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Appendix A

Open-Source Code Links

The MDP definitions for our two experimental domains are available at: https://github.com/
s-arora-1987/sorting_patrol_MDP_irl.

RIMEO implementation is available at: https://github.com/s-arora-1987/irld.

Finally, the Gazebo simulation with Sawyer is available at: https://github.com/thinclab/
sawyer_irl_project.

Algorithm 1 RIMEO

1: WS (window size) ← 5; max-restarts ← 5; i ← 1; Ξd,1:i−1 ← ∅; φ̂1:i−1
θi−1,k ← 0; [θ0]k ∼

uniform(0, 1);P ∗1:i−1(ψ) ∼ uniform(0, 1)
2: while std dev z > ρ do
3: P ∗1:i ← P ∗1:i−1

4: Compute Ôo using scores for Ξd,i from Eq. 8.
5: repeat
6: Compute L′,∇L′ using P ∗1:i(ψ) and Ξd,i.
7: P ∗1:i(ψ)← update-step-LBFGS(L′,∇L′)
8: until ||∇L′||1 ≈ 0
9: Update learned observation model using P ∗1:i in Eq. 7.

10: repeat
11: compute φ̂iθi and φ̂1:i

θi,k using Eqs. 10, 11.
12: |Ξd,1:i| ← |Ξd,1:i−1|+ |Ξd,i|
13: θ0 ← θi−1, t← 1
14: repeat
15: Compute π∗E,(t−1) using θ(t−1) and EΞ[φk] using trajectories sampled from π∗E,(t−1).

16: z(t−1) ← φ̂1:i
θi − EΞ[φ] {gradient}

17: θt,k ←
θ(t−1),k exp(−ηz(t−1),k)∑K

k=1 θ(t−1),k exp(−ηz(t−1),k)

18: t← t+ 1
19: until |zt| ≤ εr/(1− γ)
20: j ← j + 1
21: until j > max-restarts
22: Compute π̂i using learned reward θi ← θt.
23: i← i+ 1 {next session}
24: zi ← zt; mov-window-z← [zi−WS , . . . , zi]
25: std dev z← std-dev(mov-window-z)
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Appendix B

Proof of Lemma 1

LEMMA 1 (MONOTONICITY). The demonstration likelihood increases monotonically with each new
session, LL(θi|Ξd,i, α1:i−1,θ

i−1)− LL(θi−1|Ξd,i−1, α1:i−2,θ
i−2) > 0, when |Ξd,1:i−1| � |Ξd,i|.

Proof: Log-likelihood of demonstrated behavior can be split as
LL(θi|Ξd,i, α1:i−1,θ

i−1)

=
∑

ξ′∈Ξd,1:i

P̃ (ξ′) logP (ξ′;θ)

=
∑

ξ′∈Ξd,1:i

P̃ (ξ′)
∑
ξ∈Ξ

P (ξ|ξ′;θi) logP (ξ, ξ′;θ) + (−
∑

ξ′∈Ξd,1:i

P̃ (ξ)
∑
ξ∈Ξ

P (ξ|ξ′;θi) logP (ξ|ξ′;θ))

= Q(Ξd,1:i,θ
i) + C(Ξd,1:i,θ

i)

Here P̃ is distribution of trajectories in observed training data (
∑

ξ′∈Ξd,1:i

P̃ (ξ′)[·] and 1
|Ξd,1:i|

∑
ξ′∈Ξd,1:i

[·]

can be used interchangeably). The EM method maximizes the log-likelihood by maximizing only
Q value over θ; and θ = θi maximizes Q(Ξd,1:i,θ

i) ([1]). After all the EM iterations for current
session i, the final Q value is Q(Ξd,1:i,θ

i). Therefore, the difference in the likelihoods achieved
by weights learned in consecutive sessions can be expressed as a difference in Q values. Note that
Robust IRL learns reward weights by inferring the maximum entropy distribution P (ξ, ξ′;θ) =
exp(

