
Supplementary Material for SSL-Lanes:
Self-Supervised Learning for Motion Forecasting in

Autonomous Driving

1 Detailed Network Architecture for Baseline
We provide the detailed network architecture of our baseline in this section and is illustrated in
Fig. 1.
For the agent feature extractor, the architecture is similar to [1]. We use an 1D CNN to process
the trajectory input. The output is a temporal feature map, whose element at t = 0 is used as the
agent feature. The network has three groups/scales of 1D convolutions. Each group consists of two
residual blocks [2], with the stride of the first block as 2. Feature Pyramid Network (FPN) [3] fuses
the multi-scale features, and applies another residual block to obtain the output tensor. For all layers,
the convolution kernel size is 3 and the number of output channels is 128. Layer normalization [4]
and Rectified Linear Unit (ReLU) are used after each convolution.
The map feature extractor has two LaneConv residual [2] blocks which are the stack of a
LaneConv(1, 2, 4, 8, 16, 32) and a linear layer, as well as a shortcut. All layers have 128 fea-
ture channels. Layer normalization [4] and ReLU are used after each LaneConv and linear layer.
For the map-aware agent feature (M2A) module, the distance threshold is 12m. It is 100m for the
agent-to-agent (A2A) interaction module. The two interaction modules have two residual blocks,
which consist of a stack of an attention layer and a linear layer, as well as a residual connection. All
layers have 128 output feature channels.
Taking the interaction-aware actor features as input, our trajectory decoder is a multi-modal predic-
tion header that outputs the final motion forecasting. For each agent, it predicts K possible future
trajectories and confidence scores. The header has two branches, a regression branch to predict the
trajectory of each mode and a classification branch to predict the confidence score of each mode.
Key differences with Lane-GCN [1]: Our main difference is we use two Lane-Conv blocks instead
of four as map-feature extractor in order to prevent over-smoothing in GNNs [5]. We also do not
use the four-way fusion proposed by Lane-GCN and do away with the agent to map (A2M) and the
map to map (M2M) interaction blocks, which saves compute and memory.

2 SSL-Lanes: Self-Supervision meets Motion Forecasting

Before we discuss designing pretext tasks to generate self-supervisory signals, we consider a scheme
that will allow combined training for self-supervised pretext tasks and our standard framework.

How to combine motion forecasting and SSL? Self-supervision can be combined with motion
forecasting in various ways. In one scheme we could pre-train the forecasting encoder with pretext
tasks (which can be viewed as an initialization for the encoder’s parameters) and then fine-tune
the pre-trained encoder with a downstream decoder. In another scheme, we could choose to freeze
the encoder and only train the decoder. In a third scheme, we could optimize our pretext task and
primary task jointly, as a kind of multi-task learning setup. Inspired by relevant discussions in
GNNs, we choose the third-scheme, i.e., multi-task learning, which is the most general framework
among the three and is also experimentally verified to be the most effective [6, 7].

Joint Training: Considering our motion forecasting task and a self-supervised task, the output and
the training process can be formulated as:

Ψ?,Ω?,Θ?
ss = arg min

Ψ,Ω,Θss

α1Lsup(Ψ,Ω) + α2Lss(Ψ,Θss) (1)

where, Lss(·, ·) is the loss function of the self-supervised task, Θss is the corresponding linear trans-
formation parameter, and α1, α2 ∈ R>0 are the weights for the supervised and self-supervised
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Figure 1: Architecture of the baseline model
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losses. If the pretext task only focuses on the map encoder, then Ψ = {Θ} and Ω = {genc,Λ, gdec}.
Otherwise, Ψ = {genc,Θ,Λ} and Ω = {gdec}. Henceforth, we also define the following representa-
tions. We will represent the primary task encoder as function fΨ, parameterized by Ψ. Furthermore,
given a pretext task, which we will design in the next section, the pretext decoder pΘss is a function
that predicts pseudo-labels and is parameterized by Θss.

Benefit of SSL-Lanes: In Eq. (1), the self-supervised task as a regularization term throughout
network training. It acts as the regularizer learned from unlabeled data under the minor guidance
of human prior (design of pretext task). Therefore, a properly designed task would introduce data-
driven prior knowledge that improves model generalizability.

3 Pretext tasks for Motion Forecasting

At the core of our SSL-Lanes approach is defining pretext tasks based upon self-supervised infor-
mation from the underlying map structure and the overall temporal prediction problem itself. Our
core approach is simple in contrast to state-of-the-art that rely on complex encoding architectures
[8, 9, 10, 11, 1, 12, 13], ensembling forecasting heads [14, 15], involved final goal-set optimization
algorithms [16, 17] or heavy fusion mechanisms [1], to improve prediction performance.

