Bayesian Reinforcement Learning for Single-Episode
Missions in Partially Unknown Environments
Appendix

1 List of acronyms and abbreviations

AUV Autonomous underwater vehicle
BAMCP Bayes-adaptive Monte-Carlo planning
BAMDP Bayes-adaptive Markov decision process

BO Bayesian optimisation

BRL Bayesian reinforcement learning

GNC Guidance, navigation, control

GP Gaussian process

GPDM Gaussian process dynamical model

MCTS Monte-Carlo tree search

POMDP Partially observable Markov decision process
ROS Robot operating system

SSP Stochastic shortest path

U-MDP MDP with unknown feature values

2 Proof of Proposition 2

Proof. With individual belief updates at every stage, the history density is (shortening P”t (h; ) to
Pht and P (hyyr) to Phe):
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where s; = (sg, Se)-

Given the definition of 7" in (2), and the fact that a history h; uniquely specifies a GP GPp, of
observations up to time ¢:

Pr= [ wlhw,ar) - J[ [T°(s0-1,0560)p (sew | sk, De1)] . (®)
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The GP posterior pgp (se,t/ | Sk.ts Dt/,l) is a multivariate normal distribution (MVN). A GP belief
update with a noise-free sampled observation is performed by conditioning the posterior MVN on the

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.



sampled value (for compactness we remove sj, from the MVN probability density function p97):
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The repeated belief update product in the square brackets in (9) can be recognised as being equivalent
(via the chain rule for probability) as being equivalent to the joint distribution across all values of
Se,t!:

[] :pgp(se,t+1a-~-ase,t+7 | Dt) (10)
Therefore the rollout distribution is identical between individual belief updates and root sampling:

Phe = H m(he,ag) - H T°(st—1,a, Skp) 'ng(se,t+17~-~7se,t+T|Dt) = Pl

t<t/<t+T1 t<t! <t4r
(1D
Given the rollout distribution equivalence, search tree node statistics for both methods will converge
to the same values in expectation. O

3 Radiation Domain Details

3.1 Radiation simulation

Radiation is simulated using 1/r2 “solid angle” radiation physics. Radiation sources {(s;,X;), ...}

have strength s; and pose x;. Source strength is the exposure value at a distance of 1m. The radiation
exposure \(x) at robot pose x from these radiation sources is then

src

% —

3.2 Domain Details

A problem instance consists of the following components: a) a randomly generated distribution of
radiation sources in the environment (below), b) the start location in the grid map, sampled from a
uniform distribution across the map, and ¢) 3 goal states, also uniformly sampled. Sampled problem
instances are discarded when they result in trivial solutions (e.g. due to the start and goal locations
being too close) or where one goal is significantly closer to the start location than the other sampled
goals.

Random radiation fields are generated in both of the following ways:

1. Random point-source distribution: insert between 5 to 20 radiation sources (uniform random
sampling), with randomly sampled z position values z € {1.0,1.5,2.5} and randomly
sampled strengths s € {1000, 2000, 5000, 10000}. « and y position values are sampled
uniformly within the bounds of the map +2.0m.

2. Randomly generated Gaussian random field distribution: evenly cover the map with radiation
sources at z = 1.0 and draw their log strengths from a Gaussian random field. The
Gaussian random field is generated with a radial basis function kernel, using uniformly
sampled lengthscale hyperparameter [ € {3.0,5.0, 7.0} and variance hyperparameter o €
{60, 75,90}.

3.3 Gazebo simulation

A visualisation of the reactor room world in Gazebo is shown in Figure 4. The simulated robot is a
Clearpath Jackal', using standard Gazebo lidar and odometry sensor simulation and standard ROS
components such as AMCL localisation?.

Uhttps://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/
*http://wiki.ros.org/amcl



Figure 4: Visualisation of the reactor room Gazebo world in the middle of a simulated mission.

3.4 Algorithm parameters

The UCT exploration constant was dynamically set to equal the value of the decision node multiplied
by 1.414. The guided rollout policy attempts to minimise the L2 distance from the goal state at the
next state:

Trollout(Sk) = arg min dist (s, s4) Vs, € G, (13)

a€A(sy)

where A(sy,) are the enabled actions at a state and dist is a function that returns the shortest grid map
path distance between two states in the grid map. The value of the € parameter was 1.0 in the log GP
space, meaning that MCTS search nodes covers increasingly large ranges of continuous value with
increasing radiation level.

3.5 U-MDP Cost and Transition Structures

Transitions between grid map states are assumed to be deterministic as robot navigation does not fail
in this easy-to-localise environment.

The state space S° = Sy x S where {z,y} C Sy and rad_exp € S.. The set of actions A° =
{left, left-up, left, up, right-up, right, right-down, down, left-down }.

The cost structure is
C°((sk, Se), a) = rad_exp - (mets-time + dy /Vyobot ) » (14)

where mcts-time is the MCTS time budget allocated to the algorithm, d, is the travel distance
associated with the action (diagonal actions are 1.414 times further), and v, is the manually
estimated average velocity of the simulated robot, taken to be = 0.3ms ™.

3.6 GP model

The GP is a single-output GP that models o : R? — Dist(IR) where the GP input is {z,y} C Si. The
GP is trained on log radiation measurements and predicts log radiation levels.