∑
k θkfk(ξ))

ΩΞ
θ

(Equation 15 in [2]), where ΩΞ
θ =

∑
ξ∈Ξ exp(

∑
k θkfk(ξ)). Expand Q value as

Q(Ξd,1:i,θ
i) =

∑
ξ′∈Ξd,1:i

P̃ (ξ′)
∑
ξ∈ξ

P (ξ|ξ′;θi) log

(
exp(

∑
k θ

i
kfk(ξ))

ΩΞ
θi

)
=
∑
k θ

i
k ·

∑
ξ′∈Ξd,1:i

P̃ (ξ′)
∑
ξ∈Ξ

P (ξ| ξ′;θi)fk(ξ)− log ΩΞ
θi =

∑
k θ

i
k · φ̂1:i

θi,k − log ΩΞ
θi .

Therefore the improvement in log likelihood over session i is
LL(θi|Ξd,i, α1:i−1,θ

i−1)− LL(θi−1|Ξd,i−1, α1:i−2,θ
i−2)

= Q(Ξd,1:i,θ
i)−Q(Ξd,1:i−1,θ

i−1)

=
∑
k

θikφ̂
1:i
θi,k − log ΩΞ

θi −
∑
k

θi−1
k φ̂1:i−1

θi−1,k + log ΩΞ
θi−1

= log
ΩΞ

θi−1

ΩΞ
θi

+
∑
k

(
θik

|Ξd,1:i−1|
|Ξd,i|+ |Ξd,1:i−1|

− θi−1
k

)
φ̂1:i−1
θi−1,k +

∑
k

(
θik

1

|Ξd,i|+ |Ξd,1:i−1|
φ̂iθi,k

)
(substitute φ̂1:i

θi,k using Eq. 11 from main paper and simplifying)

The final expression is minimized only for θi = θi−1 when |Ξd,1:i−1| � |Ξd,i|, i.e., when a
significant amount of training data has been accumulated. The expression is also concave in parameter
θi. Therefore, LL(θi|Ξd,i, α1:i−1,θ

i−1) − LL(θi−1|Ξd,i−1, α1:i−2,θ
i−2) ≥ 0 for consecutive

sessions thereafter.

Proof of Lemma 2

LEMMA 2 (CONSTRAINT BOUND). Under the assumptions stated in Sec. 5.2 (main paper), the
following holds with probability at least max(0, 1− δr):∣∣∣(1− γ)

(
EΞ[φk]− φ̂1:i

θi,k

)∣∣∣
1
6 εr, k ∈ {1, 2 . . .K}

where L is the maximum length of any trajectory, δr = δ + δs + δo and εr = ε+ εs + L|Ψ|εo, and
ε, δ are as defined in Theorem 1 in [3].

Proof: Suppose the true (unknown) observation model ∀o, g is O∗o,g . Solving the NLP with the true
observation model gives the true P (ψ), since the constraint below is satisfied.∏

ψo,g=1

P (ψ)
∏

ψo,g=0

(1− P (ψ)) = O∗o,g (1)
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Using these true P (ψ) instead of P ∗(ψ), we can generate a version of Eq. 11 (main paper):

φ1:i
θ,k =

1

|Ξd,1:i|
∑

ξ′∈Ξd,1:i

∑
ξ∈Ξ

ηP (ξ′|ξ)P (ξ;θ)fk(ξ)

From the accumulated sessions, we get estimates of O∗o,g, call it Ôo,g (Eq. 8 in the main paper).
We assume that this estimate satisfies Hoeffding bounds for the observed state-action pairs, viz.,
P (|O∗o,g− Ôo,g| ≤ εo) ≥ 1− δo

K , where δo = 2K|Ψ| exp(−2ε2ono), no being the number of samples
used to construct Ôo,g . The key issue is that this estimate may not be available yet for the 〈s, a〉o pairs
that were not observed. Regardless, we assume that all features in Ψ are observed in the very first
session. Hence, after solving the NLP, we obtain Ôo,g for all o, g, using the P ∗(ψ) from observed
〈s, a〉os and

