few-shot Zero-shot Few-shot

HO-Tr 88.32 84.89 85.98 84.82 88.37 88.23Spider Dev TE-Gen 61.11 76.93 57.52 57.58 60.65 60.92
HO-Tr 88.32 83.79 85.98 85.82 88.37 88.21KaggleDBQA TE-Gen 21.61 22.94 19.43 19.57 21.33 22.35

Table 2: Average Execution accuracy scores for Cross-domain generalization evaluation under a
zero-shot and few-shot transfer setting. {HO-Tr: Combined Held-out Training database samples,
TE-Gen: Combined Cross-domain Generalization Test database samples}

3 Experiments

For all our experiments, we follow the standard practice of training Text-to-SQL model by feeding
NL queries and serialized schema to the model, and optimizing over the token-level cross-entropy
losses over the expected SQL queries. We follow Lin et al. [2020]’s schema serialization technique to
encode the schema with its table, column, and value tokens - giving the model access to the database
structure and content. We use the CodeT5 model Wang et al. [2021] (a code pre-trained version of
the State-of-the-Art T5 model) for all our experiments, referred to as "Seq2Seq" model here onward
in the text. Further, for all our experiments, we discuss two evaluation settings: Zero-shot inference
vs. Few-shot adaptation.4

We use the test-suite query execution accuracy introduced by Zhong et al. [2020] as our evaluation
metric. We report results on the target generalization Test splits (TE-Gen), as well as the Held-out
splits. The Held-out training (HO-Tr) split scores represent the model’s performance on all the
combined Training databases before and after few-shot fine-tuning, whereas the Held-out gener-
alization (HO-Gen) split scores specifically represent the model’s performance on the held-out

4The hyperparameter details for all our experiments can be found in Appendix A.
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Seq2Seq Prefix Tuning Prompt Tuning
Generalization Data

Source Database Samples Zero-shot Few-shot Zero-shot Few-shot Zero-shot Few-shot

HO-Tr 88.29 82.68 85.94 85.80 88.34 88.34
HO-Gen 83.33 66.67 83.33 83.33 83.33 83.33hr_1
TE-Gen 35.62 49.32 35.62 35.62 34.25 32.88

HO-Tr 88.26 86.00 85.90 85.76 88.21 88.26
HO-Gen 100.00 100.00 100.00 100.00 100.00 100.00

Spider

network_2
TE-Gen 6.06 54.55 12.12 12.12 9.09 12.12

HO-Tr 88.23 84.38 85.68 85.58 88.27 88.37
HO-Gen 100.00 55.56 88.89 88.89 100.00 100.00IMDB
TE-Gen 20.37 70.37 25.93 27.78 22.22 20.37

HO-Tr 88.34 80.81 86.08 85.60 88.29 88.72
HO-Gen 83.33 16.67 83.33 83.33 83.33 83.33

Lexical

Others

Yelp
TE-Gen 29.69 65.62 26.56 26.56 34.38 34.38
HO-Tr 88.35 84.99 86.00 85.80 88.31 88.50

HO-Gen 83.33 66.67 83.33 83.33 83.33 83.33music_1
TE-Gen 38.24 73.53 35.29 41.18 38.24 35.29

HO-Tr 88.30 84.48 85.88 85.78 88.30 88.49
HO-Gen 90.91 90.91 95.45 95.45 90.91 90.91

Spider

college_2
TE-Gen 38.30 59.57 38.30 38.30 40.43 38.30

HO-Tr 88.03 72.99 85.75 85.45 88.13 88.83
HO-Gen 94.74 76.32 92.11 92.11 93.42 93.42GeoQuery
TE-Gen 87.82 95.51 83.97 83.97 87.18 87.18

HO-Tr 88.22 82.99 85.80 85.70 88.22 88.12
HO-Gen 96.30 96.30 96.30 96.30 96.30 96.30

Structural
(Hard)

Others

Scholar
TE-Gen 72.22 93.33 70.00 68.89 75.56 73.33
HO-Tr 88.17 85.32 85.90 85.85 88.22 88.27

HO-Gen 100.00 89.47 94.74 94.74 100.00 100.00dorm_1
TE-Gen 38.46 57.69 23.08 30.77 34.62 34.62

HO-Tr 88.60 86.94 86.50 86.50 88.65 88.84
HO-Gen 71.05 52.63 65.79 68.42 73.68 71.05

Spider

college_1
TE-Gen 30.77 50.00 30.77 30.77 23.08 23.08

HO-Tr 88.25 83.95 85.98 86.03 88.25 88.54
HO-Gen 90.91 59.09 90.91 90.91 90.91 90.91Academic
TE-Gen 29.33 73.33 33.33 32.00 34.67 34.67