3.1 Lane-Masking

Motivation: The goal of the Lane-Masking pretext task is to encourage the map encoder Ψ = {Θ}
to learn local structure information in addition to the forecasting task that is being optimized. In this
task, we learn by recovering feature information from the perturbed lane graphs.

Benefit of Lane-Masking: Since Argoverse [18] has imbalanced data with respect to maneuvers,
there are cases when right/left turns, lane-changes, acceleration/deceleration are missed by the base-
line even with multi-modal predictions. We hypothesize that stronger map-features can help the
multi-modal prediction header to infer that some of the predictions should also be aligned with map
topology. For example, even if an agent is likely to go straight at an intersection, some of the pos-
sible futures should also cover acceleration/deceleration or right/left turns guided by the local map
structure.

3.2 Distance to Intersection

Motivation: The Lane-Masking pretext task is from a local structure perspective based on masking
and trying to predict local attributes of the vectorized HD-map. We further develop the Distance-to-
Intersection pretext task to guide the map-encoder, Ψ = {Θ}, to maintain global topology informa-
tion by predicting the distance (in terms of shortest path length) from all lane nodes to intersection
nodes. Datasets like Argoverse [18] provide lane attributes which describe whether a lane node is
located within an intersection. This will force the representations to learn a global positioning vector
of each of the lane nodes.

Benefit of Distance to Intersection Task: We hypothesize that since change of speed, acceleration,
primary direction of movement etc. for an agent can change far more dramatically as an agent
approaches or moves away from an intersection, it is beneficial to explicitly incentivize the model to
pick up the geometric structure near an intersection and compress the space of possible map-feature
encoders, thereby effectively simplifying inference. We also expect this to improve drivable area
compliance nearby an intersection, which is often a problem for current motion forecasting models.

3.3 Maneuver Classification

Motivation: The Lane-Masking and Distance to Intersection pretext tasks are both based on ex-
tracting feature and topology information from a HD-map. However, pretext tasks can also be
constructed from the overall forecasting task itself. Thus we propose to obtain free pseudo-labels in
the form of a ‘maneuver’ the agent-of-interest intends to execute, and define a set of ‘intentions’ to
represent common semantic modes (e.g. change lane, speed up, slow down, turn-right, turn-left etc.)
We call this pretext task Maneuver Classification, and we expect it to provide prior regularization to
Ψ = {genc,Θ,Λ}, based on driving modes.
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Benefit of Maneuver Classification Task: We hypothesize if one can identify the intention of
a driver, the future motion of the vehicle will match that maneuver, thereby reducing the set of
possible end-points for the agent. We also expect that agents with similar maneuvers will tend to
have consistent semantic representations.

3.4 Forecasting Success/Failure Classification

Motivation: In contrast to maneuver classification, which provides coarse-grained prediction of the
future, self-supervision mechanisms can also offer a strong learning signal through goal-reaching
tasks which are generated from the agent’s trajectories. We propose a pretext task called Suc-
cess/Failure Classification, which trains an agent specialized at achieving end-point goals which
directly lead to the forecasting-task solution. We expect this to constrain Ψ = {genc,Θ,Λ} to pre-
dict trajectories ε distance away from the correct final end-point. Conceptually, the more examples
of successful goal states we collect, the better understanding of the target goal of the forecasting task
we have.

Benefit of Success/Failure Classification Task: We hypothesize that this task will especially pro-
vide stronger gains for cases where the final end-point is not aligned with the general direction
of agent movement for majority of samples given in the dataset, and is thus not well captured by
average displacement based supervised loss functions.

4 Discussion: SSL-Lanes vs. State-of-the-Art

We use this section to distinguish our work from methods that we believe have similar intuition but
very different construction, in order to highlight its novelty and value.

• SSL-Lanes vs. VectorNet [19]: Vector-Net is the only other motion forecasting work that
proposes to randomly mask out the input node features belonging to either scene context or
agent trajectories, and ask the model to reconstruct the masked features. Their intuition is
to encourage the graph networks to better capture the interactions between agent dynamics
and scene context. However, our motivation differs from VectorNet in two respects: (a)
We propose to use masking to learn local map-structure better, as opposed to learning
interactions between map and the agent. This is an easier optimization task, and we out-
perform VectorNet. (b) A lane is made up of several nodes. We propose to randomly
mask out a certain percentage of each lane. This is a much stronger prior as compared to
randomly masking out any node (which may correspond to either a moving agent or map)
and ensures that the model pays attention to all parts of the map.