Ôo,g =
∏

ψo,g=1

P ∗(ψ)
∏

ψo,g=0

(1− P ∗(ψ)) (2)

Under the assumptions above, with probability ≥ 1− δo, max〈s,a〉o |O
∗
o,g − Ôo,g| ≤ εo, but only for

the observed 〈s, a〉o. Since maxany ψ |P (ψ)−P ∗(ψ)| ≤ 1, in turn this yields maxany〈s,a〉o |O
∗
o,g −

Ôo,g| ≤ |Ψ|εo. Consequently, if the length of trajectories is bounded by L, then with probability
≥ 1− δo

K we have ∀k

|φ1:i
θi,k − φ̂

1:i
θi,k| =

1

|Ξd,1:i|
∑

ξ′∈Ξd,1:i

∑
ξ∈Ξ

fk(ξ)ηP (ξ;θ)|(P (ξ′|ξ)− P ∗(ξ′|ξ))|

=
1

|Ξd,1:i|
∑

ξ′∈Ξd,1:i

∑
ξ∈Ξ

fk(ξ)ηP (ξ;θ)|(
∏
o,g

O∗o,g −
∏
o,g

Ôo,g)|

≤ 1

|Ξd,1:i|
∑

ξ′∈Ξd,1:i

∑
ξ∈Ξ

fk(ξ)ηP (ξ;θ)L max
any o

|O∗o,g − Ôo,g|

≤ L|Ψ|εo/(1− γ)

The rest of the proof follows similar steps as in [3]. We define the events Ak, Bl, Cj as:

Ak : (1− γ)
∣∣EΞ[φk] −φ̂1:i

k

∣∣ > ε, k ∈ {1, 2 . . .K}.

Applying Hoeffding’s inequality for Ak, we get P (Ak) ≤ 2 exp(−2ε2|Ξd,1:i|) ≤ δ
K for any k ∈

{1, 2 . . .K}, and for the same ε, δ as in Theorem 1. Similarly, for noisy observation, given εs as the
bound on the error in sampling based approximation of φ̂1:i

l as φ1:i
θi,l, and ns samples, let us define

the event

Bl : (1− γ)
∣∣∣φ̂1:i
l − φ1:i

θi,l

∣∣∣ > εs, l ∈ {1, 2 . . .K}.

Similar to procedure for P (Ak), applying Hoeffding bound gives us P (Bl) < δs
K , δs =

2K exp(−2ε2
sns). Finally,

Cj : (1 − γ)
∣∣∣φ1:i

θi,j − φ̂
1:i
θi,j

∣∣∣ > L|Ψ|εo, j ∈ {1, 2 . . .K}. Then following the argument above,

P (Cj) <
δo
K .

Applying Fretchets inequality over the sets A, B, and C of events gives us:

P ((∪kAk) ∨ (∪lBl) ∨ (∪jCj)) < min(1,
∑K
k=1

δ
K +

∑K
l=1

δs
K +

∑K
j=1

δo
K ) = min(1, δ+δs+δo).

That is, P (∃k, l, js.t.Ak ∨Bl ∨ Cj) < min(1, δ + δs + δo). Taking complement,
P
(
∀k, l, j, Ak ∧Bl ∧ Cj

)
≥ max(0, 1 − δ − δs − δo). But ∀k, l, j, Ak ∧ Bl ∧ Cj implies that

∀k:

(1− γ)(
∣∣∣EΞ[φk]− φ̂1:i

k

∣∣∣+
∣∣∣φ̂1:i
k − φ1:i

θi,k

∣∣∣+
∣∣∣φ1:i

θi,k − φ̂
1:i
θi,k

∣∣∣) ≤ ε+ εs + L|Ψ|εo.