The GP kernel is a combination of a bias kernel and a radial basis function kernel:

[[sk — s3]
E(sk, s}) = o2 exp <_T2k . (15)

The radial basis function kernel hyperparameters are assigned the following uninformative Gamma
distribution priors:



GP hyperparameter \ Prior
Lengthscale [ I'(1,0.5)
Variance o I'(1,4)

This corresponds roughly to an expected lengthscale of 2m (standard deviation 2m) and expected
log magnitude variance of 0.5 (standard deviation 0.5). At the beginning of each experiment the
agent is provided with observations at the start state and two immediately neighbouring states as prior
knowledge.

4 Underwater Currents Experiment

4.1 Domain Details

A problem instance consists of the following components: a) a 10km x 10km current field drawn
from the real-world currents dataset in the same manner as [12], sampled from a fixed set of 12 fields
where there is some variation in current across the field (rather than e.g. consistent current in one
direction), b) the AUV start location, sampled from a uniform distribution across the field, and c¢)
between 1 and 3 (with uniform probability) goal states, also uniformly sampled. Sampled problem
instances are discarded when they result in trivial solutions (e.g. due to the start and goal locations
being too close) or where one goal is significantly closer to the start location than the other sampled
goals.

This experiment makes use of E.U. Copernicus Marine Service Information®. This is a dataset of
north/east ocean current vectors on a 1500m spaced grid. To allow sampling of ground truth values
at locations other than the grid locations, interpolation of the dataset using a spatio-temporal GP is
carried out in the same manner as [12]. The currents experiment, the dataset used covers the region
from approximately 47 to 62 latitude and -12 to 5 longitude. The dataset was originally collected on
May 1 2020.

4.2 Kinematic GNC simulation

The vehicle’s movement is determined by a kinematic calculation given of the vehicle’s yaw, pitch
and velocity control demands, process noise and the currents acting on the vehicle. Currents are
drawn from the currents dataset at the vehicle’s simulated true position. Underwater localisation
is via an underwater acoustic beacon-aided extended Kalman filter. The vehicle uses this acoustic
time-of-flight position feedback to navigate to the target location of the action selected by the MCTS
planner. An example detailed run through the kinematic GNC simulator is shown in Figure 5.

4.3 Algorithm parameters

The UCT exploration constant was dynamically set to equal the value of the decision node multiplied
by 1.414. The guided rollout policy attempts to minimise the L2 distance from the goal state at the
next state:
Trotlout (k) = argmin ||s;, — s4l|2Vsy € G, (16)
ac€A(sy)

where A(sy) are the enabled actions at a state. The value of the ¢ parameter was 0.1.

4.4 U-MDP Cost and Transition Structures

Transitions between grid map states are assumed to be deterministic as the AUV will always eventually
reach a specified goal. The state space S° = Sy x S, where {z,y} C S and {v;, vy} € Se. The set
of actions A° = {0°,60°,120°, 180°, 240°, 300°, } corresponds to the direction the vehicle wishes to
travel to the hex grid state in that direction. The vehicle travels against the current such that its net
movement is in the action-specified direction.

The cost is the time taken to carry out the transition, given a constant vehicle speed v = 0.6m s~ 1,

the currents acting on the vehicle, and the requirement from the navigation controller that the net

3 Available: https://resources.marine.copernicus.eu/?option=com_csw&view=details&
product_id=NORTHWESTSHELF_ANALYSIS_FORECAST_PHY_004_013.. Accessed 2021-08.
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Figure 5: Example run through kinematics / GNC simulator. The green line is the vehicle’s true
path, the red line is the demanded path the vehicle has attempted to follow (where the demanded
path is a result of an MCTS action selection at each grid MDP state), and the blue line is the “dead-
reckoned/odometry-only” position estimate for the AUV. This is where the vehicle would localise to
without any external EKF acoustic time-of-flight feedback.

direction of travel is in the action-specified direction. Given the chosen action this is solved to find
the net velocity v¢// and the direction the vehicle must steer against the current at the state.

ds
CO((Skase)aa) = ,UET’ (17)

where d is the distance between states in the hexagonal grid.

4.5 GP model

The GP is a vector-output coregionalised GP that models o : R? — Dist(R?) where the GP input is
{.’1?, y} g Sk:~

The GP kernel is the sum of a bias kernel and a radial basis function kernel. The RBF hyperparameters
are assigned the following relatively broad Gamma distribution priors based on sensible current
values seen in the whole currents dataset, and distribution of optimised lengthscale parameters seen
when GPs are trained on a small number of random subsets of the dataset:

GP hyperparameter | Prior
Lengthscale [ T'(a =49.0,b = 0.014)
Variance o I'(a=1.0,b=4.0)

This corresponds roughly to an expected lengthscale of 3500m (standard deviation 500m) and
expected current magnitude variance of 0.25 (standard deviation 0.0625). At the beginning of each
experiment the agent is provided with observations at the start state and two immediately neighbouring
states as prior knowledge.



	List of acronyms and abbreviations
	Proof of Proposition 2
	Radiation Domain Details
	Radiation simulation
	Domain Details
	Gazebo simulation
	Algorithm parameters
	U-MDP Cost and Transition Structures
	GP model

	Underwater Currents Experiment
	Domain Details
	Kinematic GNC simulation
	Algorithm parameters
	U-MDP Cost and Transition Structures
	GP model