• SSL-Lanes vs. CS-LSTM [20]: CS-LSTM appends the encoder context vector with a one-
hot vector corresponding to the lateral maneuver class and a one-hot vector corresponding
to the longitudinal maneuver class. Subsequently, the added maneuver context allows the
decoder LSTM to generate maneuver specific probability distributions. This construction
however is quite different from our work because it is not auxiliary in nature - it always
outputs and appends a maneuver to the decoder, even during inference. This we believe is
too strong of a bias for the prediction model, especially given the fact that the maneuvers
are generated using very simple velocity profiles and not from careful mining of the data.
In our conditioning, the maneuvers are mined from data and the final motion prediction
does not depend directly on them. We believe this design is much more flexible since it
allows to generate more supervisory signals in the form of maneuvers during training, but
at the same time does not require an explicit maneuver to condition the final future forecast
trajectory output during inference.

• SSL-Lanes vs. MultiPath [21]: MultiPath is also not auxiliary in nature: it factorizes mo-
tion uncertainty into intent uncertainty and control uncertainty; models the uncertainty over
a discrete set of intents with a softmax distribution; and then outputs control uncertainty as
a Gaussian distribution dependent on each waypoint state of the anchor trajectory (corre-
sponding to the intent). While this construction is highly intuitive and effective by design, it
is very different from our SSL-based construction. Ours is an auxiliary task which provides
supervision during training, and effectively functions as a regularizer, while being general
enough to be used with any other data-driven motion forecasting model.
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5 Discussion: Choice of Dataset

We now compare the commonly used motion-forecasting datasets, i.e., nuScenes [22], Waymo-
Open-Motion-Dataset (WOMD) [23] and Argoverse [18]. We individually discuss why Argoverse
is best positioned to bring out the benefits of our proposed work.

• Scale of Data: We first compare the dataset size. We note that Argoverse is not only two
orders larger than nuScenes, and also has greater number of training samples and unique
trajectories compared to WOMD.

nuScenes WOMD Argoverse

Number of Unique Tracks: 4.3k 7.65m 11.7m
Number of Training Segments: 1k 104k 324k

• Interesting Scenarios for Forecasting Evaluation: We next compare if the datasets specif-
ically mines for interesting scenarios, which is the area we want to improve the current
baseline. nuScenes was not collected to capture a wide diversity of complex and in-
teresting driving scenarios. WOMD on the other hand specifically mines for pairwise
interaction scenarios, where the main objective is to improve forecasting for interacting
agents. However, the scope of our study is to primarily focus on motion at intersections
undergoing lane-changes and turns. We expect the SSL-losses to improve understanding
of the context/environment, trajectory embeddings and address data-imbalance w.r.t. ma-
neuvers. We leave heavy interaction-based use cases for future work. Finally, Argoverse
mines for interesting motion patterns at intersections, which involve lane-changes, acceler-
ation/deceleration, and turns. We thus find this dataset best suited to showcase our proposed
method.

• Community focus on Argoverse: We also find that many popular motion forecasting
methods published by the robotics community have also included evaluations only on
the Argoverse dataset including: Lane-GCN, Lane-RCNN, PRIME, DCMS, TPCN, mm-
Transformer, HiVT, Multi-modal Transformer, DSP etc. This makes it easier for us to
position our work with respect to these approaches.

6 Implementation of Pretext Tasks

In this section, we discuss various design decisions for the proposed pretext tasks.

6.1 Lane-Masking

For this pretext task, we mask ma percent of every lane and reconstruct its features. In Tab. 1, we

Method ma minADE6 minFDE6 MR6

Baseline - 0.73 1.12 11.07

Random Masking 0.4 0.71 1.03 9.11

Lane-Masking 0.3 0.71 1.04 9.02

Lane-Masking 0.4 0.70 1.02 8.84
Lane-Masking 0.5 0.71 1.05 9.31

Table 1: Effect of masking ratio (ma) on forecasting performance for lane-masking task
study the influence of masking ratio on the final forecasting performance. Random masking refers to
masking out ma percent random map nodes and lane-masking refers to masking out ma percent of
lanes in the map. We finally choose ma = 0.4 as the most effective parameter for the lane-masking
pretext task, which outperforms random masking. The model infers missing lane-nodes to produce
plausible outputs during reconstruction. We hypothesize that this reasoning is linked to learning
useful representations.
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6.2 Distance to Intersection

For this pretext task, we explore two different options for framing the problem of predicting the
distance to the nearest intersection node in Tab. 2. We first explore predicting this distance as a
classification task. We group the lengths into four categories: dij = 1, dij = 2, dij = 3, dij = 4
and dij >= 5. We however find that this is harder to optimize than the regression loss proposed in
our methods section, which we finally choose as our loss for the distance to intersection pretext task.