Hence P
(
∀k, (1− γ)(

∣∣∣EΞ[φk]− φ̂1:i
k

∣∣∣+
∣∣∣φ̂1:i
k − φ1:i

θi,k

∣∣∣+
∣∣∣φ1:i

θi,k − φ̂
1:i
θi,k

∣∣∣) ≤ ε+ εs + L|Ψ|εo
)
≥

max(0, 1− δ − δs − δo).
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Using
∣∣∣EΞ[φk]− φ̂1:i

θi,k

∣∣∣ ≤ ∣∣EΞ[φk] − φ̂1:i
k

∣∣ +
∣∣φ̂1:i
k − φ1:i

θi,k

∣∣ +
∣∣φ1:i

θi,k − φ̂
1:i
θi,k

∣∣, δr = δ + δs + δo,
and εr = ε+ εs + L|Ψ|εo, we get:

P

(
∀k, (1− γ)(

∣∣∣EΞ[φk]− φ̂1:i
θi,k

∣∣∣) ≤ εr) ≥ max(0, 1− δr).

Proof of Theorem 1

THEOREM 1 (CONFIDENCE ). Let εr, δr be as defined in Lemma 2, and θi be the solution of session
i for RI2RL-MEOM. Then

LL(θE |Ξd,1:i)− LL(θi|Ξd,i, α1:i−1,θ
i−1) ≤ 2Kεr

(1− γ)
,

with confidence at least max(0, 1− δr), where θE are the true weights of the expert.

Proof: Each session of RI2RL-MEOM solves a maximum entropy estimation problem for Robust
IRL. By allowing a relaxation in the constraints for a session, we get

max
∆

(
−
∑
ξ′∈Ξd,1:i,ξ∈Ξ P (ξ′, ξ) logP (ξ′, ξ)

)
subject to

∑
ξ′∈Ξd,1:i,ξ∈Ξ P (ξ′, ξ) = 1∣∣∣EΞ[φk]− φ̂1:i

θi,k

∣∣∣ ≤ βk ∀k
(3)

where
EΞ[φk] ,

∑
ξ∈Ξ,ξ′∈Ξd,1:i

P (ξ, ξ′) fk(ξ), k = 1 . . .K (4)

Here β ∈ RK is a vector of upper bounds on the differences between feature expectations.
Following the proofs by Dudik et al. [4], the above relaxed constraints problem is the same
as minθ(−

∑
ξ∈Ξd,1:i

P̃ (ξ) log P (ξ|θ) +
∑
k βk|θk|) = minθ(−LL(θ| Ξd,i, α1:i−1, θ

i−1) +∑
k βk|θk|) = minθ NLLβ(θ|Ξd,i, α1:i−1 ,θ

i−1) (say). Here NLL = negative log likelihood.

The proof here is partially inspired from Corollary 1 in [4]. Let βk = βc = ε/(1 − γ) for all k ∈
{1 . . .K}, where βc is a constant because ε is a fixed input. For normalized exponentiated gradient
descent used in reward-learning part of RI2RL session,

∑K
1 |θk| = 1. Then, NLLβ(θ|Ξd,i, α1:i−1,

θi−1) = (−LL(θ|Ξd,i, α1:i−1, θ
i−1) +βc

∑k
1 |θk|) = (−LL(θ|Ξd,i, α1:i−1,θ

i−1) +βc). Assume
that θi minimizes NLLβ(θ| Ξd,i, α1:i−1,θ

i−1), a solution maximizing LL(θ|Ξd,i, α1:i−1,θ
i−1).