HO-Tr 88.47 84.62 86.11 85.49 88.32 75.54
HO-Gen 66.67 44.44 77.78 77.78 88.89 100.00

Structural
(Extra Hard)

Others

Restaurants
TE-Gen 19.70 100.00 19.70 24.24 21.21 42.42
HO-Tr 88.29 83.34 85.96 85.78 88.29 87.40

HO-Gen 88.38 67.89 87.66 87.88 90.34 91.04AVERAGE
TE-Gen 37.22 70.23 36.22 37.68 37.91 39.05

Table 3: Execution accuracy scores for Lexical and Structural generalization evaluation under a
zero-shot and few-shot setting. {HO-Tr: Combined Held-out Training database samples, HO-Gen:
Held-out Generalization samples for database under consideration, TE-Gen: Test Generalization
samples for database under consideration}

training samples of the particular generalization database (i.e. performance on seen tables for lexical
generalization, and samples from seen lower complexity query for structural generalization). Since,
the model is trained only on databases from the Spider dataset, in order to inspect the effect of shift in
data distribution, we report results on both Spider and non-Spider databases for all our experiments.
We report the results for our Cross-domain generalization experiments in Table 2, and the results for
our Lexical and Structural generalization experiments are shown in Table 3.

3.1 Few-shot Transfer with Seq2Seq Model

Under the Cross-domain generalization setting, the Seq2Seq model performs significantly well under
a zero-shot setting over the Spider databases (Table 2). However, the model fails to generalize on
the non-Spider KaggleDBQA datasets with a significant drop in accuracy. Performing few-shot
fine-tuning for transfer over target cross-domain databases increases the performance significantly
for Spider databases, and slightly for KaggleDBQA databases. These observations highlight the
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importance of using a few-shot transfer learning approach for Text-to-SQL generalization. Further,
these also show the necessity of using datasets from varying distributions in the Spider-Gen benchmark
for a robust evaluation of generalization in Text-to-SQL. Further, we observe a significant drop in
accuracy over the Held-out Training samples post few-shot fine-tuning. This indicates a negative
effect of few-shot adaptation on the knowledge captured during training - an important observation
which current Text-to-SQL benchmarks do not reveal.

Under the Lexical generalization setting, the Seq2Seq model performs quite well with near-perfect
generalization accuracies over seen tables (zero-shot HO-Gen scores in Table 3). However, the model
fails to generalize to unseen tables (zero-shot TE-Gen scores) with a significant drop in accuracy.
Again, performing few-shot fine-tuning based transfer learning for the unseen table increases the
accuracy significantly across all the Spider and non-Spider databases (few-shot TE-Gen scores).
However, the model again faces a negative effect of few-shot transfer with significant drop in few-shot
accuracies over seen generalizations (HO-Gen) as well on the broader training set (HO-Tr). Similarly,
for Structural generalization (both Hard and Extra hard) we see the Seq2Seq model struggle with SQL
queries of higher complexity (TE-Gen) under a zero-shot setting, and an improvement in performance
with few-shot transfer. The performance drop in generalizing to queries of higher complexity is
relatively bigger for the Extra Hard queries as compared to the Hard queries - suggesting certain
degree of correlation in query difficulty and structural generalization capabilities of the Seq2Seq
model. The negative effect of few-shot adaptation can again be seen with accuracy on Held-out
samples. However, the drop in Held-out accuracies is found to be relatively less in transfer for
Structural generalization as compared to that in Lexical generalization.

Overall, we observe that performing transfer learning with a few-shot adaptation setting greatly
benefits a Seq2Seq model with significant improvements in execution accuracies over both coarse
and fine dimensions of generalizations in Text-to-SQL semantic parsing (Table 3). However, these
performance gains also come along with the negative effects of transfer on existing knowledge learnt
during training of the Seq2Seq model.

3.2 Few-shot Transfer with Parameter-efficient Fine-tuning (PEFT)

The experiments done with the Spider-Gen dataset reveal several limitations of existing Seq2Seq
Text-to-SQL models. While performing few-shot fine-tuning with the adaptation samples from the
Spider-Gen dataset helps overcome certain generalization issues, it still poses issues with Seq2Seq ar-
chitectures: (i) The models fail to retain the knowledge learnt during training after few-shot fine-tuning
(Table 2, Table 3); (ii) With an increasing size of SOTA Seq2Seq Text-to-SQL model, performing
few-shot fine-tuning for multiple changes (in databases or queries) and generalization becomes
infeasible in terms of compute-efficiency and memory required to deploy fine-tuned checkpoints.