Method Pretext Loss minADE6 minFDE6 MR6

Baseline - 0.73 1.12 11.07

Distance to Intersection Classification 0.72 1.06 9.64

Distance to Intersection Regression 0.71 1.04 8.93

Table 2: Effect of pretext loss type on forecasting performance for distance to intersection task

6.3 Maneuver Classification

For this pretext task, we first divide the lateral and longitudinal maneuvers by choosing a threshold
angle of 20 from the vertical. We next find that constrained k-means [24] on agent end-points
for lateral and longitudinal maneuvers works best to separate the trajectory samples into different
clusters. This is illustrated in Fig. 2. For differentiating the longitudinal maneuvers from the lane-
change maneuver, we check a combination of the distance from the lane centerlines for start and
stop positions and the orientations of the nearest centerline for start and stop positions.

Figure 2: Modes of driving from unsupervised clustering of data

6.4 Success/Failure Classification

For this pretext task, the primary bottleneck is the fact that the number of positive examples if far
fewer than the number of negative examples. This is because there are only a few success examples
in a 2m area near the end-point of a single recorded ground-truth trajectory, while the rest of the
points in the scene can be considered as failure examples. We consider first setting ε = 3m, i.e. a
wider area for success examples, and then reducing it to ε = 2m linearly over the total number of
training steps. We find that this can actually harm the final forecasting performance. We thus follow
[25] to use focal loss to train our auxiliary classification task.

7 Similarity in feature space
We analyze the CKA similarity [26] between the representations learnt by: a model trained with
pretext task ‘D2I’ (refers to distance to intersection task) and baseline; two models trained with
different pretext tasks. In Fig. 3, Base(M2A) refers to p̃i, Base(A2A) refers to ṕi. ‘Mask’ refers to
lane-masking, ‘success/fail’ refers to success or failure classification task and ‘intention’ suggests
maneuver classification.

Our main questions are: (a) how much does the pretext task feature differ from the baseline? (b) do
the features from different pretext tasks collapse to the same feature? First we note that representa-
tion learned by D2I does not collapse to the same representation learned by Mask or Success/Fail
or Intention. Secondly we note that D2I features are quite different from Base-M2A features p̃i
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Figure 3: CKA Feature similarity between feature pairs of baseline and different pretext tasks.
Similarity score is 1 for completely overlapping features and 0 for completely divergent features.

and Base-A2A features ṕi, which suggests that task-specific regularization has indeed resulted in
different parameters.

8 Metrics

ADE is defined as the average displacement error between ground-truth trajectories and predicted
trajectories over all time steps. FDE is defined as displacement error between ground-truth trajec-
tories and predicted trajectories at the final time step. We compute K likely trajectories for each
scenario with the ground truth label, where K = 1 and K = 6 are used. Therefore, minADE and
minFDE are minimum ADE and FDE over the top K predictions, respectively. Miss rate (MR) is
defined as the percentage of the best-predicted trajectories whose FDE is within a threshold (2 m).
Brier-minFDE is the minFDE plus (1− p)2, where p is the corresponding trajectory probability.

9 Qualitative Results

We next present some multi-modal prediction trajectories on several hard cases shown in Fig. 4.
SSL-Lanes can capture left and right turns better, while also being able to discern acceleration at
intersections. Our pretext tasks provide priors for the model and provides data-driven regularization
for free. This can improve forecasting because of better understanding of map topology, agent
context with respect to the map, and also improve generalization for maneuver imbalance implicitly
present in data.

10 Discussion: Potential of this Work

We expect this work to influence real world deployment of SSL forecasting methods for autonomous
driving. Another use case for this work is realistic behavior generation in traffic simulation. The
general construction of the prediction problem, inspired by [1], enables a generic understanding
of how an object moves in a given environment without memorizing the training data. A neural
network may learn to associate particular areas of a scene with certain motion patterns. To prevent
this, we centre around the agent of interest and normalize all other trajectory and map coordinates
with respect to it. We predict relative motion as opposed to absolute motion for the future trajectory.
This helps to learn general motion patterns. Reconstructing the map or predicting distances from
map elements are conducted in a frame-of-reference relative to the agent of interest. This helps
in learning general map connectivity. Following work in pedestrian trajectory prediction, we also
additionally add random rotations to the training trajectories to reduce directional bias. Furthermore,
we provide strong evidence that SSL-based tasks provide better generalization compared to pure
supervised training, thereby having the ability to effectively reuse the same prediction model across
different scenarios.
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Figure 4: Visual results of our proposed SSL-Lanes on the Argoverse [18] validation set. Generally,
these qualitative results demonstrate the effectiveness of our proposed pretext tasks.
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