Since EΞ[φk] ∈
[
0, 1

(1−γ)

]
, we get (1 − γ)EΞ[φk] ∈ [0, 1]. Using the result from the previous

Lemma, the probability that
∣∣∣(1− γ)EΞ[φk]− (1− γ)φ̂1:i

θi,k

∣∣∣ ≤ εr ∀k ∈ {1 . . .K} is at least
max(0, 1− δr). To keep the reward value bounded, IRL assumes ||θ∗||1 ≤ 1 for all θ∗. Using the
assumption and Theorem 1 in [4], we get the following error bound:

For every θ∗ ∈ [0, 1]K , NLLβ(θi|Ξd,i, α1:i−1,θ
i−1) − NLLβ(θ∗|Ξd,i, α1:i−1,θ

i−1) ≤
2
∑K

1 βc = 2K βc = 2Kεr
(1−γ) , with probability at least max(0, 1− δr).

We modify the bound in the form of positive log-likelihood of expert’s policy, by using the relation
NLLβ(θ∗|Ξd,1:i) = (−LL(θ∗| Ξd,1:i) +

∑K
1 βk|θk|) and θ∗ = θE .

Then, with Ξd,1:i as input, with probability at least max(0, 1− δr),

NLLβ(θi|Ξd,i, α1:i−1,θ
i−1)−NLLβ(θE |Ξd,1:i)

= LL(θE |Ξd,1:i)− LL(θi|Ξd,i, α1:i−1,θ
i−1) ≤ 2Kεr

(1− γ)
.
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Appendix C (Features of Onion Sorting)

Reward Features

The 11 reward features φk(s, a) are:

• CreateList(s,a): Roll all onions and create a list of predictions (blemished/unblemished/unknown);
• ClaimNewOnion(s,a): considers a new onion on table;
• PickUnknown(s,a): is 1 when onion with unknown prediction is picked;
• AvoidNoOp(s,a): the action a changes the state;
• InspectNewOnion(s,a): is 1 when an onion is inspected for the first time and a prediction is made

for it;
• GoodOnTable(s,a): considered onion is unblemished and is placed on the table;
• BlemishedNotOnTable(s,a): onion is blemished and is not placed on the table;
• GoodNotInBin(s,a): onion is unblemished and is not placed in the bin;
• BlemishedInBin(s,a): onion is blemished and is placed in the bin;
• PickBlemished(s,a): onion with prediction blemished is picked;
• EmptyList(s,a): finish sorting bad onions out of the conveyor.

Observation Features

The 8 observation features, ψj , j = 1, . . . , 8, are listed below. Each indicator ψo,gj takes the value 1
iff the predicate value is the same for both 〈s, a〉g and 〈s, a〉o.

• BlemishedOnion: considered onion is blemished;
• MoveWithHand: onion moves with the hand;
• StartFromConv: onion was on the table before action;
• LeavingAtEye: onion leaves atEye location;
• OnionToBin: onion moves to the bin;
• HandToBin: hand moves to the bin;
• OnionToTable: onion moves to the table;
• HandToTable: hand moves to the table;
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Appendix D (Features of Perimeter Patrol)

Reward Features

The 6 reward features φk(s, a), in the context of the above figure, are:

• HasMoved(s, a): true iff a in s makes the patroller change its grid cell;
• Turn1(s, a): true iff a in s makes the patroller turn (left or right) in the orange part of the hallway;
• Turn2(s, a): true iff a in s makes the patroller turn in the yellow part of hallway;
• Turn3(s, a): true iff a in s makes the patroller turn in the green part of hallway;
• Turn4(s, a): true iff a in s makes the patroller turn in the blue part of hallway;
• Turn5(s, a): true iff a in s makes the patroller turn in the magenta part of hallway.

A weight vector θE for these features such as 〈.57, 0, 0, 0, .43, 0〉 makes the patroller constantly
execute a cyclic trajectory.

Observation Features

The observation feature set Ψ contains the following 4 binary predicates:

• MoveForward: patroller is moving forward;
• TurnLeft: patroller is turning left;
• y is 0: patroller location has y = 0;
• TurnRight: patroller is turning right;

Average of pairwise feature correlation from the patroller’s demonstration is −0.14 (p-value 0.06),
indicating that the features are reasonably independent.
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