Recent progress in Parameter-efficient Fine-tuning (PEFT) methods like Prefix Tuning Li and Liang
[2021] and Prompt Tuning Lester et al. [2021] show promise to address both these issues. Since
PEFT methods keep the underlying language models frozen during fine-tuning, all the knowledge
captured during training is preserved in the model parameters during fine-tuning. Further, the PEFT
methods train a relatively very small number of parameters, and the underlying trained and frozen
Seq2Seq language model is same across different fine-tuned prompts or prefixes. Hence, this provides
an excellent level of compute-efficiency in terms of computational costs for fine-tuning, as well as
memory efficiency in terms of deploying a single checkpoint of the large trained language model and
multiple relatively smaller fine-tuned prefix or prompt checkpoints.

Prefix Tuning has previously shown competitive performance with full model tuning for various
text-generation datasets under a low data setting Li and Liang [2021]. On the other hand, Prompt
Tuning has also proven to be competitive with full model tuning for various text-classification tasks
Lester et al. [2021]. Hence, we experiment with both Prefix Tuning and Prompt Tuning for few-shot
fine-tuning as shown in Figure 1.

Under this setting, we use the Seq2Seq model trained with Training and Validation databases (Table 1)
as the underlying language model. Similar to the Seq2Seq model, the Prefixes and Prompts are
initialized with their respective versions trained with Training and Validation databases (Table 1), and
then fine-tuned with few-shot data for Cross-domain, Lexical, or Structural generalization databases.
For Cross-domain generalization, we observe that both Prefix Tuning and Prompt Tuning show
slightly lower, yet comparable results with the Seq2Seq model under both zero-shot and few-shot
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setting (TE-Gen scores in Table 2). Further, they also show relatively less negative effects of few-shot
fine-tuning on the Held-out training samples as compared to the Seq2Seq model (few-shot HO-Gen
scores in Table 2). For Lexical generalization, both Prefix Tuning and Prompt Tuning fail to compete
with the full tuning of the Seq2Seq model under a few-shot setting (few-shot TE-Gen scores in
Table 3). A similar trend is observed for all the databases for the Structural Hard as well Structural
Extra Hard generalization settings as well.

Overall, both PEFT methods show competitive results with the Seq2Seq model under a few-shot
fine-tuning setting for Cross-domain generalization, while using significantly less compute and
memory. However, they show significantly lower performance with the more granular Lexical and
Structural generalization evaluation setting. This suggests that unlike the other NLP tasks where
Prefix Tuning and Prompt Tuning perform quite well, they fail to address the task of generalization in
Text-to-SQL.

4 Conclusion and Future Work

In this paper, we propose introducing few-shot fine-tuning based transfer learning for generalization in
the Text-to-SQL semantic parsing. Since, all the existing Text-to-SQL benchmark focus on zero-shot
cross-domain inference, we introduce a new benchmark: Spider-Gen for evaluating three specific
types of generalizations required for Text-to-SQL semantic parsing: (i) Cross-domain generalization;
(ii) Lexical generalization; (iii) Structural generalization.

Through our experiments with the Spider-Gen dataset, we show that a Seq2Seq model struggles to
perform cross-domain generalization on novel unseen databases from different data distributions.
We also show that even for databases seen during training, a Seq2Seq model fails to generalize
Lexically and Structurally with respect to fine-grained changes in the database schema and SQL query
complexity respectively. These findings highlight the need of a few-shot adaptation based transfer
learning paradigm in Text-to-SQL semantic parsing. Hence, we also include few-shot adaptation
samples in the Spider-Gen dataset. Our results show that while few-shot fine-tuning of Seq2Seq
model shows performance gains across different types of generalization, it comes at the cost of losing
out the knowledge learnt during training for the training databases. Hence, reporting results on the
Held-out evaluation samples from the Spider-Gen dataset helps in monitoring such negative effects
of few-shot adaptation based transfer learning in Seq2Seq Text-to-SQL models.

Through our experiments with the Seq2Seq model, we show several limitations of generalizing with
few-shot full model fine-tuning of Seq2Seq models. In order to overcome these limitations, we also
explore Parameter-efficient Fine-tuning techniques (PEFT) like Prefix Tuning and Prompt Tuning.
These PEFT techniques show at-par performance with full model tuning of a Seq2Seq model with
relatively less computation-costs and lesser magnitude of negative effects of transfer. However, they
fail to significantly improve over a fully-tuned Seq2Seq model. They also fail to address Lexical
and Structural generalization under both zero-shot and few-shot settings. These findings suggest that
better PEFT techniques need to be designed for more complex tasks like Text-to-SQL.

While we perform a preliminary set of experiments with the Spider-Gen dataset in this work, the
dataset can be used for various benchmarking and interpretability studies to build better generalizing
Text-to-SQL semantic parsing systems. We release the dataset publicly under the same licenses as
the its underlying component datasets. The dataset is also designed to match the standard format of
the original Spider dataset in order to facilitate quick adoption of the benchmark and reproducibility
of studies over transfer learning for generalization in Text-to-SQL models. Some possible future
research directions with the Spider-Gen dataset can include exploring the sample-efficiency during
the few-shot fine-tuning - where one can inspect the nature and frequency of few-shot samples needed
to obtain optimal performance under different types of generalizations. Given the diversity in the
database domains, data distribution, and generalizations covered in the Spider-Gen dataset - one
can also use it to predict an estimate of performance under different settings where no NL-SQL
annotations are available to test a particular model. The Spider-Gen dataset can also be used to
benchmark models which are to be deployed in real-world practical settings - where performing
Lexical and Structural generalization is quite important. Lastly, the dataset can come in handy to
predict and optimize transferability across different learning settings, databases, and domains.
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A Hyperparameter Settings

Hyperparameter
Seq2Seq Prefix Tuning Prompt Tuning

Training Fine-tuning Training Fine-tuning Training Fine-tuning

Epochs 50 15 30 50 25 30

Learning Rate 1.00E-04 5.00E-05 5.00E-04 5.00E-05 1.00E-02 1.00E-03

Weight Decay 0 1.00E-06 0 1.00E-06 0 0

Batch Size 128 2 128 2 128 2

LR Scheduler constant constant linear constant linear constant

Table 4: The hyperparameter settings used for training and fine-tuning the Seq2Seq, Prefix Tuning,
and Prompt Tuning based models in our experiments.

B Generalization Examples

/* TRAIN QUERY: What are the department names , cities , and state
provinces for each department? */

SELECT T1.department_name , T2.city , T2.state_province FROM departments
AS T1 JOIN locations AS T2 ON T2.location_id = T1.location_id

/* TEST QUERY: display the employee number , name( first name and last
name ), and salary for all employees who earn more than the
average salary and who work in a department with any employee with
a ’J’ in their first name. */

SELECT employee_id , first_name , last_name , salary FROM employees WHERE
salary > (SELECT Avg (salary) FROM employees) AND department_id

IN (SELECT department_id FROM employees WHERE first_name LIKE ’%J%
’)

Figure 2: Example for Lexical Generalization from the “hr_1" database. The database table:
“employees" and its content is unseen in training queries, and is used in test queries.
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/* TRAIN QUERY (easy): What are the names of all songs that are
ordered by their resolution numbers? */

SELECT song_name FROM song ORDER BY resolution

/* TRAIN QUERY (medium): What is the average song rating for each
language? */

SELECT Avg(rating), languages FROM song GROUP BY languages

/* TEST QUERY (hard): Find the file format that is used by the most
files. */

SELECT formats FROM files GROUP BY formats ORDER BY Count (*) DESC
LIMIT 1

Figure 3: Example for Structural Generalization (Hard) from the “music_1" database. Here, only the
SQL queries of complexity "easy" and "medium" are seen during training. Whereas, the queries of
complexity "hard" are only seen during testing.

/* TRAIN QUERY (easy): How many dorms are in the database? */

SELECT Count (*) FROM dorm

/* TRAIN QUERY (medium): Find the average age of all students living
in the each city. */

SELECT Avg(age), city_code FROM student GROUP BY city_code

/* TRAIN QUERY (hard): What are the names of all the dorms that don ’t
have any amenities? */

SELECT dorm_name FROM dorm WHERE dormid NOT IN (SELECT dormid FROM
has_amenity)

/* TEST QUERY (extra hard): Find the name of dorms which have TV
Lounge but no Study Room as amenity. */

SELECT T1.dorm_name FROM dorm AS T1 JOIN has_amenity AS T2 ON T1.
dormid = T2.dormid JOIN dorm_amenity AS T3 ON T2.amenid = T3.
amenid WHERE T3.amenity_name = ’TV Lounge ’ EXCEPT SELECT T1.
dorm_name FROM dorm AS T1 JOIN has_amenity AS T2 ON T1.dormid = T2
.dormid JOIN dorm_amenity AS T3 ON T2.amenid = T3.amenid WHERE T3.
amenity_name = ’Study Room’

Figure 4: Example for Structural Generalization (Extra Hard) from the “dorm_1" database. Here,
only the SQL queries of complexity "easy", "medium" and "hard" are seen during training. Whereas,
the queries of complexity "extra hard" are only seen during testing.
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